File: onednn_acl_fixed_format_kernels.patch

package info (click to toggle)
tensorflow 2.14.1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 359,396 kB
  • sloc: cpp: 2,418,453; python: 736,954; java: 20,254; ansic: 18,962; sh: 9,279; pascal: 7,941; objc: 1,584; xml: 988; ada: 727; cs: 273; perl: 150; makefile: 92
file content (1166 lines) | stat: -rw-r--r-- 54,804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
 *******************************************************************************
 Copyright 2023 Arm Limited and affiliates.
 SPDX-License-Identifier: Apache-2.0

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
 *******************************************************************************
diff --git a/src/common/matmul_pd.hpp b/src/common/matmul_pd.hpp
index 4330ad938b..df16c5fcca 100644
--- a/src/common/matmul_pd.hpp
+++ b/src/common/matmul_pd.hpp
@@ -159,6 +159,19 @@ protected:
 
         return true;
     }
+
+    // All implementations that do not support sparse inputs/outputs should
+    // call this function.
+    bool is_dense_data() {
+#ifdef DNNL_EXPERIMENTAL_SPARSE
+        for (auto md : {&src_md_, &weights_md_, &bias_md_, &dst_md_}) {
+            if (memory_desc_wrapper(md).format_kind() == format_kind::sparse)
+                return false;
+        }
+#endif
+        return true;
+    }
+
 };
 
 } // namespace impl
diff --git a/src/cpu/aarch64/acl_convolution_utils.cpp b/src/cpu/aarch64/acl_convolution_utils.cpp
index 37f8ecbc06..6b57374643 100644
--- a/src/cpu/aarch64/acl_convolution_utils.cpp
+++ b/src/cpu/aarch64/acl_convolution_utils.cpp
@@ -41,25 +41,23 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
     const memory_desc_wrapper dst_d(&dst_md);
     const memory_desc_wrapper bia_d(&bias_md);
 
-    auto math_mode = get_fpmath_mode();
-    acp.fast_math = one_of(math_mode, fpmath_mode::bf16, fpmath_mode::any);
-
     // Compute Library currently supports forward propagation only
     const prop_kind_t prop_kind = cd.prop_kind;
     const bool is_fwd = (prop_kind == dnnl_forward_training)
             || (prop_kind == dnnl_forward_inference);
     if (!is_fwd) return status::unimplemented;
 
-    const int with_groups = wei_d.ndims() == src_d.ndims() + 1;
     const int ndims = src_d.ndims();
-    const bool is_1d = ndims == 3;
-    const bool is_3d = ndims == 5;
-    bool is_nspc;
 
-    // Compute Library unsupported shape scenarios
-    if (one_of(true, is_3d, is_1d, with_groups)) {
-        return status::unimplemented;
-    }
+    ACL_CHECK_SUPPORT(ndims != 4, " only supports 2 spatial dimensions");
+
+    const int with_groups = wei_d.ndims() == src_d.ndims() + 1;
+    ACL_CHECK_SUPPORT(with_groups, " does not support groups");
+
+    ACL_CHECK_SUPPORT(src_d.data_type() != data_type::f32
+                    || wei_d.data_type() != data_type::f32
+                    || dst_d.data_type() != data_type::f32,
+            " src, dst and wei must be fp32");
 
     // batch size
     const int mb = src_d.dims()[0];
@@ -110,108 +108,143 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
 
     acp.with_bias = cd.bias_desc.format_kind != format_kind::undef;
 
-    auto set_or_check_tags = [&](format_tag_t desired_src_tag,
-                                     format_tag_t desired_dst_tag) -> status_t {
-        using namespace format_tag;
-        auto src_tag = any, dst_tag = any;
-
-        if (src_d.format_kind() == format_kind::any) {
-            CHECK(memory_desc_init_by_tag(src_md, desired_src_tag));
-            src_tag = desired_src_tag;
-        } else {
-            src_tag = memory_desc_matches_one_of_tag(src_md, nhwc, nchw);
-        }
-
-        if (dst_d.format_kind() == format_kind::any) {
-            CHECK(memory_desc_init_by_tag(dst_md, desired_dst_tag));
-            dst_tag = desired_dst_tag;
-        } else {
-            dst_tag = memory_desc_matches_one_of_tag(dst_md, nhwc, nchw);
-        }
-
-        if (acp.with_bias && bias_md.format_kind == format_kind::any)
-            CHECK(memory_desc_init_by_tag(bias_md, x));
-
-        is_nspc = utils::one_of(src_tag, nhwc);
-
-        memory_desc_t want_wei_md = weights_md;
-        auto wei_tag = is_nspc ? ohwi : oihw;
-        CHECK(memory_desc_init_by_tag(want_wei_md, wei_tag));
-
-        // Compute Library does not support mismatching layouts
-        if ((src_tag != wei_tag) || (src_tag != dst_tag))
-            return status::unimplemented;
+    if (wei_d.format_kind() != format_kind::any) return status::unimplemented;
+
+    auto src_tag = memory_desc_matches_one_of_tag(
+            src_md, format_tag::nhwc, format_tag::nchw);
+    auto dst_tag = memory_desc_matches_one_of_tag(
+            dst_md, format_tag::nhwc, format_tag::nchw);
+
+    // We want src and dst to match, preferrably both to be NHWC
+    if (src_d.format_kind() == format_kind::any
+            && dst_d.format_kind() == format_kind::any) {
+        CHECK(memory_desc_init_by_tag(src_md, format_tag::nhwc));
+        CHECK(memory_desc_init_by_tag(dst_md, format_tag::nhwc));
+    } else if (src_d.format_kind() == format_kind::any
+            && dst_tag != format_tag::undef) {
+        CHECK(memory_desc_init_by_tag(src_md, dst_tag));
+    } else if (dst_d.format_kind() == format_kind::any
+            && src_tag != format_tag::undef) {
+        CHECK(memory_desc_init_by_tag(dst_md, src_tag));
+    }
 
-        if (weights_md.format_kind == format_kind::any) {
-            weights_md = want_wei_md;
-        }
-        return (want_wei_md == weights_md) ? status::success
-                                           : status::unimplemented;
-    };
+    // Recompute tags after potentially running memory desc init
+    src_tag = memory_desc_matches_one_of_tag(
+            src_md, format_tag::nhwc, format_tag::nchw);
+    dst_tag = memory_desc_matches_one_of_tag(
+            dst_md, format_tag::nhwc, format_tag::nchw);
 
-    auto default_dat_tag = format_tag::nhwc;
-    if (set_or_check_tags(default_dat_tag, default_dat_tag) != status::success)
+    if (src_tag == format_tag::undef || dst_tag == format_tag::undef
+            || src_tag != dst_tag)
         return status::unimplemented;
 
-    const auto acl_layout = is_nspc ? arm_compute::DataLayout::NHWC
-                                    : arm_compute::DataLayout::NCHW;
+    // Set weights to initially be the same as src
+    CHECK(memory_desc_init_by_tag(weights_md, src_tag));
 
-    // For convolutions, int8 datatypes imply quantized types in ACL
-    acp.is_int8 = utils::one_of(src_d.data_type(), s8, u8)
-            && wei_d.data_type() == s8;
+    // Bias is just 1D, set to be the obvious format
+    if (acp.with_bias && bias_md.format_kind == format_kind::any)
+        CHECK(memory_desc_init_by_tag(bias_md, format_tag::x));
 
