1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
|
/* -----------------------------------------------------------------------
*
* umac.c -- C Implementation UMAC Message Authentication
*
* Version 0.92 of draft-krovetz-umac-07.txt -- 2006 February 21
*
* For a full description of UMAC message authentication see the UMAC
* world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
* Please report bugs and suggestions to the UMAC webpage.
*
* Copyright (c) 1999-2006 Ted Krovetz
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and with or without fee, is hereby
* granted provided that the above copyright notice appears in all copies
* and in supporting documentation, and that the name of the copyright
* holder not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior permission.
*
* Comments should be directed to Ted Krovetz (tdk@acm.org)
*
* ---------------------------------------------------------------------- */
/* ////////////////////// IMPORTANT NOTES /////////////////////////////////
*
* 1) This version does not work properly on messages larger than 16MB
*
* 2) If you set the switch to use SSE2, then all data must be 16-byte
* aligned
*
* 3) When calling the function umac(), it is assumed that msg is in
* a writable buffer of length divisible by 32 bytes. The message itself
* does not have to fill the entire buffer, but bytes beyond msg may be
* zeroed.
*
* 4) Two free AES implementations are supported by this implementation of
* UMAC. Paulo Barreto's version is in the public domain and can be found
* at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
* "Barreto"). The only two files needed are rijndael-alg-fst.c and
* rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
* Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
* includes a fast IA-32 assembly version.
*
* 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
* produced under gcc with optimizations set -O3 or higher. Dunno why.
*
/////////////////////////////////////////////////////////////////////// */
/* ---------------------------------------------------------------------- */
/* --- User Switches ---------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
#define FORCE_C_ONLY 1 /* ANSI C and 64-bit integers req'd */
#define GLADMAN_AES 0 /* Change to 1 to use Gladman's AES */
#define SSE2 1 /* Is SSE2 is available? */
#define RUN_TESTS 0 /* Run basic correctness/speed tests */
/* ---------------------------------------------------------------------- */
/* -- Global Includes --------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#include "umac.h"
#include <string.h>
#include <stdlib.h>
#include <stddef.h>
#if GLADMAN_AES
#include "aes.h"
#else
#include "rijndael-alg-fst.h"
#endif
/* ---------------------------------------------------------------------- */
/* --- Primitive Data Types --- */
/* ---------------------------------------------------------------------- */
/* The following assumptions may need change on your system */
typedef unsigned char UINT8; /* 1 byte */
typedef unsigned short UINT16; /* 2 byte */
typedef unsigned int UINT32; /* 4 byte */
typedef unsigned long long UINT64; /* 8 bytes */
typedef unsigned long UWORD; /* Register */
/* ---------------------------------------------------------------------- */
/* --- Constants ------------------------------------------------ */
/* ---------------------------------------------------------------------- */
#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
/* GNU gcc and Microsoft Visual C++ (and copycats) on IA-32 are supported
* with some assembly
*/
#define GCC_X86 (__GNUC__ && __i386__) /* GCC on IA-32 */
#define MSC_X86 (_M_IX86) /* Microsoft on IA-32 */
/* Message "words" are read from memory in an endian-specific manner. */
/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
/* be set true if the host computer is little-endian. */
#ifndef __LITTLE_ENDIAN__
#if __i386__ || __alpha__ || _M_IX86 || __LITTLE_ENDIAN
#define __LITTLE_ENDIAN__ 1
#else
#define __LITTLE_ENDIAN__ 0
#endif
#endif
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Architecture Specific ------------------------------------------ */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#if (MSC_X86)
#pragma warning(disable: 4731) /* Turn off "ebp manipulation" warning */
#pragma warning(disable: 4311) /* Turn off "pointer trunc" warning */
#if (__MWERKS__)
#define mmword xmmword /* Metrowerks C 3.03 doesn't recognize mmword */
#endif
#endif
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Primitive Routines --------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
/* ---------------------------------------------------------------------- */
#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
/* ---------------------------------------------------------------------- */
/* --- Endian Conversion --- Forcing assembly on some platforms */
/* ---------------------------------------------------------------------- */
/* Lots of endian reversals happen in UMAC. PowerPC and Intel Architechture
* both support efficient endian conversion, but compilers seem unable to
* automatically utilize the efficient assembly opcodes. The architechture-
* specific versions utilize them.
*/
#if (MSC_X86 && ! FORCE_C_ONLY)
static UINT32 LOAD_UINT32_REVERSED(void *p)
{
__asm {
mov eax, p
mov eax, [eax]
bswap eax
}
}
static void STORE_UINT32_REVERSED(void *p, UINT32 x)
{
__asm {
mov eax,x
bswap eax
mov ecx, p
mov [ecx], eax
}
}
#elif (GCC_X86 && ! FORCE_C_ONLY)
static UINT32 LOAD_UINT32_REVERSED(void *ptr)
{
UINT32 temp;
asm volatile("bswap %0" : "=r" (temp) : "0" (*(UINT32 *)ptr));
return temp;
}
static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
{
asm volatile("bswap %0" : "=r" (*(UINT32 *)ptr) : "0" (x));
}
#else
static UINT32 LOAD_UINT32_REVERSED(void *ptr)
{
UINT32 temp = *(UINT32 *)ptr;
temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
| ((temp & 0x0000FF00) << 8 ) | (temp << 24);
return (UINT32)temp;
}
static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
{
UINT32 i = (UINT32)x;
*(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
| ((i & 0x0000FF00) << 8 ) | (i << 24);
}
#endif
/* The following definitions use the above reversal-primitives to do the right
* thing on endian specific load and stores.
*/
#if (__LITTLE_ENDIAN__)
#define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
#define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
#else
#define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
#define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
#endif
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin KDF & PDF Section ---------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* UMAC uses AES with 16 byte block and key lengths */
#define AES_BLOCK_LEN 16
#if GLADMAN_AES
typedef aes_encrypt_ctx aes_int_key[1]; /* AES internal */
#define aes_encryption(in,out,int_key) \
aes_encrypt((in),(out),(int_key))
#define aes_key_setup(key,int_key) \
aes_encrypt_key128((key),(int_key))
#else
#define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
#define aes_encryption(in,out,int_key) \
rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
#define aes_key_setup(key,int_key) \
rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
UMAC_KEY_LEN*8)
#endif
/* The user-supplied UMAC key is stretched using AES in a counter
* mode to supply all random bits needed by UMAC. The kdf function takes
* an AES internal key representation 'key' and writes a stream of
* 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
* 'index' causes a distinct byte stream.
*/
void kdf(void *buffer_ptr, aes_int_key key, UINT8 index, int nbytes)
{
UINT8 in_buf[AES_BLOCK_LEN] = {0};
UINT8 out_buf[AES_BLOCK_LEN];
UINT8 *dst_buf = (UINT8 *)buffer_ptr;
int i;
/* Setup the initial value */
in_buf[AES_BLOCK_LEN-9] = index;
in_buf[AES_BLOCK_LEN-1] = i = 1;
while (nbytes >= AES_BLOCK_LEN) {
aes_encryption(in_buf, out_buf, key);
memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
in_buf[AES_BLOCK_LEN-1] = ++i;
nbytes -= AES_BLOCK_LEN;
dst_buf += AES_BLOCK_LEN;
}
if (nbytes) {
aes_encryption(in_buf, out_buf, key);
memcpy(dst_buf,out_buf,nbytes);
}
}
/* The final UHASH result is XOR'd with the output of a pseudorandom
* function. Here, we use AES to generate random output and
* xor the appropriate bytes depending on the last bits of nonce.
* This scheme is optimized for sequential, increasing big-endian nonces.
