File: numerics.ct

package info (click to toggle)
tela 1.28-2
  • links: PTS
  • area: main
  • in suites: slink
  • size: 6,596 kB
  • ctags: 5,519
  • sloc: ansic: 14,013; cpp: 13,376; lex: 1,651; fortran: 1,048; yacc: 834; sh: 715; makefile: 464
file content (332 lines) | stat: -rw-r--r-- 9,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
 * This file is part of tela the Tensor Language.
 * Copyright (c) 1994-1996 Pekka Janhunen
 */

/*
	numerics.ct
	Numerical analysis functions.
	Preprocess with ctpp.
	C-tela code is C++ equipped with []=f() style function definition.
*/

extern Treal MachineEpsilon;	// from tela.C

#if 0
static int intpol1D(Treal& u, const Treal A[], int N, Treal x)
// 1D linear interpolation from a vector.
// Allowed range: 0<=x<N-1.
// Returns: 0 on success, nonzero on range overflow.
{
	int i = int((1-2*MachineEpsilon)*x);
	if (i<0 || i>=N-1) return 1;
	Treal t = x - i;
	u = (1-t)*A[i] + t*A[i+1];
	return 0;
}

static int intpol2D(Treal& u, const Treal A[], int Nx, int Ny, Treal x, Treal y)
// 2D linear interpolation from a matrix.
// Allowed range: 0<=x<Nx-1, 0<=y<Ny-1.
// Returns: 0 on success, nonzero on range overflow.
{
	int i = int((1-2*MachineEpsilon)*x);
	if (i<0 || i>=Nx-1) return 1;
	int j = int((1-2*MachineEpsilon)*y);
	if (j<0 || j>=Ny-1) return 1;
	Treal t = x - i;
	Treal s = y - j;
	u = (1-t)*(1-s)*A[i*Ny+j] + t*(1-s)*A[(i+1)*Ny+j] + (1-t)*s*A[i*Ny+j+1] + t*s*A[(i+1)*Ny+j+1];
	return 0;
}

static int intpolND(Treal& u, const Treal A[], const TDimPack N, const Treal x[], int r)
{
	Tint is[MAXRANK], mult[MAXRANK], isupper[MAXRANK];
	Treal ts[MAXRANK];
	for (int d=0; d<r; d++) {
		is[d] = int((1-2*MachineEpsilon)*x[d]);
		if (is[d] < 0 || is[d] >= N[d]-1) return 1;
		ts[d] = x[d] - is[d];
	}
	mult[r-1] = 1;
	for (d=r-1; d>=1; d--) mult[d-1] = N[d]*mult[d];
	const int Nterms = (1 << r);
	u = 0;
	int baseindex = 0, index;
	Treal coeff;
	for (d=0; d<r; d++) baseindex+= is[d]*mult[d];
	for (d=0; d<r; d++) isupper[d] = 0;
	for (int a=0; a<Nterms; a++) {
		for (d=0; d<r; d++)
			isupper[d] = (a & (1 << d));
		index = baseindex;
		coeff = 1;
		for (d=0; d<r; d++)
			if (isupper[d]) {
				index+= mult[d];
				coeff*= ts[d];
			} else
				coeff*= 1 - ts[d];
		u+= coeff*A[index];
	}
	return 0;
}
#endif

static int intpolND(Treal u[], int M, const Treal A[], const TDimPack N, const Treal *x[MAXRANK], int r)
// N-dimensional linear interpolation from array A to M-length array u
// Arguments:
//    u     - result array
//    M     - length of result array
//    A     - array from which to interpolate
//    N     - dimensions of A
//    x     - array of pointers to real index arrays
//    r     - rank of A
{
	int a,d;
	const int Nterms = (1 << r);	// 2^r terms affect each result
	const Treal almostunity = 1 - 2*MachineEpsilon;
	Tint ind, mult[MAXRANK], baseindex, isupper[MAXRANK][1 << MAXRANK], inds[1 << MAXRANK];
	Treal interpolant, ts[MAXRANK], coeffs[1 << MAXRANK];
	mult[r-1] = 1;
	for (d=r-1; d>=1; d--) mult[d-1] = N[d]*mult[d];
	// compute isupper table of 1's and 0's: isupper==1 if (index+1), 0 if (index)
	for (d=0; d<r; d++) {
		const int mask = (1 << d);
		for (a=0; a<Nterms; a++)
			isupper[d][a] = a & mask;
	}
	int i;
	for (i=0; i<M; i++) {	// Loop over result values
		baseindex = 0;			// index of lowest corner of interpolation hypercube
		for (d=0; d<r; d++) {
			ind = int(almostunity*x[d][i]);
			if (ind < 0 || ind >= N[d]-1) return 1;
			ts[d] = x[d][i] - ind;
			baseindex+= ind*mult[d];
		}
		// now ts, baseindex are ready
		// a numbers the 2^r terms in the sum that affects the result
		for (a=0; a<Nterms; a++)
			inds[a] = baseindex;
		// loop for d==0:
		for (a=0; a<Nterms; a++) {
			if (isupper[0][a]) {
				coeffs[a] = ts[0];
				inds[a]+= mult[0];
			} else
				coeffs[a] = 1 - ts[0];
		}
		// loop for d>0:
		for (d=1; d<r; d++)	{
			const Treal t = ts[d], oneminust = 1-t; const Tint m = mult[d];
			for (a=0; a<Nterms; a++) {
				if (isupper[d][a]) {
					coeffs[a]*= t;
					inds[a]+= m;
				} else
					coeffs[a]*= oneminust;
			}
		}
		interpolant = 0;		// gather result in this variable
		for (a=0; a<Nterms; a++)
			interpolant+= coeffs[a]*A[inds[a]];
		u[i] = interpolant;		// one result ready
	}
	global::nops+= r*(2*M + 3*M*Nterms/2) + 2*Nterms*M;
	return 0;
}