-    auto acl_src_data_t
-            = acl_utils::get_acl_data_t(src_d.data_type(), acp.is_int8);
-    auto acl_wei_data_t
-            = acl_utils::get_acl_data_t(wei_d.data_type(), acp.is_int8);
-    auto acl_dst_data_t
-            = acl_utils::get_acl_data_t(dst_d.data_type(), acp.is_int8);
-    auto acl_bia_data_t
-            = acl_utils::get_acl_data_t(bia_d.data_type(), acp.is_int8);
+    bool is_nhwc = src_tag == format_tag::nhwc;
+    // The layouts have to match (although we may later modify the weights)
+    const auto acl_layout = is_nhwc ? arm_compute::DataLayout::NHWC
+                                    : arm_compute::DataLayout::NCHW;
 
-    if (acl_bia_data_t == arm_compute::DataType::UNKNOWN)
-        acl_bia_data_t = arm_compute::DataType::F32;
+    auto acl_data_type = arm_compute::DataType::F32;
 
     // clang-format off
-    acp.src_info = arm_compute::TensorInfo(
-            is_nspc ? arm_compute::TensorShape(ic, iw, ih, mb) :
+    acp.src_tensor_info = arm_compute::TensorInfo(
+            is_nhwc ? arm_compute::TensorShape(ic, iw, ih, mb) :
             arm_compute::TensorShape(iw, ih, ic, mb),
             1,
-            acl_src_data_t,
+            acl_data_type,
             acl_layout);
 
-    acp.wei_info = arm_compute::TensorInfo(
-            is_nspc ? arm_compute::TensorShape(ic, kw, kh, oc) :
+    acp.wei_tensor_info = arm_compute::TensorInfo(
+            is_nhwc ? arm_compute::TensorShape(ic, kw, kh, oc) :
             arm_compute::TensorShape(kw, kh, ic, oc),
             1,
-            acl_wei_data_t,
+            acl_data_type,
             acl_layout);
 
-    acp.dst_info = arm_compute::TensorInfo(
-            is_nspc ? arm_compute::TensorShape(oc, ow, oh, mb) :
+    acp.dst_tensor_info = arm_compute::TensorInfo(
+            is_nhwc ? arm_compute::TensorShape(oc, ow, oh, mb) :
             arm_compute::TensorShape(ow, oh, oc, mb),
             1,
-            acl_dst_data_t,
+            acl_data_type,
             acl_layout);
 
-    acp.bia_info = arm_compute::TensorInfo(
+    acp.bia_tensor_info = arm_compute::TensorInfo(
             acp.with_bias ? arm_compute::TensorShape(oc)
                           : arm_compute::TensorShape(),
             1,
-            acl_bia_data_t,
+            acl_data_type,
             acl_layout);
     // clang-format on
 
-    // Add quantization info to tensors
-    if (acp.is_int8) {
-        const float *scales = attr.output_scales_.scales_;
-        acp.src_info.set_quantization_info(arm_compute::QuantizationInfo(1, 0));
-        acp.bia_info.set_quantization_info(arm_compute::QuantizationInfo(1, 0));
-        acp.wei_info.set_quantization_info(arm_compute::QuantizationInfo(1, 0));
-        acp.dst_info.set_quantization_info(
-                arm_compute::QuantizationInfo(1.0f / scales[0], 0));
+    // Are we allowed to cast down to bf16 or not?
+    acp.fast_math
+            = one_of(attr.fpmath_mode_, fpmath_mode::bf16, fpmath_mode::any);
+
+    // WeightFormat::ANY tells ACL we can handle any format
+    acp.weights_info = arm_compute::WeightsInfo(
+            false, kw, kh, oc, false, arm_compute::WeightFormat::ANY);
+
+    // Get the format that the ACL kernel will expect the weights to be
+    // in (if a kernel exists). Note that these are referred to as fixed format
+    // kernels, because they require one specific weights format
+    arm_compute::WeightFormat expected_weight_format;
+    ACL_CHECK_VALID(arm_compute::NEGEMMConvolutionLayer::has_opt_impl(
+            expected_weight_format, &acp.src_tensor_info, &acp.wei_tensor_info,
+            acp.with_bias ? &acp.bia_tensor_info : nullptr,
+            &acp.dst_tensor_info, acp.padstride_info, acp.weights_info,
+            acp.dilation_info, acp.act_info, acp.fast_math));
+
+    // Set weights info to the one returned by has_opt_impl
+    acp.weights_info.set_weight_format(expected_weight_format);
+
+    // has_opt_impl may return a non fast math kernel, even if we requested one
+    acp.fast_math
+            = arm_compute::is_fixed_format_fast_math(expected_weight_format);
+
+    // Map OIHW used in ACL WeightFormat to the logical dimensions of the memory descriptor
+    dim_t O_dim = 0;
+    dim_t I_dim = 1;
+    dim_t H_dim = 2;
+    dim_t W_dim = 3;
+
+    if (!is_nhwc) {
+        // We can try to support NCHW by swapping IHW around, note that this
+        // requires weights_md.dims[I_dim] % block_by != 0 (see next block)
+        O_dim = 0;
+        I_dim = 3;
+        H_dim = 1;
+        W_dim = 2;
     }
 
+    // We can't currently support nchw and block_by != 1. If this is the case,
+    // try a non fast math kernel, which currently have no blocking
+    int block_by = arm_compute::block_by(acp.weights_info.weight_format());
+    if (!is_nhwc && weights_md.dims[I_dim] % block_by != 0 && acp.fast_math) {
+        acp.fast_math = false;
+        acp.weights_info.set_weight_format(arm_compute::WeightFormat::ANY);
+        ACL_CHECK_VALID(arm_compute::NEGEMMConvolutionLayer::has_opt_impl(
+                expected_weight_format, &acp.src_tensor_info,
+                &acp.wei_tensor_info,
+                acp.with_bias ? &acp.bia_tensor_info : nullptr,
+                &acp.dst_tensor_info, acp.padstride_info, acp.weights_info,
+                acp.dilation_info, acp.act_info, acp.fast_math));
+        acp.weights_info.set_weight_format(expected_weight_format);
+        block_by = arm_compute::block_by(expected_weight_format);
+        // This shouldn't happen, because non-fastmath have no blocking, but
+        // guard against it because it would silently return incorrect results
+        if (weights_md.dims[I_dim] % block_by != 0)
+            return status::unimplemented;
+    }
+
+    acl_utils::reorder_to_weight_format(acp.wei_tensor_info, weights_md,
+            expected_weight_format, I_dim, O_dim, {W_dim, H_dim}, {});
+
     return status::success;
 }
 
@@ -226,10 +259,10 @@ status_t init_conf_gemm(acl_conv_conf_t &acp, memory_desc_t &src_md,
     // clang-format off
     // Validate convolution manually to check for return status
     ACL_CHECK_VALID(arm_compute::NEGEMMConvolutionLayer::validate(
-        &acp.src_info,
-        &acp.wei_info,
-        acp.with_bias ? &acp.bia_info : nullptr,
-        &acp.dst_info,
+        &acp.src_tensor_info,
+        &acp.wei_tensor_info,
+        acp.with_bias ? &acp.bia_tensor_info : nullptr,
+        &acp.dst_tensor_info,
         acp.padstride_info,
         acp.weights_info,
         acp.dilation_info,
@@ -244,28 +277,38 @@ status_t init_conf_indirect_gemm(acl_conv_conf_t &acp, memory_desc_t &src_md,
         memory_desc_t &weights_md, memory_desc_t &dst_md,
         memory_desc_t &bias_md, const convolution_desc_t &cd,
         const primitive_attr_t &attr) {
-    // Indirect convolution results in slowdown for low thread count or 1x1
-    // kernels, so fall back to GEMM-based convolution in these cases
-    if (one_of(true, weights_md.dims[2] == 1, // kh
-                weights_md.dims[3] == 1, // kw
-                dnnl_get_max_threads() < 28)) {
+
+    // Indirect is slower for small convolution kernels
+    if (weights_md.dims[2] == 1 && weights_md.dims[3] == 1)
         return status::unimplemented;
-    }
 
