1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
#----------------------------------------------------------------------
#
# aycock-runtime.tcl --
#
# Procedures needed to execute an Aycock-Horspool-Earley parser.
#
# Copyright (c) 2006 by Kevin B. Kenny. All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: aycock-runtime.tcl,v 1.2 2011/01/13 02:47:47 andreas_kupries Exp $
#
#----------------------------------------------------------------------
package provide grammar::aycock::runtime 1.1
package require Tcl 8.5 9
# Define the directory containing this package's scripts
namespace eval grammar {}
namespace eval grammar::aycock {
variable parserCount 0
}
# grammar::aycock::Restore --
#
# Restores a parser from saved state.
#
# Parameters;
# rules - Saved rule set
# automaton - Saved automaton
# args - Saved action procedures
#
# Results:
# Returns the constructed parser's name
#
# Side effects:
# Reconstructs the parser
proc ::grammar::aycock::Restore {rules automaton args} {
set name [MakeParser]
variable ${name}::RuleSet
variable ${name}::Completions
variable ${name}::Edges
set RuleSet $rules
set Edges [dict create]
set Completions {}
set i 0
foreach {completions edges} $automaton {
lappend Completions $completions
dict set Edges $i $edges
incr i
}
foreach {actionName actionBody} $args {
namespace eval ${name} \
[list proc $actionName {_ clientData} $actionBody]
}
return ${name}
}
# grammar::aycock::MakeParser --
#
# Constructs the ensemble that will contain an Aycock parser.
#
# Results:
# Returns the name of the parser, which is an ensemble within
# the "aycock" namespace.
#
# The following commands are members of the ensemble:
# parse -- Parses a sequence of symbols and returns its lexical
# value.
# destroy -- Destroys the parser.
# terminals -- Lists the terminal symbols accepted by the parser
# nonterminals -- Lists the nonterminal symbols reduced by the parser
# save -- Returns a command to recreate the parser without needing
# to analyze the rule set.
proc ::grammar::aycock::MakeParser {} {
variable parserCount
set name [namespace current]::parser[incr parserCount]
namespace eval $name {
namespace export parse destroy
namespace export terminals nonterminals save
}
proc ${name}::parse {symList vallist {clientData {}}} \
[string map [list \
PROC [namespace current]::Parse \
PARSER $name] {
PROC PARSER $symList $vallist $clientData
}]
proc ${name}::terminals {} \
[list [namespace current]::Terminals $name]
proc ${name}::nonterminals {} \
[list [namespace current]::Nonterminals $name]
proc ${name}::save {} \
[list [namespace current]::Save $name]
proc ${name}::destroy {} \
[list namespace delete $name]
namespace eval $name {
namespace ensemble create
}
return $name
}
# grammar::aycock::MakeSet --
#
# Run one step of an Earley parse.
#
# Parameters:
# parser -- Name of the parser
# setsVar -- Sets of parser states already constructed
# sym -- Input symbol
#
# Results:
# Returns the sets of parser states updated with the transition on the
# given input
#
# Each parser state is an ordered pair (automaton state, parent)
# where parent is the position in the input string where the substring
# matching the given state begins. A state set is a dictionary whose
# keys are parser states and whose values are "links" - a link consists of
# the automaton state, parent, and state set of the predecessor,
# the automaton state, parent and state set of the cause, and
# the LRE(0) parser state of the symbol being reduced - see Aycock's
# paper for the details on how these are interpreted.
proc ::grammar::aycock::MakeSet {parser setsVar sym} {
upvar 1 $setsVar sets
namespace upvar $parser \
Completions Completions \
Edges Edges
# Find the state index and set up "current" and "next" state sets.
set ip1 [llength $sets]
set i [expr {$ip1 - 1}]
set curSet [lindex $sets end]