static int intpol(Tobject& y, const Tobject& A, const TConstObjectPtr indices[], int Nindices)
// For error codes, see following C-tela function.
// In this function, A is always real array.
{
	int errcode;
	Treal result;
	if (A.rank() != Nindices) return -2;
	int ScalarIndices = 1;
	TDimPack IndexDims;
    int p;
	for (p=0; p<Nindices; p++) {
		const Tkind ik = indices[p]->kind();
		if (ik!=Kint && ik!=Kreal && ik!=KIntArray && ik!=KRealArray) return -3;
		if (p == 0) {
			ScalarIndices = (ik==Kint || ik==Kreal);
			if (!ScalarIndices) IndexDims = indices[p]->dims();
		} else {
			if (ScalarIndices) {
				if (ik!=Kint && ik!=Kreal) return -4;
			} else {
				if (indices[p]->dims() != IndexDims) return -4;
			}
		}
	}
	if (ScalarIndices) {
		Treal inds[MAXRANK];
		for (p=0; p<Nindices; p++)
			inds[p] = ((indices[p]->kind()==Kint) ? Treal(indices[p]->IntValue()) : indices[p]->RealValue()) - ArrayBase;
		const Treal *indarray[MAXRANK];
		for (p=0; p<Nindices; p++) indarray[p] = &inds[p];
		errcode = intpolND(&result,1, A.RealPtr(), A.dims(), indarray, Nindices);
#if 0
		errcode = intpolND(result, A.RealPtr(), A.dims(), inds, Nindices);
#endif
		if (errcode) return -6;
		y = result;
#if 0
		switch (A.rank()) {
		case 1:
			errcode = intpol1D(result, A.RealPtr(), A.length(), inds[0]);
			if (errcode) return -6;
			y = result;
			break;
		case 2:
			errcode = intpol2D(result, A.RealPtr(), A.dims()[0], A.dims()[1], inds[0], inds[1]);
			if (errcode) return -6;
			y = result;
			break;
		default:
			return -5;
		}
#endif
	} else {	// Array indices
		Tobject inds[MAXRANK];
		const Tobject offset = Treal(-ArrayBase);
		for (p=0; p<Nindices; p++)
			Add(inds[p],*indices[p],offset);
		y.rreserv(indices[0]->dims());
		const Treal *indarray[MAXRANK];
		for (p=0; p<Nindices; p++) indarray[p] = inds[p].RealPtr();
		errcode = intpolND(y.RealPtr(),y.length(), A.RealPtr(), A.dims(), indarray, Nindices);
		if (errcode) return -6;
#if 0
		Treal indarray[MAXRANK];
		for (int i=0; i<y.length(); i++) {
			for (p=0; p<Nindices; p++) indarray[p] = inds[p].RealPtr()[i] - ArrayBase;
			errcode = intpolND(y.RealPtr()[i], A.RealPtr(), A.dims(), indarray, Nindices);
			if (errcode) return -6;
		}
#endif
#if 0
			switch (A.rank()) {
			case 1:
				errcode = intpol1D(y.RealPtr()[i], A.RealPtr(), A.length(), inds[0].RealPtr()[i]-ArrayBase);
				if (errcode) return -6;
				break;
			case 2:
				errcode = intpol2D(y.RealPtr()[i], A.RealPtr(), A.dims()[0], A.dims()[1],
								   inds[0].RealPtr()[i]-ArrayBase, inds[1].RealPtr()[i]-ArrayBase);
				if (errcode) return -6;
				break;
			default:
				return -5;
			}
#endif
	}
	return 0;
}

