1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
*******************************************************************************
Copyright 2023 Arm Limited and affiliates.
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*******************************************************************************
diff --git a/src/cpu/aarch64/acl_convolution_utils.cpp b/src/cpu/aarch64/acl_convolution_utils.cpp
index 6b57374643..85e45ace9d 100644
--- a/src/cpu/aarch64/acl_convolution_utils.cpp
+++ b/src/cpu/aarch64/acl_convolution_utils.cpp
@@ -48,11 +48,14 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
if (!is_fwd) return status::unimplemented;
const int ndims = src_d.ndims();
+ const bool is_depthwise = wei_d.ndims() == 5 && wei_d.dims()[1] == 1
+ && wei_d.dims()[2] == 1;
- ACL_CHECK_SUPPORT(ndims != 4, " only supports 2 spatial dimensions");
+ ACL_CHECK_SUPPORT(
+ ndims != 4 && !is_depthwise, " only supports 2 spatial dimensions");
const int with_groups = wei_d.ndims() == src_d.ndims() + 1;
- ACL_CHECK_SUPPORT(with_groups, " does not support groups");
+ ACL_CHECK_SUPPORT(with_groups && !is_depthwise, " does not support groups");
ACL_CHECK_SUPPORT(src_d.data_type() != data_type::f32
|| wei_d.data_type() != data_type::f32
@@ -108,7 +111,8 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
acp.with_bias = cd.bias_desc.format_kind != format_kind::undef;
- if (wei_d.format_kind() != format_kind::any) return status::unimplemented;
+ if (wei_d.format_kind() != format_kind::any && !is_depthwise)
+ return status::unimplemented;
auto src_tag = memory_desc_matches_one_of_tag(
src_md, format_tag::nhwc, format_tag::nchw);
@@ -138,8 +142,12 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
|| src_tag != dst_tag)
return status::unimplemented;
- // Set weights to initially be the same as src
- CHECK(memory_desc_init_by_tag(weights_md, src_tag));
+ if (is_depthwise) {
+ CHECK(memory_desc_init_by_tag(weights_md, format_tag::hwigo));
+ } else {
+ // Set weights to initially be the same as src
+ CHECK(memory_desc_init_by_tag(weights_md, src_tag));
+ }
// Bias is just 1D, set to be the obvious format
if (acp.with_bias && bias_md.format_kind == format_kind::any)
@@ -166,6 +174,11 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
1,
acl_data_type,
acl_layout);
+ if(is_depthwise) {
+ // We need to set that values are not constant so that we
+ // we can update them in-place in ACL
+ acp.wei_tensor_info.set_are_values_constant(false);
+ }
acp.dst_tensor_info = arm_compute::TensorInfo(
is_nhwc ? arm_compute::TensorShape(oc, ow, oh, mb) :
@@ -185,6 +198,11 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
// Are we allowed to cast down to bf16 or not?
acp.fast_math
= one_of(attr.fpmath_mode_, fpmath_mode::bf16, fpmath_mode::any);
+ if (is_depthwise) {
+ // There is no support for fixed format kernels for depthwise convolution
+ // in ACL so we are going to use weight format that we set up earlier
+ return status::success;
+ }
// WeightFormat::ANY tells ACL we can handle any format
acp.weights_info = arm_compute::WeightsInfo(
@@ -252,6 +270,7 @@ status_t init_conf_gemm(acl_conv_conf_t &acp, memory_desc_t &src_md,
memory_desc_t &weights_md, memory_desc_t &dst_md,
memory_desc_t &bias_md, const convolution_desc_t &cd,
const primitive_attr_t &attr) {
+ if (weights_md.ndims != 4) return status::unimplemented;
// General Compute Library checks, memory tags are also set there
CHECK(acl_init_conf(acp, src_md, weights_md, dst_md, bias_md, cd, attr));
@@ -277,6 +296,7 @@ status_t init_conf_indirect_gemm(acl_conv_conf_t &acp, memory_desc_t &src_md,
memory_desc_t &weights_md, memory_desc_t &dst_md,
memory_desc_t &bias_md, const convolution_desc_t &cd,
const primitive_attr_t &attr) {
+ if (weights_md.ndims != 4) return status::unimplemented;
// Indirect is slower for small convolution kernels
if (weights_md.dims[2] == 1 && weights_md.dims[3] == 1)