     CHECK(acl_init_conf(acp, src_md, weights_md, dst_md, bias_md, cd, attr));
 
+    // Indirect is slower than gemm for low thread counts, except for fast math
+    if (dnnl_get_max_threads() < 28 && !acp.fast_math)
+        return status::unimplemented;
+
+    // If we do not need to pad input channels for fast math mode then it would
+    // be faster to run convolution with im2row instead of using indirect kernel
+    int block_by = arm_compute::block_by(acp.weights_info.weight_format());
+    int ic = src_md.dims[1];
+    if (acp.fast_math && ic % block_by == 0) return status::unimplemented;
+
+    // TODO: remove this once NEGEMMConv2d::validate allows src and weights to mismatch
+    acp.wei_tensor_info.set_data_layout(arm_compute::DataLayout::NHWC);
+
     // clang-format off
     // NOTE: indirect convolution method supports only nhwc layout.
     ACL_CHECK_VALID(arm_compute::NEGEMMConv2d::validate(
-        &acp.src_info,
-        &acp.wei_info,
-        acp.with_bias ? &acp.bia_info : nullptr,
-        &acp.dst_info,
+        &acp.src_tensor_info,
+        &acp.wei_tensor_info,
+        acp.with_bias ? &acp.bia_tensor_info : nullptr,
+        &acp.dst_tensor_info,
         arm_compute::Conv2dInfo(acp.padstride_info,
                                 acp.dilation_info,
                                 acp.act_info,
                                 acp.fast_math,
-                                1)));
+                                1, {}, acp.weights_info)));
     // clang-format on
 
     return status::success;
diff --git a/src/cpu/aarch64/acl_convolution_utils.hpp b/src/cpu/aarch64/acl_convolution_utils.hpp
index 0398ab06b9..e3d40a5e75 100644
--- a/src/cpu/aarch64/acl_convolution_utils.hpp
+++ b/src/cpu/aarch64/acl_convolution_utils.hpp
@@ -38,17 +38,17 @@ struct acl_obj_t {
 
 struct acl_conv_conf_t {
     bool with_bias;
-    bool is_int8;
     bool fast_math;
     // If this is true, the result of the convolution goes into a temporarily
     // allocated ACL tensor to be accumulated into the oneDNN dst during postops
     bool use_dst_acc;
-    arm_compute::TensorInfo src_info;
-    arm_compute::TensorInfo wei_info;
-    arm_compute::TensorInfo bia_info;
-    arm_compute::TensorInfo dst_info;
+    arm_compute::TensorInfo src_tensor_info;
+    arm_compute::TensorInfo wei_tensor_info;
+    arm_compute::TensorInfo bia_tensor_info;
+    arm_compute::TensorInfo dst_tensor_info;
     arm_compute::PadStrideInfo padstride_info;
     arm_compute::Size2D dilation_info;
+    // Additional information about the weights not included in wei_tensor_info
     arm_compute::WeightsInfo weights_info;
     // Note: this will default to not enabled, and will do nothing
     arm_compute::ActivationLayerInfo act_info;
diff --git a/src/cpu/aarch64/acl_gemm_convolution.hpp b/src/cpu/aarch64/acl_gemm_convolution.hpp
index 485db954ea..da58e4f610 100644
--- a/src/cpu/aarch64/acl_gemm_convolution.hpp
+++ b/src/cpu/aarch64/acl_gemm_convolution.hpp
@@ -1,5 +1,5 @@
 /*******************************************************************************
-* Copyright 2020-2022 Arm Ltd. and affiliates
+* Copyright 2020-2023 Arm Ltd. and affiliates
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
@@ -36,10 +36,10 @@ struct acl_resource_t : public resource_t {
         if (!acl_obj_) return status::out_of_memory;
 
         // Init Compute Library tensors based on info from descriptor
-        acl_obj_->src_tensor.allocator()->init(acp.src_info);
-        acl_obj_->wei_tensor.allocator()->init(acp.wei_info);
-        acl_obj_->dst_tensor.allocator()->init(acp.dst_info);
-        acl_obj_->bia_tensor.allocator()->init(acp.bia_info);
+        acl_obj_->src_tensor.allocator()->init(acp.src_tensor_info);
+        acl_obj_->wei_tensor.allocator()->init(acp.wei_tensor_info);
+        acl_obj_->dst_tensor.allocator()->init(acp.dst_tensor_info);
+        acl_obj_->bia_tensor.allocator()->init(acp.bia_tensor_info);
 
         acl_obj_->conv.configure(&acl_obj_->src_tensor, &acl_obj_->wei_tensor,
                 acp.with_bias ? &acl_obj_->bia_tensor : nullptr,
diff --git a/src/cpu/aarch64/acl_indirect_gemm_convolution.hpp b/src/cpu/aarch64/acl_indirect_gemm_convolution.hpp
index bcf031a771..b7c8dce894 100644
--- a/src/cpu/aarch64/acl_indirect_gemm_convolution.hpp
+++ b/src/cpu/aarch64/acl_indirect_gemm_convolution.hpp
@@ -1,5 +1,5 @@
 /*******************************************************************************
-* Copyright 2021-2022 Arm Ltd. and affiliates
+* Copyright 2021-2023 Arm Ltd. and affiliates
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
@@ -35,10 +35,10 @@ struct acl_indirect_gemm_resource_t : public resource_t {
         if (!acl_obj_) return status::out_of_memory;
 
         // Init Compute Library tensors based on info from descriptor
-        acl_obj_->src_tensor.allocator()->init(acp.src_info);
-        acl_obj_->wei_tensor.allocator()->init(acp.wei_info);
-        acl_obj_->dst_tensor.allocator()->init(acp.dst_info);
-        acl_obj_->bia_tensor.allocator()->init(acp.bia_info);
+        acl_obj_->src_tensor.allocator()->init(acp.src_tensor_info);
+        acl_obj_->wei_tensor.allocator()->init(acp.wei_tensor_info);
+        acl_obj_->dst_tensor.allocator()->init(acp.dst_tensor_info);
+        acl_obj_->bia_tensor.allocator()->init(acp.bia_tensor_info);
 
