File: fft.ct

package info (click to toggle)
tela 1.28-2
  • links: PTS
  • area: main
  • in suites: slink
  • size: 6,596 kB
  • ctags: 5,519
  • sloc: ansic: 14,013; cpp: 13,376; lex: 1,651; fortran: 1,048; yacc: 834; sh: 715; makefile: 464
file content (910 lines) | stat: -rw-r--r-- 27,622 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/*
 * This file is part of tela the Tensor Language.
 * Copyright (c) 1994-1996 Pekka Janhunen
 */

/*
	fft.ct
	Fast Fourier Transform functions.
	Preprocess with ctpp.
	C-tela code is C++ equipped with []=f() style function definition.
*/

/*
   If VECTOR_MACHINE is defined, vecfftpack.C is used for multiple
   FFTs. (Currently, for all FFTs.)
   Otherwise fftpack.C is used.
*/

//#define NO_SCALAR
/* Even when VECTOR_MACHINE is defined, single FFTs are performed by
   calls to scalar FFT routines, unless NO_SCALAR is defined.
   You might want to define NO_SCALAR if you want to reduce object code
   size at the expense of making single FFTs run more slowly.
   However the size penalty of including the scalar FFTs is not very
   large, only a few tens of kilobytes on most machines. */

#ifdef VECTOR_MACHINE

#include "vecfftpack.H"
// Routine table, pointers to routines. Indexed by RoutineIndex in 0..4.
static struct {
	void (*forward) (Tint, Treal[], Treal[], Tint lot, Tint step, Tint jump);
	void (*backward)(Tint, Treal[], Treal[], Tint lot, Tint step, Tint jump);
	void (*initializer)(Tint, Treal[], Tint lot, Tint step, Tint jump);
	Tint nconst; Tint addconst;
} VecRealRoutineArray[5] = {
	{VECRFFTF, VECRFFTB, VECRFFTI, 1,0},	// normalization 1/N
	{VECSINT, VECSINT, VECSINTI, 2,2},		// normalization 1/(2*N + 2)
	{VECCOST, VECCOST, VECCOSTI, 2,-2},		// normalization 1/(2*N - 2)
	{VECSINQF, VECSINQB, VECSINQI, 4,0},	// normalization 1/(4*N)
	{VECCOSQF, VECCOSQB, VECCOSQI, 4,0}		// normalization 1/(4*N)
};

#endif

#ifndef NO_SCALAR

#include "fftpack.H"
// Routine table, pointers to routines. Indexed by RoutineIndex in 0..4.
static struct {
	void (*forward) (Tint, Treal[], const Treal[]);
	void (*backward)(Tint, Treal[], const Treal[]);
	void (*initializer)(Tint, Treal[]);
	Tint nconst; Tint addconst;
} RealRoutineArray[5] = {
	{RFFTF, RFFTB, RFFTI, 1,0},		// normalization 1/N
	{SINT, SINT, SINTI, 2,2},		// normalization 1/(2*N + 2)
	{COST, COST, COSTI, 2,-2},		// normalization 1/(2*N - 2)
	{SINQF, SINQB, SINQI, 4,0},		// normalization 1/(4*N)
	{COSQF, COSQB, COSQI, 4,0}		// normalization 1/(4*N)
};

