1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
*******************************************************************************
Copyright 2023 Arm Limited and affiliates.
SPDX-License-Identifier: Apache-2.0
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*******************************************************************************
diff --git a/src/cpu/aarch64/acl_reorder.cpp b/src/cpu/aarch64/acl_reorder.cpp
new file mode 100644
index 0000000000..061751b555
--- /dev/null
+++ b/src/cpu/aarch64/acl_reorder.cpp
@@ -0,0 +1,52 @@
+/*******************************************************************************
+* Copyright 2023 Arm Ltd. and affiliates
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+
+#include "cpu/aarch64/acl_reorder.hpp"
+
+namespace dnnl {
+namespace impl {
+namespace cpu {
+namespace aarch64 {
+
+status_t acl_reorder_fwd_t::execute_forward(const exec_ctx_t &ctx) const {
+ // Lock here is needed because resource_mapper does not support
+ // concurrent multithreaded access.
+ std::lock_guard<std::mutex> _lock {this->mtx};
+
+ auto src = CTX_IN_MEM(const void *, DNNL_ARG_FROM);
+ auto dst = CTX_OUT_MEM(void *, DNNL_ARG_TO);
+
+ // Retrieve primitive resource and configured Compute Library objects
+ auto *acl_resource
+ = ctx.get_resource_mapper()->get<acl_reorder_resource_t>(this);
+
+ acl_reorder_obj_t &acl_obj = acl_resource->get_acl_obj();
+
+ acl_obj.src_tensor.allocator()->import_memory(const_cast<void *>(src));
+ acl_obj.dst_tensor.allocator()->import_memory(dst);
+
+ acl_obj.reorder.run();
+
+ acl_obj.src_tensor.allocator()->free();
+ acl_obj.dst_tensor.allocator()->free();
+
+ return status::success;
+}
+
+} // namespace aarch64
+} // namespace cpu
+} // namespace impl
+} // namespace dnnl
diff --git a/src/cpu/aarch64/acl_reorder.hpp b/src/cpu/aarch64/acl_reorder.hpp
new file mode 100644
index 0000000000..edbc38914d
--- /dev/null
+++ b/src/cpu/aarch64/acl_reorder.hpp
@@ -0,0 +1,262 @@
+/*******************************************************************************
+* Copyright 2023 Arm Ltd. and affiliates
+*
+* Licensed under the Apache License, Version 2.0 (the "License");
+* you may not use this file except in compliance with the License.
+* You may obtain a copy of the License at
+*
+* http://www.apache.org/licenses/LICENSE-2.0
+*
+* Unless required by applicable law or agreed to in writing, software
+* distributed under the License is distributed on an "AS IS" BASIS,
+* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+* See the License for the specific language governing permissions and
+* limitations under the License.
+*******************************************************************************/
+#ifndef CPU_AARCH64_ACL_REORDER_HPP
+#define CPU_AARCH64_ACL_REORDER_HPP
+
+#include "cpu/aarch64/acl_utils.hpp"
+#include "cpu/reorder/cpu_reorder_pd.hpp"
+#include "arm_compute/core/Types.h"
+#include "common/utils.hpp"
+
+namespace dnnl {
+namespace impl {
+namespace cpu {
+namespace aarch64 {
+
+struct acl_reorder_obj_t {
+ arm_compute::NEReorderLayer reorder;
+ arm_compute::Tensor src_tensor;
+ arm_compute::Tensor dst_tensor;
+ arm_compute::WeightFormat src_wf;
+ arm_compute::WeightFormat dst_wf;
+};
+
+struct acl_reorder_conf_t {
+ arm_compute::TensorInfo src_info;
+ arm_compute::TensorInfo dst_info;
+ arm_compute::WeightFormat src_wf;
+ arm_compute::WeightFormat dst_wf;
+};
+
+struct acl_reorder_resource_t : public resource_t {
+ acl_reorder_resource_t() : acl_obj_(utils::make_unique<acl_reorder_obj_t>()) {}
+
+ status_t configure(const acl_reorder_conf_t &app) {
+ if (!acl_obj_) return status::out_of_memory;
+
+ // Init Compute Library tensors based on info from descriptor
+ acl_obj_->src_tensor.allocator()->init(app.src_info);
