1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
# rootfind.tcl --
# Root-finding procedures:
# - Bisection
# - Secant
# - Brent
# - Chandrupatla
#
# TODO: f(root), number of steps, converged or not
#
# TOMS748? Seems quite complicated
# Brent in stead of secant - more robust, Chandrupatla is supposed to be faster
#
namespace eval ::math::calculus {}
# root_bisection --
# Find a root of a function of one variable via bisection
#
# Arguments:
# f Procedure implementing the function
# a Left point of the interval
# b Right point of the interval
# tol Tolerance (optional)
#
# Returns:
# The approximation of the root
#
# Note:
# The interval [a,b] must enclose an odd number of roots,
# that is: f(a)*f(b) < 0
#
proc ::math::calculus::root_bisection {f a b {tol 1.0e-7}} {
if { $tol <= 0.0 } {
return -code error "The tolerance must be a small positive value"
}
set fa [$f $a]
set fb [$f $b]
if { ($fa < 0.0 && $fb < 0.0) || ($fa > 0.0 && $fb > 0.0) } {
return -code error "The given interval does not enclose an odd number of roots: f($a) = $fa, f($b) = $fb"
}
set steps 0
set reduction [expr {min( 2.0e16, abs($b-$a)/$tol )}]
set maxsteps [expr {int( log($reduction)/log(2.0) )}] ;# Maximum number of halvings that makes sense
while { $steps < $maxsteps } {
incr steps
set c [expr {($a + $b)/ 2.0}]
set fc [$f $c]
if { ($fc <= 0.0 && $fa <= 0.0) || ($fc >= 0.0 && $fa >= 0.0) } {
set a $c
set fa $fc
} else {
set b $c
set fb $fc
}
# Special case ...
if { $fc == 0.0 } {
return $c
}
}
return $c
}
# root_secant --
# Find a root of a function of one variable via the secant method
#
# Arguments:
# f Procedure implementing the function
# a Left point of the interval
# b Right point of the interval
# tol Tolerance (optional)
#
# Returns:
# The approximation of the root
#
# Note:
# The method is not guranteed to converge, but if it does, it does so
# quicker than linear. The maximum number of steps is derived from the
# idea that the interval will be roughly halved in length.
#
proc ::math::calculus::root_secant {f a b {tol 1.0e-7}} {
if { $tol <= 0.0 } {
return -code error "The tolerance must be a small positive value"
}
set fa [$f $a]
set fb [$f $b]
if { ($fa < 0.0 && $fb < 0.0) || ($fa > 0.0 && $fb > 0.0) } {
return -code error "The given interval does not enclose an odd number of roots: f($a) = $fa, f($b) = $fb"
}
set steps 0
set reduction [expr {min( 2.0e16, abs($b-$a)/$tol )}]
set maxsteps [expr {int( log($reduction)/log(2.0) )}] ;# Maximum number of halvings that makes sense
while { $steps < $maxsteps } {
incr steps
set c [expr {($a * $fb - $b * $fa) / double($fb - $fa)}]
set fc [$f $c]
