File: geometry.tcl

package info (click to toggle)
tcllib 2.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 83,560 kB
  • sloc: tcl: 306,798; ansic: 14,272; sh: 3,035; xml: 1,766; yacc: 1,157; pascal: 881; makefile: 124; perl: 84; f90: 84; python: 33; ruby: 13; php: 11
file content (1569 lines) | stat: -rw-r--r-- 45,169 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
# geometry.tcl --
#
#	Collection of geometry functions.
#
# Copyright (c) 2001 by Ideogramic ApS and other parties.
# Copyright (c) 2004 Arjen Markus
# Copyright (c) 2010 Andreas Kupries
# Copyright (c) 2010 Kevin Kenny
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: geometry.tcl,v 1.12 2010/05/24 21:44:16 andreas_kupries Exp $

namespace eval ::math::geometry {}

package require Tcl 8.5 9
package require math

###
#
# POINTS
#
#    A point P consists of an x-coordinate, Px, and a y-coordinate, Py,
#    and both coordinates are floating point values.
#
#    Points are usually denoted by A, B, C, P, or Q.
#
###
#
# LINES
#
#    There are basically three types of lines:
#         line           A line is defined by two points A and B as the
#                        _infinite_ line going through these two points.
#                        Often a line is given as a list of 4 coordinates
#                        instead of 2 points.
#         line segment   A line segment is defined by two points A and B
#                        as the _finite_ that starts in A and ends in B.
#                        Often a line segment is given as a list of 4
#                        coordinates instead of 2 points.
#         polyline       A polyline is a sequence of connected line segments.
#
#    Please note that given a point P, the closest point on a line is given
#    by the projection of P onto the line. The closest point on a line segment
#    may be the projection, but it may also be one of the end points of the
#    line segment.
#
###
#
# DISTANCES
#
#    The distances in this package are all floating point values.
#
###

# Point constructor
proc ::math::geometry::p {x y} {
    return [list $x $y]
}

# Vector addition
proc ::math::geometry::+ {pa pb} {
    lassign $pa ax ay; lassign $pb bx by
    return [list [expr {$ax + $bx}] [expr {$ay + $by}]]
}

# Vector difference
proc ::math::geometry::- {pa pb} {
    lassign $pa ax ay; lassign $pb bx by
    return [list [expr {$ax - $bx}] [expr {$ay - $by}]]
}

# Distance between 2 points
proc ::math::geometry::distance {pa pb} {
    lassign $pa ax ay; lassign $pb bx by
    return [expr {hypot($bx-$ax,$by-$ay)}]
}

# Length of a vector
proc ::math::geometry::length {v} {
    lassign $v x y
    return [expr {hypot($x,$y)}]
}

# Scaling a vector by a factor
proc ::math::geometry::s* {factor p} {
    lassign $p x y
    return [list [expr {$x * $factor}] [expr {$y * $factor}]]
}

# Unit vector into specific direction given by angle (degrees)
proc ::math::geometry::direction {angle} {
    variable torad
    set x [expr {cos($angle * $torad)}]
    set y [expr {sin($angle * $torad)}]
    return [list $x $y]
}

# Vertical vector of specified length.
proc ::math::geometry::v {h} {
    return [list 0 $h]
}

# Horizontal vector of specified length.
proc ::math::geometry::h {w} {
    return [list $w 0]
}

# Find point on a line between 2 points at a distance
# distance 0 => a, distance 1 => b
proc ::math::geometry::between {pa pb s} {
    return [+ $pa [s* $s [- $pb $pa]]]
}

# Find direction octant the point (vector) lies in.
proc ::math::geometry::octant {p} {
    variable todeg
    lassign $p x y

    set a [expr {(atan2($y,$x)*$todeg)}]
    while {$a >  360} {set a [expr {$a - 360}]}
    while {$a < -360} {set a [expr {$a + 360}]}
    if {$a < 0} {set a [expr {360 + $a}]}

    #puts "p ($x, $y) @ angle $a | [expr {atan2($y,$x)}] | [expr {atan2($y,$x)*$todeg}]"
    # XXX : Add outer conditions to make a log2 tree of checks.

    if {$a <= 157.5} {
	if {$a <= 67.5} {
	    if {$a <= 22.5} { return east }
	    return northeast
	}
	if {$a <=  112.5} { return north }
	return northwest
    } else {
	if {$a <=  247.5} {
	    if {$a <=  202.5} { return west }
	    return southwest
	}
	if {$a <=  337.5} {
	    if {$a <=  292.5} { return south }
	    return southeast
	}
	return east ; # a <= 360.0
    }
}

# Return the NW and SE corners of the rectangle.
proc ::math::geometry::nwse {rect} {
    lassign $rect xnw ynw xse yse
    return [list [p $xnw $ynw] [p $xse $yse]]
}

# Construct rectangle from NW and SE corners.
proc ::math::geometry::rect {pa pb} {
    lassign $pa ax ay; lassign $pb bx by
    return [list $ax $ay $bx $by]
}

proc ::math::geometry::conjx {p} {
    lassign $p x y
    return [list [expr {- $x}] $y]
}

proc ::math::geometry::conjy {p} {
    lassign $p x y
    return [list $x [expr {- $y}]]
}

proc ::math::geometry::x {p} {
    return [lindex $p 0]
}

proc ::math::geometry::y {p} {
    return [lindex $p 1]
}

# ::math::geometry::calculateDistanceToLine
#
#       Calculate the distance between a point and a line.
#
# Arguments:
#       P             a point
#       line          a line
#
# Results:
#       dist          the smallest distance between P and the line
#
# Examples:
#     - calculateDistanceToLine {5 10} {0 0 10 10}
#       Result: 3.53553390593
#     - calculateDistanceToLine {-10 0} {0 0 10 10}
#       Result: 7.07106781187
#
proc ::math::geometry::calculateDistanceToLine {P line} {
    # solution based on FAQ 1.02 on comp.graphics.algorithms
    # L = hypot( Bx-Ax, By-Ay )
    #     (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
    # s = -----------------------------
    #                 L^2
    # dist = |s|*L
    #
    # =>
    #
    #        | (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) |
    # dist = ---------------------------------
    #                       L
    set Ax [lindex $line 0]
    set Ay [lindex $line 1]
    set Bx [lindex $line 2]
    set By [lindex $line 3]
    set Cx [lindex $P 0]
    set Cy [lindex $P 1]
    if {$Ax==$Bx && $Ay==$By} {
	return [lengthOfPolyline [concat $P [lrange $line 0 1]]]
    } else {
	set L [expr {hypot($Bx-$Ax,$By-$Ay)}]
	return [expr {abs(($Ay-$Cy)*($Bx-$Ax)-($Ax-$Cx)*($By-$Ay)) / $L}]
    }
}