*/
typedef struct {
UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
aes_int_key prf_key; /* Expanded AES key for PDF */
} pdf_ctx;
static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
{
UINT8 buf[UMAC_KEY_LEN];
kdf(buf, prf_key, 0, UMAC_KEY_LEN);
aes_key_setup(buf, pc->prf_key);
/* Initialize pdf and cache */
memset(pc->nonce, 0, sizeof(pc->nonce));
aes_encryption(pc->nonce, pc->cache, pc->prf_key);
}
static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
{
/* 'index' indicates that we'll be using the 0th or 1st eight bytes
* of the AES output. If last time around we returned the index-1st
* element, then we may have the result in the cache already.
*/
#if (UMAC_OUTPUT_LEN == 4)
#define LOW_BIT_MASK 3
#elif (UMAC_OUTPUT_LEN == 8)
#define LOW_BIT_MASK 1
#elif (UMAC_OUTPUT_LEN > 8)
#define LOW_BIT_MASK 0
#endif
UINT8 tmp_nonce_lo[4];
int index = nonce[7] & LOW_BIT_MASK;
*(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
(((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
{
((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
aes_encryption(pc->nonce, pc->cache, pc->prf_key);
}
#if (UMAC_OUTPUT_LEN == 4)
*((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[index];
#elif (UMAC_OUTPUT_LEN == 8)
*((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[index];
#elif (UMAC_OUTPUT_LEN == 12)
((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
#elif (UMAC_OUTPUT_LEN == 16)
((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
#endif
}
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin NH Hash Section ------------------------------------------ */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* The NH-based hash functions used in UMAC are described in the UMAC paper
* and specification, both of which can be found at the UMAC website.
* The interface to this implementation has two
* versions, one expects the entire message being hashed to be passed
* in a single buffer and returns the hash result immediately. The second
* allows the message to be passed in a sequence of buffers. In the
* muliple-buffer interface, the client calls the routine nh_update() as
* many times as necessary. When there is no more data to be fed to the
* hash, the client calls nh_final() which calculates the hash output.
* Before beginning another hash calculation the nh_reset() routine
* must be called. The single-buffer routine, nh(), is equivalent to
* the sequence of calls nh_update() and nh_final(); however it is
* optimized and should be prefered whenever the multiple-buffer interface
* is not necessary. When using either interface, it is the client's
* responsability to pass no more than L1_KEY_LEN bytes per hash result.
*
* The routine nh_init() initializes the nh_ctx data structure and
* must be called once, before any other PDF routine.
*/
/* The "nh_aux" routines do the actual NH hashing work. They
* expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
* produce output for all STREAMS NH iterations in one call,
* allowing the parallel implementation of the streams.
*/
#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
#define L1_KEY_LEN 1024 /* Internal key bytes */
#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
typedef struct {
UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */
int next_data_empty; /* Bookeeping variable for data buffer. */
int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
UINT64 state[STREAMS]; /* on-line state */
} nh_ctx;
/* ---------------------------------------------------------------------- */
#if ( ! FORCE_C_ONLY && ( GCC_X86 || MSC_X86 ) )
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#if ( SSE2 )
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#if ( MSC_X86 )
/* ---------------------------------------------------------------------- */
/* This macro uses movdqa which requires 16-byte aligned data and key. */
#define NH_STEP_1(n) \
movdqa xmm2, n[ecx] \
__asm movdqa xmm0, n[eax] \
__asm movdqa xmm3, n+16[ecx] \
__asm movdqa xmm1, n+16[eax] \
__asm paddd xmm2, xmm0 \
__asm paddd xmm3, xmm1 \
__asm movdqa xmm5, xmm2 \
__asm pmuludq xmm2, xmm3 \
__asm psrldq xmm3, 4 \
__asm paddq xmm6, xmm2 \
__asm psrldq xmm5, 4 \
__asm pmuludq xmm3, xmm5 \
__asm paddq xmm6, xmm3
static void nh_aux_1(void *kp, void *dp, void *hp, UINT32 dlen)
{
__asm{
mov edx, dlen
mov ebx, hp
mov ecx, kp
mov eax, dp
sub edx, 128
movq xmm6, mmword ptr [ebx]
jb label2
label1:
NH_STEP_1(0)
NH_STEP_1(32)
NH_STEP_1(64)
NH_STEP_1(96)
add eax, 128
add ecx, 128
sub edx, 128
jnb label1
label2:
add edx,128
je label4
label3:
NH_STEP_1(0)
add eax, 32
add ecx, 32
sub edx, 32
jne label3
label4:
movdqa xmm0,xmm6
psrldq xmm0, 8
paddq xmm6, xmm0
movq mmword ptr [ebx], xmm6
}
}
/* This macro uses movdqa which requires 16-byte aligned data and key. */
#define NH_STEP_2(n) \
movdqa xmm0, n[eax] \
__asm movdqa xmm3, n+16[ecx] \
__asm movdqa xmm1, n+16[eax] \
__asm paddd xmm2, xmm0 \
__asm movdqa xmm4, xmm3 \
__asm paddd xmm3, xmm1 \
__asm movdqa xmm5, xmm2 \
__asm pmuludq xmm2, xmm3 \
__asm psrldq xmm3, 4 \
__asm paddq xmm6, xmm2 \
__asm movdqa xmm2, n+32[ecx] \
__asm psrldq xmm5, 4 \
__asm pmuludq xmm3, xmm5 \
__asm paddd xmm1, xmm2 \
__asm paddd xmm4, xmm0 \
__asm paddq xmm6, xmm3 \
__asm movdqa xmm3, xmm4 \
__asm pmuludq xmm4, xmm1 \
__asm psrldq xmm1, 4 \
__asm psrldq xmm3, 4 \
__asm pmuludq xmm3, xmm1 \
__asm paddq xmm7, xmm4 \
__asm paddq xmm7, xmm3
static void nh_aux_2(void *kp, void *dp, void *hp, UINT32 dlen)
/* Perform 2 streams simultaneously */
{
__asm{
mov edx, dlen
mov ebx, hp
mov ecx, kp
mov eax, dp
sub edx, 128
movq xmm6, mmword ptr [ebx]
movq xmm7, mmword ptr 8[ebx]
movdqa xmm2, [ecx]
jb label2
label1:
NH_STEP_2(0)
NH_STEP_2(32)
NH_STEP_2(64)
NH_STEP_2(96)
add eax, 128
add ecx, 128
sub edx, 128
jnb label1
label2:
add edx,128
je label4
label3:
NH_STEP_2(0)
add eax, 32
add ecx, 32
sub edx, 32
jne label3
label4:
movdqa xmm0,xmm6
movdqa xmm1,xmm7
psrldq xmm0, 8
psrldq xmm1, 8
paddq xmm6, xmm0
paddq xmm7, xmm1
