1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
|
# include "bitmapConfig.h"
# include <string.h>
# define y0 math_y0
# define y1 math_y1
# include <math.h>
# undef y0
# undef y1
# include "bmintern.h"
# include "bmgetrow.h"
# include "bmputrow.h"
# include <appDebugon.h>
# if 0
Perspective mapping of a pixmap image:
======================================
We have a pixmap with its origin in P.
The width in pixels of the pixmap is w, the height h.
Its u (column) direction is along a vector N.
Its v (row) direction is along a vector M.
The observer is at a (0,0,E_z).
The pixel at (col,row) physically is at point (u,v) in 2D space,
that in its turn is at point (x,y,z) in 3D space.
x= P_x+ ( col* N_x )/ w+ ( row* M_x )/ h;
y= P_y+ ( col* N_y )/ w+ ( row* M_y )/ h;
z= P_z+ ( col* N_z )/ w+ ( row* M_z )/ h;
Projected on the output image, this gives
X= x/ ( (z/-E_z)+ 1 )
Y= y/ ( (z/-E_z)+ 1 )
Now.. For quality texture mapping, we need to go in the opposite direction.
x=P_x+ N_x/w* col+ M_x/h* row;
y=P_y+ N_y/w* col+ M_y/h* row;
z/-E_z= P_z/-E_z+ N_z/(-E_z*w)* col+ M_z/(-E_z*h)* row;
Simplify constants:
N_x= N_x/w, N_y= N_y/w, M_x= M_x/h, M_y= M_y/h,
P_z= P_z/-E_z, N_z= N_z/(-E_z*w), M_z= M_z/(-E_z*h),
Substitute expressions for x,y,z in those for X,Y:
X= ( P_x+ N_x* col+ M_x* row )/ ( P_z+ N_z* col+ M_z* row+ 1 )
Y= ( P_y+ N_y* col+ M_y* row )/ ( P_z+ N_z* col+ M_z* row+ 1 )
Multiply by denominators:
P_z* X+ N_z* X* col+ M_z* X* row+ X= P_x+ N_x* col+ M_x* row;
P_z* Y+ N_z* Y* col+ M_z* Y* row+ Y= P_y+ N_y* col+ M_y* row;
Rearrange to look like simple linear equations:
( N_z* X- N_x )* col+ ( M_z* X- M_x )* row= P_x- P_z* X- X;
( N_z* Y- N_y )* col+ ( M_z* Y- M_y )* row= P_y- P_z* Y- Y;
Determinant:
det=
( N_z* X- N_x )* ( M_z* Y- M_y )- ( N_z* Y- N_y )* ( M_z* X- M_x )=
[ N_z* M_z* X* Y+ -N_z* X* M_y+ -N_x* M_z* Y+ N_x* M_y ]-
[ N_z* M_z* X* Y+ -N_z* Y* M_x+ -N_y* M_z* X+ N_y* M_x ]=
det= [ N_y* M_z- N_z* M_y ]* X+
[ N_z* M_x- N_x* M_z ]* Y+
[ N_x* M_y- N_y* M_x ]
Numerators for the solution of the linear equations:
nmc=
( P_x- (P_z+1)* X )* ( M_z* Y- M_y )- ( P_y- (P_z+1)* Y )* ( M_z* X- M_x )=
[ P_x* M_z* Y+ -P_x* M_y+ -(P_z+1)* X* M_z* Y+ (P_z+1)* X* M_y ]-
[ P_y* M_z* X+ -P_y* M_x, -(P_z+1)* Y* M_z* X+ (P_z+1)* Y* M_x ]=
nmc= [ (P_z+1)* M_y - P_y* M_z ]* X+
[ P_x* M_z - (P_z+1)* M_x ]* Y+
[ P_y* M_x- P_x* M_y ].
nmr=
( P_y- (P_z+1)* Y )* ( N_z* X- N_x )- ( P_x- (P_z+1)* X )* ( N_z* Y- N_y )=
[ P_y* N_z* X+ -P_y* N_x+ -(P_z+1)* Y* N_z* X+ (P_z+1)* Y* N_x ]-
[ P_x* N_z* Y+ -P_x* N_y+ -(P_z+1)* X* N_z* Y+ (P_z+1)* X* N_y ]=
nmr= [ P_y* N_z- (P_z+1)* N_y ]* X+
[ (P_z+1)* N_x- P_x* N_z ]* Y+
[ P_x* N_y- P_y* N_x ].
