1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
## -*- tcl -*-
# ### ### ### ######### ######### #########
##
## Tcl implementation for map::slippy
##
## See
## http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Pseudo-Code
##
## for the coordinate conversions and other information.
# ### ### ### ######### ######### #########
## Requisites
package require math::constants
# ### ### ### ######### ######### #########
## API - Ensemble setup
namespace eval ::map::slippy {
math::constants::constants pi radtodeg degtorad
variable ourtilesize 256 ; # Size of slippy tiles <pixels>
}
# Space for RDP helpers
namespace eval ::map::slippy::point::simplify {}
# ### ### ### ######### ######### #########
## Implementation
proc ::map::slippy::tcl_geo_valid_list {gs} {
foreach g $gs { if {![valid $g]} { return 0 } }
return 1
}
proc ::map::slippy::tcl_geo_box_valid_list {gs} {
foreach g $gs { if {![valid $g]} { return 0 } }
return 1
}
proc ::map::slippy::tcl_geo_valid {g} {
::map::slippy::Check2 $g
lassign $g lat lon
return [expr {[map slippy valid latitude $lat] && [map slippy valid longitude $lon]}]
}
proc ::map::slippy::tcl_geo_box_valid {gbox} {
::map::slippy::Check4 $gbox
lassign $gbox lat0 lon0 lat1 lon1
return [expr {
[map slippy valid latitude $lat0] && [map slippy valid longitude $lon0] &&
[map slippy valid latitude $lat1] && [map slippy valid longitude $lon1]
}]
}
proc ::map::slippy::tcl_valid_latitude {x} {
if {$x > 90} { return 0 }
if {$x < -90} { return 0 }
return 1
}
proc ::map::slippy::tcl_valid_longitude {x} {
if {$x > 180} { return 0 }
if {$x < -180} { return 0 }
return 1
}
proc ::map::slippy::tcl_limit6 {x} { Limit $x 1000000. }
proc ::map::slippy::tcl_limit3 {x} { Limit $x 1000. }
proc ::map::slippy::tcl_limit2 {x} { Limit $x 100. }
proc ::map::slippy::Limit {x f} {
set y [expr {int($x)}]
if {$x == $y} { return $y }
set x [expr {round($x * $f)/$f}]
set y [expr {int($x)}]
if {$x == $y} { return $y }
return $x
}
proc ::map::slippy::tcl_length {level} {
variable ourtilesize
return [expr {$ourtilesize * (1 << $level)}]
}
proc ::map::slippy::tcl_tiles {level} {
return [expr {1 << $level}]
}
proc ::map::slippy::tcl_tile_size {} {
variable ::map::slippy::ourtilesize
return $ourtilesize
}
proc ::map::slippy::tcl_tile_valid {zoom row col levels {msgv {}}} {
if {$msgv ne ""} { upvar 1 $msgv msg }
# Requests outside of the valid ranges are rejected immediately
if {($zoom < 0) || ($zoom >= $levels)} {
set msg "Bad zoom level '$zoom' (max: $levels)"
return 0
}
set tiles [map slippy tiles $zoom]
if {($row < 0) || ($row >= $tiles) ||
($col < 0) || ($col >= $tiles)
} {
set msg "Bad cell '$row $col' (max: $tiles)"
return 0
}
return 1
}
proc ::map::slippy::tcl_geo_box_limit {gbox} {
::map::slippy::Check4 $gbox
lassign $gbox latmin lonmin latmax lonmax
lappend r [map slippy limit6 $latmin]
lappend r [map slippy limit6 $lonmin]
lappend r [map slippy limit6 $latmax]
lappend r [map slippy limit6 $lonmax]
return $r
}
proc ::map::slippy::tcl_geo_box_inside {gbox g} {
::map::slippy::Check4 $gbox
::map::slippy::Check2 $g
lassign $gbox latmin lonmin latmax lonmax
lassign $g lat lon
if {$lat < $latmin} { return 0 }
if {$lat > $latmax} { return 0 }