+ acl_obj_->dst_tensor.allocator()->init(app.dst_info);
+
+ // clang-format off
+ acl_obj_->reorder.configure(
+ &acl_obj_->src_tensor,
+ &acl_obj_->dst_tensor,
+ app.src_wf,
+ app.dst_wf
+ );
+ // clang-format on
+
+ return status::success;
+ }
+
+ acl_reorder_obj_t &get_acl_obj() const { return *acl_obj_; }
+ DNNL_DISALLOW_COPY_AND_ASSIGN(acl_reorder_resource_t);
+
+private:
+ std::unique_ptr<acl_reorder_obj_t> acl_obj_;
+}; // acl_reorder_resource_t
+
+struct acl_reorder_fwd_t : public primitive_t {
+ using primitive_t::primitive_t;
+ struct pd_t : public cpu_reorder_pd_t {
+
+ using cpu_reorder_pd_t::cpu_reorder_pd_t;
+
+ DECLARE_COMMON_PD_T("acl", acl_reorder_fwd_t);
+
+ static status_t create(reorder_pd_t **reorder_pd, engine_t *engine,
+ const primitive_attr_t *attr, engine_t *src_engine,
+ const memory_desc_t *src_md, engine_t *dst_engine,
+ const memory_desc_t *dst_md) {
+
+ using namespace acl_utils;
+ // using skip_mask_t = dnnl_primitive_attr::skip_mask_t;
+
+ bool ok = src_md->data_type
+ == dst_md->data_type // ACL only supports matching src/dst data types
+ && utils::one_of(src_md->data_type,
+ data_type::f32) // Only supports f32 for now
+ && attr->has_default_values();
+ if (!ok) return status::unimplemented;
+
+ int mask = -1;
+ bool is_set = false;
+ // CHECK(attr->scales_.get(DNNL_ARG_DST, &mask, &is_set));
+ const memory_desc_wrapper input_d(src_md);
+ if (input_d.has_runtime_dims_or_strides() && is_set && mask > 0)
+ return status::unimplemented;
+
+ // Create and check primitive descriptor
+ auto _pd = new pd_t(attr, src_engine->kind(), src_md,
+ dst_engine->kind(), dst_md);
+ if (_pd == nullptr) return status::out_of_memory;
+ if (_pd->init(engine, src_engine, dst_engine) != status::success) {
+ delete _pd;
+ return status::unimplemented;
+ }
+
+ const memory_desc_wrapper src_d(*src_md);
+ const memory_desc_wrapper dst_d(*dst_md);
+
+ const int ndims = src_d.ndims();
+
+ auto src_tag = memory_desc_matches_one_of_tag(
+ *src_md, format_tag::ba, format_tag::cdba);
+ ACL_CHECK_SUPPORT(
+ utils::one_of(format_tag::undef, src_tag),
+ "");
+
+ arm_compute::TensorShape acl_tensor_shape_in;
+ arm_compute::TensorShape acl_tensor_shape_out;
+ // Need even amount of dims in dim 0 for ACL kernel (eg mulitple of 8 rows when blocking by 8)
+ int dim_0_rounded_up;
+
+ // Switch for 2 or 4 dim tensors
+ switch(ndims)
+ {
+ // Currently for Ab4a and Ab8a
+ // No format_tag for these, have to deduce from stride
+ case 2:
+ {
+ if(dst_md->dims[0] == 1 || dst_md->dims[1] == 1){
+ return status::unimplemented;
+ }
+ int dst_dim_1 = dst_md->dims[1];
+ int dst_dim_0_stride = dst_md->format_desc.blocking.strides[0];
+ int dst_dim_1_stride = dst_md->format_desc.blocking.strides[1];
+ // Interleave of 4 or 8 that stride for dim 1
+ if (dst_dim_1_stride != 4 && dst_dim_1_stride != 8){
+ return status::unimplemented;
+ }
+ // Check to ensure it's a blocking transpose
+ if (dst_dim_1 * dst_dim_1_stride != dst_dim_0_stride){
+ return status::unimplemented;
+ }
+ if(dst_dim_1_stride == 4){
+ // Set Dest WeightFormat
+ _pd->app_.dst_wf = arm_compute::WeightFormat::OHWIo4;
+ dim_0_rounded_up
+ = utils::rnd_up(src_md->dims[0], 4);
+ } else {
+ // Set Dest WeightFormat
+ _pd->app_.dst_wf = arm_compute::WeightFormat::OHWIo8;
+ dim_0_rounded_up
+ = utils::rnd_up(src_md->dims[0], 8);
+ }
+ acl_tensor_shape_in = arm_compute::TensorShape(src_md->dims[1], src_md->dims[0]);
+ acl_tensor_shape_out = arm_compute::TensorShape(src_md->dims[1], dim_0_rounded_up);
+
+ break;
+ }
+ // Currently for Acdb4a and Acdb8a
+ case 4:
+ {
+
+ auto dst_tag = memory_desc_matches_one_of_tag(
+ *dst_md, format_tag::Acdb4a, format_tag::Acdb8a);
+ ACL_CHECK_SUPPORT(
+ utils::one_of(format_tag::undef, dst_tag),
+ "");