@@ -314,6 +334,22 @@ status_t init_conf_indirect_gemm(acl_conv_conf_t &acp, memory_desc_t &src_md,
return status::success;
}
+status_t init_conf_depthwise(acl_conv_conf_t &acp, memory_desc_t &src_md,
+ memory_desc_t &weights_md, memory_desc_t &dst_md,
+ memory_desc_t &bias_md, const convolution_desc_t &cd,
+ const primitive_attr_t &attr) {
+ if (weights_md.ndims != 5) return status::unimplemented;
+
+ CHECK(acl_init_conf(acp, src_md, weights_md, dst_md, bias_md, cd, attr));
+
+ ACL_CHECK_VALID(arm_compute::NEDepthwiseConvolutionLayer::validate(
+ &acp.src_tensor_info, &acp.wei_tensor_info,
+ acp.with_bias ? &acp.bia_tensor_info : nullptr,
+ &acp.dst_tensor_info, acp.padstride_info));
+
+ return status::success;
+}
+
} // namespace acl_convolution_utils
} // namespace aarch64
diff --git a/src/cpu/aarch64/acl_convolution_utils.hpp b/src/cpu/aarch64/acl_convolution_utils.hpp
index e3d40a5e75..1ded5826c4 100644
--- a/src/cpu/aarch64/acl_convolution_utils.hpp
+++ b/src/cpu/aarch64/acl_convolution_utils.hpp
@@ -66,6 +66,11 @@ status_t init_conf_indirect_gemm(acl_conv_conf_t &acp, memory_desc_t &src_md,
memory_desc_t &bias_md, const convolution_desc_t &cd,
const primitive_attr_t &attr);
+status_t init_conf_depthwise(acl_conv_conf_t &acp, memory_desc_t &src_md,
+ memory_desc_t &weights_md, memory_desc_t &dst_md,
+ memory_desc_t &bias_md, const convolution_desc_t &cd,
+ const primitive_attr_t &attr);
+
} // namespace acl_convolution_utils
template <typename conv_obj_t, typename conv_pd_t, typename src_data_t,
diff --git a/src/cpu/aarch64/acl_depthwise_convolution.cpp b/src/cpu/aarch64/acl_depthwise_convolution.cpp
new file mode 100644
index 0000000000..70ae6bceea
--- /dev/null
+++ b/src/cpu/aarch64/acl_depthwise_convolution.cpp
@@ -0,0 +1,42 @@
+/*******************************************************************************
+* Copyright 2023 Arm Ltd. and affiliates
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include "cpu/aarch64/acl_depthwise_convolution.hpp"
+
+namespace dnnl {
+namespace impl {
+namespace cpu {
+namespace aarch64 {
+
+status_t acl_depthwise_convolution_fwd_t::execute_forward(
+ const exec_ctx_t &ctx) const {
+ std::lock_guard<std::mutex> _lock {this->mtx};
+
+ auto *acl_resource
+ = ctx.get_resource_mapper()
+ ->get<acl_depthwise_convolution_resource_t>(this);
+ acl_obj_t<arm_compute::NEDepthwiseConvolutionLayer> &acl_depthwise_obj
+ = acl_resource->get_acl_obj();
+
+ return execute_forward_conv_acl<
+ acl_obj_t<arm_compute::NEDepthwiseConvolutionLayer>, pd_t, data_t>(
+ ctx, acl_depthwise_obj, pd());
+}
+
+} // namespace aarch64
+} // namespace cpu
+} // namespace impl
+} // namespace dnnl
diff --git a/src/cpu/aarch64/acl_depthwise_convolution.hpp b/src/cpu/aarch64/acl_depthwise_convolution.hpp
new file mode 100644
index 0000000000..3e3d02cf41
--- /dev/null
+++ b/src/cpu/aarch64/acl_depthwise_convolution.hpp
@@ -0,0 +1,141 @@
+/*******************************************************************************
+* Copyright 2023 Arm Ltd. and affiliates
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#ifndef CPU_AARCH64_ACL_DEPTHWISE_CONVOLUTION_HPP
+#define CPU_AARCH64_ACL_DEPTHWISE_CONVOLUTION_HPP
+
+#include "cpu/aarch64/acl_convolution_utils.hpp"
+#include "cpu/cpu_convolution_pd.hpp"
+
+namespace dnnl {
+namespace impl {
+namespace cpu {
+namespace aarch64 {
+
+struct acl_depthwise_convolution_resource_t : public resource_t {
+ acl_depthwise_convolution_resource_t()
+ : acl_obj_(utils::make_unique<
+ acl_obj_t<arm_compute::NEDepthwiseConvolutionLayer>>()) {}
+
+ status_t configure(const acl_conv_conf_t &acp) {
+ if (!acl_obj_) return status::out_of_memory;
+
+ acl_obj_->src_tensor.allocator()->init(acp.src_tensor_info);
+ acl_obj_->wei_tensor.allocator()->init(acp.wei_tensor_info);
+ acl_obj_->dst_tensor.allocator()->init(acp.dst_tensor_info);
+ acl_obj_->bia_tensor.allocator()->init(acp.bia_tensor_info);
+
+ // clang-format off