# ::math::geometry::findClosestPointOnLine
#
#       Return the point on a line which is closest to a given point.
#
# Arguments:
#       P             a point
#       line          a line
#
# Results:
#       Q             the point on the line that has the smallest
#                     distance to P
#
# Examples:
#     - findClosestPointOnLine {5 10} {0 0 10 10}
#       Result: 7.5 7.5
#     - findClosestPointOnLine {-10 0} {0 0 10 10}
#       Result: -5.0 -5.0
#
proc ::math::geometry::findClosestPointOnLine {P line} {
    return [lindex [findClosestPointOnLineImpl $P $line] 0]
}

# ::math::geometry::findClosestPointOnLineImpl
#
#       PRIVATE FUNCTION USED BY OTHER FUNCTIONS.
#       Find the point on a line that is closest to a given point.
#
# Arguments:
#       P             a point
#       line          a line defined by points A and B
#
# Results:
#       Q             the point on the line that has the smallest
#                     distance to P
#       r             r has the following meaning:
#                        r=0      P = A
#                        r=1      P = B
#                        r<0      P is on the backward extension of AB
#                        r>1      P is on the forward extension of AB
#                        0<r<1    P is interior to AB
#
proc ::math::geometry::findClosestPointOnLineImpl {P line} {
    # solution based on FAQ 1.02 on comp.graphics.algorithms - but avoid the
    # chain of pow( sqrt(...) ,2) for better precision (& performance).
    #   L^2 = (Bx-Ax)^2 + (By-Ay)^2
    #        (Cx-Ax)(Bx-Ax) + (Cy-Ay)(By-Ay)
    #   r = -------------------------------
    #                     L^2
    #   Px = Ax + r(Bx-Ax)
    #   Py = Ay + r(By-Ay)
    set Ax [lindex $line 0]
    set Ay [lindex $line 1]
    set Bx [lindex $line 2]
    set By [lindex $line 3]
    set Cx [lindex $P 0]
    set Cy [lindex $P 1]
    if {$Ax==$Bx && $Ay==$By} {
	return [list [list $Ax $Ay] 0]
    } else {
	set Lsquared [expr {pow($Bx-$Ax,2) + pow($By-$Ay,2)}]
	set r [expr {(($Cx-$Ax)*($Bx-$Ax) + ($Cy-$Ay)*($By-$Ay))/$Lsquared}]
	set Px [expr {$Ax + $r*($Bx-$Ax)}]
	set Py [expr {$Ay + $r*($By-$Ay)}]
	return [list [list $Px $Py] $r]
    }
}

# ::math::geometry::calculateDistanceToLineSegment
#
#       Calculate the distance between a point and a line segment.
#
# Arguments:
#       P             a point
#       linesegment   a line segment
#
# Results:
#       dist          the smallest distance between P and any point
#                     on the line segment
#
# Examples:
#     - calculateDistanceToLineSegment {5 10} {0 0 10 10}
#       Result: 3.53553390593
#     - calculateDistanceToLineSegment {-10 0} {0 0 10 10}
#       Result: 10.0
#
proc ::math::geometry::calculateDistanceToLineSegment {P linesegment} {
    set result [calculateDistanceToLineSegmentImpl $P $linesegment]
    set distToLine [lindex $result 0]
    set r [lindex $result 1]
    if {$r<0} {
	return [lengthOfPolyline [concat $P [lrange $linesegment 0 1]]]
    } elseif {$r>1} {
	return [lengthOfPolyline [concat $P [lrange $linesegment 2 3]]]
    } else {
	return $distToLine
    }
}

# ::math::geometry::calculateDistanceToLineSegmentImpl
#
#       PRIVATE FUNCTION USED BY OTHER FUNCTIONS.
#       Find the distance between a point and a line.
#
# Arguments:
#       P             a point
#       linesegment   a line segment A->B
#
# Results:
#       dist          the smallest distance between P and the line
#       r             r has the following meaning:
#                        r=0      P = A
#                        r=1      P = B
#                        r<0      P is on the backward extension of AB
#                        r>1      P is on the forward extension of AB
#                        0<r<1    P is interior to AB
#
proc ::math::geometry::calculateDistanceToLineSegmentImpl {P linesegment} {
    # solution based on FAQ 1.02 on comp.graphics.algorithms
    # L = hypot( Bx-Ax , By-Ay )
    #     (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay)
    # s = -----------------------------
    #                 L^2
    #      (Cx-Ax)(Bx-Ax) + (Cy-Ay)(By-Ay)
    # r = -------------------------------
    #                   L^2
    # dist = |s|*L
    #
    # =>
    #
    #        | (Ay-Cy)(Bx-Ax)-(Ax-Cx)(By-Ay) |
    # dist = ---------------------------------
    #                       L
    set Ax [lindex $linesegment 0]
    set Ay [lindex $linesegment 1]
    set Bx [lindex $linesegment 2]
    set By [lindex $linesegment 3]
    set Cx [lindex $P 0]
    set Cy [lindex $P 1]
    if {$Ax==$Bx && $Ay==$By} {
	return [list [lengthOfPolyline [concat $P [lrange $linesegment 0 1]]] 0]
    } else {
	set L [expr {hypot($Bx-$Ax,$By-$Ay)}]
	set r [expr {(($Cx-$Ax)*($Bx-$Ax) + ($Cy-$Ay)*($By-$Ay))/pow($L,2)}]
	return [list [expr {abs(($Ay-$Cy)*($Bx-$Ax)-($Ax-$Cx)*($By-$Ay)) / $L}] $r]
    }
}

# ::math::geometry::findClosestPointOnLineSegment
#
#       Return the point on a line segment which is closest to a given point.
#
# Arguments:
#       P             a point
#       linesegment   a line segment
#
# Results:
#       Q             the point on the line segment that has the
#                     smallest distance to P
#
# Examples:
#     - findClosestPointOnLineSegment {5 10} {0 0 10 10}
#       Result: 7.5 7.5
#     - findClosestPointOnLineSegment {-10 0} {0 0 10 10}
#       Result: 0 0
#
proc ::math::geometry::findClosestPointOnLineSegment {P linesegment} {
    set result [findClosestPointOnLineImpl $P $linesegment]
    set Q [lindex $result 0]
    set r [lindex $result 1]
    if {$r<0} {
	return [lrange $linesegment 0 1]
    } elseif {$r>1} {
	return [lrange $linesegment 2 3]
    } else {
	return $Q
    }

