File: advanced.cpp

package info (click to toggle)
terraphast 0.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 844 kB
  • sloc: cpp: 5,923; sh: 92; ansic: 55; makefile: 27
file content (172 lines) | stat: -rw-r--r-- 6,342 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#include <terraces/advanced.hpp>

#include <terraces/clamped_uint.hpp>
#include <terraces/errors.hpp>
#include <terraces/rooting.hpp>
#include <terraces/subtree_extraction.hpp>

#include "multitree_iterator.hpp"
#include "supertree_enumerator.hpp"
#include "supertree_variants.hpp"
#include "supertree_variants_multitree.hpp"

namespace terraces {

supertree_data create_supertree_data(const tree& tree, const bitmatrix& data) {
	auto root = find_comprehensive_taxon(data);
	utils::ensure<bad_input_error>(data.rows() == num_leaves_from_nodes(tree.size()),
	                               bad_input_error_type::tree_mismatching_size);
	utils::ensure<no_usable_root_error>(root != none, "No comprehensive taxon found");
	auto rerooted_tree = tree;
	reroot_at_taxon_inplace(rerooted_tree, root);
	auto trees = subtrees(rerooted_tree, data);
	auto constraints = compute_constraints(trees);
	deduplicate_constraints(constraints);

	auto num_leaves = data.rows();
	utils::ensure<bad_input_error>(num_leaves >= 4, bad_input_error_type::nwk_tree_trivial);
	return {constraints, num_leaves, root};
}

index_t find_comprehensive_taxon(const bitmatrix& data) {
	for (index_t i = 0; i < data.rows(); ++i) {
		bool comp = true;
		for (index_t j = 0; j < data.cols(); ++j) {
			comp &= data.get(i, j);
		}
		if (comp) {
			return i;
		}
	}
	return none;
}

bitmatrix maximum_comprehensive_columnset(const bitmatrix& data) {
	std::vector<index_t> row_counts(data.rows(), 0u);
	for (index_t i = 0; i < data.rows(); ++i) {
		for (index_t j = 0; j < data.cols(); ++j) {
			row_counts[i] += data.get(i, j) ? 1u : 0u;
		}
	}
	auto it = std::max_element(row_counts.begin(), row_counts.end());
	index_t comp_row = static_cast<index_t>(std::distance(row_counts.begin(), it));
	std::vector<index_t> columns;
	for (index_t j = 0; j < data.cols(); ++j) {
		if (data.get(comp_row, j)) {
			columns.push_back(j);
		}
	}
	return data.get_cols(columns);
}

index_t fast_count_terrace(const supertree_data& data) {
	tree_enumerator<variants::check_callback> enumerator{{}};
	try {
		return enumerator.run(data.num_leaves, data.constraints, data.root);
	} catch (terraces::tree_count_overflow_error&) {
		return std::numeric_limits<index_t>::max();
	}
}

bool check_terrace(const supertree_data& data) { return fast_count_terrace(data) > 1; }

index_t count_terrace(const supertree_data& data, execution_limits limits, bool& terminated_early) {
	tree_enumerator<variants::timeout_decorator<variants::clamped_count_callback>> enumerator{
	        {limits.time_limit_seconds}};
	try {
		auto result = enumerator.run(data.num_leaves, data.constraints, data.root).value();
		terminated_early = enumerator.callback().has_timed_out();
		return result;
	} catch (terraces::tree_count_overflow_error&) {
		return std::numeric_limits<index_t>::max();
	}
}

big_integer count_terrace_bigint(const supertree_data& data, execution_limits limits,
                                 bool& terminated_early) {
	tree_enumerator<variants::timeout_decorator<variants::count_callback<big_integer>>>
	        enumerator{{limits.time_limit_seconds}};
	auto result = enumerator.run(data.num_leaves, data.constraints, data.root);
	terminated_early = enumerator.callback().has_timed_out();
	return result;
}

using limited_multitree_callback =
        variants::timeout_decorator<variants::memory_limited_multitree_callback>;

big_integer print_terrace_compressed(const supertree_data& data, const name_map& names,
                                     std::ostream& output, execution_limits limits,
                                     bool& terminated_early) {
	tree_enumerator<limited_multitree_callback> enumerator{
	        limited_multitree_callback{limits.time_limit_seconds, limits.mem_limit_bytes}};
	auto result = enumerator.run(data.num_leaves, data.constraints, data.root);
	terminated_early = enumerator.callback().has_timed_out() ||
	                   enumerator.callback().has_hit_memory_limit();
	output << as_newick(result, names);

	return result->num_trees;
}

big_integer print_terrace(const supertree_data& data, const name_map& names, std::ostream& output,
                          execution_limits limits, bool& terminated_early) {
	tree_enumerator<limited_multitree_callback> enumerator{
	        limited_multitree_callback{limits.time_limit_seconds, limits.mem_limit_bytes}};
	auto result = enumerator.run(data.num_leaves, data.constraints, data.root);
	terminated_early = enumerator.callback().has_timed_out() ||
	                   enumerator.callback().has_hit_memory_limit();
	if (!terminated_early) {
		multitree_iterator mit{result};
		do {
			output << as_newick(mit.tree(), names) << '\n';
		} while (mit.next());
	}
	return result->num_trees;
}

void enumerate_terrace(const supertree_data& data, std::function<void(const tree&)> callback,
                       execution_limits limits, bool& terminated_early) {
	tree_enumerator<limited_multitree_callback> enumerator{
	        limited_multitree_callback{limits.time_limit_seconds, limits.mem_limit_bytes}};
	auto result = enumerator.run(data.num_leaves, data.constraints, data.root);
	terminated_early = enumerator.callback().has_timed_out() ||
	                   enumerator.callback().has_hit_memory_limit();
	if (!terminated_early) {
		multitree_iterator mit{result};
		do {
			callback(mit.tree());
		} while (mit.next());
	}
}

index_t count_terrace(const supertree_data& data) {
	execution_limits limits{};
	bool tmp;
	return count_terrace(data, limits, tmp);
}

big_integer count_terrace_bigint(const supertree_data& data) {
	execution_limits limits{};
	bool tmp;
	return count_terrace_bigint(data, limits, tmp);
}

big_integer print_terrace_compressed(const supertree_data& data, const name_map& names,
                                     std::ostream& output) {
	execution_limits limits{};
	bool tmp;
	return print_terrace_compressed(data, names, output, limits, tmp);
}

big_integer print_terrace(const supertree_data& data, const name_map& names, std::ostream& output) {
	execution_limits limits{};
	bool tmp;
	return print_terrace(data, names, output, limits, tmp);
}

void enumerate_terrace(const supertree_data& data, std::function<void(const tree&)> callback) {
	execution_limits limits{};
	bool tmp;
	return enumerate_terrace(data, std::move(callback), limits, tmp);
}

} // namespace terraces