1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
# -*- tcl -*-
# Tcl Benchmark File
#
# This file contains a number of benchmarks for the 'struct::tree'
# data structure to allow developers to monitor package performance.
#
# (c) 2003 Andreas Kupries <andreas_kupries@users.sourceforge.net>
# We need at least version 8.2 for the package and thus the
# benchmarks.
# ### ### ### ######### ######### ######### ###########################
## Setting up the environment ...
set moddir [file dirname [file dirname [info script]]]
lappend auto_path $moddir
package forget cmdline
catch {namespace delete ::cmdline}
source [file join $moddir cmdline cmdline.tcl]
package forget struct::list
catch {namespace delete ::struct::list}
source [file join [file dirname [info script]] list.tcl]
package forget struct::tree
catch {namespace delete ::struct::tree}
source [file join [file dirname [info script]] tree.tcl]
namespace import struct::tree
set code tcl
if {![catch {package present tcllibc}]} {
set code {C }
}
#set code $struct::tree::loaded
#set code $auto_path
proc makeNcmd {n} {
return [linsert [struct::list iota $n] 0 t insert root end]
}
proc makeN {n} {
tree t
eval [makeNcmd $n]
return
}
proc makeChainN {n} {
tree t
set p root
for {set i 0} {$i < $n} {incr i} {
set p [t insert $p end $i]
}
return $p
}
proc makeAttr {n} {
tree t
for {set i 0} {$i < $n} {incr i} {
t set root $i .