// Use C-tela functions 'Re'  and 'Im' from std.ct
extern "C" int Refunction(const TConstObjectPtr[], const int, const TObjectPtr[], const int);
extern "C" int Imfunction(const TConstObjectPtr[], const int, const TObjectPtr[], const int);

[y] = intpol(A...)
/* intpol(A,index1,index2...) is a general interpolation
   function. A must be an array from which values are interpolated.
   The rank of A must equal the number of index arguments.
   Each index argument may be a real scalar or real array.
   All index arguments must mutually agree in type and rank.
   The array A may also be complex. The result y is of same
   rank and size as each of the index arguments.

   intpol(A,i,j,...) is a generalization of mapped indexing
   A<[i,j,...]> for non-integral indices. The function benefits
   from vectorization even more than most other Tela functions.

   Currently intpol uses linear interpolation.
   Error codes:
   -1: First arg not a numerical array
   -2: Rank of first arg does not match number of index args
   -3: Non-real index arg
   -4: Dissimilar index args
   -6: Range overflow
*/
{
	// The actual job is performed by intpol above.
	// This function however treats the case of complex A.
	int errcode;
	if (A.kind()==KComplexArray) {
		Tobject ReA, ImA, Rey, Imy;
		TConstObjectPtr inputs[1]; TObjectPtr outputs[1];
		inputs[0] = &A;
		outputs[0] = &ReA;
		Refunction(inputs,1,outputs,1);
		inputs[0] = &A;
		outputs[0] = &ImA;
		Imfunction(inputs,1,outputs,1);
		errcode = intpol(Rey,ReA,argin+1,Nargin-1);
		if (errcode) return errcode;
		errcode = intpol(Imy,ImA,argin+1,Nargin-1);
		if (errcode) return errcode;
		const Tobject i = Tcomplex(0,1);
		Mul(Imy,i,Imy);
		Add(y,Rey,Imy);
	} else if (A.kind()==KRealArray) {
		errcode = intpol(y,A,argin+1,Nargin-1);
	} else if (A.kind()==KIntArray) {
		Tobject A1;
		const Tobject zero = 0.0;
		Add(A1,A,zero);		// now A1 is real array
		errcode = intpol(y,A1,argin+1,Nargin-1);
	} else
		return -1;
	return errcode;
}

[Lu] = stencil2d_4(u,ap0,am0,a0p,a0m)
/* stencil2d_4(u,ap0,am0,a0p,a0m) computes the two-dimensional
   five-point "molecule" where the coefficient of the central
   term is unity:

   Lu = u[i,j]
      + ap0*u[i+1,j] + am0*u[i-1,j]
	  + a0p*u[i,j+1] + a0m*u[i,j-1];

   where the indices i and j run from 2..nx and 2..ny where
   [nx,ny] = size(u). The size of ap0,am0,a0p,a0m must be two
   less than the size of u in both directions.
   Error codes:
   -1: One of the arguments is not a real matrix
   -2: One of the coefficient args has bad size
*/
{
    int p;
	for (p=0; p<5; p++) {
		if (argin[p]->kind()!=KRealArray) return -1;
		if (argin[p]->rank()!=2) return -1;
	}
	const Tint nx = u.dims()[0];
	const Tint ny = u.dims()[1];
	for (p=1; p<5; p++)
		if (argin[p]->dims()[0]!=nx-2 || argin[p]->dims()[1]!=ny-2) return -2;
	const Treal *U = u.RealPtr();
	const Treal *AP0 = ap0.RealPtr();
	const Treal *AM0 = am0.RealPtr();
	const Treal *A0P = a0p.RealPtr();
	const Treal *A0M = a0m.RealPtr();
	const Tint nx2=nx-2, ny2=ny-2;
	Lu.rreserv(TDimPack(nx2,ny2));
	Treal *LU = Lu.RealPtr();
	Tint i,j;
	VECTORIZED for (i=1; i<nx-1; i++) {
		VECTORIZED for (j=1; j<ny-1; j++) {
			LU[(i-1)*ny2+j-1] =
				U[i*ny+j]
				+ AP0[(i-1)*ny2+j-1]*U[(i+1)*ny+j] + AM0[(i-1)*ny2+j-1]*U[(i-1)*ny+j]
				+ A0P[(i-1)*ny2+j-1]*U[i*ny+j+1]   + A0M[(i-1)*ny2+j-1]*U[i*ny+j-1];
		}
	}
	global::nops+= 8*nx2*ny2;
	return 0;
}