1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/* NIST Secure Hash Algorithm */
/* heavily modified by Uwe Hollerbach uh@alumni.caltech edu */
/* from Peter C. Gutmann's implementation as found in */
/* Applied Cryptography by Bruce Schneier */
/* NIST's proposed modification to SHA of 7/11/94 may be */
/* activated by defining USE_MODIFIED_SHA */
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#else
#include "../../compat/stdlib.h"
#endif
#include <stdio.h>
#include <string.h>
#include "sha.h"
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* 32-bit rotate */
#define ROT32(x,n) ((x << n) | (x >> (32 - n)))
#define FUNC(n,i) \
temp = ROT32(A,5) + f##n(B,C,D) + E + W[i] + CONST##n; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
#define FUNC1(i) \
temp = ROT32(A,5) + f1(B,C,D) + E + W[i] + CONST1; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
#define FUNC2(i) \
temp = ROT32(A,5) + f2(B,C,D) + E + W[i] + CONST2; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
#define FUNC3(i) \
temp = ROT32(A,5) + f3(B,C,D) + E + W[i] + CONST3; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
#define FUNC4(i) \
temp = ROT32(A,5) + f4(B,C,D) + E + W[i] + CONST4; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
/* do SHA transformation */
static void sha_transform(sha_info)
SHA_INFO *sha_info;
{
int i;
UINT32 temp, A, B, C, D, E, W[80];
for (i = 0; i < 16; ++i) {
W[i] = sha_info->data[i];
}
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
#ifdef USE_MODIFIED_SHA
W[i] = ROT32(W[i], 1);
#endif /* USE_MODIFIED_SHA */
}
A = sha_info->digest[0];
B = sha_info->digest[1];
C = sha_info->digest[2];
D = sha_info->digest[3];
E = sha_info->digest[4];
#ifdef UNROLL_LOOPS
FUNC1( 0); FUNC1( 1); FUNC1( 2); FUNC1( 3); FUNC1( 4);
FUNC1( 5); FUNC1( 6); FUNC1( 7); FUNC1( 8); FUNC1( 9);
FUNC1(10); FUNC1(11); FUNC1(12); FUNC1(13); FUNC1(14);
FUNC1(15); FUNC1(16); FUNC1(17); FUNC1(18); FUNC1(19);
FUNC2(20); FUNC2(21); FUNC2(22); FUNC2(23); FUNC2(24);
FUNC2(25); FUNC2(26); FUNC2(27); FUNC2(28); FUNC2(29);
FUNC2(30); FUNC2(31); FUNC2(32); FUNC2(33); FUNC2(34);
FUNC2(35); FUNC2(36); FUNC2(37); FUNC2(38); FUNC2(39);
FUNC3(40); FUNC3(41); FUNC3(42); FUNC3(43); FUNC3(44);
FUNC3(45); FUNC3(46); FUNC3(47); FUNC3(48); FUNC3(49);
FUNC3(50); FUNC3(51); FUNC3(52); FUNC3(53); FUNC3(54);
FUNC3(55); FUNC3(56); FUNC3(57); FUNC3(58); FUNC3(59);
FUNC4(60); FUNC4(61); FUNC4(62); FUNC4(63); FUNC4(64);
FUNC4(65); FUNC4(66); FUNC4(67); FUNC4(68); FUNC4(69);
FUNC4(70); FUNC4(71); FUNC4(72); FUNC4(73); FUNC4(74);
FUNC4(75); FUNC4(76); FUNC4(77); FUNC4(78); FUNC4(79);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) {
FUNC1(i);
}
for (i = 20; i < 40; ++i) {
FUNC2(i);
}
for (i = 40; i < 60; ++i) {
FUNC3(i);
}
for (i = 60; i < 80; ++i) {
FUNC4(i);
}
#endif /* !UNROLL_LOOPS */
sha_info->digest[0] += A;
sha_info->digest[1] += B;
sha_info->digest[2] += C;
sha_info->digest[3] += D;
sha_info->digest[4] += E;
}
#ifdef LITTLE_ENDIAN
/* change endianness of data */
static void byte_reverse(buffer, count)
UINT32 *buffer; int count;
{
int i;
BYTE ct[4], *cp;
count /= sizeof(UINT32);
cp = (BYTE *) buffer;
for (i = 0; i < count; ++i) {
ct[0] = cp[0];
ct[1] = cp[1];
ct[2] = cp[2];
ct[3] = cp[3];
cp[0] = ct[3];
cp[1] = ct[2];
cp[2] = ct[1];
cp[3] = ct[0];
cp += sizeof(UINT32);
}
}
#endif /* LITTLE_ENDIAN */
/* initialize the SHA digest */
void sha_init(sha_info)
SHA_INFO *sha_info;
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
}
/* update the SHA digest */
void sha_update(sha_info, buffer, count)
SHA_INFO *sha_info; BYTE *buffer; int count;
{
if ((sha_info->count_lo + ((UINT32) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (UINT32) count << 3;
sha_info->count_hi += (UINT32) count >> 29;
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
#ifdef LITTLE_ENDIAN
byte_reverse(sha_info->data, SHA_BLOCKSIZE);
#endif /* LITTLE_ENDIAN */
sha_transform(sha_info);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
}
memcpy(sha_info->data, buffer, count);
}
/* finish computing the SHA digest */
void sha_final(sha_info)
SHA_INFO *sha_info;
{
int count;
UINT32 lo_bit_count, hi_bit_count;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((BYTE *) sha_info->data)[count++] = 0x80;
if (count > 56) {
memset((BYTE *) sha_info->data + count, 0, 64 - count);
#ifdef LITTLE_ENDIAN
byte_reverse(sha_info->data, SHA_BLOCKSIZE);
#endif /* LITTLE_ENDIAN */
sha_transform(sha_info);
memset(sha_info->data, 0, 56);
} else {
memset((BYTE *) sha_info->data + count, 0, 56 - count);
}
#ifdef LITTLE_ENDIAN
byte_reverse(sha_info->data, SHA_BLOCKSIZE);
#endif /* LITTLE_ENDIAN */
sha_info->data[14] = hi_bit_count;
sha_info->data[15] = lo_bit_count;
sha_transform(sha_info);
}
/* compute the SHA digest of a FILE stream */
#define BLOCK_SIZE 8192
void sha_stream(sha_info, fin)
SHA_INFO *sha_info; FILE *fin;
{
int i;
BYTE data[BLOCK_SIZE];
sha_init(sha_info);
while ((i = fread(data, 1, BLOCK_SIZE, fin)) > 0) {
sha_update(sha_info, data, i);
}
sha_final(sha_info);
}
/* print a SHA digest */
void sha_print(sha_info)
SHA_INFO *sha_info;
{
printf("%08lx %08lx %08lx %08lx %08lx\n",
sha_info->digest[0], sha_info->digest[1], sha_info->digest[2],
sha_info->digest[3], sha_info->digest[4]);
}
|