#endif

#ifdef VECTOR_MACHINE

// This is INLINE because it is called only once
INLINE void ManyOneDimensionalFFTs(Tcomplex data[], int isign, int N, int incr, int M, int jump)
// Performs M transforms, each of length N. First data element is at data[0].
// Each data vector has increment 'incr'. The corresponding elements of two
// subsequent data vectors are separated to 'jump' complex numbers.
// The case M=1, incr=1 is treated separately by scalar FFTs
// unless NO_SCALAR is defined.
{
	Tint n,m;
#ifndef NO_SCALAR
	if (M==1 && incr==1) {
		static Treal *wrk = 0;
		static int oldN = -1;
		if (N != oldN) {
			delete [] wrk;
			wrk = new Treal [6*N+30];
			CFFTI(N,wrk);
			oldN = N;
		}
		if (isign < 0)
			CFFTF(N,data,wrk);
		else {
			CFFTB(N,data,wrk);
			const Treal normalizer = 1.0/N;
			for (n=0; n<N; n++) data[n] *= normalizer;
		}
		return;
	}
#endif
	const Tint len = (M-1)*jump + N*incr;
	Treal *wrk = new Treal [2*(len+N) + 30];
	VECCFFTI(N,wrk,M,incr,jump);
	if (isign < 0)
		VECCFFTF(N,data,wrk,M,incr,jump);
	else {
		VECCFFTB(N,data,wrk,M,incr,jump);
		const Treal normalizer = 1.0/N;
		for (m=0; m<M; m++) for (n=0; n<N; n++) data[n*incr + m*jump] *= normalizer;
	}
	delete [] wrk;
}

#else /* no VECTOR_MACHINE */

// This is INLINE because it is called only once
INLINE void ManyOneDimensionalFFTs(Tcomplex data[], int isign, int N, int incr, int M, int jump)
// Performs M transforms, each of length N. First data element is at data[0].
// Each data vector has increment 'incr'. The corresponding elements of two
// subsequent data vectors are separated to 'jump' complex numbers.
// The most usual case may be incr=1, M=N
{
	//cerr << "many(isign=" << isign << ", N=" << N << ", incr=" << incr << ", M=" << M << ", jump=" << jump << "\n";
	static Treal *wrk = 0;				// CFFT workspace
	static int oldN = -1;
	if (N != oldN) {
		delete [] wrk;
		wrk = new Treal [6*N+30];
		CFFTI(N,wrk);
	}
	Tcomplex *buf = (Tcomplex*)(wrk + 4*N + 30);	// temporary 1D buffer
	//CATCH_INTERRUPTS(
	for (int m=0; m<M; m++) {
        int n;
		for (n=0; n<N; n++) buf[n] = data[n*incr + m*jump];
		if (isign<0) CFFTF(N,buf,wrk); else CFFTB(N,buf,wrk);
		Treal normalizer = (isign>0) ? 1.0/N : 1.0;
		for (n=0; n<N; n++) data[n*incr + m*jump] = normalizer*buf[n];
	}
	//);
	oldN = N;
}

#endif

#ifdef VECTOR_MACHINE

// This is INLINE because it is called only once
INLINE void ManyOneDimensionalRealFFTs(Treal data[], int isign, int N, int incr, int M, int jump, int RoutineIndex)
// Performs M transforms, each of length N. First data element is at data[0].
// Each data vector has increment 'incr'. The corresponding elements of two
// subsequent data vectors are separated to 'jump' real numbers.
// The case incr==1, M==1 is treated separately, unless NO_SCALAR is defined.
{
	Tint n,m;
#ifndef NO_SCALAR
	if (incr==1 && M==1) {
		static Treal *wrk = 0;				// workspace
		static int oldN = -1;
		if (N != oldN) {
			delete [] wrk;
			wrk = new Treal [4*N+30];
			oldN = N;
		}
		Treal *buf = (wrk + 3*N + 30);		// temporary 1D buffer
		(*RealRoutineArray[RoutineIndex].initializer)(N,wrk);
		if (isign < 0)
			(*RealRoutineArray[RoutineIndex].forward)(N,data,wrk);
		else {
			const Treal normalizer =
				1.0/(VecRealRoutineArray[RoutineIndex].nconst*N + VecRealRoutineArray[RoutineIndex].addconst);
			(*RealRoutineArray[RoutineIndex].backward)(N,data,wrk);
			for (n=0; n<N; n++) data[n*incr]*= normalizer;
		}
		return;
	}
#endif
	const Tint len = (M-1)*jump + (N+1)*incr;
	Treal *wrk = new Treal [2*len + + N + N/2 + 2 + 30];
	(*VecRealRoutineArray[RoutineIndex].initializer)(N,wrk,M,incr,jump);
	if (isign < 0)
		(*VecRealRoutineArray[RoutineIndex].forward)(N,data,wrk,M,incr,jump);
	else {
		const Treal normalizer =
			1.0/(VecRealRoutineArray[RoutineIndex].nconst*N + VecRealRoutineArray[RoutineIndex].addconst);
		(*VecRealRoutineArray[RoutineIndex].backward)(N,data,wrk,M,incr,jump);
		for (m=0; m<M; m++) for (n=0; n<N; n++) data[n*incr + m*jump]*= normalizer;
	}
	delete [] wrk;
}