if { abs($c - $b) <= $tol } {
break
}
set a $b
set fa $fb
set b $c
set fb $fc
}
return $c
}
# root_chandrupatla --
# Find a root of a function of one variable via the method by Chandrupatla (variation on Brent's method)
#
# Arguments:
# f Procedure implementing the function
# x0 Left point of the interval
# x1 Right point of the interval
# tol Tolerance (optional)
#
# Returns:
# The approximation of the root
#
# Note:
# The method brackets a root, like the bisection method.
#
# Adopted from www.embeddedrelated.com/showarticle/855.php
#
proc ::math::calculus::root_chandrupatla {f x0 x1 {tol 1.0e-7}} {
if { $tol <= 0.0 } {
return -code error "The tolerance must be a small positive value"
}
set b $x0
set a $x1
set c $x1
set fa [$f $a]
set fb [$f $b]
set fc $fa
if { ($fa < 0.0 && $fb < 0.0) || ($fa > 0.0 && $fb > 0.0) } {
return -code error "The given interval does not enclose an odd number of roots: f($a) = $fa, f($b) = $fb"
}
set steps 0
set t 0.5
set eps_m $tol
set eps_a [expr {2.0 * $tol}] ;# TODO
while { 1 } {
incr steps
#
# Get a new estimate of the root via interpolation
#
set xt [expr {$a + $t * ($b - $a)}]
set ft [$f $xt]
#
# Update the three points we keep track of
#
if { ($ft < 0.0 && $fa < 0.0) || ($ft > 0.0 && $fa > 0.0) } {
set c $a
set fc $fa
} else {
set c $b
set fc $fb
set b $a
set fb $fa
}
set a $xt
set fa $ft
#
# Determine the point with the smallest function value
#
if { abs($fa) < abs($fb) } {
set xm $a
set fm $fa
} else {
set xm $b
set fm $fb
}
if { $fm == 0.0 } {
return $xm
}
#
# Critical values xi and phi (decisions on how to proceed)
#
set phtol [expr {2.0*$eps_m * abs($xm) + $eps_a}]
set tlim [expr {$phtol / abs($b-$c)}]
if { $tlim > 0.5 } {
return $xm
}
set xi [expr {($a - $b) / ($c - $b)}]
set phi [expr {($fa - $fb) / ($fc - $fb)}]
set do_iqi [expr {$phi**2 < $xi && (1.0 - $phi)**2 < 1.0 - $xi}]
if { $do_iqi } {
#
# Inverse quadratic interpolation
#
set t [expr {$fa / ($fb-$fa) * $fc / ($fb-$fc) +
($c-$a) / ($b-$a) * $fa / ($fc-$a) * $fb / ($fc-$fb)}]
} else {
#
# Bisection
#
set t 0.5
}
#
# Limit t between (tlim,1-tlim)
#
set t [expr {min( 1.0 -$tlim, max($tlim, $t) )}]
}
}
# root_brent --
# Find a root of a function of one variable via Brent's method
#
# Arguments:
# f Procedure implementing the function
# x0 Left point of the interval
# x1 Right point of the interval
# tol Tolerance (optional)
#
# Returns:
# The approximation of the root
#
# Note:
# The method brackets a root, like the bisection method but combines it with the secant method and
# inverse quadratic interpolation.
#
# Adopted from Wikipedia
#
proc ::math::calculus::root_brent {f x0 x1 {tol 1.0e-7}} {
if { $tol <= 0.0 } {
return -code error "The tolerance must be a small positive value"
}
set b $x0
set a $x1
set c $x1
#
# Minimal distance between points at which to calculate the function
#
set delta [expr {1.0e-8 * (abs($x0) + abs($x1)) + $tol/3.0}]
set fa [$f $a]
set fb [$f $b]
if { ($fa < 0.0 && $fb < 0.0) || ($fa > 0.0 && $fb > 0.0) } {
return -code error "The given interval does not enclose an odd number of roots: f($a) = $fa, f($b) = $fb"
}
if { abs($fa) < abs($fb) } {
set tmp $a ; set tmpf $fa
set a $b ; set fa $fb
set b $tmp ; set fb $tmpf
}
set c $a
set fc $fa
set flag 1
set d 0.0 ;# Dummy for the first iteration step
set s $b ;# Make sure s is defined
set fs $fb
#set step 0
while { abs($b - $a) > $tol && $fb != 0.0 && $fs != 0.0 } {
#incr step
if { $fa != $fc && $fb != $fc } {
set s [expr { $a * $fb * $fc / (($fa-$fb)*($fa-$fc)) +
$b * $fa * $fc / (($fb-$fa)*($fb-$fc)) +
$c * $fa * $fb / (($fc-$fa)*($fc-$fb)) }]
} else {
set s [expr {$b - $fb * ($b-$a) / ($fb -$fa)}]
}
# Check the conditions for the next step
if { ( ((3.0*$a+$b) / 4.0 - $s) * ($s - $b) < 0.0 ) ||
( $flag && abs($s-$b) >= abs($b-$c)/2.0 ) ||
( !$flag && abs($s-$b) >= abs($c-$d)/2.0 ) ||
( $flag && abs($b-$c) < abs($delta) ) ||
( !$flag && abs($c-$d) < abs($delta) ) } {
set s [expr {($a + $b) / 2.0}]
set flag 1
} else {
set flag 0
}
set fs [$f $s]
set d $c
set c $b
if { $fa * $fs < 0.0 } {
set b $s
set fb $fs
} else {
set a $s
set fa $fs
}
if { abs($a) < abs($fb) } {
set tmp $a ; set tmpf $fa
set a $b ; set fa $fb
set b $tmp ; set fb $tmpf
}
}
return $s
}
|