File: combinatoricsExt.tcl

package info (click to toggle)
tcllib 2.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,560 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (825 lines) | stat: -rw-r--r-- 18,819 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
# combinatoricsExt.tcl --
#     Procedures for combinatorial functions and generating combinatorial collections
#
#     Note:
#     The older procedures factorial and choose assume Tcl 8.0, so no large integer support
#     The versions in this package, permutations and combinations, depend on Tcl 8.6 and later
#     for the large integer support and for TclOO.
#
#     Several parts based on: https://wiki.tcl-lang.org/page/Permutations and other Wiki pages
#
package require Tcl 8.6 9
package require TclOO
package provide math::combinatorics 2.1

# ::math::combinatorics --
#     Encompassing namespace and auxiliary variables
#
namespace eval ::math::combinatorics {
    variable factorial
    variable partition

    set factorial {1 1 2 6 24 120 720}

    set partition(0) 0
    set partition(1) 1

    namespace export permutations      variations      combinations      derangements      \
                     list-permutations list-variations list-combinations list-derangements \
                     catalan firstStirling secondStirling partitionP \
                     permutationObj combinationObj
}

# permutations --
#     Calculate the number of permutations
#
# Arguments:
#     n           Size of the set
#
# Returns:
#     Number of permutations of the set {0 ... n}
#
proc ::math::combinatorics::permutations {n} {
    variable factorial

    if { $n <= 1 } {
        return 1
    }

    if { $n < [llength $factorial] } {
        return [lindex $factorial $n]
    }

    set newfactorial [lindex $$factorial end]

    for {set k [llength $factorial]} { $k <= $n} {incr k} {
        set newfactorial [expr {$newfactorial * $k}]
        lappend factorial $newfactorial
    }

    return $newfactorial
}

# variations --
#     Calculate the number of variations
#
# Arguments:
#     n           Size of the set
#     k           Number of elements per subset
#
# Returns:
#     Number of variations of the set {0 ... n}
#
proc ::math::combinatorics::variations {n k} {
    if { $k < 0 || $k > $n } {
        return 0
    }

    if { $n <= 1 || $k == 0 } {
        return 1
    }

    set perms1 [permutations $n]
    set perms2 [permutations [expr {$n-$k}]]

    return [expr {$perms1 / $perms2}]
}

# combinations --
#     Calculate the number of combinations
#
# Arguments:
#     n           Size of the set
#     k           Number of elements per subset
#
# Returns:
#     Number of combinations of the set {0 ... n}
#
proc ::math::combinatorics::combinations {n k}  {
    if { $k < 0 || $k > $n } {
        return 0
    }

    if { $n <= 1 || $k == 0 || $k == $n } {
        return 1
    }

    set perms1 [permutations $n]
    set perms2 [permutations $k]
    set perms3 [permutations [expr {$n - $k}]]

    return [expr {$perms1 / $perms2 / $perms3}]
}

# derangements --
#     Calculate the number of derangements
#
# Arguments:
#     n           Size of the set
#
# Returns:
#     Number of permutations of the set {0 ... n} where every
#     element is displaced
#
proc ::math::combinatorics::derangements {n} {
    if { $n <= 1 } {
        return 0
    }

    if { $n == 2 } {
        return 1
    }

    set dim2 0
    set dim1 1

    for {set i 3} {$i <= $n} {incr i} {
        set di [expr {($i-1) * ($dim1 + $dim2)}]
        set dim2 $dim1
        set dim1 $di
    }

    return $di
}

# catalan --
#     Return the n-th Catalan number
#
# Arguments:
#     n           Index for the Catalan number (n >= 1)
#
# Result:
#     The n-th Catalan number
#
proc ::math::combinatorics::catalan {n} {
    if { $n < 0 || $n != int($n) } {
        return -code error "The argument must be a non-negative integer"
    }

    set combin [combinations [expr {2*$n}] $n]

    return [expr {$combin / ($n + 1)}]
}

# firstStirling --
#     Calculate a Stirling number of the first kind
#     (signed version, m cycles in a permutation of n items)
#
# Arguments:
#     n           Number of items
#     m           Number of cycles
#
# Note:
#     The Stirling number returned is a signed number.
#     For efficiency memoization is used.
#
proc ::math::combinatorics::firstStirling {n m} {
    variable stirling

    if { $n == $m } {
        return 1
    }

    if { $n <= 0 || $m < 0 || $n < $m } {
        return 0
    }

    if { [info exists stirling($n,$m)] } {
        return $stirling($n,$m)
    }

    set nm1 [expr {$n-1}]
    set mm1 [expr {$m-1}]