#else	/* no VECTOR_MACHINE */

// This is INLINE because it is called only once
INLINE void ManyOneDimensionalRealFFTs(Treal data[], int isign, int N, int incr, int M, int jump, int RoutineIndex)
// Performs M transforms, each of length N. First data element is at data[0].
// Each data vector has increment 'incr'. The corresponding elements of two
// subsequent data vectors are separated to 'jump' real numbers.
// The most usual case may be incr=1, M=N
{
	static Treal *wrk = 0;				// workspace
	static int oldN = -1;
	if (N != oldN) {
		delete [] wrk;
		wrk = new Treal [4*N+30];
	}
	Treal *buf = (wrk + 3*N + 30);		// temporary 1D buffer
	(*RealRoutineArray[RoutineIndex].initializer)(N,wrk);
	Treal normalizer =
		(isign > 0)
			? 1.0/(RealRoutineArray[RoutineIndex].nconst*N + RealRoutineArray[RoutineIndex].addconst)
			: 1.0;
	//CATCH_INTERRUPTS(
	for (int m=0; m<M; m++) {
        int n;
		for (n=0; n<N; n++) buf[n] = data[n*incr + m*jump];
		if (isign < 0)
			(*RealRoutineArray[RoutineIndex].forward)(N,buf,wrk);
		else
			(*RealRoutineArray[RoutineIndex].backward)(N,buf,wrk);
		for (n=0; n<N; n++) data[n*incr + m*jump] = normalizer*buf[n];
	}
	//);
	oldN = N;
}

#endif

/*
  i*jmax*kmax*lmax + j*kmax*lmax + k*lmax + l
  dim=1:	incr=jmax*kmax*lmax		jump=1, VL=jmax*kmax*lmax		step=0, Niter=1
  dim=2:	incr=kmax*lmax			jump=1, VL=kmax*lmax			step=jmax*kmax*lmax, Niter=imax
  dim=3:	incr=lmax				jump=1, VL=lmax					step=kmax*lmax, Niter=imax*jmax
  dim=4:	incr=1					jump=lmax, VL=imax*jmax*kmax	step=0, Niter=1

*/

static void fft(Tobject& data, int isign, int dim)
// data must be ComplexArray
// dim must be in range 1..D where D=rank(data)
// isign must be +1 or -1
{
	//cerr << "fft : input data = " << data << "\n";
	Tint incr=1;
	const int D=data.rank();
    int d;
	for (d=dim; d<D; d++) incr*= data.dims()[d];
	Tint jump;
	if (dim==D) jump=data.dims()[D-1]; else jump=1;
	Tint VL;
	if (dim==D) {
		VL = 1;
		NOVECTOR for (d=0; d<D-1; d++) VL*= data.dims()[d];
	} else
		VL = incr;
	Tint step, Niter;
	if (dim==1 || dim==D) {
		step = 0;
		Niter = 1;
	} else {
		step = 1;
		NOVECTOR for (d=dim-1; d<D; d++) step*= data.dims()[d];
		Niter = data.length() / step;
	}
	// Now the dirty work
	//cerr << "incr=" << incr << ", jump=" << jump << ", VL=" << VL << ", step=" << step << ", Niter=" << Niter << "\n";
	const Tint N = data.dims()[dim-1];
	for (int i=0; i<Niter; i++)
		ManyOneDimensionalFFTs(data.ComplexPtr()+i*step, isign, N, incr, VL, jump);
	// Approximate operation count of a single complex FFT is 5*log2(N)*N
	global::nops+= round(7.213*log(N)*N*VL*Niter);
	//cerr << "fft : output data = " << data << "\n";
}