         // clang-format off
         acl_obj_->conv.configure(
@@ -50,7 +50,9 @@ struct acl_indirect_gemm_resource_t : public resource_t {
                                     acp.dilation_info,
                                     acp.act_info,
                                     acp.fast_math,
-                                    1));
+                                    1,
+                                    {},
+                                    acp.weights_info));
         // clang-format on
 
         return status::success;
diff --git a/src/cpu/aarch64/acl_inner_product.hpp b/src/cpu/aarch64/acl_inner_product.hpp
index c5e507085f..a27df640fb 100644
--- a/src/cpu/aarch64/acl_inner_product.hpp
+++ b/src/cpu/aarch64/acl_inner_product.hpp
@@ -40,11 +40,13 @@ struct acl_ip_conf_t {
     // If this is true, the result of the inner product goes into a temporarily
     // allocated ACL tensor to be accumulated into the oneDNN dst during postops
     bool use_dst_acc;
-    arm_compute::TensorInfo src_info;
-    arm_compute::TensorInfo wei_info;
-    arm_compute::TensorInfo bia_info;
-    arm_compute::TensorInfo dst_info;
+    arm_compute::TensorInfo src_tensor_info;
+    arm_compute::TensorInfo wei_tensor_info;
+    arm_compute::TensorInfo bia_tensor_info;
+    arm_compute::TensorInfo dst_tensor_info;
     arm_compute::FullyConnectedLayerInfo fc_info;
+    // Additional information about the weights not included in wei_tensor_info
+    arm_compute::WeightsInfo weights_info;
 };
 struct acl_ip_resource_t : public resource_t {
     acl_ip_resource_t() : acl_ip_obj_(utils::make_unique<acl_ip_obj_t>()) {}
@@ -53,10 +55,10 @@ struct acl_ip_resource_t : public resource_t {
         if (!acl_ip_obj_) return status::out_of_memory;
 
         // Init Compute Library tensors based on info from descriptor
-        acl_ip_obj_->src_tensor.allocator()->init(aip.src_info);
-        acl_ip_obj_->wei_tensor.allocator()->init(aip.wei_info);
-        acl_ip_obj_->dst_tensor.allocator()->init(aip.dst_info);
-        acl_ip_obj_->bia_tensor.allocator()->init(aip.bia_info);
+        acl_ip_obj_->src_tensor.allocator()->init(aip.src_tensor_info);
+        acl_ip_obj_->wei_tensor.allocator()->init(aip.wei_tensor_info);
+        acl_ip_obj_->dst_tensor.allocator()->init(aip.dst_tensor_info);
+        acl_ip_obj_->bia_tensor.allocator()->init(aip.bia_tensor_info);
 
         // clang-format off
         acl_ip_obj_->fc.configure(
@@ -64,7 +66,8 @@ struct acl_ip_resource_t : public resource_t {
             &acl_ip_obj_->wei_tensor,
             aip.with_bias ? &acl_ip_obj_->bia_tensor : nullptr,
             &acl_ip_obj_->dst_tensor,
-            aip.fc_info);
+            aip.fc_info,
+            aip.weights_info);
         // clang-format on
 
         return status::success;
@@ -89,12 +92,16 @@ struct acl_inner_product_fwd_t : public primitive_t {
         DECLARE_COMMON_PD_T("acl", acl_inner_product_fwd_t);
 
         status_t init(engine_t *engine) {
-            const bool ok = is_fwd() && !has_zero_dim_memory()
-                    && expect_data_types(data_type::f32, data_type::f32,
-                            data_type::f32, data_type::f32, data_type::f32)
+            using namespace data_type;
+            const bool is_fp16_ok = expect_data_types(f16, f16, f16, f16, undef)
+                && attr()->has_default_values(
+                        primitive_attr_t::skip_mask_t::post_ops, f16);
+            const bool is_fp32_ok = expect_data_types(f32, f32, f32, f32, undef)
                     && attr()->has_default_values(
-                            primitive_attr_t::skip_mask_t::post_ops,
-                            data_type::f32)
+                            primitive_attr_t::skip_mask_t::post_ops, f32);
+            const bool ok = is_fwd() && !has_zero_dim_memory()
+                    && utils::one_of(true, is_fp16_ok, is_fp32_ok)
+                    && weights_md_.format_kind == format_kind::any
                     && set_default_params() == status::success;
 
             if (!ok) return status::unimplemented;
@@ -121,88 +128,46 @@ struct acl_inner_product_fwd_t : public primitive_t {
             ACL_CHECK_SUPPORT(
                     !(is_2d || is_4d), "ACL supports only 2d or 4d cases");
 
-            // batch size
-            const int n = src_md()->dims[0];
-
-            // input and output channels
-            const int ic = src_md()->dims[1];
-            const int oc = dst_md()->dims[1];
-
-            // source spatial dimensions
-            const int ih = is_4d ? src_md()->dims[ndims - 2] : 0;
-            const int iw = is_4d ? src_md()->dims[ndims - 1] : 0;
-
-            // weights spatial dimensions
-            const int kh = is_4d ? weights_md()->dims[ndims - 2] : 0;
-            const int kw = is_4d ? weights_md()->dims[ndims - 1] : 0;
-
-            // Only NCHW or NHWC derivatives supported by ACL kernels
             using namespace format_tag;
-            auto src_tag = memory_desc_matches_one_of_tag(
-                    src_md_, nhwc, nchw, nc, cn);
-            auto wei_tag = memory_desc_matches_one_of_tag(
-                    weights_md_, ohwi, oihw, oi, io);
-            auto dst_tag = memory_desc_matches_one_of_tag(dst_md_, nc, cn);
+            auto src_tag
+                    = memory_desc_matches_one_of_tag(src_md_, nhwc, nchw, nc);
+            auto dst_tag = memory_desc_matches_one_of_tag(dst_md_, nc);
 
             ACL_CHECK_SUPPORT(
-                    utils::one_of(format_tag::undef, src_tag, wei_tag, dst_tag),
+                    utils::one_of(format_tag::undef, src_tag, dst_tag),
                     "unsupported memory layout");
 
             ACL_CHECK_SUPPORT(is_2d && src_tag != dst_tag,
                     "for src and dst layouts must match");
 
-            arm_compute::TensorShape src_shape, wei_shape;
-            if (is_2d) {
-                src_shape = (src_tag == nc) ? arm_compute::TensorShape(ic, n)
-                                            : arm_compute::TensorShape(n, ic);
-
-                wei_shape = (wei_tag == io) ? arm_compute::TensorShape(oc, ic)
-                                            : arm_compute::TensorShape(ic, oc);
-            }
-            if (is_4d) {
-                src_shape = (src_tag == nhwc)
-                        ? arm_compute::TensorShape(ic, iw, ih, n)
-                        : arm_compute::TensorShape(iw, ih, ic, n);
-
-                // ACL requires the weights to be in 2D flattened shape
-                const int flattened_ic = is_4d ? ic * kh * kw : ic;
-                wei_shape = arm_compute::TensorShape(flattened_ic, oc);
-            }
-
-            arm_compute::DataLayout src_layout = (src_tag == nhwc)
-                    ? arm_compute::DataLayout::NHWC
-                    : arm_compute::DataLayout::NCHW;
+            const dim_t ic_total = IC_total();
+            const dim_t n = MB();
+            const dim_t oc = OC();
 
-            arm_compute::DataLayout wei_layout = (wei_tag == ohwi)
-                    ? arm_compute::DataLayout::NHWC
-                    : arm_compute::DataLayout::NCHW;
+            aip.src_tensor_info = arm_compute::TensorInfo(
+                    arm_compute::TensorShape(ic_total, n), 1,
+                    acl_utils::get_acl_data_t(src_md()->data_type));
 