set newSet {}
# Work through the "current" set to determine "next state" transitions.
set j 0
set worklist $curSet
while {$j < [llength $worklist]} {
set item [lindex $worklist $j]
incr j 2
foreach {state parent} $item break
# Advance using the 'goto' on the current input symbol
if {$sym ne {} && [dict exists $Edges $state $sym]} {
set k [dict get $Edges $state $sym]
set createdItem [list $k $parent]
set links [list $state $parent $i]
dict set newSet $createdItem $links {}
# Also add the epsilon-transition from that state
if {[dict exists $Edges $k {}]} {
set nk [dict get $Edges $k {}]
set createdItem [list $nk [expr {$i+1}]]
dict set newSet $createdItem {} {}
}
}
if {$parent != $i} {
# Reduce any completions in the current state, adding
# them to the worklist because their 'goto' items may
# also be shifted.
foreach {lhs rhs pos} [lindex $Completions $state] {
if {$lhs eq {}} continue
foreach pitem [lindex $sets $parent] {
foreach {pstate pparent} $pitem break
if {[dict exists $Edges $pstate $lhs]} {
# goto on the newly-reduced nonterminal
set k [dict get $Edges $pstate $lhs]
set createdItem [list $k $pparent]
set links [list $pstate $pparent $parent \
$state $parent $i \
$lhs $rhs $pos]
if {![dict exists $curSet $createdItem]} {
lappend worklist $createdItem $links
}
dict set curSet $createdItem $links {}
if {[dict exists $Edges $k {}]} {
# epsilon-transition from the nonterminal's goto
set nk [dict get $Edges $k {}]
set createdItem [list $nk $i]
if {![dict exists $curSet $createdItem]} {
lappend worklist $createdItem {}
}
dict set curSet $createdItem {} {}
}
}
}
}
}
}
set sets [lreplace $sets[set sets {}] end end $curSet $newSet]
}
# grammar::aycock::Parse --
#
# Runs an Aycock-Earley parser
#
# Usage:
# $parser parse symlist vallist
#
# Parameters:
# symlist - List of token names created by scanning an input
# vallist - List of semantic values corresponding to the
# tokens in $symlist
# clientData - Client data to be passed to semantic action procedures
#
# Results:
# Returns whatever the semantic action in the top-level reduction
# of the parse returns.
proc ::grammar::aycock::Parse {parser symlist vallist {clientData {}}} {
namespace upvar $parser \
RuleSet RuleSet \
Edges Edges
set sets [list [dict create [list 1 0] {} [list 2 0] {}]]
set i 0
foreach sym $symlist {
MakeSet $parser sets $sym
if {[llength [lindex $sets end]] == 0} {
return -code error "syntax error before symbol $i ($sym: [lindex $vallist $i])"
}
incr i
}
MakeSet $parser sets {}
set startSym [lindex [dict get $RuleSet {}] 0 1]
#set finalState [dict get $Edges 2 $startSym]
set finalState [dict get $Edges 1 $startSym]
# TODO - check that the final state *is* final... it has to contain an
# acceptor somewhere.
return [Reconstruct $parser {} $finalState 0 $vallist $sets \
[expr {[llength $sets] - 2}] $clientData]
}
# grammar::aycock::Reconstruct --
#
# Reconstructs the parse that leads to reducing a given nonterminal
# symbol, and determines the nonterminal's semantic value.
#
# Parameters:
# parser -- Aycock parser
# nt - Name of the nonterminal being reduced
# state - Parser state that contains the reduction
# parent - Position in the input list of the start of the reduction
# vallist - List of semantic values corresponding the the symbols
# on the right hand side of the reduction
# sets - List of sets generated by grammar::aycock::MakeSet
# k - Position in the input list at the start of the reduction
# clientData - Client data for semantic actions
#
# Results:
# Returns the semantic value of the left-hand side of the reduction
proc ::grammar::aycock::Reconstruct {parser nt state parent vallist sets k clientData} {