static void rfft(Tobject& data, int isign, int dim, int RoutineIndex)
// Real version of the above function fft.
// data must be RealArray
// dim must be in range 1..D where D=rank(data)
// isign must be +1 or -1
// RoutineIndex must be in 0..4 for the following encoding:
//   0: real transform, 1: sine tf., 2: cos tf., 3: quarter-sine tf, 4: quarter-cos tf.
{
	Tint incr=1;
	const int D=data.rank();
    int d;
	for (d=dim; d<D; d++) incr*= data.dims()[d];
	Tint jump;
	if (dim==D) jump=data.dims()[D-1]; else jump=1;
	Tint VL;
	if (dim==D) {
		VL = 1;
		NOVECTOR for (d=0; d<D-1; d++) VL*= data.dims()[d];
	} else
		VL = incr;
	Tint step, Niter;
	if (dim==1 || dim==D) {
		step = 0;
		Niter = 1;
	} else {
		step = 1;
		NOVECTOR for (d=dim-1; d<D; d++) step*= data.dims()[d];
		Niter = data.length() / step;
	}
	// Now the dirty work
	const Tint N = data.dims()[dim-1];
	for (int i=0; i<Niter; i++)
		ManyOneDimensionalRealFFTs(data.RealPtr()+i*step, isign, N, incr, VL, jump, RoutineIndex);
	// Approximate operation count of a single real FFT is (5/2)*log2(N)*N
	global::nops+= round(3.607*log(N)*N*VL*Niter);
}

[f] = FFT(u; dim)
/* FFT(u) gives the complex Fast Fourier Transform of u.
   If u's rank is more than one, the transform is computed
   only along the first dimension (many independent 1D
   transforms).

   FFT(u,dim) computes the FFT along the specified dimension.
   The first dimension is labeled 1 and so on.

   For vector u, f=FFT(u) is equivalent with

   n = length(u); f = czeros(n);
   for (j=1; j<=n; j++)
       f[j] = sum(u*exp(-(j-1)*(0:n-1)*2i*pi/n));

   All Fourier transform functions in Tela can take the transform
   along any dimension in a multidimensional array, and the transform
   length is not restricted. The function FFT should be used only in
   case of complex input data. Use realFFT for real input array.

   Functions FFT, realFFT, sinqFFT, cosFFT and their inverses
   are the most efficient when the transform length n is a product
   of small primes.

   Functions sinFFT and invsinFFT are efficient when n+1 is
   a product of small primes
	   
   Functions cosFFT and invcosFFT are efficient when n-1 is
   a product of small primes
	   
   See also: invFFT, realFFT, sinFFT, cosFFT, sinqFFT, cosqFFT.
   Error codes:
   -1: First argument not a numeric array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray || u.kind()==KRealArray)
		Add(f,u,Tobject(0.0,0.0));
	else if (u.kind()==KComplexArray)
		f = u;
	else
		return -1;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	fft(f,-1,d);
	return 0;
}

[f] = invFFT(u; dim)
/* invFFT() is the inverse of FFT().
   For vector f, u=invFFT(f) is equivalent with

   n = length(f); u = czeros(n);
   for (j=1; j<=n; j++)
       u[j] = (1/n)*sum(f*exp((j-1)*(0:n-1)*2i*pi/n));

   Differences with FFT: sign of i is plus, scale factor 1/n.
   