movq mmword ptr [ebx], xmm6
movq mmword ptr 8[ebx], xmm7
}
}
/* ---------------------------------------------------------------------- */
#elif (GCC_X86)
/* ---------------------------------------------------------------------- */
#define NH_STEP_1(n) \
"movdqa "#n"(%0), %%xmm2\n\t" \
"movdqa "#n"(%1), %%xmm0\n\t" \
"movdqa "#n"+16(%0), %%xmm3\n\t" \
"movdqa "#n"+16(%1), %%xmm1\n\t" \
"paddd %%xmm0, %%xmm2\n\t" \
"paddd %%xmm1, %%xmm3\n\t" \
"movdqa %%xmm2, %%xmm5\n\t" \
"pmuludq %%xmm3, %%xmm2\n\t" \
"psrldq $4, %%xmm3\n\t" \
"paddq %%xmm2, %%xmm6\n\t" \
"psrldq $4, %%xmm5\n\t" \
"pmuludq %%xmm5, %%xmm3\n\t" \
"paddq %%xmm3, %%xmm6\n\t"
static void nh_aux_1(void *kp, void *dp, void *hp, UINT32 dlen)
{
UINT32 d1,d2,d3;
asm volatile (
"sub $128, %2\n\t"
"movq (%3), %%xmm6\n\t"
"jb 2f\n\t"
".align 4,0x90\n"
"1:\n\t"
NH_STEP_1(0)
NH_STEP_1(32)
NH_STEP_1(64)
NH_STEP_1(96)
"add $128, %1\n\t"
"add $128, %0\n\t"
"sub $128, %2\n\t"
"jnb 1b\n\t"
".align 4,0x90\n"
"2:\n\t"
"add $128, %2\n\t"
"je 4f\n\t"
".align 4,0x90\n"
"3:\n\t"
NH_STEP_1(0)
"add $32, %1\n\t"
"add $32, %0\n\t"
"sub $32, %2\n\t"
"jne 3b\n\t"
".align 4,0x90\n"
"4:\n\t"
"movdqa %%xmm6, %%xmm0\n\t"
"psrldq $8, %%xmm0\n\t"
"paddq %%xmm0, %%xmm6\n\t"
"movq %%xmm6, (%3)"
: "+r" (kp), "+r" (dp), "+r" (dlen)
: "r" (hp)
: "memory");
}
#define NH_STEP_2(n) \
"movdqa "#n"(%1), %%xmm0\n\t" \
"movdqa "#n"+16(%0), %%xmm3\n\t" \
"movdqa "#n"+16(%1), %%xmm1\n\t" \
"paddd %%xmm0, %%xmm2\n\t" \
"movdqa %%xmm3, %%xmm4\n\t" \
"paddd %%xmm1, %%xmm3\n\t" \
"movdqa %%xmm2, %%xmm5\n\t" \
"pmuludq %%xmm3, %%xmm2\n\t" \
"psrldq $4, %%xmm3\n\t" \
"paddq %%xmm2, %%xmm6\n\t" \
"movdqa "#n"+32(%0), %%xmm2\n\t" \
"psrldq $4, %%xmm5\n\t" \
"pmuludq %%xmm5, %%xmm3\n\t" \
"paddd %%xmm2, %%xmm1\n\t" \
"paddd %%xmm0, %%xmm4\n\t" \
"paddq %%xmm3, %%xmm6\n\t" \
"movdqa %%xmm4, %%xmm3\n\t" \
"pmuludq %%xmm1, %%xmm4\n\t" \
"psrldq $4, %%xmm1\n\t" \
"psrldq $4, %%xmm3\n\t" \
"pmuludq %%xmm1, %%xmm3\n\t" \
"paddq %%xmm4, %%xmm7\n\t" \
"paddq %%xmm3, %%xmm7\n\t"
static void nh_aux_2(void *kp, void *dp, void *hp, UINT32 dlen)
{
UINT32 d1,d2,d3;
asm volatile (
"sub $128, %2\n\t"
"movq (%3), %%xmm6\n\t"
"movq 8(%3), %%xmm7\n\t"
"movdqa (%0), %%xmm2\n\t"
"jb 2f\n\t"
".align 4,0x90\n"
"1:\n\t"
NH_STEP_2(0)
NH_STEP_2(32)
NH_STEP_2(64)
NH_STEP_2(96)
"add $128, %1\n\t"
"add $128, %0\n\t"
"sub $128, %2\n\t"
"jnb 1b\n\t"
".align 4,0x90\n"
"2:\n\t"
"add $128, %2\n\t"
"je 4f\n\t"
".align 4,0x90\n"
"3:\n\t"
NH_STEP_2(0)
"add $32, %1\n\t"
"add $32, %0\n\t"
"sub $32, %2\n\t"
"jne 3b\n\t"
".align 4,0x90\n"
"4:\n\t"
"movdqa %%xmm6, %%xmm0\n\t"
"movdqa %%xmm7, %%xmm1\n\t"
"psrldq $8, %%xmm0\n\t"
"psrldq $8, %%xmm1\n\t"
"paddq %%xmm0, %%xmm6\n\t"
"paddq %%xmm1, %%xmm7\n\t"
"movq %%xmm6, (%3)\n\t"
"movq %%xmm7, 8(%3)"
: "+r" (kp), "+r" (dp), "+r" (dlen)
: "r" (hp)
: "memory");
}
/* ---------------------------------------------------------------------- */
#endif /* MSC GCC Sections for SSE2, not C */
/* ---------------------------------------------------------------------- */
static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* NH hashing primitive. 128 bits are written at hp by performing two */
/* passes over the data with the second key being the toeplitz shift of */
/* the first. */
{
#if (UMAC_OUTPUT_LEN == 4)
nh_aux_1(kp,dp,hp,dlen);
#elif (UMAC_OUTPUT_LEN == 8)
nh_aux_2(kp,dp,hp,dlen);
#elif (UMAC_OUTPUT_LEN == 12)
nh_aux_2(kp,dp,hp,dlen);
nh_aux_1((UINT8 *)kp+32,dp,(UINT8 *)hp+16,dlen);
#elif (UMAC_OUTPUT_LEN == 16)
nh_aux_2(kp,dp,hp,dlen);
nh_aux_2((UINT8 *)kp+32,dp,(UINT8 *)hp+16,dlen);
#endif
}
/* ---------------------------------------------------------------------- */
#else /* not SSE2 */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#if ( MSC_X86 )
/* ---------------------------------------------------------------------- */
#define NH_STEP(n) \
mov eax,n[ebx] \
__asm mov edx,n+16[ebx] \
__asm add eax,n[ecx] \
__asm add edx,n+16[ecx] \
__asm mul edx \
__asm add esi,eax \
__asm adc edi,edx
static void nh_aux_1(void *kp, void *dp, void *hp, UINT32 dlen)
{
__asm{
push ebp
mov ecx,kp
mov ebx,dp
mov eax,hp
mov ebp,dlen
sub ebp,128
mov esi,[eax]
mov edi,4[eax]
jb label2 /* if 0 */
label1:
NH_STEP(0)
NH_STEP(4)
NH_STEP(8)
NH_STEP(12)
NH_STEP(32)
NH_STEP(36)
NH_STEP(40)
NH_STEP(44)
NH_STEP(64)
NH_STEP(68)
NH_STEP(72)
NH_STEP(76)
NH_STEP(96)
NH_STEP(100)
NH_STEP(104)
NH_STEP(108)
add ecx,128
add ebx,128
sub ebp,128
jnb label1
label2:
add ebp,128
je label4
label3:
NH_STEP(0)
NH_STEP(4)
NH_STEP(8)
NH_STEP(12)
add ecx,32
add ebx,32
sub ebp,32
jne label3
label4:
pop ebp
mov eax,hp
mov [eax],esi
mov 4[eax],edi
}
}
/* ---------------------------------------------------------------------- */
#elif ( GCC_X86 )
/* ---------------------------------------------------------------------- */
#define NH_STEP(n) \
"movl "#n"(%%ebx),%%eax\n\t" \
"movl "#n"+16(%%ebx),%%edx\n\t" \
"addl "#n"(%%ecx),%%eax\n\t" \
"addl "#n"+16(%%ecx),%%edx\n\t" \
"mull %%edx\n\t" \
"addl %%eax,%%esi\n\t" \
"adcl %%edx,%%edi\n\t"
static void nh_aux_1(void *kp, void *dp, void *hp, UINT32 dlen)
/* NH hashing primitive. Previous (partial) hash result is loaded and */
/* then stored via hp pointer. The length of the data pointed at by dp is */
/* guaranteed to be divisible by HASH_BUF_BYTES (64), which means we can */
/* optimize by unrolling the loop. 64 bits are written at hp. */
{
UINT32 *p = (UINT32 *)hp;
asm volatile (
"\n\t"
"pushl %%eax\n\t"
"pushl %%ebp\n\t"
"subl $128,%%eax\n\t"
"movl %%eax,%%ebp\n\t"
"jb 2f\n\t"
".align 4,0x90\n"
"1:\n\t"
NH_STEP(0)
NH_STEP(4)
NH_STEP(8)
NH_STEP(12)
NH_STEP(32)
NH_STEP(36)
NH_STEP(40)
NH_STEP(44)
NH_STEP(64)
NH_STEP(68)
NH_STEP(72)
NH_STEP(76)
NH_STEP(96)
NH_STEP(100)
NH_STEP(104)
NH_STEP(108)
"addl $128,%%ecx\n\t"
"addl $128,%%ebx\n\t"
"subl $128,%%ebp\n\t"
"jnb 1b\n\t"
".align 4\n"
"2:\n\t"
"addl $128,%%ebp\n\t"
"je 4f\n\t"
".align 4,0x90\n"
"3:\n\t"
NH_STEP(0)
NH_STEP(4)
NH_STEP(8)
NH_STEP(12)
"addl $32,%%ecx\n\t"
"addl $32,%%ebx\n\t"