+ acl_obj_->conv.configure(
+ &acl_obj_->src_tensor,
+ &acl_obj_->wei_tensor,
+ acp.with_bias ? &acl_obj_->bia_tensor : nullptr,
+ &acl_obj_->dst_tensor,
+ acp.padstride_info,
+ 1, // depth multiplier default value
+ acp.act_info);
+
+ // clang-format on
+ return status::success;
+ }
+
+ acl_obj_t<arm_compute::NEDepthwiseConvolutionLayer> &get_acl_obj() const {
+ return *acl_obj_;
+ }
+
+ DNNL_DISALLOW_COPY_AND_ASSIGN(acl_depthwise_convolution_resource_t);
+
+private:
+ std::unique_ptr<acl_obj_t<arm_compute::NEDepthwiseConvolutionLayer>>
+ acl_obj_;
+};
+
+struct acl_depthwise_convolution_fwd_t : public primitive_t {
+
+ struct pd_t : public cpu_convolution_fwd_pd_t {
+ pd_t(const convolution_desc_t *adesc, const primitive_attr_t *attr,
+ const typename pd_t::base_class *hint_fwd_pd)
+ : cpu_convolution_fwd_pd_t(adesc, attr, hint_fwd_pd), acp_() {}
+
+ DECLARE_COMMON_PD_T("depthwise_convolution:acl",
+ acl_depthwise_convolution_fwd_t, USE_GLOBAL_SCRATCHPAD);
+
+ status_t init(engine_t *engine) {
+ using namespace data_type;
+
+ const bool is_fp16_ok = expect_data_types(f16, f16, f16, f16, undef)
+ && attr()->has_default_values(
+ primitive_attr_t::skip_mask_t::post_ops, f16);
+ const bool is_fp32_ok = expect_data_types(f32, f32, f32, f32, undef)
+ && attr()->has_default_values(
+ primitive_attr_t::skip_mask_t::post_ops, f32);
+ bool ok = is_fwd()
+ && set_default_alg_kind(alg_kind::convolution_direct)
+ && utils::one_of(true, is_fp16_ok, is_fp32_ok)
+ && !has_zero_dim_memory();
+ if (!ok) return status::unimplemented;
+
+ CHECK(acl_convolution_utils::init_conf_depthwise(acp_, src_md_,
+ weights_md_, dst_md_, bias_md_, *desc(), *attr()));
+
+ CHECK(post_ops.init(
+ engine, attr_.post_ops_, dst_md_, acp_.act_info));
+ acp_.use_dst_acc = post_ops.has_sum();
+
+ return status::success;
+ }
+
+ acl_conv_conf_t acp_;
+
+ acl_post_ops_t post_ops;
+ };
+
+ acl_depthwise_convolution_fwd_t(const pd_t *apd) : primitive_t(apd) {}
+
+ status_t create_resource(
+ engine_t *engine, resource_mapper_t &mapper) const override {
+ if (mapper.has_resource(this)) return status::success;
+
+ auto r = utils::make_unique<acl_depthwise_convolution_resource_t>();
+ if (!r) return status::out_of_memory;
+
+ CHECK(r->configure(pd()->acp_));
+ mapper.add(this, std::move(r));
+
+ CHECK(pd()->post_ops.create_resource(engine, mapper));
+
+ return status::success;
+ }
+
+ typedef typename prec_traits<data_type::f32>::type data_t;
+
+ status_t execute(const exec_ctx_t &ctx) const override {
+ return execute_forward(ctx);
+ }
+
+private:
+ mutable std::mutex mtx;
+ status_t execute_forward(const exec_ctx_t &ctx) const;
+
+ const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
+};
+
+} // namespace aarch64
+} // namespace cpu
+} // namespace impl
+} // namespace dnnl
+
+#endif // CPU_AARCH64_ACL_DEPTHWISE_CONVOLUTION_HPP
diff --git a/src/cpu/cpu_convolution_list.cpp b/src/cpu/cpu_convolution_list.cpp
index 094c73aa36..80385432d8 100644
--- a/src/cpu/cpu_convolution_list.cpp
+++ b/src/cpu/cpu_convolution_list.cpp
@@ -63,6 +63,7 @@ using namespace dnnl::impl::cpu::x64;
#include "cpu/aarch64/jit_sve_512_x8s8s32x_convolution.hpp"
#include "cpu/aarch64/jit_uni_dw_convolution.hpp"
#if DNNL_AARCH64 && DNNL_AARCH64_USE_ACL
+#include "cpu/aarch64/acl_depthwise_convolution.hpp"
#include "cpu/aarch64/acl_gemm_convolution.hpp"
#include "cpu/aarch64/acl_indirect_gemm_convolution.hpp"
#endif
@@ -102,6 +103,7 @@ const std::map<pk_dt_impl_key_t, std::vector<impl_list_item_t>> &impl_list_map()
CPU_INSTANCE_AARCH64(jit_sve_512_dw_convolution_fwd_t)
CPU_INSTANCE_AARCH64(jit_sve_512_1x1_convolution_fwd_f32_t)
CPU_INSTANCE_AARCH64(jit_sve_512_convolution_fwd_t<f32>)
+ CPU_INSTANCE_AARCH64_ACL(acl_depthwise_convolution_fwd_t)
CPU_INSTANCE_AARCH64_ACL(acl_indirect_gemm_convolution_fwd_t)
CPU_INSTANCE_AARCH64_ACL(acl_gemm_convolution_fwd_t<f32>)
CPU_INSTANCE(gemm_convolution_fwd_t)
|