   See also: FFT.
   Error codes:
   -1: First argument not a numeric array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray || u.kind()==KRealArray)
		Add(f,u,Tobject(0.0,0.0));
	else if (u.kind()==KComplexArray)
		f = u;
	else
		return -1;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	fft(f,+1,d);
	return 0;
}

[f] = realFFT(u; dim)
/* realFFT(u) gives the Fast Fourier Transform of real array u.
   If u's rank is more than one, the transform is computed
   only along the first dimension (many independent 1D
   transforms).

   realFFT(u,dim) computes the FFT along the specified dimension.
   The first dimension is labeled 1 and so on.

   The result of realFFT() is the same as FFT() except that only
   nonnegative frequency components are returned. The result is
   always complex array. The first component (0 frequency) has always
   zero imaginary part. If the transform length is even, the last
   component has zero imaginary part as well. Notice that these
   conventions are different from some generally used C and Fortran
   library routines, which return a real array force-fitted
   in the same space as the input array by not storing the zero
   imaginary parts. The Tela convention allows you to manipulate the
   result in k-space more easily because it is already complex.

   realFFT is the most efficient when the transform length is
   a product of small primes.
   
   See also: invrealFFT, FFT, sinFFT, cosFFT, sinqFFT, cosqFFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KComplexArray) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	const int D = u.rank();
	int d=ArrayBase;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<ArrayBase || d>=D+ArrayBase) return -3;
	}
	d-= ArrayBase;
	const Tint jmax = f.dims()[d];
	if (jmax < 2) return 0;		// Return f=u if length is one to avoid problems in rfft
	rfft(f,-1,d+ArrayBase, 0);
	// Postprocess f to complex array.
	Tint imax, kmax;
	imax = 1;
    int d1;
	NOVECTOR for (d1=0; d1<d; d1++) imax*= f.dims()[d1];
	kmax = f.length()/(imax*jmax);
	Tobject fc;
	Tint fcdims[MAXRANK];
	NOVECTOR for (d1=0; d1<D; d1++) fcdims[d1] = f.dims()[d1];
	Tint i,j,k;
	if (jmax % 2 == 0) {
		fcdims[d]+= 2;		// Increased d'th dimension by two
		fcdims[d]/= 2;		// Divide by two because it's complex
		fc.creserv(TDimPack(fcdims,D));
		Treal *fcp = fc.RealPtr();		// *** Assume that (void*)RealPtr() == (void*)ComplexPtr() always
		Treal *fp = f.RealPtr();
		for (i=0; i<imax; i++) for (k=0; k<kmax; k++) {
			VECTORIZED for (j=1; j<=jmax-3; j+=2) {
				fcp[i*(jmax+2)*kmax + 2*k + (j+1)*kmax] = fp[i*jmax*kmax + j*kmax + k];
				fcp[i*(jmax+2)*kmax + 2*k + (j+1)*kmax + 1] = fp[i*jmax*kmax + (j+1)*kmax + k];
			}
			fcp[i*(jmax+2)*kmax + 2*k + (0)*kmax] = fp[i*jmax*kmax + 0*kmax + k];	// Re-part of first element
			fcp[i*(jmax+2)*kmax + 2*k + (0)*kmax + 1] = 0;							// Im-part of first element is zero
			fcp[i*(jmax+2)*kmax + 2*k + (jmax)*kmax] = fp[i*jmax*kmax + (jmax-1)*kmax + k];
			fcp[i*(jmax+2)*kmax + 2*k + (jmax)*kmax + 1] = 0;		// Im-part of last element is zero
		}
	} else {
		fcdims[d]++;		// Increased d'th dimension by one
		fcdims[d]/= 2;		// Divide by two because it's complex
		fc.creserv(TDimPack(fcdims,D));
		Treal *fcp = fc.RealPtr();		// *** Assume that (void*)RealPtr() == (void*)ComplexPtr() always
		Treal *fp = f.RealPtr();
		for (i=0; i<imax; i++) for (k=0; k<kmax; k++) {
			VECTORIZED for (j=1; j<=jmax-2; j+=2) {
				fcp[i*(jmax+1)*kmax + 2*k + (j+1)*kmax] = fp[i*jmax*kmax + j*kmax + k];
				fcp[i*(jmax+1)*kmax + 2*k + (j+1)*kmax + 1] = fp[i*jmax*kmax + (j+1)*kmax + k];
			}
			fcp[i*(jmax+1)*kmax + 2*k + (0)*kmax] = fp[i*jmax*kmax + 0*kmax + k];
			fcp[i*(jmax+1)*kmax + 2*k + (0)*kmax + 1] = 0;
		}
	}
	f.bitwiseMoveFrom(fc);
	return 0;
}

