1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
## -*- tcl -*-
# ### ### ### ######### ######### #########
## Supporting functions
# Force various C types to be declared for use by helper functions and code.
# - critcl_pstring
critcl::cproc ::map::slippy::DOOM {pstring dummy} void {}
critcl::ccode {
static critcl_pstring ms_pstring_empty() { critcl_pstring x = {0,0,0} ; return x; }
// you initialize a struct variable as shown above. You cannot assign to it in the same manner
// after initialization. You need a value of the proper type. The helper produces such a thing
// for us. We use it as the default value for the optional `msgv` argument (a varname)
}
# https://en.wikipedia.org/wiki/Haversine_formula
# https://wiki.tcl-lang.org/page/geodesy
# https://en.wikipedia.org/wiki/Geographical_distance | For radius used in angle
# https://en.wikipedia.org/wiki/Earth_radius | to meter conversion
##
# Go https://en.wikipedia.org/wiki/N-vector ?
critcl::ccode {
static Tcl_Obj* delimit(double x, double factor) {
if (x == (double)(int)x) {
return Tcl_NewIntObj ((int) x); /* OK tcl9 */
}
x = round(x * factor)/factor;
if (x == (double)(int)x) {
return Tcl_NewIntObj ((int) x); /* OK tcl9 */
}
return Tcl_NewDoubleObj (x);
}
static void geo_2point (int zoom, geo* g, point* p) {
int tiles = TILES (zoom);
double latrad = DEGTORAD * g->lat;
double row = (1 - (log(tan(latrad) + 1.0/cos(latrad)) / M_PI)) / 2 * tiles;
double col = ((g->lon + 180.0) / 360.0) * tiles;
p->y = OURTILESIZE * row;
p->x = OURTILESIZE * col;
}
static point* geos_2points (int zoom, int c, geo* geos) {
point* p = (point*) ckalloc (c * sizeof(point));
unsigned int k;
for (k = 0; k < c; k++) geo_2point (zoom, &geos[k], &p[k]);
return p;
}
// - - -- --- ----- -------- -------------
static void point_2geo (int zoom, point* p, geo* g) {
double x = p->x;
double y = p->y;
int length = OURTILESIZE * TILES (zoom);
double lat = RADTODEG * (atan(sinh(M_PI * (1 - 2 * y / length))));
double lon = x / length * 360.0 - 180.0;
g->lat = lat;
g->lon = lon;
return;
}
static geo* points_2geos (int zoom, int c, point* points) {
geo* g = (geo*) ckalloc (c * sizeof(geo));
unsigned int k;
for (k = 0; k < c; k++) point_2geo (zoom, &points[k], &g[k]);
return g;
}
// - - -- --- ----- -------- -------------
static double geo_distance (double lata, double lona, double latb, double lonb) {
double dlat = latb - lata;
double dlon = lonb - lona;
double hsdlat = sin(dlat/2.);
double hsdlon = sin(dlon/2.);
double h = hsdlat*hsdlat + cos(lata)*cos(latb)*hsdlon*hsdlon;
// Distance base, clamp to -1..1, then to angle
if (fabs(h) > 1.0) { h = (h > 0) ? 1 : -1; }
return 2*asin(sqrt(h));
}
static double geo_distance_list (int closed, int c, geo* geos) {
// lat, lon are in degrees - convert all to radians
double d = 0;
double lata = DEGTORAD * geos[0].lat;
double lona = DEGTORAD * geos[0].lon;
unsigned int i;
if (c < 2) {
return 0;
}
for (i = 1; i < c ; i++) {
double latb = DEGTORAD * geos[i].lat;
double lonb = DEGTORAD * geos[i].lon;
d += geo_distance (lata, lona, latb, lonb);
lata = latb;
lona = lonb;
}
if (closed) {
double latb = DEGTORAD * geos[0].lat;
double lonb = DEGTORAD * geos[0].lon;
d += geo_distance (lata, lona, latb, lonb);
}
// Convert to meters and return
double meters = 6371009 * d;
return meters;
}
static geobox geo_bbox (int c, geo* geos) {
unsigned int i;
if (c == 0) {
