1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
// (C) Copyright 2017, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cmath>
#include <cstdio>
#include <string>
#include "bitvector.h"
#include "include_gunit.h"
const int kPrimeLimit = 1000;
namespace tesseract {
class BitVectorTest : public testing::Test {
protected:
void SetUp() override {
std::locale::global(std::locale(""));
file::MakeTmpdir();
}
public:
std::string OutputNameToPath(const std::string &name) {
return file::JoinPath(FLAGS_test_tmpdir, name);
}
// Computes primes up to kPrimeLimit, using the sieve of Eratosthenes.
void ComputePrimes(BitVector *map) {
map->Init(kPrimeLimit + 1);
TestAll(*map, false);
map->SetBit(2);
// Set all the odds to true.
for (int i = 3; i <= kPrimeLimit; i += 2) {
map->SetValue(i, true);
}
int factor_limit = static_cast<int>(sqrt(1.0 + kPrimeLimit));
for (int f = 3; f <= factor_limit; f += 2) {
if (map->At(f)) {
for (int m = 2; m * f <= kPrimeLimit; ++m) {
map->ResetBit(f * m);
}
}
}
}
void TestPrimes(const BitVector &map) {
// Now all primes in the vector are true, and all others false.
// According to Wikipedia, there are 168 primes under 1000, the last
// of which is 997.
int total_primes = 0;
for (int i = 0; i <= kPrimeLimit; ++i) {
if (map[i]) {
++total_primes;
}
}
EXPECT_EQ(168, total_primes);
EXPECT_TRUE(map[997]);
EXPECT_FALSE(map[998]);
EXPECT_FALSE(map[999]);
}
// Test that all bits in the vector have the given value.
void TestAll(const BitVector &map, bool value) {
for (int i = 0; i < map.size(); ++i) {
EXPECT_EQ(value, map[i]);
}
}
// Sets up a BitVector with bit patterns for byte values in
// [start_byte, end_byte) positioned every spacing bytes (for spacing >= 1)
// with spacing-1 zero bytes in between the pattern bytes.
void SetBitPattern(int start_byte, int end_byte, int spacing, BitVector *bv) {
bv->Init((end_byte - start_byte) * 8 * spacing);
for (int byte_value = start_byte; byte_value < end_byte; ++byte_value) {
for (int bit = 0; bit < 8; ++bit) {
if (byte_value & (1 << bit)) {
bv->SetBit((byte_value - start_byte) * 8 * spacing + bit);
}
}
}
}
// Expects that every return from NextSetBit is really set and that all others
// are really not set. Checks the return from NumSetBits also.
void ExpectCorrectBits(const BitVector &bv) {
int bit_index = -1;
int prev_bit_index = -1;
int num_bits_tested = 0;
while ((bit_index = bv.NextSetBit(bit_index)) >= 0) {
EXPECT_LT(bit_index, bv.size());
// All bits in between must be 0.
for (int i = prev_bit_index + 1; i < bit_index; ++i) {
EXPECT_EQ(0, bv[i]) << "i = " << i << " prev = " << prev_bit_index;
}
// This bit must be 1.
EXPECT_EQ(1, bv[bit_index]) << "Bit index = " << bit_index;
++num_bits_tested;
prev_bit_index = bit_index;
}
// Check the bits between the last and the end.
for (int i = prev_bit_index + 1; i < bv.size(); ++i) {
EXPECT_EQ(0, bv[i]);
}
EXPECT_EQ(num_bits_tested, bv.NumSetBits());
}
};
// Tests the sieve of Eratosthenes as a way of testing set/reset and I/O.
TEST_F(BitVectorTest, Primes) {
BitVector map;
ComputePrimes(&map);
TestPrimes(map);
// It still works if we use the copy constructor.
BitVector map2(map);
TestPrimes(map2);
// Or if we assign it.
BitVector map3;
map3 = map;
TestPrimes(map3);
// Test file i/o too.
std::string filename = OutputNameToPath("primesbitvector");
FILE *fp = fopen(filename.c_str(), "wb");
ASSERT_TRUE(fp != nullptr);
EXPECT_TRUE(map.Serialize(fp));
fclose(fp);
fp = fopen(filename.c_str(), "rb");
ASSERT_TRUE(fp != nullptr);
BitVector read_map;
EXPECT_TRUE(read_map.DeSerialize(false, fp));
fclose(fp);
TestPrimes(read_map);
}
// Tests the many-to-one setup feature.
TEST_F(BitVectorTest, SetAll) {
// Test the default constructor and set/resetall.
BitVector map(42);
TestAll(map, false);
map.SetAllTrue();
TestAll(map, true);
map.SetAllFalse();
TestAll(map, false);
}
// Tests the values in the tables offset_table_, next_table_, hamming_table_
// by setting all possible byte patterns and verifying that the NextSetBit and
// NumSetBits functions return the correct values.
TEST_F(BitVectorTest, TestNextSetBit) {
BitVector bv;
for (int spacing = 1; spacing <= 5; ++spacing) {
SetBitPattern(0, 256, spacing, &bv);
ExpectCorrectBits(bv);
}
}
// Tests the values in hamming_table_ more thoroughly by setting single byte
// patterns for each byte individually.
TEST_F(BitVectorTest, TestNumSetBits) {
BitVector bv;
for (int byte = 0; byte < 256; ++byte) {
SetBitPattern(byte, byte + 1, 1, &bv);
ExpectCorrectBits(bv);
}
}
} // namespace tesseract
|