[f] = invrealFFT(u; dim,oddevenspec)
/* invrealFFT() is the inverse of realFFT().
   invrealFFT(u,dim,"even") and invrealFFT(u,dim,"odd") specifies
   even or odd transform length, respectively.
   invrealFFT(u,dim,N) uses the same evenness as the integer N has.

   If the evenness is not specified explicitly, the imaginary parts
   of the highest frequency components are tested. If they are all zero
   the transform length is even, otherwise odd. However, this automatic
   method will fail if the imaginary parts are not EXACTLY zero. If you
   use multiple FFTs to solve a PDE, for example, you should probably
   specify the evenness explicitly.

   See also: realFFT.
   Error codes:
   -1: First argument not a complex array
   -2: Second argument not integer
   -3: Second argument out of range
   -4: Third argument not "even", "odd" or an integer
   */
{
	if (u.kind()!=KComplexArray) return -1;
	const int D = u.rank();
	int d=ArrayBase;
	if (Nargin>=2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<ArrayBase || d>=D+ArrayBase) return -3;
	}
	int isodd = -1;
	if (Nargin==3) {
		if (oddevenspec.kind() == Kint)
			isodd = (oddevenspec.IntValue() % 2 == 1);
		else if (oddevenspec.IsString()) {
			Tstring SPEC = oddevenspec;
			if (!strcmp("even",(char*)SPEC))
				isodd = 0;
			else if (!strcmp("odd",(char*)SPEC))
				isodd = 1;
			else
				return -4;
		} else
			return -4;
	}
	// Preprocess u to be a real array f
	d-= ArrayBase;
	Tint jmax = u.dims()[d];
	if (jmax < 2) {f=u; return 0;}		// Return f=u if length is one to avoid problems in rfft
	Tint imax, kmax;
	imax = 1;
    int d1;
	NOVECTOR for (d1=0; d1<d; d1++) imax*= u.dims()[d1];
	kmax = u.length()/(imax*jmax);
	Tint frdims[MAXRANK];
	NOVECTOR for (d1=0; d1<D; d1++) frdims[d1] = u.dims()[d1];
	Tint i,j,k;
	if (isodd == -1) {		// isodd not determined by 3rd argument, study Im(highest frequency)
		isodd = 0;
		for (i=0; i<imax; i++) {VECTORIZED for (k=0; k<kmax; k++)
			if (imag(u.ComplexPtr()[i*jmax*kmax + (jmax-1)*kmax + k]) != 0.) {
				isodd = 1;
				break;
			}
		}
	}
	Treal *up = u.RealPtr();
	if (isodd) {
		jmax = 2*jmax-1;
		frdims[d] = jmax;
		f.rreserv(TDimPack(frdims,D));
		Treal *frp = f.RealPtr();		// *** Assume that (void*)RealPtr() == (void*)ComplexPtr() always
		for (i=0; i<imax; i++) for (k=0; k<kmax; k++) {
			VECTORIZED for (j=1; j<=jmax-2; j+=2) {
				frp[i*jmax*kmax + j*kmax + k] = up[i*(jmax+1)*kmax + 2*k + (j+1)*kmax];
				frp[i*jmax*kmax + (j+1)*kmax + k] = up[i*(jmax+1)*kmax + 2*k + (j+1)*kmax + 1];
			}
			frp[i*jmax*kmax + 0*kmax + k] = up[i*(jmax+1)*kmax + 2*k + (0)*kmax];
		}
	} else {
		jmax = 2*jmax-2;
		frdims[d] = jmax;
		f.rreserv(TDimPack(frdims,D));
		Treal *frp = f.RealPtr();		// *** Assume that (void*)RealPtr() == (void*)ComplexPtr() always
		for (i=0; i<imax; i++) for (k=0; k<kmax; k++) {
			VECTORIZED for (j=1; j<=jmax-3; j+=2) {
				frp[i*jmax*kmax + j*kmax + k] = up[i*(jmax+2)*kmax + 2*k + (j+1)*kmax];
				frp[i*jmax*kmax + (j+1)*kmax + k] = up[i*(jmax+2)*kmax + 2*k + (j+1)*kmax + 1];
			}
			frp[i*jmax*kmax + 0*kmax + k] = up[i*(jmax+2)*kmax + 2*k + (0)*kmax];
			frp[i*jmax*kmax + (jmax-1)*kmax + k] = up[i*(jmax+2)*kmax + 2*k + (jmax)*kmax];
		}
	}
	d+= ArrayBase;
	rfft(f,+1,d,0);
	return 0;
}