geobox bounding = { 0, 0, 0, 0 };
return bounding;
}
geobox bounding = {
.lat0 = geos[0].lat,
.lon0 = geos[0].lon,
.lat1 = geos[0].lat,
.lon1 = geos[0].lon
};
for (i = 1; i < c; i++) {
bounding.lat0 = MIN (bounding.lat0, geos[i].lat);
bounding.lon0 = MIN (bounding.lon0, geos[i].lon);
bounding.lat1 = MAX (bounding.lat1, geos[i].lat);
bounding.lon1 = MAX (bounding.lon1, geos[i].lon);
}
return bounding;
}
static geo geo_center (int c, geo* geos) {
geo out = { 0, 0 };
unsigned int i;
if (c == 0) {
return out;
}
double lat0 = geos[0].lat;
double lon0 = geos[0].lon;
double lat1 = geos[0].lat;
double lon1 = geos[0].lon;
for (i = 1; i < c; i++) {
lat0 = MIN (lat0, geos[i].lat);
lon0 = MIN (lon0, geos[i].lon);
lat1 = MAX (lat1, geos[i].lat);
lon1 = MAX (lon1, geos[i].lon);
}
out.lat = (lat0 + lat1)/2.0 ;
out.lon = (lon0 + lon1)/2.0 ;
return out;
}
static double geo_diameter (int c, geo* geos) {
double diameter = 0;
unsigned int i, j;
if (c < 2) {
return 0;
}
for (i = 0; i < c-1; i++) {
double lata = DEGTORAD * geos[i].lat;
double lona = DEGTORAD * geos[i].lon;
for (j = i+1; j < c; j++) {
// inline 2 element geo distance
// note: going for replication of conversion for B point, instead of allocating memory
// i.e. trading space (and complexity of managing it) for time
double latb = DEGTORAD * geos[j].lat;
double lonb = DEGTORAD * geos[j].lon;
double d = geo_distance (lata, lona, latb, lonb);
diameter = MAX (diameter, d);
}
}
double meters = 6371009 * diameter;
return meters;
}
static double point_distance (point* a, point* b) {
return hypot (b->x - a->x,
b->y - a->y);
}
static double point_distance_list (int closed, int c, point* points) {
unsigned int i, k;
if (c < 2) {
return 0;
}
double d = 0;
for (i = 1, k = 0; i < c ; i++, k++) {
d += hypot (points[i].x - points[k].x,
points[i].y - points[k].y);
}
if (closed) {
d += hypot (points[c-1].x - points[0].x,
points[c-1].y - points[0].y);
}
return d;
}
static pointbox point_bbox (int c, point* points) {
unsigned int i;
if (c == 0) {
pointbox bounding = { 0, 0, 0, 0 };
return bounding;
}
pointbox bounding = {
.x0 = points[0].x,
.y0 = points[0].y,
.x1 = points[0].x,
.y1 = points[0].y,
};
for (i = 1; i < c; i++) {
bounding.x0 = MIN (bounding.x0, points[i].x);
bounding.y0 = MIN (bounding.y0, points[i].y);
bounding.x1 = MAX (bounding.x1, points[i].x);
bounding.y1 = MAX (bounding.y1, points[i].y);
}
return bounding;
}
static point point_center (int c, point* points) {
unsigned int i;
point out = { 0, 0 };
if (c == 0) {
return out;
}
double miny = points[0].y;
double minx = points[0].x;
double maxy = points[0].y;
double maxx = points[0].x;
for (i = 1; i < c; i++) {
miny = MIN (miny, points[i].y);
minx = MIN (minx, points[i].x);
maxy = MAX (maxy, points[i].y);
maxx = MAX (maxx, points[i].x);
}
out.y = (miny + maxy)/2.0 ;
out.x = (minx + maxx)/2.0 ;
return out;
}
static double point_diameter (int c, point* points) {
unsigned int i, j;
double diameter = 0;
if (c < 2) {
return 0;
}
for (i = 0; i < c-1; i++) {
for (j = i+1; j < c; j++) {
double d = hypot (points[i].x - points[j].x,
points[i].y - points[j].y);
diameter = MAX (diameter, d);
}
}
return diameter;
}
}
# References
# - https://core.ac.uk/download/pdf/131287229.pdf
# - https://github.com/BobLd/RamerDouglasPeuckerNetV2/blob/b3d00f43d0ed5951ea2b1ca86bedfa72bb3d42a4/RamerDouglasPeuckerNetV2.Test/RamerDouglasPeuckerNetV2/RamerDouglasPeucker.cs#L97-L111