And finally: row= nmr/det, column= nmc/det.
# endif
# define SHOW_PROJECTION 1
# define SHOW_COLUMNS 1
# if SHOW_COLUMNS
static void bmShowSlope( int label,
int n,
double Y,
int rowOut,
const BitmapDescription * bdOut,
const double * A_x,
const double * A_y,
double dx,
double dy )
{
appDebug( "%c=%d: Y= %7.1f (%7.1f,%7.1f) -> (%7.1f,%7.1f)"
" dx/dy= %7.1f/%-7.1f\n",
label, n, Y, A_x[n], A_y[n], A_x[n+1], A_y[n+1], dx, dy );
appDebug( " row %6d [%7.1f,%7.1f] -> [%7.1f,%7.1f]\n",
rowOut, A_x[n], A_y[n], A_x[n+1],
bdOut->bdPixelsHigh- A_y[n+1] );
}
static void bmShowArray( int label,
const BitmapDescription * bdOut,
double * A_x,
double * A_y )
{
int i;
for ( i= 0; i < 4; i++ )
{
appDebug( "%c[%d]= (%8.1f,%8.1f) @[%8.1f,%8.1f]\n",
label, i, A_x[i], A_y[i],
A_x[i], bdOut->bdPixelsHigh- A_y[i] );
}
}
# endif
/************************************************************************/
/* */
/* Find the quandrangle in the output where pixels from the input will */
/* be contained in. */
/* */
/************************************************************************/
static int bmMapSetBorders( double L_x[4],
double L_y[4],
double R_x[4],
double R_y[4],
const double Q_x[4],
const double Q_y[4],
int top,
int bot )
{
int l;
int r;
int nx;
int pr;
int ll;
int rr;
int dir;
for ( l= 0; l < 4; l++ )
{
L_x[l]= Q_x[bot];
L_y[l]= Q_y[bot];
R_x[l]= Q_x[bot];
R_y[l]= Q_y[bot];
}
/**/
l= r= 0;
nx= pr= ll= rr= top;
l++; ll= pr--; pr= ( pr+ 4 ) % 4;
r++; rr= nx++; nx= ( nx ) % 4;
L_x[0]= R_x[0]= Q_x[top];
L_y[0]= R_y[0]= Q_y[top];
dir= 0;
if ( Q_x[pr] <= Q_x[ll] && Q_y[pr] <= Q_y[ll] )
{ dir= -1; }
if ( Q_x[nx] <= Q_x[rr] && Q_y[nx] <= Q_y[rr] )
{ dir= 1; }
if ( dir == 0 )
{ LDEB(dir); return -1; }
if ( dir < 0 )
{
while( Q_y[pr] <= Q_y[ll] )
{
L_x[l]= Q_x[pr];
L_y[l]= Q_y[pr];
l++; ll= pr--; pr= ( pr+ 4 ) % 4;
}
while( Q_y[nx] <= Q_y[rr] )
{
R_x[r]= Q_x[nx];
R_y[r]= Q_y[nx];
r++; rr= nx++; nx= ( nx ) % 4;
}
}
else{
while( Q_y[nx] <= Q_y[ll] )
{
L_x[l]= Q_x[nx];
L_y[l]= Q_y[nx];
l++; ll= nx++; nx= ( nx ) % 4;
}
while( Q_y[pr] <= Q_y[rr] )
{
R_x[r]= Q_x[pr];
R_y[r]= Q_y[pr];
r++; rr= pr--; pr= ( pr+ 4 ) % 4;
}
}
return 0;
}
/************************************************************************/
/* */
/* Actually execute the texture mapping operation. (Or the inverse) */
/* */
/* 7) For all output rows.. */
/* 8) Determine the left and right most intersections of the */
/* projection of the input rectangle with the scan line. */
/* 9) Collect input from the input image. */
/* 10) Emit is to the output image. */
/* */
/************************************************************************/
static int bmMapPixels( unsigned char * bufferOut,
const BitmapDescription * bdOut,
const unsigned char * bufferIn,
const BitmapDescription * bdIn,
int row0,
int rowP,
int top,
