1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
/*
* ocb.c
*
* Author: Ted Krovetz (tdk@acm.org)
* History: 1 April 2000 - first release (TK) - version 0.9
*
* OCB-AES-n reference code based on NIST submission "OCB Mode"
* (dated 1 April 2000), submitted by Phillip Rogaway, with
* auxiliary submitters Mihir Bellare, John Black, and Ted Krovetz.
*
* This code is freely available, and may be modified as desired.
* Please retain the authorship and change history.
* Note that OCB mode itself is patent pending.
*
* This code is NOT optimized for speed; it is only
* designed to clarify the algorithm and to provide a point
* of comparison for other implementations.
*
* Limitiations: Assumes a 4-byte integer type and and pointers that are
* 32-bit aligned. Acts on a byte string of at most 2^36-16 bytes.
*
* Rijndael source available at www.esat.kuleuven.ac.be/~rijmen/rijndael/
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "ocb.h"
#include "rijndael-alg-fst.h"
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#if (INT_MAX != 0x7fffffff)
#error -- Assumes 4-byte int
#endif
/*
* This implementation precomputes L(-1), L(0), L(1), L(PRE_COMP_BLOCKS),
* where L(0) = L and L(-1) = L/x and L(i) = x*L(i) for i>0.
* Normally, one would select PRE_COMP_BLOCKS to be a small number
* (like 0-6) and compute any larger L(i) values "on the fly", when they
* are needed. This saves space in _keystruct and needn't adversely
* impact running time. But in this implementation, to keep things as
* simple as possible, we compute all the L(i)-values we might ever see.
*/
#define PRE_COMP_BLOCKS 31 /* Must be between 0 and 31 */
#define AES_ROUNDS (AES_KEY_BITLEN / 32 + 6)
typedef unsigned char block[16];
struct _keystruct {
unsigned rek[4*(AES_ROUNDS+1)]; /* AES encryption key */
unsigned rdk[4*(AES_ROUNDS+1)]; /* AES decryption key */
unsigned tag_len; /* Sizeof tags to generate/validate */
block L[PRE_COMP_BLOCKS+1]; /* Precomputed L(i) values, L[0] = L */
block L_inv; /* Precomputed L/x value */
};
/*************************************************************************
* xor_block
*************************************************************************/
static void
xor_block(void *dst, void *src1, void *src2)
/* 128-bit xor: *dst = *src1 xor *src2. Pointers must be 32-bit aligned */
{
((unsigned *)dst)[0] = ((unsigned *)src1)[0] ^ ((unsigned *)src2)[0];
((unsigned *)dst)[1] = ((unsigned *)src1)[1] ^ ((unsigned *)src2)[1];
((unsigned *)dst)[2] = ((unsigned *)src1)[2] ^ ((unsigned *)src2)[2];
((unsigned *)dst)[3] = ((unsigned *)src1)[3] ^ ((unsigned *)src2)[3];
}
/*************************************************************************
* shift_left
*************************************************************************/
static void
shift_left(unsigned char *x)
/* 128-bit shift-left by 1 bit: *x <<= 1. */
{
int i;
for (i = 0; i < 15; i++) {
x[i] = (x[i] << 1) | (x[i+1] & 0x80 ? 1 : 0);
}
x[15] = (x[15] << 1);
}
/*************************************************************************
* shift_right
*************************************************************************/
static void
shift_right(unsigned char *x)
/* 128-bit shift-right by 1 bit: *x >>= 1 */
{
int i;
for (i = 15; i > 0; i--) {
x[i] = (x[i] >> 1) | (x[i-1] & 1 ? 0x80u : 0);
}
x[0] = (x[0] >> 1);
}
/*************************************************************************
* ntz
*************************************************************************/
static int
ntz(unsigned i)
/* Count the number of trailing zeroes in integer i. */
{
#if (_MSC_VER && _M_IX86) /* Only non-C sop */
__asm bsf eax, i
#elif (__GNUC__ && __i386__)
int rval;
asm volatile("bsf %1, %0" : "=r" (rval) : "g" (i));
return rval;
#else
int rval = 0;
while ((i & 1) == 0) {
i >>= 1;
rval++;
}
return rval;
#endif
}
/*************************************************************************
* ocb_aes_init