# Modification:
# - special case threshold for distance (s) <= 0. Which puts tmax at +Inf (Div by zero).
# Solution based on FAQ 1.02 on comp.graphics.algorithms
#
# L = hypot( Bx-Ax, By-Ay )
#
# (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
# s = -----------------------------
# L^2
# dist = |s|*L
#
# =>
#
# | (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) |
# dist = ---------------------------------
# L
critcl::ccode {
static double rdp_threshold (point* args, unsigned int i, unsigned int j) {
double x0 = args[i].x;
double y0 = args[i].y;
double x1 = args[j].x;
double y1 = args[j].y;
double dx = x1 - x0;
double dy = y1 - y0;
double s = hypot (dy, dx);
// If there is "no distance" at all, ensure to dismiss anything in between.
if (s <= 0) { return 0; }
// Non-singular distance, continue as normal
double phi = atan2 (dy, dx);
double cphi = cos (phi);
double sphi = sin (phi);
double tmax = (fabs (cphi) + fabs (sphi))/s;
double poly = 1 - tmax + tmax * tmax;
double px = poly/s;
double a = atan(fabs(sphi + cphi)*px);
double b = atan(fabs(sphi - cphi)*px);
double pphi = MAX (a,b);
double dmax = s * pphi;
return dmax;
}
static void rdp_find_farthest (point* args, unsigned int i, unsigned int j, double* d, unsigned int* k) {
double maxd = 0;
unsigned int maxk = 0;
unsigned int n;
// integrated distance to line, with common parts moved out of the loop,
// and splitting the loop per a==b vs a!=b.
double ax = args[i].x;
double ay = args[i].y;
double bx = args[j].x;
double by = args[j].y;
if ((ax == bx) && (ay == by)) {
for (n = i+1; n < j; n++) {
double cx = args[n].x;
double cy = args[n].y;
double d = hypot(cx-ax,cy-ay);
if (d <= maxd) continue;
maxd = d;
maxk = n;
}
*d = maxd;
*k = maxk;
return;
}
double hyp = hypot(bx-ax,by-ay);
for (n = i+1; n < j; n++) {
double cx = args[n].x;
double cy = args[n].y;
double d = fabs((ay-cy)*(bx-ax)-(ax-cx)*(by-ay));
if (d <= maxd) continue;
maxd = d;
maxk = n;
}
*d = maxd / hyp;
*k = maxk;
}
static void rdp_core (char* keep, point* args, unsigned int i, unsigned int j) {
if ((j-i) < 2) {
keep[i] = 1;
keep[j] = 1;
return;
}
double d;
unsigned int k;
rdp_find_farthest (args, i, j, &d, &k);
double t = rdp_threshold (args, i, j);
if (d <= t) {
keep[i] = 1;
keep[j] = 1;
return;
}
rdp_core (keep, args, i, k);
rdp_core (keep, args, k, j);
}
}
# ### ### ### ######### ######### #########
return
|