File: poly.t

package info (click to toggle)
tela 1.28-2
  • links: PTS
  • area: main
  • in suites: slink
  • size: 6,596 kB
  • ctags: 5,519
  • sloc: ansic: 14,013; cpp: 13,376; lex: 1,651; fortran: 1,048; yacc: 834; sh: 715; makefile: 464
file content (60 lines) | stat: -rw-r--r-- 1,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
package
global(polyval,polyadd,roots)
{

/*
  A polynomial p(x) = p[1]*x^n + p[2]*x^(n-1) + ... + p[n-1]*x + p[n]
  is represented by vector #(p[1],...,p[n]). That is, the first element
  of the vector is the higher order coefficient.
*/
	
function y = polyval(p,x)
/* polyval(p,x) evaluates polynomial p at argument x.
   How polynonials are represented, see roots. */
{
	n = length(p);
	y = p[1];
	for (i=2; i<=n; i++)
		y = y*x + p[i];
};

function y = polyadd(p,q)
/* polyadd(p,q) forms the sum of two polynomials (which are represented
   in vector form).
   How polynonials are represented, see roots. */
{
	Lp = length(p);
	Lq = length(q);
	L = max(Lp,Lq);
	y = izeros(L) + 0*p[1] + 0*q[1];
	y[L-Lp+1:L] = p;
	y[L-Lq+1:L] = y[L-Lq+1:L] + q;
};

function y = roots(p)
/* roots(p) returns the vector of zeros of polynomial p.
   It uses the companion matrix method.
   
   A polynomial p(x) = p[1]*x^n + p[2]*x^(n-1) + ... + p[n]
   is represented by vector #(p[1],...,p[n]). That is, the first
   element of the vector is the higher order coefficient

   See also: fsolve*/
{
	n = length(p);
	n1 = n - 1;
	p1 = p[1];
	A = zeros(n1,n1) + 0*p1;
	if (n > 2)  {
		A[n:n:n1^2] = 1;
		A[1,:] = -p[2:n]/p1;
	} else if (n == 2) {
		A[1,1] = -p[2]/p1;
	} else {
		y = #();
		return;
	};
	y = eig(A);
};

}