1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
# probopt_sce.tcl --
# Implementation of the "shuffled complexes evolution" optimisation method in Tcl
#
# Note:
# This implementation is based on:
# - Qingyuan Duan, Soroosh Sorooshian and Vijai Gupta:
# Optimal use of the SCE-UA global optimisation method for calibrating
# watershed models, Journal of Hydrology, volume 158, 1994, pp. 265-284
#
# - Q.Y. Duan, V.K. Gupta and S. Sorooshian:
# Shuffled Comples Evolution Approach for Effective and Efficient
# Global Minimization, Journal of Optimization Theory and Applications,
# volume 76, no. 3, 1993, pp. 501-521
#
# TODO:
# - Limit the number of iterations
# - Provide a dictionary of calculation results
#
# namespace --
#
namespace eval ::math::probopt {
variable sceNevals 0
}
# sce --
# Front-end procedure for the SCE algorithm
#
# Arguments:
# func Function for which the global minimum is to be found
# bounds Boundaries for all independent variables of the function,
# as a list of pairs of minimum and maximum
# args Set of options - key-value pairs
#
# Result:
# Estimate of the global minimum as found via the procedure
#
proc ::math::probopt::sce {func bounds args} {
variable sceNevals
#
# Set the default options
#
set dims [llength $bounds]
set options [dict create -complexes 2 -mincomplexes 2 -newpoints 1 -shuffle 0 -pointspercomplex 0 -pointspersubcomplex 0 \
-iterations 100 -maxevaluations 1.0e9 -abstolerance 0.0 -reltolerance 0.001]
#
# Handle the options
#
foreach {key value} $args {
if { [dict exists $options $key] } {
dict set options $key $value
} else {
return -code error "Unknown option: $key"
}
}
dict with options {}
#
# Recalculate a few options
#
foreach v {-shuffle -pointspercomplex} {
if { [set $v] == 0 } {
set $v [expr {2*$dims + 1}]
dict set options $v [set $v]
}
}
set v "-pointspersubcomplex"
if { [set $v] == 0 } {
set $v [expr {$dims + 1}]
dict set options $v [set $v]
}
#
# Ready to call the actual procedure
#
set sceNEvals 0
return [SceCompute $func $bounds $options]
#SceCompute $func $bounds $options
}
# SceCompute --
# Actually compute the global optimum using the SCE algorithm
#
# Arguments:
# func Function for which the global minimum is to be found
# bounds Boundaries for all independent variables of the function,
# as a list of pairs of minimum and maximum
# options Dictionary of options
#
# Result:
# Dictionary containing among other things the estimate of the
# global minimum as found via the procedure
#
proc ::math::probopt::SceCompute {func bounds options} {
variable sceNEvals
set dims [llength $bounds]
set npcomplex [dict get $options -pointspercomplex]
set p [dict get $options -complexes]
set pmin [dict get $options -mincomplexes]
set npsubcomplex [dict get $options -pointspersubcomplex]
set nnewpoints [dict get $options -newpoints]
set nshuffle [dict get $options -shuffle]
set niterations [dict get $options -iterations]
set abstol [dict get $options -abstolerance]
set reltol [dict get $options -reltolerance]
set npoints [expr {$npcomplex * $p}]
#
# Generate the initial set of points
#
set points {}
for {set i 0} {$i < $p} {incr i} {
for {set k 0} {$k < $npcomplex} {incr k} {
set coords [GeneratePoint $bounds]
lappend points [list $coords [$func $coords]]
incr sceNEvals
}
}
for {set iteration 0} {$iteration < $niterations} {incr iteration} {
#
# Sort the points and create subcomplexes
#
set points [lsort -index 1 -increasing $points]
array unset complex
for {set i 0} {$i < $p} {incr i} {
for {set k 0} {$k < $npcomplex} {incr k} {
lappend complex($i) [lindex $points [expr {$k*$p + $i}]]
}
}
#
# Optimise the subcomplexes
#
for {set i 0} {$i < $p} {incr i} {
for {set shuffle 0} {$shuffle < $nshuffle} {incr shuffle} {
set complex($i) [OptimiseComplex $complex($i) $npsubcomplex $nnewpoints $func $bounds]
}
}
#
# Join the subcomplexes into a list of points and sort the points
#
set points {}
for {set i 0} {$i < $p} {incr i} {
set points [concat $points $complex($i)]
}
if { $iteration == 0 } {
set oldminimum [lindex [lsort -index 1 -increasing $points] 0 1]
} else {
set newminimum [lindex [lsort -index 1 -increasing $points] 0 1]
if { abs($oldminimum-$newminimum) != 0.0 &&
( abs($oldminimum-$newminimum) < $abstol ||
abs($oldminimum-$newminimum) < 0.5 * $reltol * (abs($oldminimum)+abs($newminimum)) ) } {
break
} else {
set oldminimum $newminimum
}
}
}
#
# Sort the points and return the best one
#
set result [lsort -index 1 -increasing $points]
set optimum_coords [lindex $result 0 0]