+ if(dst_tag == format_tag::Acdb4a){
+ // Set Dest WeightFormat
+ _pd->app_.dst_wf = arm_compute::WeightFormat::OHWIo4;
+ dim_0_rounded_up
+ = utils::rnd_up(src_md->dims[0], 4);
+ }
+ else{
+ // Set Dest WeightFormat
+ _pd->app_.dst_wf = arm_compute::WeightFormat::OHWIo8;
+ dim_0_rounded_up
+ = utils::rnd_up(src_md->dims[0], 8);
+ }
+ // Currently only supporting AxBx1x1 cases
+ if(dst_md->dims[2] != 1 || dst_md->dims[3] != 1){
+ return status::unimplemented;
+ }
+ if(dst_md->dims[0] == 1 || dst_md->dims[1] == 1){
+ return status::unimplemented;
+ }
+ acl_tensor_shape_in = arm_compute::TensorShape(src_md->dims[3], src_md->dims[2], src_md->dims[1], src_md->dims[0]);
+ acl_tensor_shape_out = arm_compute::TensorShape(src_md->dims[3], src_md->dims[2], src_md->dims[1], dim_0_rounded_up);
+ break;
+ }
+ default:
+ return status::unimplemented;
+ }
+
+ // Choose the data layout
+ // bool is_nspc = utils::one_of(src_tag, format_tag::nhwc);
+ const auto acl_layout = arm_compute::DataLayout::NCHW;
+
+ // Set Source WeightFormat
+ _pd->app_.src_wf = arm_compute::WeightFormat::OHWI;
+
+ // Create ACL tensor infos
+ const data_type_t data_type = src_d.data_type();
+ const arm_compute::DataType acl_data_t
+ = acl_utils::get_acl_data_t(data_type);
+ _pd->app_.src_info = arm_compute::TensorInfo(
+ acl_tensor_shape_in, 1, acl_data_t, acl_layout);
+ _pd->app_.dst_info = arm_compute::TensorInfo(
+ acl_tensor_shape_out, 1, acl_data_t, acl_layout);
+
+ // Init scratch memory, not used so 0 in this implementation
+ _pd->init_scratchpad_md();
+
+ return safe_ptr_assign(*reorder_pd, _pd);
+ } // create
+
+ friend dnnl::impl::impl_list_item_t;
+ acl_reorder_conf_t app_;
+
+ }; // pd_t
+
+ acl_reorder_fwd_t(const pd_t *apd) : primitive_t(apd) {}
+
+ status_t create_resource(
+ engine_t *engine, resource_mapper_t &mapper) const override {
+ if (mapper.has_resource(this)) return status::success;
+
+ auto r = utils::make_unique<acl_reorder_resource_t>();
+ if (!r) return status::out_of_memory;
+
+ // Configure the resource based on information from primitive descriptor
+ CHECK(r->configure(pd()->app_));
+
+ mapper.add(this, std::move(r));
+ return status::success;
+ }
+
+ status_t execute(const exec_ctx_t &ctx) const override {
+ return execute_forward(ctx);
+ }
+
+private:
+ // To guard the const execute_forward, the mutex must be 'mutable'
+ mutable std::mutex mtx;
+ status_t execute_forward(const exec_ctx_t &ctx) const;
+ const pd_t *pd() const { return (const pd_t *)primitive_t::pd().get(); }
+
+
+}; // acl_reorder_fwd_t
+
+} // namespace aarch64
+} // namespace cpu
+} // namespace impl
+} // namespace dnnl
+
+#endif // CPU_AARCH64_ACL_REORDER_HPP
diff --git a/src/cpu/reorder/cpu_reorder_regular_f32_f32.cpp b/src/cpu/reorder/cpu_reorder_regular_f32_f32.cpp
index bccd2f75f4..5e5ea331ba 100644
--- a/src/cpu/reorder/cpu_reorder_regular_f32_f32.cpp
+++ b/src/cpu/reorder/cpu_reorder_regular_f32_f32.cpp
@@ -15,6 +15,7 @@
*******************************************************************************/
#include "cpu/reorder/cpu_reorder.hpp"
+#include "cpu/aarch64/acl_reorder.hpp"
namespace dnnl {
namespace impl {
@@ -27,6 +28,7 @@ const impl_list_map_t ®ular_f32_f32_impl_list_map() {
// f32 -> f32
{{f32, f32, 0}, {
REG_FAST_DIRECT_COPY_F32_F32
+ DNNL_AARCH64_ONLY(CPU_REORDER_INSTANCE(aarch64::acl_reorder_fwd_t))
DNNL_X64_ONLY(CPU_REORDER_INSTANCE(x64::jit_blk_reorder_t))
DNNL_X64_ONLY(CPU_REORDER_INSTANCE(x64::jit_uni_reorder_t))
@@ -64,6 +66,7 @@ const impl_list_map_t ®ular_f32_f32_impl_list_map() {
nullptr,
}},
{{f32, f32, 4}, {
+ DNNL_AARCH64_ONLY(CPU_REORDER_INSTANCE(aarch64::acl_reorder_fwd_t))
DNNL_X64_ONLY(CPU_REORDER_INSTANCE(x64::wino_reorder_t<f32, f32>))
CPU_REORDER_INSTANCE(rnn_weights_reorder_t<f32, f32>)
|