    set Snm1_m   [firstStirling $nm1 $m]
    set Snm1_mm1 [firstStirling $nm1 $mm1]

    set stirling($n,$m) [expr {$Snm1_mm1 - $nm1 * $Snm1_m}]

    return $stirling($n,$m)
}

# secondStirling --
#     Calculate a Stirling number of the second kind
#     (m non-empty subsets from n items)
#
# Arguments:
#     n           Number of items
#     m           Number of subsets
#
# Note:
#     For efficiency memoization is used.
#
proc ::math::combinatorics::secondStirling {n m} {
    variable stirlingSecond

    if { $n == $m || $m == 1 } {
        return 1
    }

    if { $n <= 0 || $m < 0 || $n < $m } {
        return 0
    }

    if { [info exists stirlingSecond($n,$m)] } {
        return $stirlingSecond($n,$m)
    }

    set nm1 [expr {$n-1}]
    set mm1 [expr {$m-1}]

    set Snm1_m   [secondStirling $nm1 $m]
    set Snm1_mm1 [secondStirling $nm1 $mm1]

    set stirlingSecond($n,$m) [expr {$Snm1_mm1 + $m * $Snm1_m}]

    return $stirlingSecond($n,$m)
}


# partitionP --
#     Calculate the partitionP function (wrapper)
#
# Arguments:
#     n             The integer number to be partitioned
#
# Result:
#     Number of partitions
#
proc ::math::combinatorics::partitionP {n} {
    incr n
    return [PartitionP $n]
}

# partitionQ --
#     Calculate the partitionQ function (wrapper) - the number of partitions with distinct values
#     (that is: an acceptable partition of 4 is (3,1) but not (2,2)
#
# Arguments:
#     n             The integer number to be partitioned
#
# Result:
#     Number of partitions
#
proc ::math::combinatorics::partitionQ {n} {
    incr n
    TODO - see https://mathworld.wolfram.com/PartitionFunctionQ.html

    The calculation is not entirely trivial
}

# PartitionP --
#     Calculate the partitionP function - see note
#
# Arguments:
#     n             The integer number to be partitioned
#
# Result:
#     Number of partitions
#
# Note:
#     This code computes partitionP(n-1) rather than partitionP(n),
#     so it should not be called directly.
#
proc ::math::combinatorics::PartitionP {n} {
    variable partition

    if { $n <= 0} {
        return 0
    }

    if { [info exists partition($n)] } {
        return $partition($n)
    }

    set part 0

    for {set k 1} {$k <= $n} {incr k} {
        set partm1 [PartitionP [expr {$n - $k*(3*$k-1)/2}]]
        set partp1 [PartitionP [expr {$n - $k*(3*$k+1)/2}]]
        set part [expr {$part + ($partm1 + $partp1) * (-1)**($k+1)}]
    }

    set partition($n) $part

    return $part
}


# list-permutations --
#     Generate a list of permutations
#
# Arguments:
#     n           Size of the set
#
# Returns:
#     List of all permutations of the set {0 ... n}
#
proc ::math::combinatorics::list-permutations {n} {
    if { $n < 1 } {
        return -error "Size n of the set must be positive"
    }

    if { $n == 1 } {
        return [list 0]
    }

    set listperms [list-permutations [expr {$n-1}]]

    set newlist {}

    set nm1 [expr {$n-1}]
    foreach perm $listperms {
        for {set i 0} {$i < $n} {incr i} {
            set newperm [linsert $perm $i $nm1]
            lappend newlist $newperm
        }
    }

    return $newlist
}


# list-variations --
#     Generate a list of variations (permuted subsets)
#
# Arguments:
#     n           Size of the set
#     k           Number of elements per subset
#
# Returns:
#     List of all permutations of the set {0 ... n}
#
proc ::math::combinatorics::list-variations {n k} {
     set combinations [list-combinations $n $k]

     set variations {}
     foreach c $combinations {
         lappend variations [List-permuted $c $k]
     }

     return [concat {*}$variations]
}


# List-permuted --
#     Generate a list of permutations of given elements
#
# Arguments:
#     list        List of elements
#     size        Number of elements
#
# Returns:
#     List of all permutations of the given set
#
# Note:
#     Intended for private use only
#
#
proc ::math::combinatorics::List-permuted {list size} {
    if { $size == 0 } {
        return [list [list]]
    }
    set retval {}

    for { set i 0 } { $i < [llength $list] } { incr i } {
        set firstElement [lindex $list $i]
        set remainingElements [lreplace $list $i $i]
        foreach subset [List-permuted $remainingElements [expr { $size - 1 }]] {
            lappend retval [linsert $subset 0 $firstElement]
       }
    }
    return $retval
}