}

# ::math::geometry::calculateDistanceToPolyline
#
#       Calculate the distance between a point and a polyline.
#
# Arguments:
#       P           a point
#       polyline    a polyline
#
# Results:
#       dist        the smallest distance between P and any point
#                   on the polyline
#
# Examples:
#     - calculateDistanceToPolyline {10 10} {0 0 10 5 20 0}
#       Result: 5.0
#     - calculateDistanceToPolyline {5 10} {0 0 10 5 20 0}
#       Result: 6.7082039325
#
proc ::math::geometry::calculateDistanceToPolyline {P polyline} {
    set minDist "Inf"
    foreach {Bx By} [lassign $polyline Ax Ay] {
	set dist [calculateDistanceToLineSegment $P [list $Ax $Ay $Bx $By]]
	if {$dist < $minDist} {
	    set minDist $dist
	}
	set Ax $Bx; set Ay $By
    }
    return $minDist
}

# ::math::geometry::calculateDistanceToPolygon
#
#       Calculate the distance between a point and a polygon.
#
# Arguments:
#       P           a point
#       polygon     a polygon
#
# Results:
#       dist        the smallest distance between P and any point
#                   on the polygon
#
# Note:
#       The polygon does not need to be closed - this is taken
#       care of in the procedure.
#
proc ::math::geometry::calculateDistanceToPolygon {P polygon} {
    return [::math::geometry::calculateDistanceToPolyline $P [ClosedPolygon $polygon]]
}

# ::math::geometry::findClosestPointOnPolyline
#
#       Return the point on a polyline which is closest to a given point.
#
# Arguments:
#       P           a point
#       polyline    a polyline
#
# Results:
#       Q           the point on the polyline that has the smallest
#                   distance to P
#
# Examples:
#     - findClosestPointOnPolyline {10 10} {0 0 10 5 20 0}
#       Result: 10 5
#     - findClosestPointOnPolyline {5 10} {0 0 10 5 20 0}
#       Result: 8.0 4.0
#
proc ::math::geometry::findClosestPointOnPolyline {P polyline} {
    set closestPoint "none"; set closestDistance "Inf"
    foreach {Bx By} [lassign $polyline Ax Ay] {
	set Q [findClosestPointOnLineSegment $P [list $Ax $Ay $Bx $By]]
	set dist [distance $P $Q]
	if {$dist<$closestDistance} {
	    set closestPoint $Q
	    set closestDistance $dist
	}
	set Ax $Bx; set Ay $By
    }
    return $closestPoint
}






# ::math::geometry::lengthOfPolyline
#
#       Find the length of a polyline, i.e., the sum of the
#       lengths of the individual line segments.
#
# Arguments:
#       polyline      a polyline
#
# Results:
#       length        the length of the polyline
#
# Examples:
#     - lengthOfPolyline {0 0 5 0 5 10}
#       Result: 15.0
#
proc ::math::geometry::lengthOfPolyline {polyline} {
    set length 0
    foreach {x2 y2} [lassign $polyline x1 y1] {
	set length [expr {$length + hypot($x1-$x2,$y1-$y2)}]
	set x1 $x2; set y1 $y2
    }
    return $length
}

# ::math::geometry::movePointInDirection
#
#       Move a point in a given direction.
#
# Arguments:
#       P             the starting point
#       direction     the direction from P
#                     The direction is in 360-degrees going counter-clockwise,
#                     with "straight right" being 0 degrees
#       dist          the distance from P
#
# Results:
#       Q             the point which is found by starting in P and going
#                     in the given direction, until the distance between
#                     P and Q is dist
#
# Examples:
#     - movePointInDirection {0 0} 45.0 10
#       Result: 7.07106781187 7.07106781187
#
proc ::math::geometry::movePointInDirection {P direction dist} {
    set x [lindex $P 0]
    set y [lindex $P 1]
    set pi [expr {4*atan(1)}]
    set xt [expr {$x + $dist*cos(($direction*$pi)/180)}]
    set yt [expr {$y + $dist*sin(($direction*$pi)/180)}]
    return [list $xt $yt]
}


# ::math::geometry::angle
#
#       Calculates angle from the horizon (0,0)->(1,0) to a line.
#
# Arguments:
#       line          a line defined by two points A and B
#
# Results:
#       angle         the angle between the line (0,0)->(1,0) and (Ax,Ay)->(Bx,By).
#                     Angle is in 360-degrees going counter-clockwise
#
# Examples:
#     - angle {10 10 15 13}
#       Result: 30.9637565321
#
proc ::math::geometry::angle {line} {
    set x1 [lindex $line 0]
    set y1 [lindex $line 1]
    set x2 [lindex $line 2]
    set y2 [lindex $line 3]
    # - handle vertical lines
    if {$x1==$x2} {if {$y1<$y2} {return 90} else {return 270}}
    # - handle other lines
    set a [expr {atan(abs((1.0*$y1-$y2)/(1.0*$x1-$x2)))}] ; # a is between 0 and pi/2
    set pi [expr {4*atan(1)}]
    if {$y1<=$y2} {
	# line is going upwards
	if {$x1<$x2} {set b $a} else {set b [expr {$pi-$a}]}
    } else {
	# line is going downwards
	if {$x1<$x2} {set b [expr {2*$pi-$a}]} else {set b [expr {$pi+$a}]}
    }
    return [expr {$b/$pi*180}] ; # convert b to degrees
}




###
#
# Intersection procedures
#
###

# ::math::geometry::lineSegmentsIntersect
#
#       Checks whether two line segments intersect.
#
# Arguments:
#       linesegment1  the first line segment
#       linesegment2  the second line segment
#
# Results:
#       dointersect   a boolean saying whether the line segments intersect
#                     (i.e., have any points in common)
#
# Examples:
#     - lineSegmentsIntersect {0 0 10 10} {0 10 10 0}
#       Result: 1
#     - lineSegmentsIntersect {0 0 10 10} {20 20 20 30}
#       Result: 0
#     - lineSegmentsIntersect {0 0 10 10} {10 10 15 15}
#       Result: 1
#
proc ::math::geometry::lineSegmentsIntersect {linesegment1 linesegment2} {
    # Algorithm based on Sedgewick.
    set l1x1 [lindex $linesegment1 0]
    set l1y1 [lindex $linesegment1 1]
    set l1x2 [lindex $linesegment1 2]
    set l1y2 [lindex $linesegment1 3]
    set l2x1 [lindex $linesegment2 0]
    set l2y1 [lindex $linesegment2 1]
    set l2x2 [lindex $linesegment2 2]
    set l2y2 [lindex $linesegment2 3]