if {$lon < $lonmin} { return 0 }
if {$lon > $lonmax} { return 0 }
return 1
}
proc ::map::slippy::tcl_geo_box_center {gbox} {
::map::slippy::Check4 $gbox
lassign $gbox latmin lonmin latmax lonmax
set lat [expr {($latmin + $latmax)/2.}]
set lon [expr {($lonmin + $lonmax)/2.}]
return [list $lat $lon]
}
proc ::map::slippy::tcl_geo_box_dimensions {gbox} {
::map::slippy::Check4 $gbox
lassign $gbox latmin lonmin latmax lonmax
set dlat [expr {$latmax - $latmin}]
set dlon [expr {$lonmax - $lonmin}]
return [list $dlon $dlat]
}
proc ::map::slippy::tcl_geo_box_2point {zoom gbox} {
return [map slippy point bbox-list [map slippy geo 2point-list $zoom [opposites $gbox]]]
}
proc ::map::slippy::tcl_geo_box_corners {gbox} {
::map::slippy::Check4 $gbox
lassign $gbox latmin lonmin latmax lonmax
return [list \
[list $latmin $lonmin] [list $latmin $lonmax] \
[list $latmax $lonmin] [list $latmax $lonmax]]
}
proc ::map::slippy::tcl_geo_box_diameter {gbox} {
::map::slippy::Check4 $gbox
lassign $gbox latmin lonmin latmax lonmax
return [map slippy geo distance* 0 [list $latmin $lonmin] [list $latmax $lonmax]]
}
proc ::map::slippy::tcl_geo_box_opposites {gbox} {
::map::slippy::Check4 $gbox
return [list [lrange $gbox 0 1] [lrange $gbox 2 3]]
}
proc ::map::slippy::tcl_geo_box_perimeter {gbox} {
return [map slippy geo distance-list 1 [corners $gbox]]
}
proc ::map::slippy::tcl_geo_box_fit {gbox canvdim zmax {zmin 0}} {
::map::slippy::Check4 $gbox
::map::slippy::Check2 $canvdim
variable ::map::slippy::ourtilesize
lassign $canvdim canvw canvh
lassign [dimensions $gbox] gw gh
# NOTE we assume ourtilesize == [map::slippy length 0].
# Further, we assume that each zoom step "grows" the linear resolution by a factor 2
# (that's the log(2) down there)
set canvw [expr {abs($canvw)}]
set canvh [expr {abs($canvh)}]
set z [expr {int(log(min( \
($canvh/$ourtilesize) / (abs($gh)/180), \
($canvw/$ourtilesize) / (abs($gw)/360))) \
/ log(2))}]
#puts z'initial:$z
# clamp ...
set z [expr {($z<$zmin) ? $zmin : (($z>$zmax) ? $zmax : $z)}]
#puts z'clamp:$z
# The zoom we have now is an approximation, since the scale factor isn't uniform across the map
# (the vertical dimension depends on latitude). We have to refine it iteratively, i.e. try to
# grow/shrink until it does (not) fit any longer, and then back off.
while {1} {
# Now we can run "uphill", then there's z0 = z - 1 and "downhill", then there's z1 = z + 1
# (from the last iteration)
#puts "try zoom $z"
lassign [map slippy point box dimensions [2point $z $gbox]] w h
#puts dimensions|w|[expr {abs($w)}]|$canvw|h|[expr {abs($h)}]|$canvh|
if { (abs($w) > $canvw) || (abs($h) > $canvh) } {
# too big: shrink
#puts "too big: shrink..."
if { [info exists z0] } break; # but not if we come "from below"
if {$z <= $zmin} break; # can't be < $zmin
set z1 $z
incr z -1
} else {
# fits: grow
#puts "fits: grow..."
if { [info exists z1] } break; # but not if we come "from above"
if {$z >= $zmax} {
#puts "fits: at max!"
break
}
set z0 $z
incr z
}
}
if { [info exists z0] } { set z $z0 }
#puts z'final:$z
return $z
}
proc ::map::slippy::tcl_geo_limit {g} {
::map::slippy::Check2 $g
lassign $g lat lon
lappend r [map slippy limit6 $lat]
lappend r [map slippy limit6 $lon]