"subl $32,%%ebp\n\t"
"jne 3b\n\t"
".align 4\n"
"4:\n\t"
"popl %%ebp\n\t"
"popl %%eax"
: "+S" (p[0]), "+D" (p[1]), "+c" (kp), "+b" (dp)
: "a" (dlen)
: "edx", "memory");
}
/* ---------------------------------------------------------------------- */
#endif /* GCC or MSC, not SSE2, not C */
/* ---------------------------------------------------------------------- */
static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* NH hashing primitive. 128 bits are written at hp by performing two */
/* passes over the data with the second key being the toeplitz shift of */
/* the first. */
{
nh_aux_1(kp,dp,hp,dlen);
#if (UMAC_OUTPUT_LEN >= 8)
nh_aux_1((UINT8 *)kp+16,dp,(UINT8 *)hp+8,dlen);
#endif
#if (UMAC_OUTPUT_LEN >= 12)
nh_aux_1((UINT8 *)kp+32,dp,(UINT8 *)hp+16,dlen);
#endif
#if (UMAC_OUTPUT_LEN == 16)
nh_aux_1((UINT8 *)kp+48,dp,(UINT8 *)hp+24,dlen);
#endif
}
/* ---------------------------------------------------------------------- */
#endif /* SSE2 */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#else /* FORCE_C_ONLY */
/* ---------------------------------------------------------------------- */
#if (UMAC_OUTPUT_LEN == 4)
static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* NH hashing primitive. Previous (partial) hash result is loaded and
* then stored via hp pointer. The length of the data pointed at by "dp",
* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
* is expected to be endian compensated in memory at key setup.
*/
{
UINT64 h;
UWORD c = dlen / 32;
UINT32 *k = (UINT32 *)kp;
UINT32 *d = (UINT32 *)dp;
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
h = *((UINT64 *)hp);
do {
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
h += MUL64((k0 + d0), (k4 + d4));
h += MUL64((k1 + d1), (k5 + d5));
h += MUL64((k2 + d2), (k6 + d6));
h += MUL64((k3 + d3), (k7 + d7));
d += 8;
k += 8;
} while (--c);
*((UINT64 *)hp) = h;
}
#elif (UMAC_OUTPUT_LEN == 8)
static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* Same as previous nh_aux, but two streams are handled in one pass,
* reading and writing 16 bytes of hash-state per call.
*/
{
UINT64 h1,h2;
UWORD c = dlen / 32;
UINT32 *k = (UINT32 *)kp;
UINT32 *d = (UINT32 *)dp;
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
k8,k9,k10,k11;
h1 = *((UINT64 *)hp);
h2 = *((UINT64 *)hp + 1);
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
do {
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
h1 += MUL64((k0 + d0), (k4 + d4));
h2 += MUL64((k4 + d0), (k8 + d4));
h1 += MUL64((k1 + d1), (k5 + d5));
h2 += MUL64((k5 + d1), (k9 + d5));
h1 += MUL64((k2 + d2), (k6 + d6));
h2 += MUL64((k6 + d2), (k10 + d6));
h1 += MUL64((k3 + d3), (k7 + d7));
h2 += MUL64((k7 + d3), (k11 + d7));
k0 = k8; k1 = k9; k2 = k10; k3 = k11;
d += 8;
k += 8;
} while (--c);
((UINT64 *)hp)[0] = h1;
((UINT64 *)hp)[1] = h2;
}
#elif (UMAC_OUTPUT_LEN == 12)
static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* Same as previous nh_aux, but two streams are handled in one pass,
* reading and writing 24 bytes of hash-state per call.
*/
{
UINT64 h1,h2,h3;
UWORD c = dlen / 32;
UINT32 *k = (UINT32 *)kp;
UINT32 *d = (UINT32 *)dp;
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
k8,k9,k10,k11,k12,k13,k14,k15;
h1 = *((UINT64 *)hp);
h2 = *((UINT64 *)hp + 1);
h3 = *((UINT64 *)hp + 2);
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
do {
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
h1 += MUL64((k0 + d0), (k4 + d4));
h2 += MUL64((k4 + d0), (k8 + d4));
h3 += MUL64((k8 + d0), (k12 + d4));
h1 += MUL64((k1 + d1), (k5 + d5));
h2 += MUL64((k5 + d1), (k9 + d5));
h3 += MUL64((k9 + d1), (k13 + d5));
h1 += MUL64((k2 + d2), (k6 + d6));
h2 += MUL64((k6 + d2), (k10 + d6));
h3 += MUL64((k10 + d2), (k14 + d6));
h1 += MUL64((k3 + d3), (k7 + d7));
h2 += MUL64((k7 + d3), (k11 + d7));
h3 += MUL64((k11 + d3), (k15 + d7));
k0 = k8; k1 = k9; k2 = k10; k3 = k11;
k4 = k12; k5 = k13; k6 = k14; k7 = k15;
d += 8;
k += 8;
} while (--c);
((UINT64 *)hp)[0] = h1;
((UINT64 *)hp)[1] = h2;
((UINT64 *)hp)[2] = h3;
}
#elif (UMAC_OUTPUT_LEN == 16)
static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* Same as previous nh_aux, but two streams are handled in one pass,
* reading and writing 24 bytes of hash-state per call.
*/
{
UINT64 h1,h2,h3,h4;
UWORD c = dlen / 32;
UINT32 *k = (UINT32 *)kp;
UINT32 *d = (UINT32 *)dp;
UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
k8,k9,k10,k11,k12,k13,k14,k15,
k16,k17,k18,k19;
h1 = *((UINT64 *)hp);
h2 = *((UINT64 *)hp + 1);
h3 = *((UINT64 *)hp + 2);
h4 = *((UINT64 *)hp + 3);
k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
do {
d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
h1 += MUL64((k0 + d0), (k4 + d4));
h2 += MUL64((k4 + d0), (k8 + d4));
h3 += MUL64((k8 + d0), (k12 + d4));
h4 += MUL64((k12 + d0), (k16 + d4));
h1 += MUL64((k1 + d1), (k5 + d5));
h2 += MUL64((k5 + d1), (k9 + d5));
h3 += MUL64((k9 + d1), (k13 + d5));
h4 += MUL64((k13 + d1), (k17 + d5));
h1 += MUL64((k2 + d2), (k6 + d6));
h2 += MUL64((k6 + d2), (k10 + d6));
h3 += MUL64((k10 + d2), (k14 + d6));
h4 += MUL64((k14 + d2), (k18 + d6));
h1 += MUL64((k3 + d3), (k7 + d7));
h2 += MUL64((k7 + d3), (k11 + d7));
h3 += MUL64((k11 + d3), (k15 + d7));
h4 += MUL64((k15 + d3), (k19 + d7));
k0 = k8; k1 = k9; k2 = k10; k3 = k11;
k4 = k12; k5 = k13; k6 = k14; k7 = k15;
k8 = k16; k9 = k17; k10 = k18; k11 = k19;
d += 8;
k += 8;
} while (--c);
((UINT64 *)hp)[0] = h1;
((UINT64 *)hp)[1] = h2;
((UINT64 *)hp)[2] = h3;
((UINT64 *)hp)[3] = h4;
}
/* ---------------------------------------------------------------------- */
#endif /* UMAC_OUTPUT_LENGTH */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
#endif /* FORCE_C_ONLY */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
/* This function is a wrapper for the primitive NH hash functions. It takes
* as argument "hc" the current hash context and a buffer which must be a
* multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
* appropriately according to how much message has been hashed already.
