File: combinatorics.tcl

package info (click to toggle)
tcllib 2.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,560 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (447 lines) | stat: -rw-r--r-- 11,037 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#----------------------------------------------------------------------
#
# math/combinatorics.tcl --
#
#	This file contains definitions of mathematical functions
#	useful in combinatorial problems.
#
#	Note: this is the original collection, an update is in combinatoricsExt.tcl
#
# Copyright (c) 2001, by Kevin B. Kenny.  All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: combinatorics.tcl,v 1.5 2004/02/09 19:31:54 hobbs Exp $
#
#----------------------------------------------------------------------

package require Tcl 8.5 9

namespace eval ::math {

    # Commonly used combinatorial functions

    # ln_Gamma is spelt thus because it's a capital gamma (\u0393)

    namespace export ln_Gamma;		# Logarithm of the Gamma function
    namespace export factorial;		# Factorial
    namespace export choose;		# Binomial coefficient

    # Note that Beta is spelt thus because it's conventionally a
    # capital beta (\u0392).  It is exported from the package even
    # though its name is capitalized.

    namespace export Beta;		# Beta function

}

#----------------------------------------------------------------------
#
# ::math::InitializeFactorial --
#
#	Initialize a table of factorials for small integer arguments.
#
# Parameters:
#	None.
#
# Results:
#	None.
#
# Side effects:
#	The variable, ::math::factorialList, is initialized to hold
#	a table of factorial n for 0 <= n <= 170.
#
# This procedure is called once when the 'factorial' procedure is
# being loaded.
#
#----------------------------------------------------------------------

proc ::math::InitializeFactorial {} {

    variable factorialList

    set factorialList [list 1]
    set f 1
    for { set i 1 } { $i < 171 } { incr i } {
	if { $i > 12. } {
	    set f [expr { $f * double($i)}]
	} else {
	    set f [expr { $f * $i }]
	}
	lappend factorialList $f
    }

}

#----------------------------------------------------------------------
#
# ::math::InitializePascal --
#
#	Precompute the first few rows of Pascal's triangle and store
#	them in the variable ::math::pascal
#
# Parameters:
#	None.
#
# Results:
#	None.
#
# Side effects:
#	::math::pascal is initialized to a flat list containing
#	the first 34 rows of Pascal's triangle.	 C(n,k) is to be found
#	at [lindex $pascal $i] where i = n * ( n + 1 ) + k.  No attempt
#	is made to exploit symmetry.
#
#----------------------------------------------------------------------

proc ::math::InitializePascal {} {

    variable pascal

    set pascal [list 1]
    for { set n 1 } { $n < 34 } { incr n } {
	lappend pascal 1
	set l2 [list 1]
	for { set k 1 } { $k < $n } { incr k } {
	    set km1 [expr { $k - 1 }]
	    set c [expr { [lindex $l $km1] + [lindex $l $k] }]
	    lappend pascal $c
	    lappend l2 $c
	}
	lappend pascal 1
	lappend l2 1
	set l $l2
    }

}

#----------------------------------------------------------------------
#
# ::math::ln_Gamma --
#
#	Returns ln(Gamma(x)), where x >= 0
#
# Parameters:
#	x - Argument to the Gamma function.
#
# Results:
#	Returns the natural logarithm of Gamma(x).
#
# Side effects:
#	None.
#
# Gamma(x) is defined as:
#
#		  +inf
#		    _
#		   |	x-1  -t
#	Gamma(x)= _|   t    e	dt
#
#		   0
#
# The approximation used here is from Lanczos, SIAM J. Numerical Analysis,
# series B, volume 1, p. 86.  For x > 1, the absolute error of the
# result is claimed to be smaller than 5.5 * 10**-10 -- that is, the
# resulting value of Gamma when exp( ln_Gamma( x ) ) is computed is
# expected to be precise to better than nine significant figures.
#
#----------------------------------------------------------------------