-            aip.src_info = arm_compute::TensorInfo(
-                    src_shape, 1, arm_compute::DataType::F32, src_layout);
+            // ACL requires the weights to be in 2D flattened shape
+            aip.wei_tensor_info = arm_compute::TensorInfo(
+                    arm_compute::TensorShape(oc, ic_total), 1,
+                    acl_utils::get_acl_data_t(weights_md(0)->data_type));
 
-            aip.wei_info = arm_compute::TensorInfo(
-                    wei_shape, 1, arm_compute::DataType::F32, wei_layout);
-
-            aip.dst_info
-                    = arm_compute::TensorInfo(arm_compute::TensorShape(oc, n),
-                            1, arm_compute::DataType::F32);
+            auto acl_dst_data_t
+                    = acl_utils::get_acl_data_t(dst_md()->data_type);
+            aip.dst_tensor_info = arm_compute::TensorInfo(
+                    arm_compute::TensorShape(oc, n), 1, acl_dst_data_t);
 
             aip.with_bias = desc()->bias_desc.format_kind != format_kind::undef;
-            aip.bia_info = arm_compute::TensorInfo(aip.with_bias
+            auto acl_bia_data_t = aip.with_bias
+                    ? acl_utils::get_acl_data_t(weights_md(1)->data_type)
+                    : acl_dst_data_t;
+            aip.bia_tensor_info = arm_compute::TensorInfo(aip.with_bias
                             ? arm_compute::TensorShape(oc)
                             : arm_compute::TensorShape(),
                     1, arm_compute::DataType::F32);
 
-            aip.fc_info.weights_trained_layout = wei_layout;
-            if (is_2d && wei_tag != src_tag) {
-                // weights are already transposed
-                aip.fc_info.transpose_weights = false;
-
-                if (desc()->prop_kind == dnnl_forward_training) {
-                    aip.wei_info.set_are_values_constant(false);
-                    aip.fc_info.are_weights_reshaped = true;
-                }
-            }
+            aip.fc_info.transpose_weights = false;
 
             // Fast math mode
             auto math_mode = get_fpmath_mode();
@@ -214,15 +179,103 @@ struct acl_inner_product_fwd_t : public primitive_t {
                     aip.fc_info.activation_info));
             aip.use_dst_acc = post_ops.has_sum();
 
+            // WeightFormat::ANY tells ACL we can handle any format
+            aip.weights_info = arm_compute::WeightsInfo(false, 1, 1, ic_total,
+                    false, arm_compute::WeightFormat::ANY);
+
+            // Get the format that the ACL kernel will expect the weights to be
+            // in (if a kernel exists) Note that these are referred to as fixed
+            // format kernels, because they require one specific weights format
+            arm_compute::WeightFormat expected_weight_format;
+            ACL_CHECK_VALID(arm_compute::NEFullyConnectedLayer::has_opt_impl(
+                    expected_weight_format, &aip.src_tensor_info,
+                    &aip.wei_tensor_info,
+                    aip.with_bias ? &aip.bia_tensor_info : nullptr,
+                    &aip.dst_tensor_info, aip.fc_info, aip.weights_info));
+
+            // Set weights info to the one returned by has_opt_impl
+            aip.weights_info.set_weight_format(expected_weight_format);
+
+            // has_opt_impl may return a non fast math kernel, even if requested
+            aip.fc_info.enable_fast_math
+                    = arm_compute::is_fixed_format_fast_math(
+                            expected_weight_format);
+
+            // Inner product is the same as the matmul n x (chw) * (ihw) x o
+            // (note that the src c and weights i both correspond to the input
+            // channel). ACL FullyConnectedLayer assumes the chw dimensions of
+            // src and ihw dimensions of weights are collapsed, so we need to
+            // make sure that they have the same layout. Given that weights are
+            // more often fixed, (so reorders can be hoisted) it makes sense to
+            // reorder the weights to fit the src.
+
+            // For 4D tensors we need to:
+            // - reorder the ihw of the weights to match the src chw
+            // - collapse ihw
+            // - pad the collapsed ihw
+            // But there is not yet a way to express this collapse+pad as a
+            // reorder. So we try to reorder the weights to match the src,
+            // implicitly collapse ihw in our definition of the weights
+            // TensorInfo and hope that the inner_dim has zero padding
+            // (weights_md_.dims[inner_dim] % block_by == 0). If it does, we
+            // fall back to a kernel without blocking (currently this is
+            // equivalent to non-fastmath).
+
+            // 2D just works because we just pad the only dimension.
+
+            // o_dim is always the first logical dimension (oihw, ohwi, oi)
+            dim_t o_dim = 0;
+            dim_t inner_dim;
+            // Rest of logical dimensions in order of innermost to outermost
+            std::vector<dim_t> remaining_dims = {};
+
+            if (src_tag == nchw) {
+                inner_dim = 3; // w
+                remaining_dims = {2, 1}; // h, i
+            } else if (src_tag == nhwc) {
+                inner_dim = 1; // i
+                remaining_dims = {3, 2}; // w, h
+            } else { // Only remaining case is 2D (nc)
+                inner_dim = 1; // i
+                remaining_dims = {}; // No other dimensions for 2D
+            }
+
+            // Fallback
+            int block_by = arm_compute::block_by(expected_weight_format);
+            if (is_4d && weights_md_.dims[inner_dim] % block_by != 0
+                    && aip.fc_info.enable_fast_math) {
+                aip.fc_info.enable_fast_math = false;
+                aip.weights_info.set_weight_format(
+                        arm_compute::WeightFormat::ANY);
+                ACL_CHECK_VALID(
+                        arm_compute::NEFullyConnectedLayer::has_opt_impl(
+                                expected_weight_format, &aip.src_tensor_info,
+                                &aip.wei_tensor_info,
+                                aip.with_bias ? &aip.bia_tensor_info : nullptr,
+                                &aip.dst_tensor_info, aip.fc_info,
+                                aip.weights_info));
+                aip.weights_info.set_weight_format(expected_weight_format);
+                block_by = arm_compute::block_by(expected_weight_format);
+                if (weights_md_.dims[inner_dim] % block_by != 0)
+                    return status::unimplemented;
+            }
+
+            acl_utils::reorder_to_weight_format(aip.wei_tensor_info,
+                    weights_md_, expected_weight_format, inner_dim, o_dim,
+                    remaining_dims, {});
+
             // clang-format off
+
             // Validate fully connected layer manually to check for return status
             ACL_CHECK_VALID(arm_compute::NEFullyConnectedLayer::validate(
-                &aip.src_info,
-                &aip.wei_info,
-                aip.with_bias ? &aip.bia_info : nullptr,
-                &aip.dst_info,
-                aip.fc_info));
+                &aip.src_tensor_info,
+                &aip.wei_tensor_info,
+                aip.with_bias ? &aip.bia_tensor_info : nullptr,
+                &aip.dst_tensor_info,
+                aip.fc_info,
+                aip.weights_info));
             // clang-format on
+
             return status::success;
         }
     }; // pd_t
diff --git a/src/cpu/aarch64/acl_utils.cpp b/src/cpu/aarch64/acl_utils.cpp
index 79ea775d6d..5792fd4911 100644
--- a/src/cpu/aarch64/acl_utils.cpp
+++ b/src/cpu/aarch64/acl_utils.cpp
@@ -1,5 +1,5 @@
 /*******************************************************************************
-* Copyright 2021-2022 Arm Ltd. and affiliates
+* Copyright 2021-2023 Arm Ltd. and affiliates
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
@@ -261,6 +261,75 @@ int reorder_dimensions_by_stride(std::vector<memory_desc_t *> permuted_mds,
     return reordered_dims;
 }
 