namespace upvar $parser \
RuleSet RuleSet \
Completions Completions \
Edges Edges
set choices {}
# Here it's possible that Completions contains completions for the
# wrong nonterminal?
set complete [lindex $Completions $state]
if {[llength $complete] != 3} {
set complete {}
foreach {lhs rhs pos} [lindex $Completions $state] {
if {$lhs eq $nt} {
lappend complete $lhs $rhs $pos
}
}
}
set compIdx [ChooseReduction $parser $complete]
foreach {lhs rhsIndex pos} \
[lrange $complete [expr {3*$compIdx}] [expr {3*$compIdx+2}]] break
foreach {rhs action} [lrange [dict get $RuleSet $lhs] $rhsIndex [expr {$rhsIndex+1}]] break
set cmd [list ${parser}::$action]
set args {}
foreach sym $rhs {
lappend args {}
}
for {set i [expr {[llength $rhs]-1}]} {$i >= 0} {incr i -1} {
set sym [lindex $rhs $i]
if {![dict exists $RuleSet $sym]} {
# terminal symbol
if {$sym != "\u22a2"} {
lset args $i [lindex $vallist [expr {$k-1}]]
set predecessors {}
dict for {key v} \
[dict get [lindex $sets $k] [list $state $parent]] {
foreach {pstate pparent pk cstate cparent ck
lhs rhsIndex pos} $key break
# should be only one transition on a terminal
break
}
set state $pstate
set parent $pparent
set k $pk
}
} elseif {[string range $sym end-2 end] == "\{\u00d8\}"} {
lset args $i [DeriveEpsilon $parser $sym $clientData]
} elseif {[dict exists [lindex $sets $k] [list $state $parent]]} {
set causes {}
set links [dict get [lindex $sets $k] [list $state $parent]]
set keys {}
set reductions {}
dict for {key v} $links {
foreach {pstate pparent pk cstate cparent ck \
lhs rhsIndex pos} $key break
lappend reductions $lhs $rhsIndex $pos
lappend keys $key
}
set keyIdx [ChooseReduction $parser $reductions]
set key [lindex $keys $keyIdx]
foreach {pstate pparent pk cstate cparent ck \
lhs rhsIndex pos} $key break
lset args $i \
[Reconstruct $parser $sym $cstate $cparent $vallist \
$sets $ck $clientData]
set state $pstate
set parent $pparent
set k $pk
} else {
return -code error "syntax error: incomplete parse"
}
}
set v [eval [list $cmd $args $clientData]]
return $v
}
# grammar::aycock::ChooseReduction --
#
# Resolves an ambiguity in an Aycock-Earley parse
#
# Parameters:
# parser - Parser structure
# lritems - List of LR items that could be reduced.
#
# Results:
# Returns the ordinal number of the reduction to choose
#
# Always resolves in favour of the shortest right-hand side. This choice
# is equivalent to choosing "resolve shift/reduce conflicts in favour
# of shifting" in an LR parser, and is adequate to handling situations
# like "dangling ELSE." It is not adequate for handling things like a
# YACC-style ambiguous expression grammar with precedence and associativity;
# that sort of processing would need additional investigation.
proc ::grammar::aycock::ChooseReduction {parser lritems} {
# if {[llength $lritems] != 3} {
# puts "Need to choose which item to reduce:"
# DumpItemSet $parser $lritems
# }
# choose the shortest reduction - this is equivalent to
# "resolve in favour of shift"
set ind -1
set shortest 99999
set i 0
foreach {lhs rhsIndex pos} $lritems {
if {$pos < $shortest} {
set shortest $pos
set ind $i
}
incr i
}
return $ind
}
# grammar::aycock::DeriveEpsilon --
#
# Performs a set of semantic actions needed to derive the
# empty string within a set of reductions in an Aycock-Earley parser.
#
# Parameters:
# parser -- Parser data structure
# sym -- Non-terminal symbol that reduces to the empty string.
# clientData - Client data for semantic actions
#
# Results:
# Returns the semantic value of the given symbol
proc ::grammar::aycock::DeriveEpsilon {parser sym clientData} {
# need to find the rule that derives the null string, and
# expand it out.
namespace upvar $parser RuleSet RuleSet
set rules [dict get $RuleSet $sym]
set idx 0
if { [llength $rules] != 2 } {
set items {}
set i 0
foreach {rhs action} $rules {
lappend items $sym $i [llength $rhs]
incr i 2
}
set idx [expr {2 * [ChooseReduction $parser $items]}]
}
set rhs [lindex $rules $idx]
set action [lindex $rules [expr {$idx + 1}]]
set cmd [list ${parser}::$action]
set args {}
foreach sym $rhs {
lappend args {}
}
for {set i [expr {[llength $rhs] - 1}]} {$i >= 0} {incr i -1} {
lset args $i [DeriveEpsilon $parser [lindex $rhs $i] $clientData]
}
set r [eval [list $cmd $args $clientData]]
return $r
}
|