// Use C-tela functions 'Re' and 'Im' from std.ct
extern "C" int Refunction(const TConstObjectPtr[], const int, const TObjectPtr[], const int);
extern "C" int Imfunction(const TConstObjectPtr[], const int, const TObjectPtr[], const int);

static void rfft_possibly_complex(Tobject& f, int isign, int d, int RoutineIndex)
// Same as rfft(f,isign,d,RoutineIndex), but handles complex f case
// by calling rfft separately for real and imaginary parts.
{
	if (f.kind()==KComplexArray) {
		Tobject Ref, Imf;
		TConstObjectPtr inputs[1]; TObjectPtr outputs[1];
		inputs[0] = &f;
		outputs[0] = &Ref;
		Refunction(inputs,1,outputs,1);
		outputs[0] = &Imf;
		Imfunction(inputs,1,outputs,1);
		rfft(Ref,isign,d,RoutineIndex);
		rfft(Imf,isign,d,RoutineIndex);
		Mul(Imf,Tobject(0.0,1.0));
		Add(f,Ref,Imf);
	} else
		rfft(f,isign,d, RoutineIndex);
}

[f] = sinFFT(u; dim)
/* sinFFT(u) gives the sine Fast Fourier Transform of array u.
   If u's rank is more than one, the transform is computed
   only along the first dimension (many independent 1D
   transforms).

   sinFFT(u,dim) computes the FFT along the specified dimension.
   The first dimension is labeled 1 and so on.

   For vector u, f=sinFFT(u) is equivalent with

   n = length(u); f = zeros(n);
   for (j=1; j<=n; j++)
       f[j] = 2*sum(u*sin((1:n)*j*pi/(n+1)));

   Note that sinFFT is the most efficient when n+1 is a product of
   small primes, where n is the transform length.
	   
   See also: invsinFFT, cosFFT, sinqFFT, cosqFFT, realFFT, FFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,-1,d,1);
	return 0;
}

[f] = invsinFFT(u; dim)
/* invsinFFT() is the inverse of sinFFT().
   Actually invsinFFT differs from sinFFT only by normalization,
   but it is provided as a separate function for convenience.
   
   For vector f, u=invsinFFT(f) is equivalent with

   n = length(f); u = zeros(n);
   for (j=1; j<=n; j++)
       u[j] = (1/(n+1))*sum(f*sin((1:n)*j*pi/(n+1)));
   
   See also: sinFFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,+1,d, 1);
	return 0;
}


[f] = cosFFT(u; dim)
/* cosFFT(u) gives the cosine Fast Fourier Transform of array u.
   If u's rank is more than one, the transform is computed
   only along the first dimension (many independent 1D
   transforms).

   cosFFT(u,dim) computes the FFT along the specified dimension.
   The first dimension is labeled 1 and so on.