return $r
}
proc ::map::slippy::tcl_geo_distance {geoa geob} {
::map::slippy::Check2 $geoa
::map::slippy::Check2 $geob
# https://en.wikipedia.org/wiki/Haversine_formula
# https://wiki.tcl-lang.org/page/geodesy
# https://en.wikipedia.org/wiki/Geographical_distance | For radius used in angle
# https://en.wikipedia.org/wiki/Earth_radius | to meter conversion
##
# Go https://en.wikipedia.org/wiki/N-vector ?
#puts deg.A($geoa)-B($geob)
variable ::map::slippy::degtorad
variable ::map::slippy::pi
# Get the decimal degrees
lassign $geoa lata lona
lassign $geob latb lonb
# Convert all to radians
set lata [expr {$degtorad * $lata}]
set lona [expr {$degtorad * $lona}]
set latb [expr {$degtorad * $latb}]
set lonb [expr {$degtorad * $lonb}]
#puts rad.A($lata|$lona)-B($latb|$lonb)
set dlat [expr {$latb - $lata}]
set dlon [expr {$lonb - $lona}]
# puts d.lat($dlat).lon.($dlon)
set h [expr {pow((sin($dlat/2)),2) + cos($lata)*cos($latb)*pow((sin($dlon/2)),2)}]
# dy^2 + cos*cos*dx^2
# dy^2 + (sqrt(cos*cos)*dx)^2
# puts H.($h)
# Fix rounding errors, clamp to range -1...1
if {abs($h) > 1.0} { set h [expr {($h > 0) ? 1.0 : -1.0}] }
# puts HC.($h)
# Distance angle
set d [expr {2 * asin(sqrt($h))}]
# puts D.($d)
# set d [expr {2*asin(hypot( sin($dlat/2), sqrt(cos($y1)*cos($y2)) * sin($dlon/2) ) )}]
# not sure how bad that is with rounding errors for antipodal points.
# Convert to meters and return
set meters [expr {6371009*$d}]
#puts M.($meters)
return $meters
}
proc ::map::slippy::tcl_geo_distance_args {closed args} {
return [distance-list $closed $args]
}
proc ::map::slippy::tcl_geo_distance_list {closed geos} {
if {[llength $geos] < 2} { return 0 }
set d 0
set last [lindex $geos 0]
if {$closed} {
set first $last
}
foreach now [lrange $geos 1 end] {
set d [expr {$d + [distance $last $now]}]
set last $now
}
if {$closed} {
set d [expr {$d + [distance $last $first]}]
}
return $d
}
proc ::map::slippy::tcl_geo_bbox {args} {
return [bbox-list $args]
}
proc ::map::slippy::tcl_geo_bbox_list {geos} {
if {![llength $geos]} { return {0 0 0 0} }
set lat0 Inf
set lon0 Inf
set lat1 -Inf
set lon1 -Inf
foreach g $geos {
lassign $g lat lon
set lat0 [expr {min ($lat0, $lat)}]
set lon0 [expr {min ($lon0, $lon)}]
set lat1 [expr {max ($lat1, $lat)}]
set lon1 [expr {max ($lon1, $lon)}]
}
return [list $lat0 $lon0 $lat1 $lon1]
}
proc ::map::slippy::tcl_geo_center {args} {
return [center-list $args]
}
proc ::map::slippy::tcl_geo_center_list {geos} {
if {![llength $geos]} { return {0 0} }
set lat0 Inf
set lon0 Inf
set lat1 -Inf
set lon1 -Inf
foreach g $geos {
lassign $g lat lon
set lat0 [expr {min ($lat0, $lat)}]
set lon0 [expr {min ($lon0, $lon)}]
set lat1 [expr {max ($lat1, $lat)}]
set lon1 [expr {max ($lon1, $lon)}]
}
set lat [expr {($lat0 + $lat1)/2.}]
set lon [expr {($lon0 + $lon1)/2.}]
return [list $lat $lon]
}
proc ::map::slippy::tcl_geo_diameter {args} {
return [diameter-list $args]
}
proc ::map::slippy::tcl_geo_diameter_list {geos} {
if {[llength $geos] < 2} { return 0 }
# The diameter of the set of points is computed as the maximum distance over the distances
# between all pairs of points. The algorithm below is O(n^2).
##
# It can be done better by (a) determining the convex hull of the set of points, followed by (b)
# using rotating calipers over the hull to determine the diameter.
# https://en.wikipedia.org/wiki/Rotating_calipers
# file:///home/aku/Downloads/MQ50856.pdf
# -- no three consecutive vertices are collinear -- collinear in spherical geo ?
set d 0
set k 0
foreach a $geos {
incr k
foreach b [lrange $geos $k end] {
set d [expr {max($d, [distance $a $b])}]