const double Q_y[4],
const FillJob * fj,
PutScreenRow putRow,
GetSourceRow getRow,
const double L_x[4],
const double L_y[4],
const double R_x[4],
const double R_y[4],
double nmr_x,
double nmr_y,
double nmr_c,
double nmc_x,
double nmc_y,
double nmc_c,
double det_x,
double det_y,
double det_c )
{
int l;
double dxl;
double dyl;
int r;
double dxr;
double dyr;
int rowOut;
double det;
double nmr;
double nmc;
/* 6 */
l= 0;
dxl= ( L_x[l+1]- L_x[l] );
dyl= ( L_y[l+1]- L_y[l] );
r= 0;
dxr= ( R_x[r+1]- R_x[r] );
dyr= ( R_y[r+1]- R_y[r] );
# if SHOW_COLUMNS
bmShowSlope( 'L', l, Q_y[top], row0, bdOut, L_x, L_y, dxl, dyl );
bmShowSlope( 'R', r, Q_y[top], row0, bdOut, R_x, R_y, dxr, dyr );
# endif
for ( rowOut= row0; rowOut < rowP; rowOut++ )
{
unsigned char * to= bufferOut+ rowOut* bdOut->bdBytesPerRow;
double X0;
double XP;
double Y;
int col0;
int colP;
int colOut;
bmInitColorRow( fj->fjThisRow+ 1, bdOut->bdPixelsWide );
Y= bdOut->bdPixelsHigh- rowOut;
/* 7 */
while( Y < L_y[l+1] )
{
l++;
dxl= ( L_x[l+1]- L_x[l] );
dyl= ( L_y[l+1]- L_y[l] );
# if SHOW_COLUMNS
bmShowSlope( 'L', l, Y, rowOut, bdOut, L_x, L_y, dxl, dyl );
# endif
}
while( Y < R_y[r+1] )
{
r++;
dxr= ( R_x[r+1]- R_x[r] );
dyr= ( R_y[r+1]- R_y[r] );
# if SHOW_COLUMNS
bmShowSlope( 'R', r, Y, rowOut, bdOut, R_x, R_y, dxr, dyr );
# endif
}
if ( dyl == 0.0 )
{
if ( L_x[l] <= L_x[l+1] )
{ X0= L_x[l]; }
else{ X0= L_x[l+1]; }
}
else{ X0= L_x[l]+ ( ( Y- L_y[l] )* dxl )/ dyl; }
if ( dyr == 0.0 )
{
if ( R_x[r] >= R_x[r+1] )
{ XP= R_x[r]; }
else{ XP= R_x[r+1]; }
}
else{ XP= R_x[r]+ ( ( Y- R_y[r] )* dxr )/ dyr; }
if ( X0 < 0 )
{ X0= 0; }
if ( X0 > bdOut->bdPixelsWide )
{ X0= bdOut->bdPixelsWide; }
if ( XP < 0 )
{ XP= 0; }
if ( XP > bdOut->bdPixelsWide )
{ XP= bdOut->bdPixelsWide; }
col0= floor( X0 );
colP= floor( XP );
det= X0* det_x+ Y* det_y+ det_c;
nmr= X0* nmr_x+ Y* nmr_y+ nmr_c;
nmc= X0* nmc_x+ Y* nmc_y+ nmc_c;
for ( colOut= col0; colOut < colP; colOut++ )
{
int rowIn;
int colIn;
rowIn= bdIn->bdPixelsHigh- nmr/ det;
colIn= nmc/ det;
# if SHOW_COLUMNS
if ( rowIn < 0 ||
rowIn >= bdIn->bdPixelsHigh ||
colIn < 0 ||
colIn >= bdIn->bdPixelsWide )
{ LLLLLDEB(rowOut,col0,colP,rowIn,colIn); }
# endif
/* 9 */
(*getRow)( fj->fjThisRow+ 1, colOut,
bufferIn+ rowIn* bdIn->bdBytesPerRow,
colIn, colIn+ 1, bdIn );
det += det_x;
nmr += nmr_x;
nmc += nmc_x;
}
/* 10 */
if ( (*putRow)( to, fj, fj->fjThisRow+ 1 ) )
{ LDEB(rowOut); return -1; }
}
return 0;
}
/************************************************************************/
/* */
/* Get the source cow,column,divisor contributions by the target row */
/* and column. */
/* */
/* 1) Apply the simplification of the constants. */
/* 2) Apply the correction for the x,y position of the eye=camera. */
/* */
/************************************************************************/
