1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
[comment {-*- tcl -*- doctools manpage}]
[manpage_begin math::combinatorics n 2.1]
[moddesc {Tcl Math Library}]
[titledesc {Combinatorial functions in the Tcl Math Library}]
[category Mathematics]
[require Tcl "8.5 9"]
[require math [opt 1.2.6]]
[require Tcl "8.6 9"]
[require TclOO]
[require math::combinatorics [opt 2.1]]
[description]
[para]
The [package math] package contains implementations of several
functions useful in combinatorial problems. The [package math::combinatorics]
extends the collections based on features in Tcl 8.6.
Note: the meaning of the partitionP function, Catalan and Stirling numbers is explained on the
[uri http://mathworld.wolfram.com {MathWorld website}]
[section COMMANDS]
[list_begin definitions]
[call [cmd ::math::ln_Gamma] [arg z]]
Returns the natural logarithm of the Gamma function for the argument
[arg z].
[para]
The Gamma function is defined as the improper integral from zero to
positive infinity of
[example {
t**(x-1)*exp(-t) dt
}]
[para]
The approximation used in the Tcl Math Library is from Lanczos,
[emph {ISIAM J. Numerical Analysis, series B,}] volume 1, p. 86.
For "[var x] > 1", the absolute error of the result is claimed to be
smaller than 5.5*10**-10 -- that is, the resulting value of Gamma when
[example {
exp( ln_Gamma( x) )
}]
is computed is expected to be precise to better than nine significant
figures.
[call [cmd ::math::factorial] [arg x]]
Returns the factorial of the argument [arg x].
[para]
For integer [arg x], 0 <= [arg x] <= 12, an exact integer result is
returned.
[para]
For integer [arg x], 13 <= [arg x] <= 21, an exact floating-point
result is returned on machines with IEEE floating point.
[para]
For integer [arg x], 22 <= [arg x] <= 170, the result is exact to 1
ULP.
[para]
For real [arg x], [arg x] >= 0, the result is approximated by
computing [term Gamma(x+1)] using the [cmd ::math::ln_Gamma]
function, and the result is expected to be precise to better than nine
significant figures.
[para]
It is an error to present [arg x] <= -1 or [arg x] > 170, or a value
of [arg x] that is not numeric.
[call [cmd ::math::choose] [arg {n k}]]
Returns the binomial coefficient [term {C(n, k)}]
[example {
C(n,k) = n! / k! (n-k)!
}]
If both parameters are integers and the result fits in 32 bits, the
result is rounded to an integer.
[para]
Integer results are exact up to at least [arg n] = 34. Floating point
results are precise to better than nine significant figures.
[call [cmd ::math::Beta] [arg {z w}]]
Returns the Beta function of the parameters [arg z] and [arg w].
[example {
Beta(z,w) = Beta(w,z) = Gamma(z) * Gamma(w) / Gamma(z+w)
}]
Results are returned as a floating point number precise to better than
nine significant digits provided that [arg w] and [arg z] are both at
least 1.
[call [cmd ::math::combinatorics::permutations] [arg n]]
Return the number of permutations of n items. The returned number
is always an integer, it is not limited by the range of 32-or 64-bits
integers using the arbitrary precision integers available in Tcl 8.5 and later.
[list_begin arguments]
[arg_def int n] The number of items to be permuted.
[list_end]
[call [cmd ::math::combinatorics::variations] [arg n] [arg k]]
Return the number of variations k items selected from the total of n items.
The order of the items is taken into account.
[list_begin arguments]
[arg_def int n] The number of items to be selected from.
[arg_def int k] The number of items to be selected in each variation.
[list_end]
[call [cmd ::math::combinatorics::combinations] [arg n] [arg k]]
Return the number of combinations of k items selected from the total of n items.
The order of the items is not important.
[list_begin arguments]
[arg_def int n] The number of items to be selected from.
[arg_def int k] The number of items to be selected in each combination.
[list_end]
[call [cmd ::math::combinatorics::derangements] [arg n]]
Return the number of derangements of n items. A derangement is a permutation
where each item is displaced from the original position.