*/
{
UINT8 *key;
key = hc->nh_key + hc->bytes_hashed;
nh_aux(key, buf, hc->state, nbytes);
}
/* ---------------------------------------------------------------------- */
static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
/* We endian convert the keys on little-endian computers to */
/* compensate for the lack of big-endian memory reads during hashing. */
{
UWORD iters = num_bytes / bpw;
if (bpw == 4) {
UINT32 *p = (UINT32 *)buf;
do {
*p = LOAD_UINT32_REVERSED(p);
p++;
} while (--iters);
} else if (bpw == 8) {
UINT32 *p = (UINT32 *)buf;
UINT32 t;
do {
t = LOAD_UINT32_REVERSED(p+1);
p[1] = LOAD_UINT32_REVERSED(p);
p[0] = t;
p += 2;
} while (--iters);
}
}
#if (__LITTLE_ENDIAN__)
#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
#else
#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
#endif
/* ---------------------------------------------------------------------- */
static void nh_reset(nh_ctx *hc)
/* Reset nh_ctx to ready for hashing of new data */
{
hc->bytes_hashed = 0;
hc->next_data_empty = 0;
hc->state[0] = 0;
#if (UMAC_OUTPUT_LEN >= 8)
hc->state[1] = 0;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
hc->state[2] = 0;
#endif
#if (UMAC_OUTPUT_LEN == 16)
hc->state[3] = 0;
#endif
}
/* ---------------------------------------------------------------------- */
static void nh_init(nh_ctx *hc, aes_int_key prf_key)
/* Generate nh_key, endian convert and reset to be ready for hashing. */
{
kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
nh_reset(hc);
}
/* ---------------------------------------------------------------------- */
static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
/* even multiple of HASH_BUF_BYTES. */
{
UINT32 i,j;
j = hc->next_data_empty;
if ((j + nbytes) >= HASH_BUF_BYTES) {
if (j) {
i = HASH_BUF_BYTES - j;
memcpy(hc->data+j, buf, i);
nh_transform(hc,hc->data,HASH_BUF_BYTES);
nbytes -= i;
buf += i;
hc->bytes_hashed += HASH_BUF_BYTES;
}
if (nbytes >= HASH_BUF_BYTES) {
i = nbytes & ~(HASH_BUF_BYTES - 1);
nh_transform(hc, buf, i);
nbytes -= i;
buf += i;
hc->bytes_hashed += i;
}
j = 0;
}
memcpy(hc->data + j, buf, nbytes);
hc->next_data_empty = j + nbytes;
}
/* ---------------------------------------------------------------------- */
static void zero_pad(UINT8 *p, int nbytes)
{
/* Write "nbytes" of zeroes, beginning at "p" */
if (nbytes >= (int)sizeof(UWORD)) {
while ((ptrdiff_t)p % sizeof(UWORD)) {
*p = 0;
nbytes--;
p++;
}
while (nbytes >= (int)sizeof(UWORD)) {
*(UWORD *)p = 0;
nbytes -= sizeof(UWORD);
p += sizeof(UWORD);
}
}
while (nbytes) {
*p = 0;
nbytes--;
p++;
}
}
/* ---------------------------------------------------------------------- */
static void nh_final(nh_ctx *hc, UINT8 *result)
/* After passing some number of data buffers to nh_update() for integration
* into an NH context, nh_final is called to produce a hash result. If any
* bytes are in the buffer hc->data, incorporate them into the
* NH context. Finally, add into the NH accumulation "state" the total number
* of bits hashed. The resulting numbers are written to the buffer "result".
* If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
*/
{
int nh_len, nbits;
if (hc->next_data_empty != 0) {
nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
~(L1_PAD_BOUNDARY - 1));
zero_pad(hc->data + hc->next_data_empty,
nh_len - hc->next_data_empty);
nh_transform(hc, hc->data, nh_len);
hc->bytes_hashed += hc->next_data_empty;
} else if (hc->bytes_hashed == 0) {
nh_len = L1_PAD_BOUNDARY;
zero_pad(hc->data, L1_PAD_BOUNDARY);
nh_transform(hc, hc->data, nh_len);
}
nbits = (hc->bytes_hashed << 3);
((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
#if (UMAC_OUTPUT_LEN >= 8)
((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
#endif
#if (UMAC_OUTPUT_LEN == 16)
((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
#endif
nh_reset(hc);
}
/* ---------------------------------------------------------------------- */
static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
UINT32 unpadded_len, UINT8 *result)
/* All-in-one nh_update() and nh_final() equivalent.
* Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
* well aligned
*/
{
UINT32 nbits;
/* Initialize the hash state */
nbits = (unpadded_len << 3);
((UINT64 *)result)[0] = nbits;
#if (UMAC_OUTPUT_LEN >= 8)
((UINT64 *)result)[1] = nbits;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
((UINT64 *)result)[2] = nbits;
#endif
#if (UMAC_OUTPUT_LEN == 16)
((UINT64 *)result)[3] = nbits;
#endif
nh_aux(hc->nh_key, buf, result, padded_len);
}
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin UHASH Section -------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
* hashed by NH. The NH output is then hashed by a polynomial-hash layer
* unless the initial data to be hashed is short. After the polynomial-
* layer, an inner-product hash is used to produce the final UHASH output.
*
* UHASH provides two interfaces, one all-at-once and another where data
* buffers are presented sequentially. In the sequential interface, the
* UHASH client calls the routine uhash_update() as many times as necessary.
* When there is no more data to be fed to UHASH, the client calls
* uhash_final() which
* calculates the UHASH output. Before beginning another UHASH calculation
* the uhash_reset() routine must be called. The all-at-once UHASH routine,
* uhash(), is equivalent to the sequence of calls uhash_update() and
* uhash_final(); however it is optimized and should be
* used whenever the sequential interface is not necessary.
*
* The routine uhash_init() initializes the uhash_ctx data structure and
* must be called once, before any other UHASH routine.
*/
/* ---------------------------------------------------------------------- */
/* ----- Constants and uhash_ctx ---------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Poly hash and Inner-Product hash Constants --------------------- */
/* ---------------------------------------------------------------------- */
/* Primes and masks */
#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
/* ---------------------------------------------------------------------- */
typedef struct uhash_ctx {
nh_ctx hash; /* Hash context for L1 NH hash */
UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
UINT64 poly_accum[STREAMS]; /* poly hash result */
UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
UINT32 ip_trans[STREAMS]; /* Inner-product translation */
UINT32 msg_len; /* Total length of data passed */
/* to uhash */
} uhash_ctx;
/* ---------------------------------------------------------------------- */
/* The polynomial hashes use Horner's rule to evaluate a polynomial one
* word at a time. As described in the specification, poly32 and poly64
* require keys from special domains. The following impelementations exploit
* the special domains to avoid overflow. The results are not guaranteed to
* be within Z_p32 and Z_p64, but the Inner-Product hash implementation
* patches any errant values.