}
}
return $d
}
# Coordinate conversions.
# geo = latitude, longitude
# point = x, y
proc ::map::slippy::tcl_geo_2point {zoom g} {
::map::slippy::Check/Z2 $zoom $g
variable ::map::slippy::degtorad
variable ::map::slippy::pi
variable ::map::slippy::ourtilesize
lassign $g lat lon
set tiles [map slippy tiles $zoom]
set latrad [expr {$degtorad * $lat}]
set y [expr {$ourtilesize * ((1 - (log(tan($latrad) + 1.0/cos($latrad)) / $pi)) / 2 * $tiles)}]
set x [expr {$ourtilesize * ((($lon + 180.0) / 360.0) * $tiles)}]
return [list $x $y]
}
proc ::map::slippy::tcl_geo_2point_args {zoom args} {
return [2point-list $zoom $args]
}
proc ::map::slippy::tcl_geo_2point_list {zoom geos} {
return [lmap geo $geos { 2point $zoom $geo }]
}
proc ::map::slippy::tcl_point_box_inside {pbox p} {
::map::slippy::Check4 $pbox
::map::slippy::Check2 $p
lassign $pbox x0 y0 x1 y1
lassign $p x y
if {$y < $y0} { return 0 }
if {$y > $y1} { return 0 }
if {$x < $x0} { return 0 }
if {$x > $x1} { return 0 }
return 1
}
proc ::map::slippy::tcl_point_box_center {pbox} {
::map::slippy::Check4 $pbox
lassign $pbox x0 y0 x1 y1
set x [expr {($x0 + $x1)/2.}]
set y [expr {($y0 + $y1)/2.}]
return [list $x $y]
}
proc ::map::slippy::tcl_point_box_dimensions {pbox} {
::map::slippy::Check4 $pbox
lassign $pbox x0 y0 x1 y1
set dx [expr {$x1 - $x0}]
set dy [expr {$y1 - $y0}]
return [list $dx $dy]
}
proc ::map::slippy::tcl_point_box_2geo {zoom pbox} {
return [map slippy geo bbox-list [map slippy point 2geo-list $zoom [opposites $pbox]]]
}
proc ::map::slippy::tcl_point_box_corners {pbox} {
::map::slippy::Check4 $pbox
lassign $pbox xmin ymin xmax ymax
return [list \
[list $xmin $ymin] [list $xmin $ymax] \
[list $xmax $ymin] [list $xmax $ymax]]
}
proc ::map::slippy::tcl_point_box_diameter {pbox} {
::map::slippy::Check4 $pbox
lassign $pbox x0 y0 x1 y1
return [map slippy point distance* 0 [list $x0 $y0] [list $x1 $y1]]
}
proc ::map::slippy::tcl_point_box_opposites {pbox} {
::map::slippy::Check4 $pbox
return [list [lrange $pbox 0 1] [lrange $pbox 2 3]]
}
proc ::map::slippy::tcl_point_box_perimeter {pbox} {
return [map slippy point distance-list 1 [corners $pbox]]
}
proc ::map::slippy::tcl_point_distance {pointa pointb} {
# points here are type point (list/p (x y))
::map::slippy::Check2 $pointa
::map::slippy::Check2 $pointb
lassign $pointa x0 y0
lassign $pointb x1 y1
return [expr { hypot ($x1 - $x0, $y1 - $y0) }]
}
proc ::map::slippy::tcl_point_distance_args {closed args} {
return [distance-list $closed $args]
}
proc ::map::slippy::tcl_point_distance_list {closed points} {
# points here are type point (list/pair (x y))
if {[llength $points] < 2} { return 0 }
set d 0
set last [lindex $points 0]
if {$closed} {
set first $last
}
foreach now [lrange $points 1 end] {
set d [expr {$d + [distance $last $now]}]
set last $now
}
if {$closed} {
set d [expr {$d + [distance $last $first]}]
}
return $d
}
proc ::map::slippy::tcl_point_bbox {args} {
return [bbox-list $args]
}
proc ::map::slippy::tcl_point_bbox_list {points} {
# points here are type point (list/pair (x y))
if {![llength $points]} { return {0 0 0 0} }
set y0 Inf
set x0 Inf
set y1 -Inf
set x1 -Inf
foreach g $points {
lassign $g x y
set y0 [expr {min ($y0, $y)}]
set x0 [expr {min ($x0, $x)}]
set y1 [expr {max ($y1, $y)}]
set x1 [expr {max ($x1, $x)}]
}
return [list $x0 $y0 $x1 $y1]
}
proc ::map::slippy::tcl_point_center {args} {
return [center-list $args]
}
proc ::map::slippy::tcl_point_center_list {points} {
if {![llength $points]} { return {0 0} }
set y0 Inf
set x0 Inf
set y1 -Inf
set x1 -Inf
foreach g $points {
lassign $g x y
set y0 [expr {min ($y0, $y)}]
set x0 [expr {min ($x0, $x)}]
set y1 [expr {max ($y1, $y)}]
set x1 [expr {max ($x1, $x)}]
}
set y [expr {($y0 + $y1)/2.}]
set x [expr {($x0 + $x1)/2.}]
# point type
return [list $x $y]
}
proc ::map::slippy::tcl_point_diameter {args} {
return [diameter-list $args]