}
return
}
# ### ### ### ######### ######### ######### ###########################
## Benchmarks.
# Tree operations fall into four distinctive classes, described
# below. Each have different expected performance characteristics. The
# benchmarks indicate the class of the tested operation in their
# description.
# [Ns] - At a single node
# Computes data relevant to or associated with a single
# node. They are expected to run in constant time.
#
# For some this is something we have to check, as a bad
# implementation may actually cause its performance to match
# operations in [Ne].
#
# [N+] - At a single node, needing data from either or below
# Similar to Ns, however to compute the result data from either
# children or ancestors is required. They are expected to have
# linear performance in general, across some parameter. Examples
# of such parameters are: Depth of node in the tree, number of
# (in)direct children, etc.
#
# They may have constant performance if the implementation
# takes measures like caching of results, or using special
# algorithms. The effectiveness of such measures may be limited
# to unchanging trees. I.e. changing the structure of the tree
# may invalidate cached data, forcing costly recomputation.
#
# [Tr] - Over the whole tree
#
# These operations have to access the whole tree to compute
# their result, making them linear in the size of the tree in
# general. Only caching may yield better performance, however
# only for unchanging trees.
#
# [Mo] - Structure modifiers
#
# These operations change the tree, making them difficult to
# measure as they are not idempotent like the operations in all
# the other classes. Their performance is dependent on internal
# data structures and memory allocation strategies. Dependence
# on data structures implies that use of structures optimized
# for the three preceding classes can affect the modifiers
# negatively.
# **Note **
# At least the critcl implementation caches some of the structural
# information when computed (depth, height, size), and invalidates it
# after changes to the tree structure. The */redo benchmarks use a
# small operation (swap of two independent nodes) to perturb the cache
# and force recomputation of the data every time. The comparison to
# the equivalent non-redo benchmark gives us a best-to-worst estimate
# of the effect the cache has.
# ### ### ### ######### ######### ######### ###########################
## [Ns]
bench -desc "\[Ns\] tree exists ok" -pre {
tree t
} -body {
t exists root
} -post {
t destroy
}
bench -desc "\[Ns\] tree exists miss" -pre {
tree t
} -body {
t exists miss
} -post {
t destroy
}
# Navigation - Parent, Left/Right sibling
bench -desc "\[Ns\] tree parent" -pre {
tree t
t insert root end 0
} -body {
t parent 0
} -post {
t destroy
}
bench -desc "\[Ns\] tree next" -pre {
tree t
t insert root end 0
} -body {
t next 0
} -post {
t destroy
}
bench -desc "\[Ns\] tree previous" -pre {
tree t
t insert root end 0
} -body {
t previous 0
} -post {
t destroy
}
bench -desc "\[Ns\] tree isleaf" -pre {
tree t
t insert root end 0
} -body {
t isleaf 0
} -post {
t destroy
}
bench -desc "\[Ns\] tree index" -pre {
tree t
t insert root end 0
} -body {
t index 0
} -post {
t destroy
}
bench -desc "\[Ns\] tree rootname" -pre {
tree t
} -body {
t rootname
} -post {
t destroy
}
foreach n {1 10 100 1000 10000} {
bench -desc "\[Ns\] tree numchildren $n" -pre {
makeN $n
} -body {
t numchildren root
} -post {
t destroy
}
}
foreach n {1 10 100 1000 10000} {
bench -desc "\[Ns\] tree getall $n" -pre {
makeAttr $n
} -body {
t getall root
} -post {
t destroy
}
bench -desc "\[Ns\] tree keys $n" -pre {
makeAttr $n
} -body {
t keys root
} -post {
t destroy
}
bench -desc "\[Ns\] tree set $n" -pre {
makeAttr $n
} -body {
t set root attr test
} -post {
t destroy
}
bench -desc "\[Ns\] tree get $n" -pre {
makeAttr $n
t set root attr .
} -body {
t get root attr
} -post {
t destroy
}
bench -desc "\[Ns\] tree keyexists miss $n" -pre {
makeAttr $n
} -body {
t keyexists root attr
} -post {
t destroy
}
bench -desc "\[Ns\] tree keyexists has $n" -pre {
makeAttr $n
t set root attr .
} -body {
t keyexists root attr
} -post {
t destroy
}
}
# ### ### ### ######### ######### ######### ###########################
## [Ne]
foreach n {1 10 100 1000 10000} {
# Notes on results:
# - Tcl implementation of 'children' is basically constant.
# It simply has to return an already constructed list.
#
# - The critcl implementation currently has to generate a Tcl_Obj
# from the internal node array, and is thus linear.
#
# Break even for Tcl happens somewhere after 1000 nodes. I.e from
# then on the C impl. is slower.
bench -desc "\[Ne\] tree children $n" -pre {