set optimum_value [lindex $result 0 1]
set best_values {}
foreach r $result {
set best_values [concat [lindex $r 1] $best_values]
}
return [dict create optimum-coordinates $optimum_coords optimum-value $optimum_value evaluations $sceNEvals best-values $best_values]
}
# OptimiseComplex --
# Optimise the complex, using subcomplexes
#
# Arguments:
# complex The points (and the function values) making up the full complex
# nsubcomplex The number of points to be selected for the subcomplex
# nnewpoints The number of new points to be generated
# bounds The bounds on the coordinates defining the feasible region
#
# Result:
# A new set of points
#
proc ::math::probopt::OptimiseComplex {complex nsubcomplex nnewpoints func bounds} {
variable sceNEvals
#
# Construct the subcomplex
#
set subcomplex [lsort -index 1 -increasing [TriangularSelect $complex $nsubcomplex]]
#
# Construct new points:
# - Determine the centroid, excluding the worst point
# - Reflect the worst point
# - Make sure the result is within the feasible region, otherwise
# select a new point
# - Keep the new point if it has a lower function value
# - Otherwise try a contraction step
#
for {set new 0} {$new < $nnewpoints} {incr new} {
set centroid [Centroid [lrange $complex 0 end-1]]
set newPoint [ReflectPointInPoint $centroid [lindex $complex end 0]]
if { ! [WithinBounds $bounds $newPoint] } {
set newPoint [GeneratePoint $bounds]
set fvalue [$func $newPoint]
incr sceNEvals
} else {
set fvalue [$func $newPoint]
incr sceNEvals
#
# If the point is better, keep it, otherwise attempt a contraction step
#
if { $fvalue > [lindex $complex end 1] } {
set newPoint [Centroid [list [list $centroid 0.0] [list $newPoint $fvalue]]]
set fvalue [$func $newPoint]
incr sceNEvals
if { $fvalue > [lindex $complex end 1] } {
set newPoint [GeneratePoint $bounds]
set fvalue [$func $newPoint]
incr sceNEvals
}
}
}
lset complex end [list $newPoint $fvalue]
set complex [lsort -index 1 -increasing $complex]
}
return $complex
}
# GeneratePoint --
# Generate the coordinates of a random point within the given bounds
#
# Arguments:
# bounds Bounds on all coordinates
#
# Result:
# List of coordinates
#
proc ::math::probopt::GeneratePoint {bounds} {
set coords {}
foreach bound $bounds {
lassign $bound cmin cmax
lappend coords [expr {$cmin + ($cmax - $cmin) * rand()}]
}
return $coords
}
# WithinBounds --
# Determine if the coordinates of a point are within the given bounds
#
# Arguments:
# bounds Bounds on all coordinates
# point Coordinates of the point
#
# Result:
# 1 if the point is within the hyperrectangle, 0 otherwise
#
proc ::math::probopt::WithinBounds {bounds point} {
set within 1
foreach c $point bound $bounds {
lassign $bound cmin cmax
if { $c < $cmin || $c > $cmax } {
set within 0
break
}
}
return $within
}
# Centroid --
# Calculate the centroid of a set of points in N dimensions
#
# Arguments:
# points List of point coordinates
#
# Result:
# Coordinates of the centroid
#
# Note:
# As this is to be used in the SCE algorithm, the list of
# point coordinates is slightly more complicated than
# just the coordinates.
#
proc ::math::probopt::Centroid {points} {
set dims [llength [lindex $points 0 0]]
set number [llength $points]
set centroid [lrepeat $dims 0]
foreach point $points {
set coords [lindex $point 0]
set idx 0
foreach c $coords sum $centroid {
set sum [expr {$sum + $c}]
lset centroid $idx $sum
incr idx
}
}
set idx 0
foreach c $centroid {
lset centroid $idx [expr {$c / double($number)}]
incr idx
}
return $centroid
}
# ReflectPointInPoint --
# Reflect a point in another point and return the result
#
# Arguments:
# centre Point that serves as the reflection center
# point Point to be reflected (list of coordinates)
#
# Result:
# Coordinates of the new point
#
proc ::math::probopt::ReflectPointInPoint {centre point} {
set newPoint {}
foreach c $centre p $point {
lappend newPoint [expr {2.0 * $c - $p}]
}
return $newPoint
}
# TriangularSelect --
# Select "number" values from a list of values
# - the probability is triangular
#
# Arguments:
# values List of values to choose from
# number Number of values to choose (must be smaller than length of the list)
#
# Result:
# Selected values
#
proc ::math::probopt::TriangularSelect {values number} {
set selected {}
for {set i 0} {$i < $number} {incr i} {
set n [llength $values]
set r [expr {1.0 - sqrt(1.0 - rand())}]
set idx [expr {int($r * $n)}]
lappend selected [lindex $values $idx]
set values [lreplace $values $idx $idx]
}
return $selected
}
|