[list_begin arguments]
[arg_def int n] The number of items to be rearranged.
[list_end]
[call [cmd ::math::combinatorics::catalan] [arg n]]
Return the n'th Catalan number. The number n is expected to be 1 or larger.
These numbers occur in various combinatorial problems.
[list_begin arguments]
[arg_def int n] The index of the Catalan number
[list_end]
[call [cmd ::math::combinatorics::firstStirling] [arg n] [arg m]]
Calculate a Stirling number of the first kind
(signed version, m cycles in a permutation of n items)
[list_begin arguments]
[arg_def int n] Number of items
[arg_def int m] Number of cycles
[list_end]
[call [cmd ::math::combinatorics::secondStirling] [arg n] [arg m]]
Calculate a Stirling number of the second kind
(m non-empty subsets from n items)
[list_begin arguments]
[arg_def int n] Number of items
[arg_def int m] Number of subsets
[list_end]
[call [cmd ::math::combinatorics::partitionP] [arg n]]
Calculate the number of ways an integer n can be written as the sum of positive integers.
[list_begin arguments]
[arg_def int n] Number in question
[list_end]
[call [cmd ::math::combinatorics::list-permutations] [arg n]]
Return the list of permutations of the numbers 0, ..., n-1.
[list_begin arguments]
[arg_def int n] The number of items to be permuted.
[list_end]
[call [cmd ::math::combinatorics::list-variations] [arg n] [arg k]]
Return the list of variations of k numbers selected from the numbers 0, ..., n-1.
The order of the items is taken into account.
[list_begin arguments]
[arg_def int n] The number of items to be selected from.
[arg_def int k] The number of items to be selected in each variation.
[list_end]
[call [cmd ::math::combinatorics::list-combinations] [arg n] [arg k]]
Return the list of combinations of k numbers selected from the numbers 0, ..., n-1.
The order of the items is ignored.
[list_begin arguments]
[arg_def int n] The number of items to be selected from.
[arg_def int k] The number of items to be selected in each combination.
[list_end]
[call [cmd ::math::combinatorics::list-derangements] [arg n]]
Return the list of derangements of the numbers 0, ..., n-1.
[list_begin arguments]
[arg_def int n] The number of items to be rearranged.
[list_end]
[call [cmd ::math::combinatorics::list-powerset] [arg n]]
Return the list of all subsets of the numbers 0, ..., n-1.
[list_begin arguments]
[arg_def int n] The number of items to be rearranged.
[list_end]
[call [cmd ::math::combinatorics::permutationObj] new/create NAME [arg n]]
Create a TclOO object for returning permutations one by one. If the last permutation
has been reached an empty list is returned.
[list_begin arguments]
[arg_def int n] The number of items to be rearranged.
[list_end]
[call [cmd \$perm] next]
Return the next permutation of n objects.
[call [cmd \$perm] reset]
Reset the object, so that the command [term next] returns the complete list again.
[call [cmd \$perm] setElements [arg elements]]
Register a list of items to be permuted, using the [term nextElements] command.
[list_begin arguments]
[arg_def list elements] The list of n items that will be permuted.
[list_end]
[call [cmd \$perm] setElements]
Return the next permulation of the registered items.
[call [cmd ::math::combinatorics::combinationObj] new/create NAME [arg n] [arg k]]
Create a TclOO object for returning combinations one by one. If the last combination
has been reached an empty list is returned.
[list_begin arguments]
[arg_def int n] The number of items to be rearranged.
[list_end]
[call [cmd \$combin] next]
Return the next combination of n objects.
[call [cmd \$combin] reset]
Reset the object, so that the command [term next] returns the complete list again.
[call [cmd \$combin] setElements [arg elements]]
Register a list of items to be permuted, using the [term nextElements] command.
[list_begin arguments]
[arg_def list elements] The list of n items that will be permuted.
[list_end]
[call [cmd \$combin] setElements]
Return the next combination of the registered items.
[list_end]
[vset CATEGORY math]
[include ../common-text/feedback.inc]
[manpage_end]
|