    #
    # First check the distance between the endpoints
    #
    set margin 1.0e-7
    if { [calculateDistanceToLineSegment [lrange $linesegment1 0 1] $linesegment2] < $margin } {
        return 1
    }
    if { [calculateDistanceToLineSegment [lrange $linesegment1 2 3] $linesegment2] < $margin } {
        return 1
    }
    if { [calculateDistanceToLineSegment [lrange $linesegment2 0 1] $linesegment1] < $margin } {
        return 1
    }
    if { [calculateDistanceToLineSegment [lrange $linesegment2 2 3] $linesegment1] < $margin } {
        return 1
    }

    return [expr {([ccw [list $l1x1 $l1y1] [list $l1x2 $l1y2] [list $l2x1 $l2y1]]\
	    *[ccw [list $l1x1 $l1y1] [list $l1x2 $l1y2] [list $l2x2 $l2y2]] <= 0) \
	    && ([ccw [list $l2x1 $l2y1] [list $l2x2 $l2y2] [list $l1x1 $l1y1]]\
	    *[ccw [list $l2x1 $l2y1] [list $l2x2 $l2y2] [list $l1x2 $l1y2]] <= 0)}]
}

# ::math::geometry::findLineSegmentIntersection
#
#       Returns the intersection point of two line segments.
#       Note: may also return "coincident" and "none".
#
# Arguments:
#       linesegment1  the first line segment
#       linesegment2  the second line segment
#
# Results:
#       P             the intersection point of linesegment1 and linesegment2.
#                     If linesegment1 and linesegment2 have an infinite number
#                     of points in common, the procedure returns "coincident".
#                     If there are no intersection points, the procedure
#                     returns "none".
#
# Examples:
#     - findLineSegmentIntersection {0 0 10 10} {0 10 10 0}
#       Result: 5.0 5.0
#     - findLineSegmentIntersection {0 0 10 10} {20 20 20 30}
#       Result: none
#     - findLineSegmentIntersection {0 0 10 10} {10 10 15 15}
#       Result: 10.0 10.0
#     - findLineSegmentIntersection {0 0 10 10} {5 5 15 15}
#       Result: coincident
#
proc ::math::geometry::findLineSegmentIntersection {linesegment1 linesegment2} {
    if {[lineSegmentsIntersect $linesegment1 $linesegment2]} {
	set lineintersect [findLineIntersection $linesegment1 $linesegment2]
#puts ">>Intersect: $lineintersect"
	switch -- $lineintersect {

	    "coincident" {
		# lines are coincident
		set l1x1 [lindex $linesegment1 0]
		set l1y1 [lindex $linesegment1 1]
		set l1x2 [lindex $linesegment1 2]
		set l1y2 [lindex $linesegment1 3]
		set l2x1 [lindex $linesegment2 0]
		set l2y1 [lindex $linesegment2 1]
		set l2x2 [lindex $linesegment2 2]
		set l2y2 [lindex $linesegment2 3]
		# check if the line SEGMENTS overlap
		# (NOT enough to check if the x-intervals overlap (vertical lines!))
		set overlapx [intervalsOverlap $l1x1 $l1x2 $l2x1 $l2x2 1]
		set overlapy [intervalsOverlap $l1y1 $l1y2 $l2y1 $l2y2 1]
#puts ">>Overlap: $overlapx $overlapy"
		if {$overlapx || $overlapy} {
		    return "coincident"
		} else {
		    # If the line segments are adjacent, return the proper end point, otherwise "none"
		    if { ( $l1x1 == $l2x1 && $l1y1 == $l2y1 ) || ( $l1x1 == $l2x2 && $l1y1 == $l2y2 ) } {
		        return [list $l1x1 $l1y1]
		    }
		    if { ( $l1x2 == $l2x1 && $l1y2 == $l2y1 ) || ( $l1x2 == $l2x2 && $l1y2 == $l2y2 ) } {
		        return [list $l1x2 $l1y2]
		    }
		    return "none"
		}
	    }

	    "none" {
		# should never happen, because we call "lineSegmentsIntersect" first
		puts stderr "::math::geometry::findLineSegmentIntersection: suddenly no intersection?"
		return "none"
	    }

	    default {
		# lineintersect = the intersection point
		return $lineintersect
	    }
	}
    } else {
	return "none"
    }
}

# ::math::geometry::findLineIntersection {line1 line2}
#
#       Returns the intersection point of two lines.
#       Note: may also return "coincident" and "none".
#
# Arguments:
#       line1         the first line
#       line2         the second line
#
# Results:
#       P             the intersection point of line1 and line2.
#                     If line1 and line2 have an infinite number of points
#                     in common, the procedure returns "coincident".
#                     If there are no intersection points, the procedure
#                     returns "none".
#
# Examples:
#     - findLineIntersection {0 0 10 10} {0 10 10 0}
#       Result: 5.0 5.0
#     - findLineIntersection {0 0 10 10} {20 20 20 30}
#       Result: 20.0 20.0
#     - findLineIntersection {0 0 10 10} {10 10 15 15}
#       Result: coincident
#     - findLineIntersection {0 0 10 10} {5 5 15 15}
#       Result: coincident
#     - findLineIntersection {0 0 10 10} {0 1 10 11}
#       Result: none
#
proc ::math::geometry::findLineIntersection {line1 line2} {

    # References:
    # http://wiki.tcl.tk/12070 (Kevin Kenny)
    # http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/

    set l1x1 [lindex $line1 0]
    set l1y1 [lindex $line1 1]
    set l1x2 [lindex $line1 2]
    set l1y2 [lindex $line1 3]

    set l2x1 [lindex $line2 0]
    set l2y1 [lindex $line2 1]
    set l2x2 [lindex $line2 2]
    set l2y2 [lindex $line2 3]

    set d [expr {($l2y2 - $l2y1) * ($l1x2 - $l1x1) -
		 ($l2x2 - $l2x1) * ($l1y2 - $l1y1)}]
    set na [expr {($l2x2 - $l2x1) * ($l1y1 - $l2y1) -
		  ($l2y2 - $l2y1) * ($l1x1 - $l2x1)}]