+void reorder_to_weight_format(arm_compute::TensorInfo &info, memory_desc_t &md,
+        arm_compute::WeightFormat wf, dim_t I_dim, dim_t O_dim,
+        std::vector<dim_t> spatial_dims, std::vector<dim_t> batch_dims) {
+
+    md.format_kind = format_kind::blocked;
+    md.format_desc.blocking = blocking_desc_t {};
+    const int interleaved_by = arm_compute::interleave_by(wf);
+    const int block_by = arm_compute::block_by(wf);
+
+    // I dimension becomes densest (apart from blocking)
+    md.format_desc.blocking.strides[I_dim] = interleaved_by * block_by;
+    md.padded_dims[I_dim] = utils::rnd_up(md.dims[I_dim], block_by);
+
+    // Then any spatial dimensions (e.g. HW)
+    dim_t ldb = interleaved_by * md.padded_dims[I_dim];
+    for (dim_t sd : spatial_dims) {
+        md.format_desc.blocking.strides[sd] = ldb;
+        ldb *= md.padded_dims[sd];
+    }
+
+    // O dim (which was the innermost) becomes the outermost (apart from batching)
+    md.format_desc.blocking.strides[O_dim] = ldb;
+    md.padded_dims[O_dim] = utils::rnd_up(md.dims[O_dim], interleaved_by);
+
+    // Update the batch dimensions, starting with stride of the innermost batch
+    const dim_t innermost_batch_stride
+            = md.padded_dims[I_dim] * md.padded_dims[O_dim];
+    dim_t batch_stride = innermost_batch_stride;
+    for (dim_t bd : batch_dims) {
+        md.format_desc.blocking.strides[bd] = batch_stride;
+        batch_stride *= md.padded_dims[bd];
+    }
+
+    // Weights can only be blocked if they are also interleaved
+    if (interleaved_by > 1) {
+        md.format_desc.blocking.inner_nblks = 1 + (block_by > 1);
+
+        md.format_desc.blocking.inner_idxs[0] = O_dim;
+        md.format_desc.blocking.inner_blks[0] = interleaved_by;
+        if (block_by > 1) {
+            md.format_desc.blocking.inner_idxs[1] = I_dim;
+            md.format_desc.blocking.inner_blks[1] = block_by;
+        }
+    }
+
+    if (arm_compute::is_fixed_format_fast_math(wf)) {
+        md.data_type = dnnl_bf16;
+        info.set_data_type(arm_compute::DataType::BFLOAT16);
+    }
+
+    // The data layout is now determined by the manually set strides
+    info.set_data_layout(arm_compute::DataLayout::UNKNOWN);
+
+    // x is ignored in fixed format kernels
+    // y is the leading dimension of b (ldb) in the GEMM d = a*b + c
+    //   This is the stride of O_dim in the md
+    // z is the batch dimension (not strictly needed if there's only 1 batch)
+    //   i.e. how much do I need to stride to get to the next matmul (ignoring
+    //   the interleaving). Note that we use the innermost_batch_stride
+    //   because all the batched dimensions are collapsed (as required by ACL).
+    arm_compute::Strides new_strides_in_bytes = info.strides_in_bytes();
+    new_strides_in_bytes.set(1, ldb * info.element_size());
+    new_strides_in_bytes.set(2, innermost_batch_stride * info.element_size());
+
+    info.init(info.tensor_shape(), info.num_channels(), info.data_type(),
+            new_strides_in_bytes, info.offset_first_element_in_bytes(),
+            memory_desc_wrapper(md).size());
+}
+
 } // namespace acl_utils
 
 } // namespace aarch64
diff --git a/src/cpu/aarch64/acl_utils.hpp b/src/cpu/aarch64/acl_utils.hpp
index 28693bb167..d9affe1c8f 100644
--- a/src/cpu/aarch64/acl_utils.hpp
+++ b/src/cpu/aarch64/acl_utils.hpp
@@ -1,5 +1,5 @@
 /*******************************************************************************
-* Copyright 2021-2022 Arm Ltd. and affiliates
+* Copyright 2021-2023 Arm Ltd. and affiliates
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
@@ -74,6 +74,28 @@ status_t insert_singleton_dimension(arm_compute::TensorInfo &ti, size_t dim_i);
 int reorder_dimensions_by_stride(std::vector<memory_desc_t *> permuted_mds,
         std::vector<const memory_desc_t *> mds);
 
+// Reorder a memory_desc_t and set the strides on a arm_compute::TensorInfo to
+// match an arm_compute::WeightFormat. You are required to specify how various
+// logical dimensions in oneDNN correspond to logical dimensions in arm_compute.
+// info  TensorInfo where the strides will be changed to match the reordering
+// md    memory descriptor where the stride and padded dimensions will be
+//       changed or reordering
+// wf    Describes the memory format/layout of the weights
+// I_dim The logical dimension of md corresponding to the input channel of
+//       a convolution or the K dimension in a matmul
+// O_dim The logical dimension of md corresponding to the output channel of a
+//       convolution or the N dimension in a matmul
+// spatial_dims The logical dimensions of md corresponding to the spatial
+//              dimensions of the weights (H, W, D for example). These will be
+//              the next densest after the inner blocks and the input channel.
+// batch_dims The logical dimensions of md related to the batch in a batched
+//            matmul, ordered from innermost to outermost. ACL calls these
+//            the multi_stride_b. These will become the outermost (least dense)
+//            dimensions and will be collapsed.
+void reorder_to_weight_format(arm_compute::TensorInfo &info, memory_desc_t &md,
+        arm_compute::WeightFormat wf, dim_t I_dim, dim_t O_dim,
+        std::vector<dim_t> spatial_dims, std::vector<dim_t> batch_dims = {});
+
 // Logs a custom 'info' line describing an unsupported case
 #define LOG_ACL_UNSUPPORTED(msg) \
     do { \
diff --git a/src/cpu/aarch64/matmul/acl_matmul.cpp b/src/cpu/aarch64/matmul/acl_matmul.cpp
index dce220fb6e..ca1c7eb47e 100644
--- a/src/cpu/aarch64/matmul/acl_matmul.cpp
+++ b/src/cpu/aarch64/matmul/acl_matmul.cpp
@@ -1,5 +1,5 @@
 /*******************************************************************************
-* Copyright 2021-2022 Arm Ltd. and affiliates
+* Copyright 2021-2023 Arm Ltd. and affiliates
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
@@ -31,36 +31,19 @@ status_t acl_matmul_t::execute_forward(const exec_ctx_t &ctx) const {
     auto wei_base = CTX_IN_MEM(const data_t *, DNNL_ARG_WEIGHTS);
 
     bool is_transA = pd()->amp_.is_transA;
-    bool is_transB = pd()->amp_.is_transB;
     bool use_dst_acc = pd()->amp_.use_dst_acc;
 