   For vector u, f=cosFFT(u) is equivalent with

   n = length(u); f = zeros(n);
   for (j=1; j<=n; j++)
       f[j] = u[1] - (-1)^j*u[n] + 2*sum(u[2:n-1]*cos((1:n-2)*(j-1)*pi/(n-1)));

   Note that cosFFT is most efficient when n-1 is a product of small
   primes, where n is the transform length.
	   
   See also: invcosFFT, sinFFT, cosqFFT, sinqFFT, realFFT, FFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,-1,d, 2);
	return 0;
}

[f] = invcosFFT(u; dim)
/* invcosFFT() is the inverse of cosFFT().
   Actually invcosFFT differs from cosFFT only by normalization,
   but it is provided as a separate function for convenience.
   
   For vector f, u=invcosFFT(f) is equivalent with

   n = length(f); u = zeros(n);
   for (j=1; j<=n; j++)
       u[j] = (f[1] - (-1)^j*f[n] + 2*sum(f[2:n-1]*cos((1:n-2)*(j-1)*pi/(n-1))))/(2*n-2)
   
   See also: cosFFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,+1,d, 2);
	return 0;
}


[f] = sinqFFT(u; dim)
/* sinqFFT computes the quarter-wave sine Fourier transform of array u.
   Except for the quarter-wave sine character, it works similarly to sinFFT.
   
   For vector u, f=sinqFFT(u) is equivalent with

   n = length(u); f = zeros(n);
   for (j=1; j<=n; j++)
       f[j] = (-1)^(j-1)*u[n] + 2*sum(u[1:n-1]*sin((2*j-1)*(1:n-1)*pi/(2*n)));

   sinqFFT is most efficient when the transform length is a product
   of small primes.
	   
   See also: invsinqFFT, realFFT, cosqFFT, FFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,-1,d, 3);
	return 0;
}

[f] = invsinqFFT(u; dim)
/* invsinqFFT() is the inverse of sinqFFT()
   (inverse quarter-wave sine Fourier transform).
   
   For vector f, u=invsinqFFT(f) is equivalent with

   n = length(f); u = zeros(n);
   for (j=1; j<=n; j++)
       u[j] = (1/n)*sum(f*sin((2*(1:n)-1)*j*pi/(2*n)));
   
   See also: sinqFFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,+1,d,3);
	return 0;
}


[f] = cosqFFT(u; dim)
/* cosqFFT computes the quarter-wave cosine Fourier transform.
   Except for the quarter-wave cosine character, it works similarly to cosFFT.
   
   For vector u, f=cosqFFT(u) is equivalent with

   n = length(u); f = zeros(n);
   for (j=1; j<=n; j++)
       f[j] = u[1] + 2*sum(u[2:n]*cos((2*j-1)*(1:n-1)*pi/(2*n)));
   
   cosqFFT is most efficient when the transform length is a product
   of small primes.
	   
   See also: invcosqFFT, realFFT, sinqFFT, FFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,-1,d, 4);
	return 0;
}

[f] = invcosqFFT(u; dim)
/* invcosqFFT() is the inverse of cosqFFT()
   (inverse quarter-wave cosine Fourier transform).
   
   For vector f, u=invcosqFFT(f) is equivalent with

   n = length(f); u = zeros(n);
   for (j=1; j<=n; j++)
       u[j] = (1/n)*sum(f*cos((2*(1:n)-1)*(j-1)*pi/(2*n)));
   
   See also: cosqFFT.
   Error codes:
   -1: First argument not a real array
   -2: Second argument not integer
   -3: Second argument out of range
   */
{
	if (!u.IsNumericalArray()) return -1;
	if (u.kind()==KIntArray)
		Add(f,u,Tobject(0.0));
	else
		f = u;
	if (u.length()==0) return 0;
	const int D = u.rank();
	int d=1;
	if (Nargin==2) {
		if (dim.kind()!=Kint) return -2;
		d = dim.IntValue();
		if (d<1 || d>D) return -3;
	}
	rfft_possibly_complex(f,+1,d,4);
	return 0;
}