    # http://local.wasp.uwa.edu.au/~pbourke/geometry/lineline2d/
    if {$d == 0} {
	if {$na == 0} {
	    return "coincident"
	} else {
	    return "none"
	}
    }
    set r [list \
               [expr {$l1x1 + $na * ($l1x2 - $l1x1) / $d}] \
               [expr {$l1y1 + $na * ($l1y2 - $l1y1) / $d}]]
    return $r
}


# ::math::geometry::polylinesIntersect
#
#       Checks whether two polylines intersect.
#
# Arguments;
#       polyline1     the first polyline
#       polyline2     the second polyline
#
# Results:
#       dointersect   a boolean saying whether the polylines intersect
#
# Examples:
#     - polylinesIntersect {0 0 10 10 10 20} {0 10 10 0}
#       Result: 1
#     - polylinesIntersect {0 0 10 10 10 20} {5 4 10 4}
#       Result: 0
#
proc ::math::geometry::polylinesIntersect {polyline1 polyline2} {
    return [polylinesBoundingIntersect $polyline1 $polyline2 0]
}

# ::math::geometry::polylinesBoundingIntersect
#
#       Check whether two polylines intersect, but reduce
#       the correctness of the result to the given granularity.
#       Use this for faster, but weaker, intersection checking.
#
#       How it works:
#          Each polyline is split into a number of smaller polylines,
#          consisting of granularity points each. If a pair of those smaller
#          lines' bounding boxes intersect, then this procedure returns 1,
#          otherwise it returns 0.
#
# Arguments:
#       polyline1     the first polyline
#       polyline2     the second polyline
#       granularity   the number of points in each part-polyline
#                     granularity<=1 means full correctness
#
# Results:
#       dointersect   a boolean saying whether the polylines intersect
#
# Examples:
#     - polylinesBoundingIntersect {0 0 10 10 10 20} {0 10 10 0} 2
#       Result: 1
#     - polylinesBoundingIntersect {0 0 10 10 10 20} {5 4 10 4} 2
#       Result: 1
#
proc ::math::geometry::polylinesBoundingIntersect {polyline1 polyline2 granularity} {
    if {$granularity<=1} {
	# Use perfect intersect
	# => first pin down where an intersection point may be, and then
	#    call MultilinesIntersectPerfect on those parts
	set granularity 10 ; # optimal search granularity?
	set perfectmatch 1
    } else {
	set perfectmatch 0
    }

    # split the lines into parts consisting of $granularity points
    set polyline1parts {}
    for {set i 0} {$i<[llength $polyline1]} {incr i [expr {2*$granularity-2}]} {
	lappend polyline1parts [lrange $polyline1 $i [expr {$i+2*$granularity-1}]]
    }
    set polyline2parts {}
    for {set i 0} {$i<[llength $polyline2]} {incr i [expr {2*$granularity-2}]} {
	lappend polyline2parts [lrange $polyline2 $i [expr {$i+2*$granularity-1}]]
    }

    # do any of the parts overlap?
    foreach part1 $polyline1parts {
	foreach part2 $polyline2parts {
	    set part1bbox [bbox $part1]
	    set part2bbox [bbox $part2]
	    if {[rectanglesOverlap [lrange $part1bbox 0 1] [lrange $part1bbox 2 3] \
		    [lrange $part2bbox 0 1] [lrange $part2bbox 2 3] 0]} {
		# the lines' bounding boxes intersect
		if {$perfectmatch} {
		    foreach {l1x2 l1y2} [lassign $part1 l1x1 l1y1] {
			foreach {l2x2 l2y2} [lassign $part2 l2x1 l2y1] {
			    if {[lineSegmentsIntersect [list $l1x1 $l1y1 $l1x2 $l1y2] \
				    [list $l2x1 $l2y1 $l2x2 $l2y2]]} {
				# two line segments overlap
				return 1
			    }
			    set l2x1 $l2x2; set l2y1 $l2y2
			}
			set l1x1 $l1x2; set l1y1 $l1y2
		    }
		    return 0
		} else {
		    return 1
		}
	    }
	}
    }
    return 0
}

# ::math::geometry::ccw
#
#       PRIVATE FUNCTION USED BY OTHER FUNCTIONS.
#       Returns whether traversing from A to B to C is CounterClockWise
#       Algorithm by Sedgewick.
#
# Arguments:
#       A             first point
#       B             second point
#       C             third point
#
# Reeults:
#       ccw           a boolean saying whether traversing from A to B to C
#                     is CounterClockWise
#
proc ::math::geometry::ccw {A B C} {
    set Ax [lindex $A 0]
    set Ay [lindex $A 1]
    set Bx [lindex $B 0]
    set By [lindex $B 1]
    set Cx [lindex $C 0]
    set Cy [lindex $C 1]
    set dx1 [expr {$Bx - $Ax}]
    set dy1 [expr {$By - $Ay}]
    set dx2 [expr {$Cx - $Ax}]
    set dy2 [expr {$Cy - $Ay}]
    if {$dx1*$dy2 > $dy1*$dx2} {return 1}
    if {$dx1*$dy2 < $dy1*$dx2} {return -1}
    if {($dx1*$dx2 < 0) || ($dy1*$dy2 < 0)} {return -1}
    if {($dx1*$dx1 + $dy1*$dy1) < ($dx2*$dx2+$dy2*$dy2)} {return 1}
    return 0
}







###
#
# Overlap procedures
#
###

# ::math::geometry::intervalsOverlap
#
#       Check whether two intervals overlap.
#       Examples:
#         - (2,4) and (5,3) overlap with strict=0 and strict=1
#         - (2,4) and (1,2) overlap with strict=0 but not with strict=1
#
# Arguments:
#       y1,y2         the first interval
#       y3,y4         the second interval
#       strict        choosing strict or non-strict interpretation
#
# Results:
#       dooverlap     a boolean saying whether the intervals overlap
#
# Examples:
#     - intervalsOverlap 2 4 4 6 1
#       Result: 0
#     - intervalsOverlap 2 4 4 6 0
#       Result: 1
#     - intervalsOverlap 4 2 3 5 0
#       Result: 1
#
proc ::math::geometry::intervalsOverlap {y1 y2 y3 y4 strict} {
    if {$y1>$y2} {
	set temp $y1
	set y1 $y2
	set y2 $temp
    }
    if {$y3>$y4} {
	set temp $y3
	set y3 $y4
	set y4 $temp
    }
    if {$strict} {
	return [expr {$y2>$y3 && $y4>$y1}]
    } else {
	return [expr {$y2>=$y3 && $y4>=$y1}]
    }
}