static void bmTextureMapBwdCoefficients(
double * pNmr_x,
double * pNmr_y,
double * pNmr_c,
double * pNmc_x,
double * pNmc_y,
double * pNmc_c,
double * pDet_x,
double * pDet_y,
double * pDet_c,
const BitmapDescription * bd,
double P_x,
double P_y,
double P_z,
double N_x,
double N_y,
double N_z,
double M_x,
double M_y,
double M_z,
double E_x,
double E_y,
double E_z )
{
/* 1 */
double w= bd->bdPixelsWide;
double h= bd->bdPixelsHigh;
double kh= -E_z* h;
double kw= -E_z* w;
*pDet_x= ( N_y/ w )* ( M_z/ kh )- ( N_z/ kw )* ( M_y/ h );
*pDet_y= ( N_z/ kw )* ( M_x/ h )- ( N_x/ w )* ( M_z/ kh );
*pDet_c= ( N_x/ w )* ( M_y/ h )- ( N_y/ w )* ( M_x/ h );
*pNmc_x= ( P_z/ -E_z+ 1 )* ( M_y/ h )- ( P_y- E_y )* ( M_z/ kh );
*pNmc_y= ( P_x- E_x )* ( M_z/ kh )- ( P_z/ -E_z+ 1 )* ( M_x/ h );
*pNmc_c= ( P_y- E_y )* ( M_x/ h )- ( P_x- E_x )* ( M_y/ h );
*pNmr_x= ( P_y- E_y )* ( N_z/ kw )- ( P_z/ -E_z+ 1 )* ( N_y/ w );
*pNmr_y= ( P_z/ -E_z+ 1 )* ( N_x/ w )- ( P_x- E_x )* ( N_z/ kw );
*pNmr_c= ( P_x- E_x )* ( N_y/ w )- ( P_y- E_y )* ( N_x/ w );
/* 2 */
*pDet_c -= E_y* *pDet_y;
*pNmc_c -= E_y* *pNmc_y;
*pNmr_c -= E_y* *pNmr_y;
*pDet_c -= E_x* *pDet_x;
*pNmc_c -= E_x* *pNmc_x;
*pNmr_c -= E_x* *pNmr_x;
return;
}
/************************************************************************/
/* */
/* Perform a texture mapping along a perspective projection. */
/* */
/* Meaning of the parameters: */
/* */
/* ca ColorAllocator to fill the output image. */
/* swap* Provisions for weird bitmap formats. Just passed */
/* through. */
/* dither Dither when colors are approximated? */
/* bufferOut Store image bytes here. */
/* bufferIn Source of input bytes. */
/* bdOut Describes the format of the output image. */
/* bdIn Describes the format of the input image. */
/* E_x,E_y,E_z The position of the 'eye' or lens opening of the */
/* observer. Typically E_z is negative. Good values to */
/* start with are: */
/* E_x= 0.5 */
/* E_y= 0.5* bdOut->bdPixelsHigh/bdOut->bdPixelsWide */
/* E_z= -1.0 */
/* P_x,P_y,P_z The position of the lower left corner of the input */
/* image in 3D space. */
/* N_x,N_y,N_z The direction in 3D space of the rows in the input */
/* image. [And length] */
/* M_x,M_y,M_z The direction in 3D space of the columns in the input */
/* image. [And length] As this relates to geometry, */
/* the columns are oriented from bottop to top. */
/* */
/* The observer is always looking in the direction of the Z axis. */
/* The output image always is in the z=0 plane with the lower left */
/* corner in x=0,y=0,z=0. */
/* To get different projections, change the point of view in stead of */
/* the position of the output image. */
/* */
/* ALL double parameters use the width of the output image as their */
/* unit. */
/* */
/* Use the simple 'Perfect' mapping approach. */
/* */