*************************************************************************/
keystruct * /* Init'd keystruct or NULL */
ocb_aes_init(void *enc_key, /* AES key */
unsigned tag_len, /* Length of tags to be used */
keystruct *key) /* OCB key structure. NULL means */
/* Allocate/init new, non-NULL */
/* means init existing structure */
{
unsigned char tmp[16] = {0,};
unsigned first_bit, last_bit, i;
if (key == NULL)
key = (keystruct *)malloc(sizeof(keystruct));
if (key != NULL) {
memset(key, 0, sizeof(keystruct));
/* Initialize AES keys. (Note that if one is only going to
encrypt, key->rdk can be eliminated */
rijndaelKeySetupEnc(key->rek, (unsigned char *)enc_key,
AES_KEY_BITLEN);
rijndaelKeySetupDec(key->rdk, (unsigned char *)enc_key,
AES_KEY_BITLEN);
/* Precompute L[i]-values. L[0] is synonym of L */
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp);
for (i = 0; i <= PRE_COMP_BLOCKS; i++) {
memcpy(key->L + i, tmp, 16); /* Copy tmp to L[i] */
first_bit = tmp[0] & 0x80u; /* and multiply tmp by x */
shift_left(tmp);
if (first_bit)
tmp[15] ^= 0x87;
}
/* Precompute L_inv = L . x^{-1} */
memcpy(tmp, key->L, 16);
last_bit = tmp[15] & 0x01;
shift_right(tmp);
if (last_bit) {
tmp[0] ^= 0x80;
tmp[15] ^= 0x43;
}
memcpy(key->L_inv, tmp, 16);
/* Set tag length used for this session */
key->tag_len = tag_len;
}
return key;
}
/*************************************************************************
* pmac_aes -- move to a separate file when everything final
*************************************************************************/
void
pmac_aes (keystruct *key, /* Initialized key struct */
void *in, /* Buffer for (incoming) message */
unsigned in_len, /* Byte length of message */
void *tag) /* 16-byte buffer for generated tag */
{
unsigned i; /* Block counter */
unsigned char tmp[16]; /* temporary buffer */
block *in_blk; /* Block-typed alias to in */
block Offset; /* Offset (Z[i]) for current block */
block checksum; /* Checksum for computing tag */
/*
* Initializations
*/
i = 1; /* Start with first block */
in_blk = (block *)in - 1; /* Offset so in_blk[1] is first block. */
memset(checksum, 0, 16); /* Initlize the checksum and */
memset(Offset, 0, 16); /* current Offset to the zero block */
/*
* Process blocks 1 .. m-1.
*/
while (in_len > 16) {
/* Update Offset (Z[i] from Z[i-1]) */
xor_block(Offset, key->L + ntz(i), Offset);
xor_block(tmp, Offset, in_blk + i); /* xor input block with Z[i] */
rijndaelEncrypt(key->rek, AES_ROUNDS, tmp, tmp);
xor_block(checksum, checksum, tmp); /* Update checksum */
in_len -= 16; /* and the loop variables */
i++;
}
/*
* Process block m
*/
if (in_len == 16) { /* full final block */
xor_block(checksum, checksum, in_blk + i);
xor_block(checksum, checksum, key->L_inv);
} else { /* short final block */
memset(tmp, 0, 16);
memcpy(tmp, in_blk + i, in_len);
tmp[in_len] = 0x80;
xor_block(checksum, checksum, tmp);
}
rijndaelEncrypt(key->rek, AES_ROUNDS, checksum, (unsigned char *)tag);
}
/*************************************************************************
* ocb_aes_encrypt
*************************************************************************/
void
ocb_aes_encrypt(keystruct *key, /* Initialized key struct */
void *nonce, /* 16-byte nonce */
void *pt, /* Buffer for (incoming) plaintext */
unsigned pt_len, /* Byte length of pt */
void *ct, /* Buffer for (outgoing) ciphertext */
void *tag) /* Buffer for generated tag */
{
unsigned i; /* Block counter */
block tmp, tmp2; /* temporary buffers */
block *pt_blk, *ct_blk; /* block-typed aliases for pt / ct */
block Offset; /* Offset (Z[i]) for current block */
block checksum; /* Checksum for computing tag */
/*
* Initializations
*/
i = 1; /* Start with first block */
pt_blk = (block *)pt - 1; /* These are adjusted so, for example, */
ct_blk = (block *)ct - 1; /* pt_blk[1] refers to the first block */
memset(checksum, 0, 16); /* Zero the checksum */
/* Calculate R, aka Z[0] */
xor_block(Offset, nonce, key->L);
rijndaelEncrypt (key->rek, AES_ROUNDS, Offset, Offset);
/*