# ::math::geometry::rectanglesOverlap
#
#       Check whether two rectangles overlap (see also intervalsOverlap).
#
# Arguments:
#       P1            upper-left corner of the first rectangle
#       P2            lower-right corner of the first rectangle
#       Q1            upper-left corner of the second rectangle
#       Q2            lower-right corner of the second rectangle
#       strict        choosing strict or non-strict interpretation
#
# Results:
#       dooverlap     a boolean saying whether the rectangles overlap
#
# Examples:
#     - rectanglesOverlap {0 10} {10 0} {10 10} {20 0} 1
#       Result: 0
#     - rectanglesOverlap {0 10} {10 0} {10 10} {20 0} 0
#       Result: 1
#
proc ::math::geometry::rectanglesOverlap {P1 P2 Q1 Q2 strict} {
    set b1x1 [lindex $P1 0]
    set b1y1 [lindex $P1 1]
    set b1x2 [lindex $P2 0]
    set b1y2 [lindex $P2 1]
    set b2x1 [lindex $Q1 0]
    set b2y1 [lindex $Q1 1]
    set b2x2 [lindex $Q2 0]
    set b2y2 [lindex $Q2 1]
    # ensure b1x1<=b1x2 etc.
    if {$b1x1 > $b1x2} {
	set temp $b1x1
	set b1x1 $b1x2
	set b1x2 $temp
    }
    if {$b1y1 > $b1y2} {
	set temp $b1y1
	set b1y1 $b1y2
	set b1y2 $temp
    }
    if {$b2x1 > $b2x2} {
	set temp $b2x1
	set b2x1 $b2x2
	set b2x2 $temp
    }
    if {$b2y1 > $b2y2} {
	set temp $b2y1
	set b2y1 $b2y2
	set b2y2 $temp
    }
    # Check if the boxes intersect
    # (From: Cormen, Leiserson, and Rivests' "Algorithms", page 889)
    if {$strict} {
	return [expr {($b1x2>$b2x1) && ($b2x2>$b1x1) \
		&& ($b1y2>$b2y1) && ($b2y2>$b1y1)}]
    } else {
	return [expr {($b1x2>=$b2x1) && ($b2x2>=$b1x1) \
		&& ($b1y2>=$b2y1) && ($b2y2>=$b1y1)}]
    }
}



# ::math::geometry::bbox
#
#       Calculate the bounding box of a polyline.
#
# Arguments:
#       polyline      a polyline
#
# Results:
#       x1,y1,x2,y2   four coordinates where (x1,y1) is the upper-left corner
#                     of the bounding box, and (x2,y2) is the lower-right corner
#
# Examples:
#     - bbox {0 10 4 1 6 23 -12 5}
#       Result: -12 1 6 23
#
proc ::math::geometry::bbox {polyline} {
    set minX [lindex $polyline 0]
    set maxX $minX
    set minY [lindex $polyline 1]
    set maxY $minY
    foreach {x y} $polyline {
	if {$x < $minX} {set minX $x}
	if {$x > $maxX} {set maxX $x}
	if {$y < $minY} {set minY $y}
	if {$y > $maxY} {set maxY $y}
    }
    return [list $minX $minY $maxX $maxY]
}

# ::math::geometry::ClosedPolygon
#
#       Return a closed polygon - used internally
#
# Arguments:
#       polygon       a polygon
#
# Results:
#       closedpolygon a polygon whose first and last vertices
#                     coincide
#
proc ::math::geometry::ClosedPolygon {polygon} {

    lassign $polygon x y
    if { $x != [lindex $polygon end-1] ||
         $y != [lindex $polygon end]     } {

        lappend polygon $x $y

    }
    return $polygon
}


# ::math::geometry::pointInsidePolygon
#
#       Determine if a point is completely inside a polygon. If the point
#       touches the polygon, then the point is not complete inside the
#       polygon.
#
# Arguments:
#       P             a point
#       polygon       a polygon
#
# Results:
#       isinside      a boolean saying whether the point is
#                     completely inside the polygon or not
#
# Examples:
#     - pointInsidePolygon {5 5} {4 4 4 6 6 6 6 4}
#       Result: 1
#     - pointInsidePolygon {5 5} {6 6 6 7 7 7}
#       Result: 0
#
proc ::math::geometry::pointInsidePolygon {P polygon} {
    # check if P is on one of the polygon's sides (if so, P is not
    # inside the polygon)
    set closedPolygon [ClosedPolygon $polygon]

    foreach {x2 y2} [lassign $closedPolygon x1 y1] {
	if {[calculateDistanceToLineSegment $P [list $x1 $y1 $x2 $y2]]<0.0000001} {
	    return 0
	}
	set x1 $x2; set y1 $y2
    }

    # Algorithm
    #
    # Consider a straight line going from P to a point far away from both
    # P and the polygon (in particular outside the polygon).
    #   - If the line intersects with 0 of the polygon's sides, then
    #     P must be outside the polygon.
    #   - If the line intersects with 1 of the polygon's sides, then
    #     P must be inside the polygon (since the other end of the line
    #     is outside the polygon).
    #   - If the line intersects with 2 of the polygon's sides, then
    #     the line must pass into one polygon area and out of it again,
    #     and hence P is outside the polygon.
    #   - In general: if the line intersects with the polygon's sides an odd
    #     number of times, then P is inside the polygon. Note: we also have
    #     to check whether the line crosses one of the polygon's
    #     bend points for the same reason.