*/
static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
{
UINT32 key_hi = (UINT32)(key >> 32),
key_lo = (UINT32)key,
cur_hi = (UINT32)(cur >> 32),
cur_lo = (UINT32)cur,
x_lo,
x_hi;
UINT64 X,T,res;
X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
x_lo = (UINT32)X;
x_hi = (UINT32)(X >> 32);
res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
T = ((UINT64)x_lo << 32);
res += T;
if (res < T)
res += 59;
res += data;
if (res < data)
res += 59;
return res;
}
/* Although UMAC is specified to use a ramped polynomial hash scheme, this
* impelemtation does not handle all ramp levels. Because we don't handle
* the ramp up to p128 modulus in this implementation, we are limited to
* 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
* bytes input to UMAC per tag, ie. 16MB).
*/
static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
{
int i;
UINT64 *data=(UINT64*)data_in;
for (i = 0; i < STREAMS; i++) {
if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
hc->poly_accum[i] = poly64(hc->poly_accum[i],
hc->poly_key_8[i], p64 - 1);
hc->poly_accum[i] = poly64(hc->poly_accum[i],
hc->poly_key_8[i], (data[i] - 59));
} else {
hc->poly_accum[i] = poly64(hc->poly_accum[i],
hc->poly_key_8[i], data[i]);
}
}
}
/* ---------------------------------------------------------------------- */
/* The final step in UHASH is an inner-product hash. The poly hash
* produces a result not neccesarily WORD_LEN bytes long. The inner-
* product hash breaks the polyhash output into 16-bit chunks and
* multiplies each with a 36 bit key.
*/
#if (MSC_X86 && ! FORCE_C_ONLY)
static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
{
UINT32 data_hi = (UINT32)(data >> 32),
data_lo = (UINT32)(data),
t_hi = (UINT32)(t >> 32),
t_lo = (UINT32)(t);
__asm{
mov edi, ipkp
mov ebx,data_hi
mov ecx,data_lo
mov esi, t_lo
mov edx, t_hi
push ebp
mov ebp,edx
mov eax,ebx
shr eax,16
mul DWORD PTR 0[edi]
add esi,eax
adc ebp,edx
mov eax,ebx
shr eax,16
mul DWORD PTR 4[edi]
add ebp,eax
movzx eax,bx
mul DWORD PTR 8[edi]
add esi,eax
adc ebp,edx
movzx eax,bx
mul DWORD PTR 12[edi]
add ebp,eax
mov eax,ecx
shr eax,16
mul DWORD PTR 16[edi]
add esi,eax
adc ebp,edx
mov eax,ecx
shr eax,16
mul DWORD PTR 20[edi]
add ebp,eax
movzx eax,cx
mul DWORD PTR 24[edi]
add esi,eax
adc ebp,edx
movzx eax,cx
mul DWORD PTR 28[edi]
lea edx,[eax+ebp]
mov eax,esi
pop ebp
/* MSVC returns UINT64 in edx:eax */
}
}
static UINT32 ip_reduce_p36(UINT64 t)
{
UINT32 t_hi = (UINT32)(t >> 32),
t_lo = (UINT32)(t);
__asm{
mov edx,t_hi
mov eax,t_lo
mov edi,edx
and edx,15
shr edi,4
lea edi,[edi+edi*4]
add eax,edi
adc edx,0
cmp edx,0xf
jb skip_sub
ja do_sub
cmp eax,0xfffffffb
jb skip_sub
do_sub:
sub eax, 0xfffffffb
/* sbb edx, 0xf We don't return the high word */
skip_sub:
}
}
#elif (GCC_X86 && ! FORCE_C_ONLY)
static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
{
UINT32 dummy1, dummy2;
asm volatile(
"pushl %%ebp\n\t"
"movl %%eax,%%esi\n\t"
"movl %%edx,%%ebp\n\t"
"movl %%ebx,%%eax\n\t"
"shrl $16,%%eax\n\t"
"mull 0(%%edi)\n\t"
"addl %%eax,%%esi\n\t"
"adcl %%edx,%%ebp\n\t"
"movl %%ebx,%%eax\n\t"
"shrl $16,%%eax\n\t"
"mull 4(%%edi)\n\t"
"addl %%eax,%%ebp\n\t"
"movzwl %%bx,%%eax\n\t"
"mull 8(%%edi)\n\t"
"addl %%eax,%%esi\n\t"
"adcl %%edx,%%ebp\n\t"
"movzwl %%bx,%%eax\n\t"
"mull 12(%%edi)\n\t"
"addl %%eax,%%ebp\n\t"
"movl %%ecx,%%eax\n\t"
"shrl $16,%%eax\n\t"
"mull 16(%%edi)\n\t"
"addl %%eax,%%esi\n\t"
"adcl %%edx,%%ebp\n\t"
"movl %%ecx,%%eax\n\t"
"shrl $16,%%eax\n\t"
"mull 20(%%edi)\n\t"
"addl %%eax,%%ebp\n\t"
"movzwl %%cx,%%eax\n\t"
"mull 24(%%edi)\n\t"
"addl %%eax,%%esi\n\t"
"adcl %%edx,%%ebp\n\t"
"movzwl %%cx,%%eax\n\t"
"mull 28(%%edi)\n\t"
"leal (%%eax,%%ebp),%%edx\n\t"
"movl %%esi,%%eax\n\t"
"popl %%ebp"
: "+A"(t), "=b"(dummy1), "=c"(dummy2)
: "D"(ipkp), "1"((UINT32)(data>>32)), "2"((UINT32)data)
: "esi");
return t;
}
static UINT32 ip_reduce_p36(UINT64 t)
{
asm volatile(
"movl %%edx,%%edi\n\t"
"andl $15,%%edx\n\t"
"shrl $4,%%edi\n\t"
"leal (%%edi,%%edi,4),%%edi\n\t"
"addl %%edi,%%eax\n\t"
"adcl $0,%%edx\n\t"
: "+A"(t)
:
: "edi");
if (t >= p36)
t -= p36;
return (UINT32)(t);
}
#else
static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
{
t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
t = t + ipkp[3] * (UINT64)(UINT16)(data);
return t;
}
static UINT32 ip_reduce_p36(UINT64 t)
{
/* Divisionless modular reduction */
UINT64 ret;
ret = (t & m36) + 5 * (t >> 36);
if (ret >= p36)
ret -= p36;
/* return least significant 32 bits */
return (UINT32)(ret);
}
#endif
/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
* the polyhash stage is skipped and ip_short is applied directly to the
* NH output.
*/
static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, char *res)
{
UINT64 t;
UINT64 *nhp = (UINT64 *)nh_res;
t = ip_aux(0,ahc->ip_keys, nhp[0]);
STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
#if (UMAC_OUTPUT_LEN >= 8)
t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
#endif
#if (UMAC_OUTPUT_LEN >= 12)
t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
#endif
#if (UMAC_OUTPUT_LEN == 16)
t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
#endif
}
/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
* the polyhash stage is not skipped and ip_long is applied to the
* polyhash output.
*/
static void ip_long(uhash_ctx_t ahc, char *res)
{
int i;
UINT64 t;
for (i = 0; i < STREAMS; i++) {
/* fix polyhash output not in Z_p64 */
if (ahc->poly_accum[i] >= p64)
ahc->poly_accum[i] -= p64;
t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
STORE_UINT32_BIG((UINT32 *)res+i,
ip_reduce_p36(t) ^ ahc->ip_trans[i]);
}
}
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* Reset uhash context for next hash session */
int uhash_reset(uhash_ctx_t pc)
{
nh_reset(&pc->hash);
pc->msg_len = 0;
pc->poly_accum[0] = 1;
#if (UMAC_OUTPUT_LEN >= 8)
pc->poly_accum[1] = 1;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
pc->poly_accum[2] = 1;
#endif
#if (UMAC_OUTPUT_LEN == 16)
pc->poly_accum[3] = 1;
#endif
return 1;
}
/* ---------------------------------------------------------------------- */
/* Given a pointer to the internal key needed by kdf() and a uhash context,
* initialize the NH context and generate keys needed for poly and inner-
* product hashing. All keys are endian adjusted in memory so that native
* loads cause correct keys to be in registers during calculation.