# list-derangements --
#     Generate a list of derangements - permutations where
#     all elements are displaced
#
# Arguments:
#     n           Size of the set
#
# Returns:
#     List of all derangements of the set {0 ... n}
#
# Note:
#     A naive implementation did not ork properly, so use
#     brute force instead: filter out the permutations that are
#     also derangements
#
proc ::math::combinatorics::list-derangements {n} {
    set plist [::math::combinatorics::list-permutations $n]
    set dlist {}

    set numbers {}
    for {set i 0} {$i < $n} {incr i} {
        lappend numbers $i
    }

    foreach p $plist {
        set accept 1
        foreach n $numbers e $p {
            if { $n == $e } {
                set accept 0
                break
            }
        }
        if { $accept } {
            lappend dlist $p
        }
    }
    return $dlist
}

# list-combinations-deprecated --
#     Generate a list of combinations - deprecated
#
# Arguments:
#     n           Size of the set
#     k           Number of elements per subset
#
# Returns:
#     List of all combinations of the set {0 ... n}
#
# Note:
#    This implementation is deprecated in cfavour of the Wiki implementation
#
proc ::math::combinatorics::list-combinations-deprecated {n k} {
    if { $n < 1 } {
        return -error "Size n of the set must be positive"
    }
    if { $k < 0 || $k > $n } {
        return -error "Size k of the subsets must be positive and smaller/equal to n"
    }

    if { $n == 1 } {
        if { $k == 0 } {
            return [list]
        } else {
            return [list 0]
        }
    }

    if { $k > 1 } {
        set listperms [list-combinations-deprecated [expr {$n-1}] [expr {$k-1}]]

        set newlist {}

        set nm1 [expr {$n-1}]
        foreach perm $listperms {
           lappend newlist [concat $perm $nm1]
        }
        set newlist [concat $newlist [list-combinations-deprecated [expr {$n-1}] $k]]
    } else {
        set newlist {}
        for {set i 0} {$i < $n} {incr i} {
            lappend newlist [list $i]
        }
    }

    return $newlist
}

# list-combinations --
#     Generate a list of combinations
#
# Arguments:
#     n           Size of the set
#     k           Number of elements per subset
#
# Returns:
#     List of all combinations of the set {0 ... n}
#
# Note:
#      Copied from the WIki - the implementation is three times
#      faster than the deprecated version
#
proc ::math::combinatorics::list-combinations {n k} {
    set myList {}
    for {set i 0} {$i < $n} {incr i} {
        lappend myList $i
    }

    return [List-Combinations2 $myList $k]
}

# List-Combinations2 --
#     Generate a list of combinations of a given list of elements
#
# Arguments:
#     list        List of elements
#     k           Number of elements per subset
#
# Returns:
#     List of all combinations
#
proc ::math::combinatorics::List-Combinations2 {myList size {prefix {}}} {
    #
    # End recursion when size is 0 or equals our list size
    #
    if {$size == 0} {return [list $prefix]}
    if {$size == [llength $myList]} {return [list [concat $prefix $myList]]}

    set first [lindex $myList 0]
    set rest [lrange $myList 1 end]

    #
    # Combine solutions w/ first element and solutions w/o first element
    #
    set ans1 [List-Combinations2 $rest [expr {$size-1}] [concat $prefix $first]]
    set ans2 [List-Combinations2 $rest $size $prefix]
    return [concat $ans1 $ans2]
}

# list-powerset --
#     Generate a list representing the power set of {0 ... n}
#
# Arguments:
#     n           Size of the set
#
# Returns:
#     List of all subsets of the set {0 ... n}
#
proc ::math::combinatorics::list-powerset {n} {
    set ret {{{}}}
    for {set i 1} {$i <= $n} {incr i} {
        lappend ret [list-combinations $n $i]
    }
    return [concat {*}$ret]
}

# permutationObj --
#     Class for generating permutations one by one
#
::oo::class create ::math::combinatorics::permutationObj {
    variable n
    variable k
    variable current
    variable elements

    # constructor --
    #     Generate permutations of the set {0 .. n}
    # Arguments:
    #     n_in           Size of the set
    #
    constructor {n_in} {
        variable n
        variable k
        variable current
        variable start

        if { $n_in < 1 } {
            return -code error "Size of the set must be positive"
        }

        set n $n_in

        set elements {}
        for {set i 0} {$i < $n} {incr i} {
            lappend elements $i
        }

        my reset
    }

    # method: reset --
    #     Restart the object
    #
    # Arguments:
    #     None
    #
    method reset {} {
        variable current
        variable start

        set start   1
        set current {}
        for {set i 0} {$i < $n} {incr i} {
            lappend current $i
        }
    }