    # get point far away and define the line
    set polygonBbox [bbox $polygon]

    set pointFarAway [list \
        [expr {[lindex $polygonBbox 0]-[lindex $polygonBbox 2]}] \
        [expr {[lindex $polygonBbox 1]-0.1*[lindex $polygonBbox 3]}]]

    set infinityLine [concat $pointFarAway $P]

    # calculate number of intersections
    set noOfIntersections 0
    #   1. count intersections between the line and the polygon's sides
    foreach {x2 y2} [lassign $closedPolygon x1 y1] {
	if {[lineSegmentsIntersect $infinityLine [list $x1 $y1 $x2 $y2]]} {
	    incr noOfIntersections
	}
	set x1 $x2; set y1 $y2
    }
    #   2. count intersections between the line and the polygon's points
    foreach {x1 y1} $closedPolygon {
	if {[calculateDistanceToLineSegment [list $x1 $y1] $infinityLine]<0.0000001} {
	    incr noOfIntersections
	}
    }
    return [expr {$noOfIntersections % 2}]
}

# See ticket [dc49af96c2]
# Original code found at: https://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html
# Thanks to Christian Gollwitzer, Peter Lewerin and Eduard Zozuly
# Replaced by:
proc ::math::geometry::pointInsidePolygon {point polygon} {
    lassign $point testx testy
    foreach {x y} $polygon {
        lappend vertx $x
        lappend verty $y
    }
    set c 0
    set nvert [llength $vertx]
    for {set i 0 ; set j [expr {$nvert-1}]} {$i < $nvert} {set j $i ; incr i} {
        if {
            (([lindex $verty $i]>$testy) != ([lindex $verty $j]>$testy)) &&
            ($testx < ([lindex $vertx $j] - [lindex $vertx $i]) *
            ($testy - [lindex $verty $i]) /
            ([lindex $verty $j] - [lindex $verty $i]) + [lindex $vertx $i])
        } {
            set c [expr {!$c}]
        }
    }
    return $c
}

# ::math::geometry::pointInsidePolygonAlt
#
#       Determine if a point is completely inside a polygon. If the point
#       touches the polygon, then the point is not complete inside the
#       polygon.
#       This alternative algorithm works with complex (self-intersecting)
#       polygons in a "natural" way. It uses the winding number instead
#       of the number of crossings.
#
#       See: http://geomalgorithms.com/a03-_inclusion.html
#
# Arguments:
#       P             a point
#       polygon       a polygon
#
# Results:
#       isinside      a boolean saying whether the point is
#                     completely inside the polygon or not
#

# Auxiliary procedure:
#     > 0 if point 2 left of line through points 0 and 1
#     < 0 if point 2 right of the line
#     = 0 if point on the line
#
proc ::math::geometry::LeftOfEdge {x0 y0 x1 y1 x2 y2} {
    expr {($x1 - $x0) * ($y2 - $y0) - ($x2 - $x0) * ($y1 - $y0)}
}

proc ::math::geometry::pointInsidePolygonAlt {point polygon} {
    lassign $point testx testy
    foreach {x y} $polygon {
        lappend vertx $x
        lappend verty $y
    }
    set w 0
    set nvert [llength $vertx]
    for {set i 0} {$i < $nvert} {incr i} {
        set j [expr {$i+1}]
        if { $j == $nvert } {
            set j 0
        }
        if { [lindex $verty $i] <= $testy } {
            if { [lindex $verty $j] > $testy } {
                if { [LeftOfEdge [lindex $vertx $i] [lindex $verty $i] [lindex $vertx $j] [lindex $verty $j] $testx $testy] > 0.0 } {
                    incr w
                }
            }
        } else {
            if { [lindex $verty $j] <= $testy } {
                if { [LeftOfEdge [lindex $vertx $i] [lindex $verty $i] [lindex $vertx $j] [lindex $verty $j] $testx $testy] < 0.0 } {
                    incr w -1
                }
            }
        }
    }
    return [expr {$w != 0}]
}

# ::math::geometry::rectangleInsidePolygon
#
#       Determine if a rectangle is completely inside a polygon. If polygon
#       touches the rectangle, then the rectangle is not complete inside the
#       polygon.
#
# Arguments:
#       P1            upper-left corner of the rectangle
#       P2            lower-right corner of the rectangle
#       polygon       a polygon
#
# Results:
#       isinside      a boolean saying whether the rectangle is
#                     completely inside the polygon or not
#
# Examples:
#     - rectangleInsidePolygon {0 10} {10 0} {-10 -10 0 11 11 11 11 0}
#       Result: 1
#     - rectangleInsidePolygon {0 0} {0 0} {-16 14 5 -16 -16 -25 -21 16 -19 24}
#       Result: 1
#     - rectangleInsidePolygon {0 0} {0 0} {2 2 2 4 4 4 4 2}
#       Result: 0
#
proc ::math::geometry::rectangleInsidePolygon {P1 P2 polygon} {
    # get coordinates of rectangle
    set bx1 [lindex $P1 0]
    set by1 [lindex $P1 1]
    set bx2 [lindex $P2 0]
    set by2 [lindex $P2 1]

    # if rectangle does not overlap with the bbox of polygon, then the
    # rectangle cannot be inside the polygon (this is a quick way to
    # get an answer in many cases)
    set polygonBbox [bbox $polygon]
    set polygonP1x [lindex $polygonBbox 0]
    set polygonP1y [lindex $polygonBbox 1]
    set polygonP2x [lindex $polygonBbox 2]
    set polygonP2y [lindex $polygonBbox 3]
    if {![rectanglesOverlap [list $bx1 $by1] [list $bx2 $by2] \
	    [list $polygonP1x $polygonP1y] [list $polygonP2x $polygonP2y] 0]} {
	return 0
    }

    # 1. if one of the points of the polygon is inside the rectangle,
    # then the rectangle cannot be inside the polygon
    foreach {x y} $polygon {
	if {$bx1<$x && $x<$bx2 && $by1<$y && $y<$by2} {
	    return 0
	}
    }

    # 2. if one of the line segments of the polygon intersect with the
    # rectangle, then the rectangle cannot be inside the polygon
    set rectanglePolyline [list $bx1 $by1 $bx2 $by1 $bx2 $by2 $bx1 $by2 $bx1 $by1]
    set closedPolygon [ClosedPolygon $polygon]
    if {[polylinesIntersect $closedPolygon $rectanglePolyline]} {
	return 0
    }

    # at this point we know that:
    #  1. the polygon has no points inside the rectangle
    #  2. the polygon's sides don't intersect with the rectangle
    # therefore:
    #  either the rectangle is (completely) inside the polygon, or
    #  the rectangle is (completely) outside the polygon

    # final test: if one of the points on the rectangle is inside the
    # polygon, then the whole rectangle must be inside the rectangle
    return [pointInsidePolygon [list $bx1 $by1] $polygon]
}


# ::math::geometry::areaPolygon
#
#       Determine the area enclosed by a (non-complex) polygon
#
# Arguments:
#       polygon       a polygon
#
# Results:
#       area          the area enclosed by the polygon
#
# Examples:
#     - areaPolygon {-10 -10 10 -10 10 10 -10 10}
#       Result: 400
#
proc ::math::geometry::areaPolygon {polygon} {