makeN $n
} -body {
t children root
} -post {
t destroy
}
}
foreach n {1 10 100 1000 10000} {
# root size is trivial
bench -desc "\[Ne\] tree size root $n" -pre {
makeChainN $n
} -body {
t size root
} -post {
t destroy
} -post {
t destroy
}
# non-root size requires descendants
bench -desc "\[Ne\] tree size any $n" -pre {
makeChainN $n
} -body {
t size 0
} -post {
t destroy
} -post {
t destroy
}
bench -desc "\[Ne\] tree size/redo root $n" -pre {
makeChainN $n
t insert root end a b
} -body {
t swap a b ; t size root
} -post {
t destroy
} -post {
t destroy
}
# non-root size requires descendants
bench -desc "\[Ne\] tree size/redo any $n" -pre {
makeChainN $n
t insert root end a b
} -body {
t swap a b ; t size 0
} -post {
t destroy
} -post {
t destroy
}
bench -desc "\[Ne\] tree ancestors $n" -pre {
set p [makeChainN $n]
} -body {
t ancestors $p
} -post {
t destroy
}
bench -desc "\[Ne\] tree depth $n" -pre {
set p [makeChainN $n]
} -body {
t depth $p
} -post {
t destroy
}
bench -desc "\[Ne\] tree depth/redo $n" -pre {
set p [makeChainN $n]
t insert root end a b
} -body {
t swap a b ; t depth $p
} -post {
t destroy
}
}
foreach n {1 10 100 1000} {
bench -desc "\[Ne\] tree descendants $n" -pre {
makeChainN $n
} -body {
t descendants root
} -post {
t destroy
}
bench -desc "\[Ne\] tree children -all $n" -pre {
makeN $n
} -body {
t children -all root
} -post {
t destroy
}
}
foreach n {1 10 100 1000} {
bench -desc "\[Ne\] tree height $n" -pre {
makeChainN $n
} -body {
t height root
} -post {
t destroy
}
bench -desc "\[Ne\] tree height/redo $n" -pre {
makeChainN $n
t insert root end a b
} -body {
t swap a b ; t height root
} -post {
t destroy
}
}
# ### ### ### ######### ######### ######### ###########################
## [Tr]
foreach n {1 10 100 1000 10000} {
bench -desc "\[Tr\] tree nodes $n" -pre {
makeN $n
} -body {
t nodes
} -post {
t destroy
}
bench -desc "\[Tr\] tree leaves $n" -pre {
makeN $n
} -body {
t leaves
} -post {
t destroy
}
}
foreach n {1 10 100 1000} {
bench -desc "\[Tr\] tree serialize flat $n" -pre {
makeN $n
} -body {
t serialize
} -post {
t destroy
}
bench -desc "\[Tr\] tree deserialize flat $n" -pre {
makeN $n
set v [t serialize]
} -body {
t deserialize $v
} -post {
t destroy
}
}
foreach n {1 10 100 1000} {
bench -desc "\[Tr\] tree serialize deep $n" -pre {
makeChainN $n
} -body {
t serialize
} -post {
t destroy
}
bench -desc "\[Tr\] tree deserialize deep $n" -pre {
makeChainN $n
set v [t serialize]
} -body {
t deserialize $v
} -post {
t destroy
}
}
# ### ### ### ######### ######### ######### ###########################
## [Mo]
bench -desc "\[Mo\] tree create/destroy" -body {
[tree] destroy
}
bench -desc "\[Mo\] tree swap" -pre {
tree t ; t insert root end 0 1
} -body {
t swap 0 1
} -post {
t destroy
}
foreach n {1 10 100 1000} {
# Note: We precompute a command which inserts n
# nodes into the root, instead of doing the loop
# as part of the benchmark. I.e. the only loop is
# in the implementation of tree.
bench -desc "\[Mo\] tree create/destroy $n" -pre {
set cmd [makeNcmd $n]
} -body {
tree t ; eval $cmd ; t destroy
}
}
foreach n {1 10 100 1000 10000} {
# Note: the -iter argument.
# We add a node n times, one per iteration, and
# then see how much the operation took on average.
# In a C implementation this exercises the re-
# allocation code and strategy.
#
# A different way would be to insert n nodes once. This
# is actually done in the create/destroy benchmarks. This
# exercises the internal node insertion loop instead.
bench -desc "\[Mo\] tree insert end $n" -pre {
tree t
} -body {
t insert root end
} -post {
t destroy
} -iter $n
bench -desc "\[Mo\] tree insert front $n" -pre {
tree t
} -body {
t insert root 0
} -post {
t destroy
} -iter $n
bench -desc "\[Mo\] tree insert middle1 $n" -pre {
tree t ; t insert root end 0 1 2 3 4
} -body {
t insert root 5
} -post {
t destroy
} -iter $n
bench -desc "\[Mo\] tree insert middle2 $n" -pre {
tree t ; t insert root end 0 1 2 3 4
} -body {
t insert root end-5
} -post {
t destroy
} -iter $n
}
# ### ### ### ######### ######### ######### ###########################
## Complete
return
# ### ### ### ######### ######### ######### ###########################
## Notes ...
# :=, -->, =
#
# attr - filtered attr over all nodes
#
# walk, walkproc
#
# attr modifiers - append, lappend, unset
# modifiers - cut, delete, move, rename, splice, swap (insert)
# Notes on optimizations we can do.
#
# Tcl - Cache structural data - depth, ancestors ...
# C - Cache results, like child lists (Tcl_Obj's!)
# Maybe use Tcl_Obj/List for child arrays instead
# of N* ? Effect on modification performance ?
|