* Process blocks 1 .. m-1
*/
while (pt_len > 16) {
/* Update the Offset (Z[i] from Z[i-1]) */
xor_block(Offset, key->L + ntz(i), Offset);
/* xor the plaintext block block with Z[i] */
xor_block(tmp, Offset, pt_blk + i);
/* Encipher the block */
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp);
/* xor Z[i] again, writing result to ciphertext pointer */
xor_block(ct_blk + i, Offset, tmp);
/* Update checksum */
xor_block(checksum, checksum, pt_blk + i);
/* Update loop variables */
pt_len -= 16;
i++;
}
/*
* Process block m
*/
/* Update Offset (Z[m] from Z[m-1]) */
xor_block(Offset, key->L + ntz(i), Offset);
/* xor L . x^{-1} and Z[m] */
xor_block(tmp, Offset, key->L_inv);
/* Add in final block bit-length */
tmp[15] ^= (pt_len << 3);
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp);
/* xor 'pt' with block-cipher output, copy valid bytes to 'ct' */
memcpy(tmp2, pt_blk + i, pt_len);
xor_block(tmp2, tmp2, tmp);
memcpy(ct_blk + i, tmp2, pt_len);
/* Add to checksum the pt_len bytes of plaintext followed by */
/* the last (16 - pt_len) bytes of block-cipher output */
memcpy(tmp, pt_blk + i, pt_len);
xor_block(checksum, checksum, tmp);
/*
* Calculate tag
*/
xor_block(checksum, checksum, Offset);
rijndaelEncrypt(key->rek, AES_ROUNDS, checksum, tmp);
memcpy(tag, tmp, key->tag_len);
}
/*************************************************************************
* ocb_aes_decrypt
*************************************************************************/
int /* Returns 0 iff tag is incorrect */
ocb_aes_decrypt(keystruct *key, /* Initialized key struct */
void *nonce, /* 16-byte nonce */
void *ct, /* Buffer for (incoming) ciphertext */
unsigned ct_len, /* Byte length of ct */
void *pt, /* Buffer for (outgoing) plaintext */
void *tag) /* Tag to be verified */
{
unsigned i; /* Block counter */
block tmp, tmp2; /* temporary buffers */
block *ct_blk, *pt_blk; /* block-typed aliases for ct / pt */
block Offset; /* Offset (Z[i]) for current block */
block checksum; /* Checksum for computing tag */
/*
* Initializations
*/
i = 1; /* Start with first block */
ct_blk = (block *)ct - 1; /* These are adjusted so, for example, */
pt_blk = (block *)pt - 1; /* ct_blk[1] refers to the first block */
/* Zero checksum */
memset(checksum, 0, 16);
/* Calculate R, aka Z[0] */
xor_block(Offset, nonce, key->L);
rijndaelEncrypt (key->rek, AES_ROUNDS, Offset, Offset);
/*
* Process blocks 1 .. m-1
*/
while (ct_len > 16) {
/* Update Offset (Z[i] from Z[i-1]) */
xor_block(Offset, key->L + ntz(i), Offset);
/* xor ciphertext block with Z[i] */
xor_block(tmp, Offset, ct_blk + i);
/* Decipher the next block-cipher block */
rijndaelDecrypt (key->rdk, AES_ROUNDS, tmp, tmp);
/* xor Z[i] again, writing result to plaintext ponter */
xor_block(pt_blk + i, Offset, tmp);
/* Update checksum */
xor_block(checksum, checksum, pt_blk + i);
/* Update loop variables */
ct_len -= 16;
i++;
}
/*
* Process block m
*/
/* Update Offset (Z[m] from Z[m-1]) */
xor_block(Offset, key->L + ntz(i), Offset);
/* xor L . x^{-1} and Z[m] */
xor_block(tmp, Offset, key->L_inv);
/* Add in final block bit-length */
tmp[15] ^= (ct_len << 3);
rijndaelEncrypt (key->rek, AES_ROUNDS, tmp, tmp);
/* Form the final ciphertext block, C[m] */
memset(tmp2, 0, 16);
memcpy(tmp2, ct_blk + i, ct_len);
xor_block(tmp, tmp2, tmp);
memcpy(pt_blk + i, tmp, ct_len);
/* After the xor above, tmp will have ct_len bytes of plaintext */
/* then (16 - ct_len) block-cipher bytes, perfect for checksum. */
xor_block(checksum, checksum, tmp);
/*
* Calculate tag
*/
xor_block(checksum, checksum, Offset);
rijndaelEncrypt(key->rek, AES_ROUNDS, checksum, tmp);
return (memcmp(tag, tmp, key->tag_len) == 0 ? 1 : 0);
}
/*************************************************************************
* ocb_done
*************************************************************************/
keystruct *
ocb_done(keystruct *key)
{
if (key) {
memset(key, 0, sizeof(keystruct));
free(key);
}
return NULL;
}
|