1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# figurate.tcl --
# Package for evaluating expressions regarding so-called figurate numbers:
# - triangular numbers: sum of 1, 2, 3, ... n
# - hex numbers: sum of centred hexagons with sides of n long, sum of 1, 6, 12, 18, ..., 6n
# - etc.
# - also sums of kth powers of 1, 2, 3, ... n (k = 1 to 10)
#
# Inspired by "gold", definitions of the figurate numbers following https://mathworld.wolfram.com/FigurateNumber.html
#
package require Tcl 8.6 9
package provide math::figurate 1.1
namespace eval ::math::figurate {
namespace export sum_sequence sum_squares sum_cubes sum_4th_power sum_5th_power sum_6th_power \
sum_7th_power sum_8th_power sum_9th_power sum_10th_power \
sum_sequence_odd sum_squares_odd sum_cubes_odd sum_4th_power_odd sum_5th_power_odd sum_6th_power_odd \
sum_7th_power_odd sum_8th_power_odd sum_9th_power_odd sum_10th_power_odd \
oblong pronic triangular square cubic biquadratic centeredSquare centeredCube centeredPentagonal \
centeredHexagonal decagonal heptagonal hexagonal octagonal octahedral pentagonal squarePyramidal \
tetrahedral pentatope centeredTriangular
}
# sum_* --
# Compute the sums of powers of integers 1 to n
#
# Arguments:
# n Largest integer in the sum
#
# Returns:
# Sum 1**k + 2**k + ... + n**k
#
proc ::math::figurate::sum_sequence {n} {
expr {$n > 0 ? $n * ($n+1) / 2 : 0}
}
proc ::math::figurate::sum_squares {n} {
expr {$n > 0 ? $n*($n + 1) * (2*$n +1 ) / 6 : 0}
}
proc ::math::figurate::sum_cubes {n} {
expr {$n > 0 ? $n**2 * ($n + 1)**2 / 4 : 0}
}
proc ::math::figurate::sum_4th_power {n} {
expr {$n > 0 ? $n* ($n + 1) * (2*$n + 1) * (3*$n**2 + 3*$n -1 ) / 30 : 0}
}
proc ::math::figurate::sum_5th_power {n} {
expr {$n > 0 ? $n**2 * ($n + 1)**2 * (2*$n**2 + 2*$n - 1) / 12 : 0}
}
proc ::math::figurate::sum_6th_power {n} {
expr {$n > 0 ? $n * ($n + 1) * (2*$n + 1 ) * (3*$n**4 + 6*$n**3 - 3*$n + 1) / 42 : 0}
}
proc ::math::figurate::sum_7th_power {n} {
expr {$n > 0 ? $n**2 * ($n + 1)**2 * (3*$n**4 + 6*$n**3 - $n**2 - 4*$n + 2) / 24 : 0}
}
proc ::math::figurate::sum_8th_power {n} {
expr {$n > 0 ? $n * ($n + 1) * (2*$n + 1) * (5*$n**6 + 15*$n**5 + 5*$n**4 - 15*$n**3 - $n**2 + 9*$n - 3) / 90 : 0}
}
proc ::math::figurate::sum_9th_power {n} {
expr {$n > 0 ? $n**2 * ($n + 1)**2 * (2*$n**6 + 6*$n**5 + $n**4 - 8*$n**3 + $n**2 + 6*$n - 3) / 20 : 0}
}
proc ::math::figurate::sum_10th_power {n} {
expr {$n > 0 ? $n * ($n + 1) * (2*$n + 1) * (3*$n**8 + 12*$n**7 + 8*$n**6 - 18*$n**5 - 10*$n**4 + 24*$n**3 + 2*$n**2 - 15*$n + 5) / 66 : 0}
}
# calculate sums of odd integers:
#
# Arguments:
# n Number of odd integers (not the largest number)
#
# Note:
# The procedures sum the values (2*k+1)**m from k = 1 to n
# The calculations rely on the following identity:
#
# Sum (2k+1)**m = Sum j**m - 2**m Sum k**m, where k = 0,...,n, j = 0,..., 2*n+1
#
proc ::math::figurate::sum_sequence_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_sequence [expr {$n-1}]]
set sum2 [sum_sequence $maxnum]
return [expr {$sum2 - 2 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_squares_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_squares [expr {$n-1}]]
set sum2 [sum_squares $maxnum]
return [expr {$sum2 - 4 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_cubes_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_cubes [expr {$n-1}]]
set sum2 [sum_cubes $maxnum]
return [expr {$sum2 - 8 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_4th_power_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_4th_power [expr {$n-1}]]