proc ::math::ln_Gamma { x } {

    # Handle the common case of a real argument that's within the
    # permissible range.

    if { [string is double -strict $x]
	 && ( $x > 0 )
	 && ( $x <= 2.5563481638716906e+305 )
     } {
	set x [expr { $x - 1.0 }]
	set tmp [expr { $x + 5.5 }]
	set tmp [ expr { ( $x + 0.5 ) * log( $tmp ) - $tmp }]
	set ser 1.0
	foreach cof {
	    76.18009173 -86.50532033 24.01409822
	    -1.231739516 .00120858003 -5.36382e-6
	} {
	    set x [expr { $x + 1.0 }]
	    set ser [expr { $ser + $cof / $x }]
	}
	return [expr { $tmp + log( 2.50662827465 * $ser ) }]
    }

    # Handle the error cases.

    if { ![string is double -strict $x] } {
	return -code error [expectDouble $x]
    }

    if { $x <= 0.0 } {
	set proc [lindex [info level 0] 0]
	return -code error \
	    -errorcode [list ARITH DOMAIN \
			"argument to $proc must be positive"] \
	    "argument to $proc must be positive"
    }

    return -code error \
	-errorcode [list ARITH OVERFLOW \
		    "floating-point value too large to represent"] \
	"floating-point value too large to represent"

}

#----------------------------------------------------------------------
#
# math::factorial --
#
#	Returns the factorial of the argument x.
#
# Parameters:
#	x -- Number whose factorial is to be computed.
#
# Results:
#	Returns x!, the factorial of x.
#
# Side effects:
#	None.
#
# For integer x, 0 <= x <= 12, an exact integer result is returned.
#
# For integer x, 13 <= x <= 21, an exact floating-point result is returned
# on machines with IEEE floating point.
#
# For integer x, 22 <= x <= 170, the result is exact to 1 ULP.
#
# For real x, x >= 0, the result is approximated by computing
# Gamma(x+1) using the ::math::ln_Gamma function, and the result is
# expected to be precise to better than nine significant figures.
#
# It is an error to present x <= -1 or x > 170, or a value of x that
# is not numeric.
#
#----------------------------------------------------------------------

proc ::math::factorial { x } {

    variable factorialList

    # Common case: factorial of a small integer

    ##nagelfar ignore
    if { [string is integer -strict $x]
	 && $x >= 0
	 && $x < [llength $factorialList] } {
	return [lindex $factorialList $x]
    }

    # Error case: not a number

    if { ![string is double -strict $x] } {
	return -code error [expectDouble $x]
    }

    # Error case: gamma in the left half plane

    if { $x <= -1.0 } {
	set proc [lindex [info level 0] 0]
	set message "argument to $proc must be greater than -1.0"
	return -code error -errorcode [list ARITH DOMAIN $message] $message
    }

    # Error case - gamma fails

    if { [catch { expr {exp( [ln_Gamma [expr { $x + 1 }]] )} } result] } {
	return -code error -errorcode $::errorCode $result
    }

    # Success - computed factorial n as Gamma(n+1)

    return $result

}

#----------------------------------------------------------------------
#
# ::math::choose --
#
#	Returns the binomial coefficient C(n,k) = n!/k!(n-k)!
#
# Parameters:
#	n -- Number of objects in the sampling pool
#	k -- Number of objects to be chosen.
#
# Results:
#	Returns C(n,k).
#
# Side effects:
#	None.
#
# Results are expected to be accurate to ten significant figures.
# If both parameters are integers and the result fits in 32 bits,
# the result is rounded to an integer.
#
# Integer results are exact up to at least n = 34.
# Floating point results are precise to better than nine significant
# figures.
#
#----------------------------------------------------------------------

proc ::math::choose { n k } {

    variable pascal

    # Use a precomputed table for small integer args

    ##nagelfar ignore
    if { [string is integer -strict $n]
	 && $n >= 0 && $n < 34
	 && [string is integer -strict $k]
	 && $k >= 0 && $k <= $n } {

	set i [expr { ( ( $n * ($n + 1) ) / 2 ) + $k }]

	return [lindex $pascal $i]