/* 1) Initialize data structures. */
/* 2) The unit for the double parameters is the width of the output */
/* image. Adapt to the actual size of the image. */
/* 4) Project the corners of the input image onto the output image, */
/* and determine the range of rows that can be reached by the */
/* input image. */
/* 5) Determine the orientation of the reachable part of the image. */
/* 6) Calculate the factors of X and Y and the constants that */
/* contribute to the determinant and the numerators. Note that in */
/* the middle of the derivation, the constants were simplified. */
/* The Fixup for E_x or E_y != 0 is not in the derivation. */
/* 6a) Compensate for the translation caused by E_x != 0 or E_y != 0. */
/* 7) For all output rows.. */
/* 8) Determine the left and right most intersections of the */
/* projection of the input rectangle with the scan line. */
/* 9) Collect input from the input image. */
/* 10) Emit is to the output image. */
/* */
/************************************************************************/
int bmTextureMap( ColorAllocator * ca,
int swapBitmapUnit,
int swapBitmapBytes,
int swapBitmapBits,
int dither,
unsigned char * bufferOut,
const unsigned char * bufferIn,
const BitmapDescription * bdOut,
const BitmapDescription * bdIn,
double E_x,
double E_y,
double E_z,
double P_x,
double P_y,
double P_z,
double N_x,
double N_y,
double N_z,
double M_x,
double M_y,
double M_z )
{
int rval= 0;
double nmc_x;
double nmc_y;
double nmc_c;
double nmr_x;
double nmr_y;
double nmr_c;
double det_x;
double det_y;
double det_c;
double Q_x[4];
double Q_y[4];
double L_x[4];
double L_y[4];
double R_x[4];
double R_y[4];
int row0;
int rowP;
int top;
int bot;
int i;
PutScreenRow putRow= (PutScreenRow)0;
GetSourceRow getRow= (GetSourceRow)0;
int scratchSize= 0;
FillJob fj;
bmInitFillJob( &fj );
/* 1 */
if ( bmGetPutRow( &putRow, &scratchSize, ca,
swapBitmapUnit, swapBitmapBytes,
swapBitmapBits, bdOut ) )
{ LDEB(1); rval= -1; goto ready; }
if ( bmGetGetRow( &getRow, bdIn ) )
{ LDEB(1); return -1; }
if ( bmSetFillJob( &fj, ca,
bdOut->bdPixelsWide, bdOut->bdPixelsWide,
scratchSize, dither ) )
{ LDEB(scratchSize); rval= -1; goto ready; }
/* 2 */
E_x *= bdOut->bdPixelsWide;
E_y *= bdOut->bdPixelsWide;
E_z *= bdOut->bdPixelsWide;
P_x *= bdOut->bdPixelsWide;
P_y *= bdOut->bdPixelsWide;
P_z *= bdOut->bdPixelsWide;
N_x *= bdOut->bdPixelsWide;
N_y *= bdOut->bdPixelsWide;
N_z *= bdOut->bdPixelsWide;
M_x *= bdOut->bdPixelsWide;
M_y *= bdOut->bdPixelsWide;
M_z *= bdOut->bdPixelsWide;
/*
FFFDEB(E_x,E_y,E_z);
FFFDEB(P_x,P_y,P_z);
FFFDEB(N_x,N_y,N_z);
FFFDEB(M_x,M_y,M_z);
*/
/* 4 */
Q_x[0]= ( P_x- E_x )/ ( ( P_z )/ -E_z+ 1 )+ E_x;
Q_y[0]= ( P_y- E_y )/ ( ( P_z )/ -E_z+ 1 )+ E_y;
Q_x[1]= ( P_x- E_x+ N_x )/ ( ( P_z+ N_z )/ -E_z+ 1 )+ E_x;
Q_y[1]= ( P_y- E_y+ N_y )/ ( ( P_z+ N_z )/ -E_z+ 1 )+ E_y;