     std::lock_guard<std::mutex> _lock {this->mtx};
     auto *acl_resource = ctx.get_resource_mapper()->get<acl_resource_t>(this);
     acl_matmul_obj_t &acl_obj = acl_resource->get_acl_obj();
     // Run transpose kernel
-    if (is_transA && !is_transB) {
+    if (is_transA) {
         acl_obj.src_tensor.allocator()->allocate();
         acl_obj.src_acc_tensor.allocator()->import_memory(
                 const_cast<data_t *>(src_base));
         acl_obj.transA.run();
         acl_obj.wei_tensor.allocator()->import_memory(
                 const_cast<data_t *>(wei_base));
-    } else if (is_transB && !is_transA) {
-        acl_obj.wei_tensor.allocator()->allocate();
-        acl_obj.wei_acc_tensor.allocator()->import_memory(
-                const_cast<data_t *>(wei_base));
-        acl_obj.transB.run();
-        acl_obj.src_tensor.allocator()->import_memory(
-                const_cast<data_t *>(src_base));
-    } else if (is_transA && is_transB) {
-        acl_obj.src_tensor.allocator()->allocate();
-        acl_obj.src_acc_tensor.allocator()->import_memory(
-                const_cast<data_t *>(src_base));
-        acl_obj.wei_tensor.allocator()->allocate();
-        acl_obj.wei_acc_tensor.allocator()->import_memory(
-                const_cast<data_t *>(wei_base));
-        acl_obj.transA.run();
-        acl_obj.transB.run();
     } else {
         acl_obj.src_tensor.allocator()->import_memory(
                 const_cast<data_t *>(src_base));
@@ -69,7 +52,7 @@ status_t acl_matmul_t::execute_forward(const exec_ctx_t &ctx) const {
     }
 
     if (use_dst_acc) {
-        // Put the result in a new tensor, it will be accumalated to the dst
+        // Put the result in a new tensor, it will be accumulated to the dst
         // during the post ops
         acl_obj.dst_tensor.allocator()->allocate();
     } else {
@@ -82,7 +65,6 @@ status_t acl_matmul_t::execute_forward(const exec_ctx_t &ctx) const {
     acl_obj.src_tensor.allocator()->free();
     acl_obj.wei_tensor.allocator()->free();
     if (is_transA) acl_obj.src_acc_tensor.allocator()->free();
-    if (is_transB) acl_obj.wei_acc_tensor.allocator()->free();
 
     void *dst = acl_obj.dst_tensor.buffer();
     pd()->post_ops.execute(ctx, dst);
diff --git a/src/cpu/aarch64/matmul/acl_matmul.hpp b/src/cpu/aarch64/matmul/acl_matmul.hpp
index cdc942e995..832b1dbb68 100644
--- a/src/cpu/aarch64/matmul/acl_matmul.hpp
+++ b/src/cpu/aarch64/matmul/acl_matmul.hpp
@@ -32,20 +32,15 @@ struct acl_resource_t : public resource_t {
 
     status_t configure(const acl_matmul_conf_t &amp) {
         if (!acl_obj_) return status::out_of_memory;
-        acl_obj_->src_tensor.allocator()->init(amp.src_info);
-        acl_obj_->wei_tensor.allocator()->init(amp.wei_info);
-        acl_obj_->dst_tensor.allocator()->init(amp.dst_info);
+        acl_obj_->src_tensor.allocator()->init(amp.src_tensor_info);
+        acl_obj_->wei_tensor.allocator()->init(amp.wei_tensor_info);
+        acl_obj_->dst_tensor.allocator()->init(amp.dst_tensor_info);
         // Configure transpose kernel for src, wei or both
         if (amp.is_transA) {
             acl_obj_->src_acc_tensor.allocator()->init(amp.src_acc_info);
             acl_obj_->transA.configure(
                     &acl_obj_->src_acc_tensor, &acl_obj_->src_tensor);
         }
-        if (amp.is_transB) {
-            acl_obj_->wei_acc_tensor.allocator()->init(amp.wei_acc_info);
-            acl_obj_->transB.configure(
-                    &acl_obj_->wei_acc_tensor, &acl_obj_->wei_tensor);
-        }
         // Configure GEMM
         acl_obj_->gemm.configure(&acl_obj_->src_tensor, &acl_obj_->wei_tensor,
                 nullptr, &acl_obj_->dst_tensor, amp.alpha, 0.0f, amp.gemm_info);
@@ -72,12 +67,20 @@ struct acl_matmul_t : public primitive_t {
 
         status_t init(engine_t *engine) {
             using smask_t = primitive_attr_t::skip_mask_t;
-            bool ok = src_md()->data_type == data_type::f32
-                    && weights_md()->data_type == data_type::f32
-                    && desc()->accum_data_type == data_type::f32
-                    && dst_md()->data_type == data_type::f32
-                    && platform::has_data_type_support(data_type::f32)
+            const bool is_fp32_ok
+                    = utils::everyone_is(data_type::f32, src_md()->data_type,
+                              weights_md()->data_type, dst_md()->data_type,
+                              desc()->accum_data_type)
+                    && platform::has_data_type_support(data_type::f32);
+            const bool is_fp16_ok
+                    = utils::everyone_is(data_type::f16, src_md()->data_type,
+                              weights_md()->data_type, dst_md()->data_type)
+                    && platform::has_data_type_support(data_type::f16);
+            bool ok = is_dense_data()
+                    && utils::one_of(true, is_fp32_ok, is_fp16_ok)
                     && !has_zero_dim_memory()
+                    && weights_md_.format_kind == format_kind::any
+                    && set_default_formats()
                     && attr()->has_default_values(
                             smask_t::oscale | smask_t::post_ops)
                     && attr_oscale_ok() && !has_runtime_dims_or_strides();
@@ -92,9 +95,9 @@ struct acl_matmul_t : public primitive_t {
             amp_.use_dst_acc = post_ops.has_sum();
 
             // Validate ACL GEMM
-            ACL_CHECK_VALID(arm_compute::NEGEMM::validate(&amp_.src_info,
-                    &amp_.wei_info, nullptr, &amp_.dst_info, amp_.alpha, 0.0f,
-                    amp_.gemm_info));
+            ACL_CHECK_VALID(arm_compute::NEGEMM::validate(&amp_.src_tensor_info,
+                    &amp_.wei_tensor_info, nullptr, &amp_.dst_tensor_info,
+                    amp_.alpha, 0.0f, amp_.gemm_info));
 
             return status::success;
         }
diff --git a/src/cpu/aarch64/matmul/acl_matmul_utils.cpp b/src/cpu/aarch64/matmul/acl_matmul_utils.cpp
index 679baec3a4..30bc2c1443 100644
--- a/src/cpu/aarch64/matmul/acl_matmul_utils.cpp
+++ b/src/cpu/aarch64/matmul/acl_matmul_utils.cpp
@@ -41,6 +41,7 @@ status_t init_conf_matmul(acl_matmul_conf_t &amp, memory_desc_t &src_md,
     const dim_t src_batch = helper.src_batch();
     const dim_t wei_batch = helper.wei_batch();
 
+    // We can only broadcast on one of src or wei at once
     // ACL supports broadcast for 3D shapes, and 4D shapes
     // for e.g when ab in abcd is 1x1
     bool batch_ok = IMPLICATION(src_batch > 1, wei_batch == 1)
@@ -53,44 +54,33 @@ status_t init_conf_matmul(acl_matmul_conf_t &amp, memory_desc_t &src_md,
     bool with_bias = md.bias_desc.format_kind != format_kind::undef;
     ACL_CHECK_SUPPORT(with_bias, "ACL does not support bias for matmul");
 