    }

    # Test bogus arguments

    if { ![string is double -strict $n] } {
	return -code error [expectDouble $n]
    }
    if { ![string is double -strict $k] } {
	return -code error [expectDouble $k]
    }

    # Forbid negative n

    if { $n < 0. } {
	set proc [lindex [info level 0] 0]
	set msg "first argument to $proc must be non-negative"
	return -code error -errorcode [list ARITH DOMAIN $msg] $msg
    }

    # Handle k out of range

    ##nagelfar ignore
    if { [string is integer -strict $k] && [string is integer -strict $n]
	 && ( $k < 0 || $k > $n ) } {
	return 0
    }

    if { $k < 0. } {
	set proc [lindex [info level 0] 0]
	set msg "second argument to $proc must be non-negative,\
                 or both must be integers"
	return -code error -errorcode [list ARITH DOMAIN $msg] $msg
    }

    # Compute the logarithm of the desired binomial coefficient.

    if { [catch { expr { [ln_Gamma [expr { $n + 1 }]]
			 - [ln_Gamma [expr { $k + 1 }]]
			 - [ln_Gamma [expr { $n - $k + 1 }]] } } r] } {
	return -code error -errorcode $::errorCode $r
    }

    # Compute the binomial coefficient itself

    if { [catch { expr { exp( $r ) } } r] } {
	return -code error -errorcode $::errorCode $r
    }

    # Round to integer if both args are integers and the result fits

    ##nagelfar ignore
    if { $r <= 2147483647.5
	       && [string is integer -strict $n]
	       && [string is integer -strict $k] } {
	return [expr { round( $r ) }]
    }

    return $r

}

#----------------------------------------------------------------------
#
# ::math::Beta --
#
#	Return the value of the Beta function of parameters z and w.
#
# Parameters:
#	z, w : Two real parameters to the Beta function
#
# Results:
#	Returns the value of the Beta function.
#
# Side effects:
#	None.
#
# Beta( w, z ) is defined as:
#
#				  1_
#				  |  (z-1)     (w-1)
# Beta( w, z ) = Beta( z, w ) =	  | t	  (1-t)	     dt
#				 _|
#				  0
#
#	       = Gamma( z ) Gamma( w ) / Gamma( z + w )
#
# Results are returned as a floating point number precise to better
# than nine significant figures for w, z > 1.
#
#----------------------------------------------------------------------

proc ::math::Beta { z w } {

    # Check form of both args so that domain check can be made

    if { ![string is double -strict $z] } {
	return -code error [expectDouble $z]
    }
    if { ![string is double -strict $w] } {
	return -code error [expectDouble $w]
    }

    # Check sign of both args

    if { $z <= 0.0 } {
	set proc [lindex [info level 0] 0]
	set msg "first argument to $proc must be positive"
	return -code error -errorcode [list ARITH DOMAIN $msg] $msg
    }
    if { $w <= 0.0 } {
	set proc [lindex [info level 0] 0]
	set msg "second argument to $proc must be positive"
	return -code error -errorcode [list ARITH DOMAIN $msg] $msg
    }

    # Compute beta using gamma function, keeping stack trace clean.

    if { [catch { expr { exp( [ln_Gamma $z] + [ln_Gamma $w]
			      - [ln_Gamma [ expr { $z + $w }]] ) } } beta] } {

	return -code error -errorcode $::errorCode $beta

    }

    return $beta

}

#----------------------------------------------------------------------
#
# Initialization of this file:
#
#	Initialize the precomputed tables of factorials and binomial
#	coefficients.
#
#----------------------------------------------------------------------

namespace eval ::math {
    InitializeFactorial
    InitializePascal
}