}
proc ::map::slippy::tcl_point_diameter_list {points} {
if {[llength $points] < 2} { return 0 }
# The diameter of the set of points is computed as the maximum distance over the distances
# between all pairs of points. The algorithm below is O(n^2).
##
# It can be done better by (a) determining the convex hull of the set of points, followed by (b)
# using rotating calipers over the hull to determine the diameter.
# https://en.wikipedia.org/wiki/Rotating_calipers
# file:///home/aku/Downloads/MQ50856.pdf
# -- no three consecutive vertices are collinear -- collinear in spherical geo ?
set d 0
set k 0
foreach a $points {
incr k
foreach b [lrange $points $k end] {
set d [expr {max($d, [distance $a $b])}]
}
}
return $d
}
proc ::map::slippy::tcl_point_2geo {zoom p} {
::map::slippy::Check/Z2 $zoom $p
variable ::map::slippy::radtodeg
variable ::map::slippy::pi
lassign $p x y
set length [map slippy length $zoom]
set lat [expr {$radtodeg * (atan(sinh($pi * (1 - 2 * double($y) / $length))))}]
set lon [expr {double($x) / $length * 360.0 - 180.0}]
return [list $lat $lon]
}
proc ::map::slippy::tcl_point_2geo_args {zoom args} {
return [2geo-list $zoom $args]
}
proc ::map::slippy::tcl_point_2geo_list {zoom points} {
return [lmap point $points { 2geo $zoom $point }]
}
proc ::map::slippy::tcl_point_simplify_radial {threshold closed points} {
# Pass input if nothing or single pixel
if {[llength $points] <= 1} { return $points }
# Enough data to run the full algorithm
set anchor [lindex $points 0]
set result [list $anchor]
set len [llength $points]
set current 1
lassign $anchor ax ay
for {set current 1} {$current < $len} {incr current} {
set now [lindex $points $current]
lassign $now nx ny
set distance [expr {hypot($nx-$ax,$ny-$ay)}]
if {$distance <= $threshold} continue
# Far enough away from the anchor. Keep and make new anchor to check from.
lappend result $now
set ax $nx
set ay $ny
}
if {!$closed || ([llength $result] < 2)} {
return $result
}
lassign [lindex $result 0 ] fx fy
lassign [lindex $result end] lx ly
set d [expr {hypot($lx-$fx,$ly-$fy)}]
if {$d <= $threshold} { set result [lreplace $result end end] }
if {[llength $result] == 2} {
# If the polygon became a line make it a point anyway
#puts \tsingle/x
return [list [map slippy point center {*}$result]]
}
return $result
}
proc ::map::slippy::tcl_point_simplify_rdp {points} {
# References:
# - https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
# - https://github.com/BobLd/RamerDouglasPeuckerNetV2
if {[llength $points] < 3} {
return $points
}
set end [llength $points] ; incr end -1
RDPCore keep $points 0 $end
set result [lmap i [lsort -integer [dict keys $keep]] { lindex $points $i }]
return $result
}
proc ::map::slippy::point::simplify::RDPCore {kv points i j} {
upvar 1 $kv keep
if {($j - $i) < 2} {
# no intermediate points - keep this line
dict set keep $i .
dict set keep $j .
return
}
set la [lindex $points $i]
set lb [lindex $points $j]
lassign [RDPFindFarthest $points $la $lb $i $j] d k
set t [RDPThreshold $points $la $lb]
if {$d <= $t} {
# Near enough, ignore the intermediaries
dict set keep $i .
dict set keep $j .