Q_x[2]= ( P_x- E_x+ N_x+ M_x )/ ( ( P_z+ N_z+ M_z )/ -E_z+ 1 )+ E_x;
Q_y[2]= ( P_y- E_y+ N_y+ M_y )/ ( ( P_z+ N_z+ M_z )/ -E_z+ 1 )+ E_y;
Q_x[3]= ( P_x- E_x+ M_x )/ ( ( P_z+ M_z )/ -E_z+ 1 )+ E_x;
Q_y[3]= ( P_y- E_y+ M_y )/ ( ( P_z+ M_z )/ -E_z+ 1 )+ E_y;
# if SHOW_PROJECTION
appDebug(
"FWD P : (%8.1f,%8.1f,%8.1f) -> (%8.1f,%8.1f) @[%8.1f,%8.1f]\n",
P_x, P_y, P_z, Q_x[0], Q_y[0],
Q_x[0], bdOut->bdPixelsHigh- Q_y[0] );
appDebug(
"FWD P+N : (%8.1f,%8.1f,%8.1f) -> (%8.1f,%8.1f) @[%8.1f,%8.1f]\n",
P_x+ N_x, P_y+ N_y, P_z+ N_z, Q_x[1], Q_y[1],
Q_x[1], bdOut->bdPixelsHigh- Q_y[1] );
appDebug(
"FWD P +M: (%8.1f,%8.1f,%8.1f) -> (%8.1f,%8.1f) @[%8.1f,%8.1f]\n",
P_x+ M_x, P_y+ M_y, P_z+ M_z, Q_x[3], Q_y[3],
Q_x[3], bdOut->bdPixelsHigh- Q_y[3] );
appDebug(
"FWD P+N+M: (%8.1f,%8.1f,%8.1f) -> (%8.1f,%8.1f) @[%8.1f,%8.1f]\n",
P_x+ N_x+ M_x, P_y+ N_y+ M_y, P_z+ N_z+ M_z,
Q_x[2], Q_y[2],
Q_x[2], bdOut->bdPixelsHigh- Q_y[2] );
# endif
top= bot= 0;
for ( i= 1; i < 4; i++ )
{
if ( Q_y[i] < Q_y[bot] )
{ bot= i; }
if ( Q_y[i] > Q_y[top] )
{ top= i; }
}
row0= floor( bdOut->bdPixelsHigh- ( Q_y[top] ) );
rowP= ceil ( bdOut->bdPixelsHigh- ( Q_y[bot] ) );
if ( row0 < 0 )
{ row0 = 0; }
if ( rowP < 0 )
{ rowP = 0; }
if ( row0 >= bdOut->bdPixelsHigh )
{ row0 = bdOut->bdPixelsHigh; }
if ( rowP >= bdOut->bdPixelsHigh )
{ rowP = bdOut->bdPixelsHigh; }
/* 5 */
if ( bmMapSetBorders( L_x, L_y, R_x, R_y, Q_x, Q_y, top, bot ) )
{ LLDEB(top,bot); rval= -1; goto ready; }
# if SHOW_COLUMNS
{
appDebug( "\n" );
bmShowArray( 'Q', bdOut, Q_x, Q_y );
appDebug( "\n" );
bmShowArray( 'L', bdOut, L_x, L_y );
appDebug( "\n" );
bmShowArray( 'R', bdOut, R_x, R_y );
}
# endif
/* 6 */
bmTextureMapBwdCoefficients( &nmr_x, &nmr_y, &nmr_c,
&nmc_x, &nmc_y, &nmc_c,
&det_x, &det_y, &det_c, bdIn,
P_x, P_y, P_z,
N_x, N_y, N_z,
M_x, M_y, M_z,
E_x, E_y, E_z );
/* 7,8,9,10 */
if ( bmMapPixels( bufferOut, bdOut, bufferIn, bdIn,
row0, rowP, top, Q_y, &fj, putRow, getRow, L_x, L_y, R_x, R_y,
nmr_x, nmr_y, nmr_c, nmc_x, nmc_y, nmc_c, det_x, det_y, det_c ) )
{ LDEB(1); rval= -1; goto ready; }
ready:
bmCleanFillJob( &fj );
return rval;
}
/************************************************************************/
/* */
/* Inverse of bmTextureMap. All projection related parameters mean the */
/* same thing as in bmTextureMap(). */
/* */
/************************************************************************/
int bmTextureMapInverse( ColorAllocator * ca,
int swapBitmapUnit,
int swapBitmapBytes,
int swapBitmapBits,
int dither,
unsigned char * bufferOut,
const unsigned char * bufferIn,
const BitmapDescription * bdOut,
const BitmapDescription * bdIn,
double E_x,
double E_y,
double E_z,
double P_x,
double P_y,
double P_z,
double N_x,
double N_y,
double N_z,
double M_x,
double M_y,
double M_z )
{
return 0;
}
|