*/
static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
{
int i;
UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
/* Zero the entire uhash context */
memset(ahc, 0, sizeof(uhash_ctx));
/* Initialize the L1 hash */
nh_init(&ahc->hash, prf_key);
/* Setup L2 hash variables */
kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
for (i = 0; i < STREAMS; i++) {
/* Fill keys from the buffer, skipping bytes in the buffer not
* used by this implementation. Endian reverse the keys if on a
* little-endian computer.
*/
memcpy(ahc->poly_key_8+i, buf+24*i, 8);
endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
/* Mask the 64-bit keys to their special domain */
ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
}
/* Setup L3-1 hash variables */
kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
for (i = 0; i < STREAMS; i++)
memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
4*sizeof(UINT64));
endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
sizeof(ahc->ip_keys));
for (i = 0; i < STREAMS*4; i++)
ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
/* Setup L3-2 hash variables */
/* Fill buffer with index 4 key */
kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
STREAMS * sizeof(UINT32));
}
/* ---------------------------------------------------------------------- */
uhash_ctx_t uhash_alloc(char key[])
{
/* Allocate memory and force to a 16-byte boundary. */
uhash_ctx_t ctx;
char bytes_to_add;
aes_int_key prf_key;
ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
if (ctx) {
if (ALLOC_BOUNDARY) {
bytes_to_add = ALLOC_BOUNDARY -
((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
ctx = (uhash_ctx_t)((char *)ctx + bytes_to_add);
*((char *)ctx - 1) = bytes_to_add;
}
aes_key_setup(key,prf_key);
uhash_init(ctx, prf_key);
}
return (ctx);
}
/* ---------------------------------------------------------------------- */
int uhash_free(uhash_ctx_t ctx)
{
/* Free memory allocated by uhash_alloc */
char bytes_to_sub;
if (ctx) {
if (ALLOC_BOUNDARY) {
bytes_to_sub = *((char *)ctx - 1);
ctx = (uhash_ctx_t)((char *)ctx - bytes_to_sub);
}
free(ctx);
}
return (1);
}
/* ---------------------------------------------------------------------- */
int uhash_update(uhash_ctx_t ctx, char *input, long len)
/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
* hash each one with NH, calling the polyhash on each NH output.
*/
{
UWORD bytes_hashed, bytes_remaining;
UINT8 nh_result[STREAMS*sizeof(UINT64)];
if (ctx->msg_len + len <= L1_KEY_LEN) {
nh_update(&ctx->hash, (UINT8 *)input, len);
ctx->msg_len += len;
} else {
bytes_hashed = ctx->msg_len % L1_KEY_LEN;
if (ctx->msg_len == L1_KEY_LEN)
bytes_hashed = L1_KEY_LEN;
if (bytes_hashed + len >= L1_KEY_LEN) {
/* If some bytes have been passed to the hash function */
/* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
/* bytes to complete the current nh_block. */
if (bytes_hashed) {
bytes_remaining = (L1_KEY_LEN - bytes_hashed);
nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
nh_final(&ctx->hash, nh_result);
ctx->msg_len += bytes_remaining;
poly_hash(ctx,(UINT32 *)nh_result);
len -= bytes_remaining;
input += bytes_remaining;
}
/* Hash directly from input stream if enough bytes */
while (len >= L1_KEY_LEN) {
nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
L1_KEY_LEN, nh_result);
ctx->msg_len += L1_KEY_LEN;
len -= L1_KEY_LEN;
input += L1_KEY_LEN;
poly_hash(ctx,(UINT32 *)nh_result);
}
}
/* pass remaining < L1_KEY_LEN bytes of input data to NH */
if (len) {
nh_update(&ctx->hash, (UINT8 *)input, len);
ctx->msg_len += len;
}
}
return (1);
}
/* ---------------------------------------------------------------------- */
int uhash_final(uhash_ctx_t ctx, char *res)
/* Incorporate any pending data, pad, and generate tag */
{
UINT8 nh_result[STREAMS*sizeof(UINT64)];
if (ctx->msg_len > L1_KEY_LEN) {
if (ctx->msg_len % L1_KEY_LEN) {
nh_final(&ctx->hash, nh_result);
poly_hash(ctx,(UINT32 *)nh_result);
}
ip_long(ctx, res);
} else {
nh_final(&ctx->hash, nh_result);
ip_short(ctx,nh_result, res);
}
uhash_reset(ctx);
return (1);
}
/* ---------------------------------------------------------------------- */
int uhash(uhash_ctx_t ahc, char *msg, long len, char *res)
/* assumes that msg is in a writable buffer of length divisible by */
/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
{
UINT8 nh_result[STREAMS*sizeof(UINT64)];
UINT32 nh_len;
int extra_zeroes_needed;
/* If the message to be hashed is no longer than L1_HASH_LEN, we skip
* the polyhash.
*/
if (len <= L1_KEY_LEN) {
if (len == 0) /* If zero length messages will not */
nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
else
nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
extra_zeroes_needed = nh_len - len;
zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
ip_short(ahc,nh_result, res);
} else {
/* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
* output to poly_hash().
*/
do {
nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
poly_hash(ahc,(UINT32 *)nh_result);
len -= L1_KEY_LEN;
msg += L1_KEY_LEN;
} while (len >= L1_KEY_LEN);
if (len) {
nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
extra_zeroes_needed = nh_len - len;
zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
poly_hash(ahc,(UINT32 *)nh_result);
}
ip_long(ahc, res);
}
uhash_reset(ahc);
return 1;
}
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin UMAC Section --------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* The UMAC interface has two interfaces, an all-at-once interface where
* the entire message to be authenticated is passed to UMAC in one buffer,
* and a sequential interface where the message is presented a little at a
* time. The all-at-once is more optimaized than the sequential version and
* should be preferred when the sequential interface is not required.
*/
typedef struct umac_ctx {
uhash_ctx hash; /* Hash function for message compression */
pdf_ctx pdf; /* PDF for hashed output */
} umac_ctx;
/* ---------------------------------------------------------------------- */
int umac_reset(umac_ctx_t ctx)
/* Reset the hash function to begin a new authentication. */
{
uhash_reset(&ctx->hash);
return (1);
}
/* ---------------------------------------------------------------------- */
int umac_delete(umac_ctx_t ctx)
/* Deallocate the ctx structure */
{
char bytes_to_sub;
if (ctx) {
if (ALLOC_BOUNDARY) {
bytes_to_sub = *((char *)ctx - 1);
ctx = (umac_ctx_t)((char *)ctx - bytes_to_sub);
}
free(ctx);
}
return (1);
}
/* ---------------------------------------------------------------------- */
umac_ctx_t umac_new(char key[])
/* Dynamically allocate a umac_ctx struct, initialize variables,
* generate subkeys from key. Align to 16-byte boundary.