    # get last pair of the polygon for start:
    set b1 [lindex $polygon end-1]; set b2 [lindex $polygon end]

    set area 0.0
    foreach {c1 c2} $polygon {
        set area [expr {$area + ($b1*$c2 - $b2*$c1)}]
        set b1   $c1
        set b2   $c2
    }
    expr {0.5*abs($area)}
}

# ::math::geometry::inproduct
#
#       Determine the inproduct of two vectors
#
# Arguments:
#       vector1       first vector
#       vector2       second vector
#
# Results:
#       inproduct     the inproduct
#
proc ::math::geometry::inproduct {vector1 vector2} {

    set inproduct 0.0
    foreach v1 $vector1 v2 $vector2 {
        set inproduct [expr {$inproduct + $v1 * $v2}]
    }

    return $inproduct
}

# ::math::geometry::angleBetween
#
#       Determine the angle between two vectors (degrees)
#
# Arguments:
#       vector1       first vector
#       vector2       second vector
#
# Results:
#       angle         the angle in degrees
#
proc ::math::geometry::angleBetween {vector1 vector2} {
    variable todeg

    set inproduct 0.0
    set length1   0.0
    set length2   0.0
    foreach v1 $vector1 v2 $vector2 {
        set inproduct [expr {$inproduct + $v1 * $v2}]
        set length1   [expr {$length1   + $v1 * $v1}]
        set length2   [expr {$length2   + $v2 * $v2}]
    }
    set angle [expr {acos($inproduct/sqrt($length1 * $length2)) * $todeg}]

    return $angle
}

# ::math::geometry::areaParallellogram
#
#       Determine the area of the parallellogram spanned by two vectors
#
# Arguments:
#       vector1       first vector
#       vector2       second vector
#
# Results:
#       area          the area of the parallellogram
#
proc ::math::geometry::areaParallellogram {vector1 vector2} {

    lassign $vector1 x1 y1; lassign $vector2 x2 y2

    set area [expr {abs($x2 * $y1 - $x1 * $y2}]

    return $area
}

# ::math::geometry::translate
#
#       Translate a polyline over a given vector
#
# Arguments:
#       vector        Translation vector
#       polyline      Polyline (or any list of coordinate pairs)
#
# Results:
#       newPolyline   Translated poyline
#
proc ::math::geometry::translate {vector polyline} {

    set newPolyline $polyline

    lassign $vector xt yt

    set idx 0
    foreach {x y} $polyline {
        lset newPolyline $idx [expr {$x + $xt}]
        incr idx
        lset newPolyline $idx [expr {$y + $yt}]
        incr idx
    }

    return $newPolyline
}

# ::math::geometry::rotate
#
#       Rotate a polyline over a given angle (degrees) around the origin
#
# Arguments:
#       angle         rotation angle (degrees)
#       polyline      polyline (or any list of coordinate pairs)
#
# Results:
#       newPolyline   rotated polyline
#
# Note:
#       rotation is counterclockwise
#
proc ::math::geometry::rotate {angle polyline} {
    variable torad

    set angle [expr {$torad * $angle}]
    set cosa  [expr {cos($angle)}]
    set sina  [expr {sin($angle)}]

    set newPolyline $polyline

    set idx 0
    foreach {x y} $polyline {
        set newx [expr {$cosa * $x - $sina *$y}]
        set newy [expr {$sina * $x + $cosa *$y}]

        lset newPolyline $idx $newx
        incr idx
        lset newPolyline $idx $newy
        incr idx
    }

    return $newPolyline
}

# ::math::geometry::reflect
#
#       Reflect a polyline in a line through the origin at a given angle to the x-axis
#
# Arguments:
#       angle         angle of the line of reflection (degrees)
#       polyline      polyline (or any list of coordinate pairs)
#
# Results:
#       newPolyline   reflected polyline
#
# Note:
#       the angle is used counterclockwise
#
proc ::math::geometry::reflect {angle polyline} {
    variable torad

    set angle [expr {2.0 * $torad * $angle}]
    set cosa  [expr {cos($angle)}]
    set sina  [expr {sin($angle)}]

    set newPolyline $polyline

    set idx 0
    foreach {x y} $polyline {
        set newx [expr {$cosa * $x + $sina *$y}]
        set newy [expr {$sina * $x - $cosa *$y}]

        lset newPolyline $idx $newx
        incr idx
        lset newPolyline $idx $newy
        incr idx
    }

    return $newPolyline
}

# ::math::geometry::degToRad
#
#       Convert from degrees to radians
#
# Arguments:
#       angle         angle (degrees)
#
# Results:
#       angle         angle in radians
#
proc ::math::geometry::degToRad {angle} {
    variable torad

    return [expr {$angle * $torad}]
}

# ::math::geometry::radToDeg
#
#       Convert from radians to degrees
#
# Arguments:
#       angle         angle (radians)
#
# Results:
#       angle         angle in degrees
#
proc ::math::geometry::radToDeg {angle} {
    variable todeg

    return [expr {$angle * $todeg}]
}

# # ## ### ##### #############

namespace eval ::math::geometry {
    variable pi    [expr { 4 * atan(1) }]
    variable torad [expr { (4 * atan(1)) / 180.0 }]
    variable todeg [expr { 180.0 / (4 * atan(1)) }]

    namespace export \
	+ - s* direction v h p between distance length \
	nwse rect octant findLineSegmentIntersection \
	findLineIntersection bbox x y conjx conjy \
	calculateDistanceToLine findClosestPointOnLine \
	calculateDistanceToLineSegment findClosestPointOnLineSegment \
	calculateDistanceToPolylineSegment findClosestPointOnPolyline lengthOfPolyline \
	movePointInDirection lineSegmentsIntersect findLineSegmentIntersection findLineIntersection \
	polylinesIntersect polylinesBoundingIntersect intervalsOverlap rectanglesOverlap pointInsidePolygon pointInsidePolygonAlt \
	rectangleInsidePolygon areaPolygon translate rotate reflect degToRad radToDeg \
	calculateDistanceToPolyline calculateDistanceToPolygon areaParallellogram angle inproduct angleBetween

}

source [file join [file dirname [info script]] geometry_circle.tcl]
source [file join [file dirname [info script]] geometry_ext.tcl]

package provide math::geometry 1.4.2