1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
[comment {-*- tcl -*- doctools manpage}]
[manpage_begin math::complexnumbers n 1.0.3]
[keywords {complex numbers}]
[keywords math]
[copyright {2004 Arjen Markus <arjenmarkus@users.sourceforge.net>}]
[moddesc {Tcl Math Library}]
[titledesc {Straightforward complex number package}]
[category Mathematics]
[require Tcl "8.5 9"]
[require math::complexnumbers [opt 1.0.3]]
[description]
[para]
The mathematical module [emph complexnumbers] provides a straightforward
implementation of complex numbers in pure Tcl. The philosophy is that
the user knows he or she is dealing with complex numbers in an abstract
way and wants as high a performance as can be had within the limitations
of an interpreted language.
[para]
Therefore the procedures defined in this package assume that the
arguments are valid (representations of) "complex numbers", that is,
lists of two numbers defining the real and imaginary part of a
complex number (though this is a mere detail: rely on the
[emph complex] command to construct a valid number.)
[para]
Most procedures implement the basic arithmetic operations or elementary
functions whereas several others convert to and from different
representations:
[para]
[example {
set z [complex 0 1]
puts "z = [tostring $z]"
puts "z**2 = [* $z $z]
}]
would result in:
[example {
z = i
z**2 = -1
}]
[section "AVAILABLE PROCEDURES"]
The package implements all or most basic operations and elementary
functions.
[para]
[emph {The arithmetic operations are:}]
[list_begin definitions]
[call [cmd ::math::complexnumbers::+] [arg z1] [arg z2]]
Add the two arguments and return the resulting complex number
[list_begin arguments]
[arg_def complex z1 in]
First argument in the summation
[arg_def complex z2 in]
Second argument in the summation
[list_end]
[para]
[call [cmd ::math::complexnumbers::-] [arg z1] [arg z2]]
Subtract the second argument from the first and return the
resulting complex number. If there is only one argument, the
opposite of z1 is returned (i.e. -z1)
[list_begin arguments]
[arg_def complex z1 in]
First argument in the subtraction
[arg_def complex z2 in]
Second argument in the subtraction (optional)
[list_end]
[para]
[call [cmd ::math::complexnumbers::*] [arg z1] [arg z2]]
Multiply the two arguments and return the resulting complex number
[list_begin arguments]
[arg_def complex z1 in]
First argument in the multiplication
[arg_def complex z2 in]
Second argument in the multiplication
[list_end]
[para]
[call [cmd ::math::complexnumbers::/] [arg z1] [arg z2]]
Divide the first argument by the second and return the resulting complex
number
[list_begin arguments]
[arg_def complex z1 in]
First argument (numerator) in the division
[arg_def complex z2 in]
Second argument (denominator) in the division
[list_end]
[para]
[call [cmd ::math::complexnumbers::conj] [arg z1]]
Return the conjugate of the given complex number
[list_begin arguments]
[arg_def complex z1 in]
Complex number in question
[list_end]
[para]
[list_end]
[para]
[emph {Conversion/inquiry procedures:}]
[list_begin definitions]
[call [cmd ::math::complexnumbers::real] [arg z1]]
Return the real part of the given complex number
[list_begin arguments]
[arg_def complex z1 in]
Complex number in question
[list_end]
[para]
[call [cmd ::math::complexnumbers::imag] [arg z1]]
Return the imaginary part of the given complex number
[list_begin arguments]
[arg_def complex z1 in]
Complex number in question
[list_end]
[para]
[call [cmd ::math::complexnumbers::mod] [arg z1]]
Return the modulus of the given complex number
[list_begin arguments]
[arg_def complex z1 in]
Complex number in question
[list_end]
[para]
[call [cmd ::math::complexnumbers::arg] [arg z1]]
Return the argument ("angle" in radians) of the given complex number
[list_begin arguments]
[arg_def complex z1 in]
Complex number in question
[list_end]
[para]
[call [cmd ::math::complexnumbers::complex] [arg real] [arg imag]]
Construct the complex number "real + imag*i" and return it
[list_begin arguments]
[arg_def float real in]
The real part of the new complex number
[arg_def float imag in]
The imaginary part of the new complex number
[list_end]
[para]
[call [cmd ::math::complexnumbers::tostring] [arg z1]]
Convert the complex number to the form "real + imag*i" and return the
string
[list_begin arguments]
[arg_def float complex in]
The complex number to be converted
[list_end]
[para]
[list_end]
[para]
[emph {Elementary functions:}]
[list_begin definitions]
[call [cmd ::math::complexnumbers::exp] [arg z1]]
Calculate the exponential for the given complex argument and return the
result
[list_begin arguments]
[arg_def complex z1 in]
The complex argument for the function
[list_end]
[para]
[call [cmd ::math::complexnumbers::sin] [arg z1]]
Calculate the sine function for the given complex argument and return
the result
[list_begin arguments]
[arg_def complex z1 in]
The complex argument for the function
[list_end]
[para]
[call [cmd ::math::complexnumbers::cos] [arg z1]]
Calculate the cosine function for the given complex argument and return
the result
[list_begin arguments]
[arg_def complex z1 in]
The complex argument for the function
[list_end]
[para]
[call [cmd ::math::complexnumbers::tan] [arg z1]]
Calculate the tangent function for the given complex argument and
return the result
[list_begin arguments]
[arg_def complex z1 in]
The complex argument for the function
[list_end]
[para]
[call [cmd ::math::complexnumbers::log] [arg z1]]
Calculate the (principle value of the) logarithm for the given complex
argument and return the result
[list_begin arguments]
[arg_def complex z1 in]
The complex argument for the function
[list_end]
[para]
[call [cmd ::math::complexnumbers::sqrt] [arg z1]]
Calculate the (principle value of the) square root for the given complex
argument and return the result
[list_begin arguments]
[arg_def complex z1 in]
The complex argument for the function
[list_end]
[para]
[call [cmd ::math::complexnumbers::pow] [arg z1] [arg z2]]
Calculate "z1 to the power of z2" and return the result
[list_begin arguments]
[arg_def complex z1 in]
The complex number to be raised to a power
[arg_def complex z2 in]
The complex power to be used
[list_end]
[list_end]
[vset CATEGORY {math :: complexnumbers}]
[include ../common-text/feedback.inc]
[manpage_end]
|