return
}
# Recurse into the pseudo-halves
RDPCore keep $points $i $k
RDPCore keep $points $k $j
return
}
proc ::map::slippy::point::simplify::RDPThreshold {points la lb} {
# References
# - https://core.ac.uk/download/pdf/131287229.pdf
# - https://github.com/BobLd/RamerDouglasPeuckerNetV2/blob/b3d00f43d0ed5951ea2b1ca86bedfa72bb3d42a4/RamerDouglasPeuckerNetV2.Test/RamerDouglasPeuckerNetV2/RamerDouglasPeucker.cs#L97-L111
# Modification:
# - special case threshold for distance (s) <= 0. Which puts tmax at +Inf (Div by zero).
lassign $la x0 y0
lassign $lb x1 y1
set dx [expr {$x1 - $x0}]
set dy [expr {$y1 - $y0}]
set s [expr {hypot ($dy, $dx)}]
# If there is "no distance" at all, dismiss anything in between.
if {$s <= 0} { return 0 }
# Non-singular distance, continue as normal
set phi [expr {atan2 ($dy, $dx)}]
set cphi [expr {cos ($phi)}]
set sphi [expr {sin ($phi)}]
set tmax [expr {(abs ($cphi) + abs ($sphi))/$s}]
# puts la..|$la
# puts lb..|$lb
# puts s...|$s
# puts phi.|$phi
# puts cphi|$cphi
# puts sphi|$sphi
# puts tmax|$tmax
set poly [expr {1 - $tmax + $tmax * $tmax}]
# puts poly|$poly
set px [expr {$poly/$s}]
set pphi [expr {max (atan(abs($sphi + $cphi)*$px),
atan(abs($sphi - $cphi)*$px))}]
set dmax [expr {$s * $pphi}]
# optimize: square for squared distance
return $dmax
}
proc ::map::slippy::point::simplify::RDPFindFarthest {points la lb i j} {
# Naive: max of distance for all intermediate points...
# Optimize: inline distance, avoid sqrt and recompute of commons.
# la ~ i, lb ~ j
set max 0
set d 0
set k $i
for {incr k} {$k < $j} {incr k} {
set dx [RDPDistanceLine [lindex $points $k] $la $lb]
if {$dx < $d} continue
set d $dx
set max $k
}
return [list $d $max]
}
proc ::map::slippy::point::simplify::RDPDistanceLine {c a b} { ;# puts [info level 0]
# Distance of point C from line through A-B
# See also canvas::edit::polyline -- DistanceTo
# Check tcllib / math::geometry
lassign $c cx cy
lassign $a ax ay
lassign $b bx by
# Solution based on FAQ 1.02 on comp.graphics.algorithms
#
# L = hypot( Bx-Ax, By-Ay )
#
# (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
# s = -----------------------------
# L^2
# dist = |s|*L
#
# =>
#
# | (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) |
# dist = ---------------------------------
# L
if {($ax == $bx) && ($ay == $by)} {
# (a == b) => distance is to the point
return [expr {hypot($cx-$ax,$cy-$ay)}]
}
return [expr {abs(($ay-$cy)*($bx-$ax)-($ax-$cx)*($by-$ay)) / hypot($bx-$ax,$by-$ay)}]
}
proc ::map::slippy::Check/Z2 {z p} {
if {[llength $p] != 2} {
return -code error {Bad point, expected list of 2}
}
lassign $p b c
if {![string is int -strict $z]} { return -code error "expected integer but got \"$z\"" }
if {![string is double -strict $b]} { return -code error "expected floating-point number but got \"$b\"" }
if {![string is double -strict $c]} { return -code error "expected floating-point number but got \"$c\"" }
return
}
proc ::map::slippy::Check2 {p} {
if {[llength $p] != 2} {
return -code error {Bad point, expected list of 2}
}
lassign $p a b
if {![string is double -strict $a]} { return -code error "expected floating-point number but got \"$a\"" }
if {![string is double -strict $b]} { return -code error "expected floating-point number but got \"$b\"" }
return
}
proc ::map::slippy::Check4 {p} {
if {[llength $p] != 4} {
return -code error {Bad box, expected list of 4}
}
lassign $p a b c d
if {![string is double -strict $a]} { return -code error "expected floating-point number but got \"$a\"" }
if {![string is double -strict $b]} { return -code error "expected floating-point number but got \"$b\"" }
if {![string is double -strict $c]} { return -code error "expected floating-point number but got \"$c\"" }
if {![string is double -strict $d]} { return -code error "expected floating-point number but got \"$d\"" }
return
}
# ### ### ### ######### ######### #########
## Ready
return
|