+    // The two innermost dimensions can be transposed, but the batch dimensions
+    // must be the outermost
     using namespace format_tag;
     auto src_tag = memory_desc_matches_one_of_tag(
             src_md, abcd, abdc, abc, acb, ab, ba);
-    auto wei_tag = memory_desc_matches_one_of_tag(
-            wei_md, abcd, abdc, abc, acb, ab, ba);
-    auto dst_tag
-            = memory_desc_matches_one_of_tag(dst_md, abcd, abc, acb, ab, ba);
-    ACL_CHECK_SUPPORT(
-            utils::one_of(format_tag::undef, src_tag, wei_tag, dst_tag),
+    auto dst_tag = memory_desc_matches_one_of_tag(dst_md, abcd, abc, ab, ba);
+    ACL_CHECK_SUPPORT(utils::one_of(format_tag::undef, src_tag, dst_tag),
             "Format tag is undefined");
 
-    // Transpose A (src) or B (wei)
+    // Transpose A (src)
     amp.is_transA = helper.transA() == 'T';
-    amp.is_transB = helper.transB() == 'T';
+
+    auto acl_src_data_t = acl_utils::get_acl_data_t(src_md.data_type);
+    auto acl_wei_data_t = acl_utils::get_acl_data_t(wei_md.data_type);
+    auto acl_dst_data_t = acl_utils::get_acl_data_t(dst_md.data_type);
+
     if (amp.is_transA)
         amp.src_acc_info = arm_compute::TensorInfo(
                 arm_compute::TensorShape(M, K, 1, src_batch), 1,
-                arm_compute::DataType::F32);
-    if (amp.is_transB)
-        amp.wei_acc_info = arm_compute::TensorInfo(
-                arm_compute::TensorShape(K, N, wei_batch), 1,
-                arm_compute::DataType::F32);
-
-    amp.src_info = arm_compute::TensorInfo(
-            arm_compute::TensorShape(K, M, 1, src_batch), 1,
-            arm_compute::DataType::F32);
-    amp.wei_info
-            = arm_compute::TensorInfo(arm_compute::TensorShape(N, K, wei_batch),
-                    1, arm_compute::DataType::F32);
-    amp.dst_info = arm_compute::TensorInfo(
-            arm_compute::TensorShape(N, M, 1, dst_batch), 1,
-            arm_compute::DataType::F32);
-
-    // Fast-math mode
-    auto math_mode = get_fpmath_mode();
-    bool is_fastmath_enabled
-            = utils::one_of(math_mode, fpmath_mode::bf16, fpmath_mode::any);
-    amp.gemm_info.set_fast_math(is_fastmath_enabled);
+                acl_src_data_t);
+
+    amp.src_tensor_info = arm_compute::TensorInfo(
+            arm_compute::TensorShape(K, M, 1, src_batch), 1, acl_src_data_t);
+    amp.wei_tensor_info = arm_compute::TensorInfo(
+            arm_compute::TensorShape(N, K, wei_batch), 1, acl_wei_data_t);
+    amp.dst_tensor_info = arm_compute::TensorInfo(
+            arm_compute::TensorShape(N, M, 1, dst_batch), 1, acl_dst_data_t);
 
     // Set alpha (output scaling)
     amp.alpha = attr.output_scales_.scales_[0];
@@ -98,10 +88,45 @@ status_t init_conf_matmul(acl_matmul_conf_t &amp, memory_desc_t &src_md,
     // Validate ACL transpose
     if (amp.is_transA)
         ACL_CHECK_VALID(arm_compute::NETranspose::validate(
-                &amp.src_acc_info, &amp.src_info));
-    if (amp.is_transB)
-        ACL_CHECK_VALID(arm_compute::NETranspose::validate(
-                &amp.wei_acc_info, &amp.wei_info));
+                &amp.src_acc_info, &amp.src_tensor_info));
+
+    bool is_fastmath_enabled = utils::one_of(
+            attr.fpmath_mode_, fpmath_mode::bf16, fpmath_mode::any);
+    amp.gemm_info.set_fast_math(is_fastmath_enabled);
+
+    amp.gemm_info.set_fixed_format(true);
+
+    // WeightFormat::ANY tells ACL we can handle any format
+    amp.gemm_info.set_weight_format(arm_compute::WeightFormat::ANY);
+
+    // Get the format that the ACL kernel will expect the weights to be
+    // in (if a kernel exists). Note that these are referred to as fixed format
+    // kernels, because they require one specific weights format
+    arm_compute::WeightFormat expected_weight_format;
+    ACL_CHECK_VALID(arm_compute::NEGEMM::has_opt_impl(expected_weight_format,
+            &amp.src_tensor_info, &amp.wei_tensor_info, nullptr,
+            &amp.dst_tensor_info, amp.alpha, 0.0f, amp.gemm_info));
+
+    // Set gemm weights info to the one returned by has_opt_impl
+    amp.gemm_info.set_weight_format(expected_weight_format);
+
+    // has_opt_impl may return a non fast math kernel, even if we requested one
+    amp.gemm_info.set_fast_math(
+            arm_compute::is_fixed_format_fast_math(expected_weight_format));
+
+    // Logical dimension indices
+    dim_t innermost_dim = wei_md.ndims - 1;
+    dim_t N_dim = innermost_dim;
+    dim_t K_dim = innermost_dim - 1;
+
+    // The logical indices of dimensions related to the batch, ordered from
+    // innermost to outermost
+    std::vector<dim_t> batch_dims = {};
+    for (dim_t i = K_dim - 1; i >= 0; --i)
+        batch_dims.push_back(i);
+
+    acl_utils::reorder_to_weight_format(amp.wei_tensor_info, wei_md,
+            expected_weight_format, K_dim, N_dim, {}, batch_dims);
 
     return status::success;
 }
diff --git a/src/cpu/aarch64/matmul/acl_matmul_utils.hpp b/src/cpu/aarch64/matmul/acl_matmul_utils.hpp
index 0a5ee6a987..67bb2e78eb 100644
--- a/src/cpu/aarch64/matmul/acl_matmul_utils.hpp
+++ b/src/cpu/aarch64/matmul/acl_matmul_utils.hpp
@@ -1,5 +1,5 @@
 /*******************************************************************************
-* Copyright 2021-2022 Arm Ltd. and affiliates
+* Copyright 2021-2023 Arm Ltd. and affiliates
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
@@ -29,25 +29,21 @@ namespace aarch64 {
 struct acl_matmul_obj_t {
     arm_compute::NEGEMM gemm;
     arm_compute::NETranspose transA;
-    arm_compute::NETranspose transB;
     arm_compute::Tensor src_tensor;
     arm_compute::Tensor src_acc_tensor;
     arm_compute::Tensor wei_tensor;
-    arm_compute::Tensor wei_acc_tensor;
     arm_compute::Tensor dst_tensor;
 };
 
 struct acl_matmul_conf_t {
     bool is_transA;
-    bool is_transB;
     // If this is true, the result of the matmul goes into a temporarily
     // allocated ACL tensor to be accumulated into the oneDNN dst during postops
     bool use_dst_acc;
-    arm_compute::TensorInfo src_info;
+    arm_compute::TensorInfo src_tensor_info;
     arm_compute::TensorInfo src_acc_info;
-    arm_compute::TensorInfo wei_info;
-    arm_compute::TensorInfo wei_acc_info;
-    arm_compute::TensorInfo dst_info;
+    arm_compute::TensorInfo wei_tensor_info;
+    arm_compute::TensorInfo dst_tensor_info;
     arm_compute::GEMMInfo gemm_info;
     float alpha;
 };