    # method: next
    #     Return the next permutation
    #
    method next {} {
        variable current
        variable start

        # Return the first permutation?
        if { $start } {
            set start 0
            return $current
        }

        # Find the smallest subscript j such that we have already visited
        # all permutations beginning with the first j elements.

        set j [expr { [llength $current] - 1 }]
        set ajp1 [lindex $current $j]
        while { $j > 0 } {
            incr j -1
            set aj [lindex $current $j]
            if { [string compare $ajp1 $aj] > 0 } {
                set foundj {}
                break
            }
            set ajp1 $aj
        }
        if { ![info exists foundj] } return

        # Find the smallest element greater than the j'th among the elements
        # following aj. Let its index be l, and interchange aj and al.

        set l [expr { [llength $current] - 1 }]
        while { $aj >= [set al [lindex $current $l]] } {
            incr l -1
        }
        lset current $j $al
        lset current $l $aj

        # Reverse a_j+1 ... an

        set k [expr {$j + 1}]
        set l [expr { [llength $current] - 1 }]
        while { $k < $l } {
            set al [lindex $current $l]
            lset current $l [lindex $current $k]
            lset current $k $al
            incr k
            incr l -1
        }

        return $current
    }

    # method: setElements --
    #     Register a list of elements to be permuted
    #
    # Arguments:
    #     list           List of elements
    #
    method setElements {list} {
        variable n
        variable elements

        if { [llength $list] != $n } {
            return -code error "The number of elements should be $n"
        }
        set elements $list

        # Implicit reset
        my reset
    }

    #
    # method: nextElements
    #     Returns the next permutation of the given elements
    #
    # Arguments:
    #    None
    #
    method nextElements {} {
        variable elements

        set permutation [my next]

        set list {}

        foreach idx $permutation {
            lappend list [lindex $elements $idx]
        }

        return $list
    }
}

# combinationObj --
#     Class for generating combinations (k-subsets) one by one
#
::oo::class create ::math::combinatorics::combinationObj {
    variable n
    variable k
    variable current
    variable elements

    # constructor --
    #     Generate combinations of k elements out of the set {0 .. n}
    # Arguments:
    #     n_in           Size of the set
    #     k_in           Size of the subsets
    #
    constructor {n_in k_in} {
        variable n
        variable k
        variable current

        if { $n_in < 1 || $k_in < 1 || $k_in > $n_in } {
            return -code error "Sizes of the set and subset must be positive, subset may not be larger than the set"
        }

        set n $n_in
        set k $k_in

        set current {}

        set elements {}
        for {set i 0} {$i < $n} {incr i} {
            lappend elements $i
        }
    }

    # method: reset --
    #     Restart the object
    #
    # Arguments:
    #     None
    #
    method reset {} {
        variable current

        set current {}
    }

    #
    # method: next --
    #     Return the next combination
    #
    # Arguments:
    #     None
    #
    method next {} {
        variable n
        variable k
        variable current

        if { [llength $current] == 0 } {
            for {set i 1} {$i <= $k} {incr i} {
                set c($i) $i
            }
        } else {
            for {set i 1; set j 0} {$i <= $k} {incr i; incr j} {
                set c($i) [lindex $current $j]
            }
            set ptr $k
            while {$ptr > 0 && $c($ptr) == $n - $k + $ptr} {
               incr ptr -1
            }
            if {$ptr == 0} {
              return {}
            }
            incr c($ptr)
            for {set i [expr {$ptr + 1}]} {$i <= $k} {incr i} {
               set c($i) [expr $c([expr {$i - 1}]) + 1]
            }
        }
        set cL      [list]
        set current [list]
        for {set i 1} {$i <= $k} {incr i} {
               lappend cL      [expr {$c($i)-1}]
               lappend current $c($i)
        }
        return $cL
    }

    # method: setElements --
    #     Register a list of elements to be permuted and selected
    #
    # Arguments:
    #     list           List of elements
    #
    method setElements {list} {
        variable n
        variable elements

        if { [llength $list] != $n } {
            return -code error "The number of elements should be $n"
        }
        set elements $list

        # Implicit reset
        my reset
    }

    #
    # method: nextElements
    #     Returns next k-subset of the given elements
    #
    # Arguments:
    #    None
    #
    method nextElements {} {
        variable elements

        set combination [my next]

        set list {}

        foreach idx $combination {
            lappend list [lindex $elements $idx]
        }

        return $list
    }
}