*/
{
umac_ctx_t ctx;
char bytes_to_add;
aes_int_key prf_key;
ctx = (umac_ctx_t)malloc(sizeof(umac_ctx)+ALLOC_BOUNDARY);
if (ctx) {
if (ALLOC_BOUNDARY) {
bytes_to_add = ALLOC_BOUNDARY -
((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
ctx = (umac_ctx_t)((char *)ctx + bytes_to_add);
*((char *)ctx - 1) = bytes_to_add;
}
aes_key_setup(key,prf_key);
pdf_init(&ctx->pdf, prf_key);
uhash_init(&ctx->hash, prf_key);
}
return (ctx);
}
/* ---------------------------------------------------------------------- */
int umac_final(umac_ctx_t ctx, char tag[], char nonce[8])
/* Incorporate any pending data, pad, and generate tag */
{
uhash_final(&ctx->hash, (char *)tag);
pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
return (1);
}
/* ---------------------------------------------------------------------- */
int umac_update(umac_ctx_t ctx, char *input, long len)
/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
/* hash each one, calling the PDF on the hashed output whenever the hash- */
/* output buffer is full. */
{
uhash_update(&ctx->hash, input, len);
return (1);
}
/* ---------------------------------------------------------------------- */
int umac(umac_ctx_t ctx, char *input,
long len, char tag[],
char nonce[8])
/* All-in-one version simply calls umac_update() and umac_final(). */
{
uhash(&ctx->hash, input, len, (char *)tag);
pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
return (1);
}
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- End UMAC Section ----------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* If RUN_TESTS is defined non-zero, then we define a main() function and */
/* run some verification and speed tests. */
#if RUN_TESTS
#include <stdio.h>
#include <time.h>
static void pbuf(void *buf, UWORD n, char *s)
{
UWORD i;
UINT8 *cp = (UINT8 *)buf;
if (n <= 0 || n >= 30)
n = 30;
if (s)
printf("%s: ", s);
for (i = 0; i < n; i++)
printf("%02X", (unsigned char)cp[i]);
printf("\n");
}
static void primitive_verify(void)
{
#if (UMAC_KEY_LEN == 16)
UINT8 key[16] = {0};
UINT8 pt[16] = {'\x80',0,/* remainder auto filled with zeroes */};
char res[] = "3AD78E726C1EC02B7EBFE92B23D9EC34";
#elif (UMAC_KEY_LEN == 32)
UINT8 key[32] = {0};
UINT8 pt[16] = {'\x80',0,/* remainder auto filled with zeroes */};
char res[] = "DDC6BF79 C1576 D8D9AEB6F9A75FD4E";
#endif
aes_int_key k1;
aes_key_setup(key, k1);
aes_encryption(pt, pt, k1);
printf("\nAES Test\n");
pbuf(pt, 16, "Digest is ");
printf("Digest should be: %s\n", res);
}
static void umac_verify(void)
{
umac_ctx_t ctx;
char *data_ptr;
int data_len = 32 * 1024;
char nonce[] = "abcdefgh";
char tag[21] = {0};
char tag2[21] = {0};
int bytes_over_boundary, i, j;
int inc[] = {1,99,512};
int lengths[] = {0,3,1024,32768};
char *results[] = {"4D61E4F5AAB959C8B800A2BE546302AD",
"67C1700CA30B532DCD9B970655B47B45",
"05CB9405EC38D9F0B356D9E6D5BC5D03",
"048C543CB72443A46011A76438BA2AF4"};
/* Initialize Memory and UMAC */
data_ptr = (char *)malloc(data_len + 48);
if (data_ptr == 0)
return;
bytes_over_boundary = (ptrdiff_t)data_ptr & (16 - 1);
if (bytes_over_boundary != 0)
data_ptr += (16 - bytes_over_boundary);
memset(data_ptr, 'a', data_len);
ctx = umac_new("abcdefghijklmnop");
printf("Testing known vectors.\n\n");
printf("Msg %-*s Is\n", UMAC_OUTPUT_LEN * 2, "Should be");
printf("--- %-*s --\n", UMAC_OUTPUT_LEN * 2, "---------");
for (i = 0; (unsigned)i < sizeof(lengths)/sizeof(*lengths); i++) {
memset(data_ptr, 'a', lengths[i]);
umac(ctx, data_ptr, lengths[i], tag, nonce);
umac_reset(ctx);
printf("'a' * %5d : %.*s ", lengths[i], UMAC_OUTPUT_LEN * 2, results[i]);
pbuf(tag, UMAC_OUTPUT_LEN, NULL);
}
printf("\nVerifying consistancy of single- and"
" multiple-call interfaces.\n");
for (i = 1; i < (int)(sizeof(inc)/sizeof(inc[0])); i++) {
for (j = 0; j <= data_len-inc[i]; j+=inc[i])
umac_update(ctx, data_ptr+j, inc[i]);
umac_final(ctx, tag, nonce);
umac_reset(ctx);
umac(ctx, data_ptr, (data_len/inc[i])*inc[i], tag2, nonce);
umac_reset(ctx);
nonce[7]++;
if (memcmp(tag,tag2,sizeof(tag)))
printf("\ninc = %d data_len = %d failed!\n",
inc[i], data_len);
}
printf("Done.\n");
umac_delete(ctx);
}
static double run_cpb_test(umac_ctx_t ctx, int nbytes, char *data_ptr,
int data_len, double hz)
{
clock_t ticks;
double secs;
char nonce[8] = {0};
char tag[UMAC_OUTPUT_LEN+1] = {0}; /* extra char for null terminator */
unsigned long total_mbs;
unsigned long iters_per_tag, remaining;
unsigned long tag_iters, i, j;
if (nbytes <= 16)
total_mbs = 5;
if (nbytes <= 32)
total_mbs = 30;
else if (nbytes <= 64)
total_mbs = 400;
else if (nbytes <= 256)
total_mbs = 800;
else if (nbytes <= 1024)
total_mbs = 1600;
else
total_mbs = 2500;
tag_iters = (total_mbs * 1024 * 1024) / (nbytes) + 1;
if (nbytes <= data_len) {
i = tag_iters;
umac(ctx, data_ptr, nbytes, tag, nonce);
ticks = clock();
do {
umac(ctx, data_ptr, nbytes, tag, nonce);
nonce[7] += 1;
} while (--i);
ticks = clock() - ticks;
} else {
i = tag_iters;
iters_per_tag = nbytes / data_len;
remaining = nbytes % data_len;
umac_update(ctx, data_ptr, data_len);
umac_final(ctx, tag, nonce);
ticks = clock();
do {
j = iters_per_tag;
do {
umac_update(ctx, data_ptr, data_len);
} while (--j);
if (remaining)
umac_update(ctx, data_ptr, remaining);
umac_final(ctx, tag, nonce);
nonce[7] += 1;
} while (--i);
ticks = clock() - ticks;
}
secs = (double)ticks / CLOCKS_PER_SEC;
return (secs * (hz/(tag_iters*nbytes)));
}
static void speed_test(void)
{
umac_ctx_t ctx;
char *data_ptr;
int data_len;
double hz;
double cpb;
int bytes_over_boundary, i;
int length_range_low = 1;
int length_range_high = 0;
int length_pts[] = {44,64,256,512,552,1024,1500,8*1024,256*1024};
/* hz and data_len must be set appropriately for your system
* for optimal results.
*/
#if (GCC_X86 || MSC_X86)
hz = ((double)2000e6);
data_len = 4096;
#else
hz = ((double)1420e6);
data_len = 8192;
#endif
/* Allocate memory and align to 16-byte multiple */
data_ptr = (char *)malloc(data_len + 16);
bytes_over_boundary = (ptrdiff_t)data_ptr & (16 - 1);
if (bytes_over_boundary != 0)
data_ptr += (16 - bytes_over_boundary);
for (i = 0; i < data_len; i++)
data_ptr[i] = (i*i) % 128;
ctx = umac_new("abcdefghijklmnopqrstuvwxyz");
printf("\n");
if (length_range_low < length_range_high) {
for (i = length_range_low; i <= length_range_high; i++) {
cpb = run_cpb_test(ctx, i, data_ptr, data_len, hz);
printf("Authenticating %8d byte messages: %5.2f cpb.\n", i, cpb);
}
}
if (sizeof(length_pts) > 0) {
for (i = 0; i < (int)(sizeof(length_pts)/sizeof(int)); i++) {
cpb = run_cpb_test(ctx, length_pts[i], data_ptr, data_len, hz);
printf("Authenticating %8d byte messages: %5.2f cpb.\n",
length_pts[i], cpb);
}
}
umac_delete(ctx);
}
int main(void)
{
#if GLADMAN_AES
gen_tabs();
#endif
umac_verify();
primitive_verify();
speed_test();
/* printf("Push return to continue\n"); getchar(); */
return (1);
}
#endif
|