set sum2 [sum_4th_power $maxnum]
return [expr {$sum2 - 16 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_5th_power_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_5th_power [expr {$n-1}]]
set sum2 [sum_5th_power $maxnum]
return [expr {$sum2 - 32 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_6th_power_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_6th_power [expr {$n-1}]]
set sum2 [sum_6th_power $maxnum]
return [expr {$sum2 - 64 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_7th_power_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_7th_power [expr {$n-1}]]
set sum2 [sum_7th_power $maxnum]
return [expr {$sum2 - 128 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_8th_power_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_8th_power [expr {$n-1}]]
set sum2 [sum_8th_power $maxnum]
return [expr {$sum2 - 256 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_9th_power_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_9th_power [expr {$n-1}]]
set sum2 [sum_9th_power $maxnum]
return [expr {$sum2 - 512 * $sum1}]
} else {
return 0
}
}
proc ::math::figurate::sum_10th_power_odd {n} {
if { $n > 0 } {
set maxnum [expr {2 * $n - 1}]
set sum1 [sum_10th_power [expr {$n-1}]]
set sum2 [sum_10th_power $maxnum]
return [expr {$sum2 - 1024 * $sum1}]
} else {
return 0
}
}
# calculate figurate numbers --
#
# Arguments:
# n Largest integer in the sum
#
# Notes:
# - pronic and oblong are identical (see Mathworld page)
# - definitions follow the Mathworld page, though in some cases a more verbose name has been chosen
# (instead of hex, centeredHexagonal)
# - there are some trivial procedures as well (square for instance)
# - for the interpretation: again see the Mathworld page
#
proc ::math::figurate::oblong {n} {
expr {$n > 0 ? $n * ($n + 1) : 0}
}
proc ::math::figurate::pronic {n} {
expr {$n > 0 ? $n * ($n + 1) : 0}
}
proc ::math::figurate::triangular {n} {
expr {$n > 0 ? $n * ($n + 1)/2 : 0}
}
proc ::math::figurate::square {n} {
expr {$n > 0 ? $n**2 : 0}
}
proc ::math::figurate::cubic {n} {
expr {$n > 0 ? $n**3 : 0}
}
proc ::math::figurate::biquadratic {n} {
expr {$n > 0 ? $n**4 : 0}
}
proc ::math::figurate::centeredTriangular {n} {
expr {$n > 0 ? (3*$n**2 - 3*$n + 2) / 2 : 0}
}
proc ::math::figurate::centeredSquare {n} {
expr {$n >0 ? $n**2 + ($n-1)**2 : 0}
}
proc ::math::figurate::centeredCube {n} {
expr {$n > 0 ? $n**3 + ($n-1)**3 : 0}
}
proc ::math::figurate::centeredPentagonal {n} {
expr {$n > 0 ? (5*($n-1)**2 + 5*($n-1) + 2) / 2 : 0}
}
proc ::math::figurate::centeredHexagonal {n} {
expr {$n > 0 ? 3*($n-1)**2 + 3*($n-1) + 1 : 0}
}
proc ::math::figurate::decagonal {n} {
expr {$n > 0 ? 4*$n**2 - 3*$n : 0}
}
proc ::math::figurate::heptagonal {n} {
expr {$n > 0 ? $n * (5*$n - 3) / 2 : 0}
}
proc ::math::figurate::hexagonal {n} {
expr {$n > 0 ? $n * (2*$n - 1) : 0}
}
proc ::math::figurate::octagonal {n} {
expr {$n > 0 ? $n * (3*$n - 2) : 0}
}
proc ::math::figurate::octahedral {n} {
expr {$n > 0 ? $n * (2*$n**2 + 1) / 3 : 0}
}
proc ::math::figurate::pentagonal {n} {
expr {$n > 0 ? $n * (3*$n - 1) / 2 : 0}
}
proc ::math::figurate::squarePyramidal {n} {
expr {$n > 0 ? $n * ($n + 1) * (2*$n + 1)/ 6 : 0}
}
proc ::math::figurate::tetrahedral {n} {
expr {$n > 0 ? $n * ($n + 1) * ($n + 2) / 6 : 0}
}
proc ::math::figurate::pentatope {n} {
expr {$n > 0 ? $n * ($n + 1) * ($n + 2) * ($n + 3) / 24 : 0}
}
|