1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
// (C) Copyright 2017, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string> // for std::string
#include "gmock/gmock.h" // for testing::ElementsAreArray
#include "include_gunit.h"
#include "lang_model_helpers.h"
#include "log.h" // for LOG
#include "lstmtrainer.h"
#include "unicharset_training_utils.h"
namespace tesseract {
std::string TestDataNameToPath(const std::string &name) {
return file::JoinPath(TESTING_DIR, name);
}
// This is an integration test that verifies that CombineLangModel works to
// the extent that an LSTMTrainer can be initialized with the result, and it
// can encode strings. More importantly, the test verifies that adding an extra
// character to the unicharset does not change the encoding of strings.
TEST(LangModelTest, AddACharacter) {
constexpr char kTestString[] = "Simple ASCII string to encode !@#$%&";
constexpr char kTestStringRupees[] = "ASCII string with Rupee symbol ₹";
// Setup the arguments.
std::string script_dir = LANGDATA_DIR;
std::string eng_dir = file::JoinPath(script_dir, "eng");
std::string unicharset_path = TestDataNameToPath("eng_beam.unicharset");
UNICHARSET unicharset;
EXPECT_TRUE(unicharset.load_from_file(unicharset_path.c_str()));
std::string version_str = "TestVersion";
file::MakeTmpdir();
std::string output_dir = FLAGS_test_tmpdir;
LOG(INFO) << "Output dir=" << output_dir << "\n";
std::string lang1 = "eng";
bool pass_through_recoder = false;
// If these reads fail, we get a warning message and an empty list of words.
std::vector<std::string> words = split(ReadFile(file::JoinPath(eng_dir, "eng.wordlist")), '\n');
EXPECT_GT(words.size(), 0);
std::vector<std::string> puncs = split(ReadFile(file::JoinPath(eng_dir, "eng.punc")), '\n');
EXPECT_GT(puncs.size(), 0);
std::vector<std::string> numbers = split(ReadFile(file::JoinPath(eng_dir, "eng.numbers")), '\n');
EXPECT_GT(numbers.size(), 0);
bool lang_is_rtl = false;
// Generate the traineddata file.
EXPECT_EQ(0, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang1,
pass_through_recoder, words, puncs, numbers, lang_is_rtl, nullptr,
nullptr));
// Init a trainer with it, and encode kTestString.
std::string traineddata1 = file::JoinPath(output_dir, lang1, lang1) + ".traineddata";
LSTMTrainer trainer1;
trainer1.InitCharSet(traineddata1);
std::vector<int> labels1;
EXPECT_TRUE(trainer1.EncodeString(kTestString, &labels1));
std::string test1_decoded = trainer1.DecodeLabels(labels1);
std::string test1_str(&test1_decoded[0], test1_decoded.length());
LOG(INFO) << "Labels1=" << test1_str << "\n";
// Add a new character to the unicharset and try again.
int size_before = unicharset.size();
unicharset.unichar_insert("₹");
SetupBasicProperties(/*report_errors*/ true, /*decompose (NFD)*/ false, &unicharset);
EXPECT_EQ(size_before + 1, unicharset.size());
// Generate the traineddata file.
std::string lang2 = "extended";
EXPECT_EQ(EXIT_SUCCESS, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang2,
pass_through_recoder, words, puncs, numbers, lang_is_rtl,
nullptr, nullptr));
// Init a trainer with it, and encode kTestString.
std::string traineddata2 = file::JoinPath(output_dir, lang2, lang2) + ".traineddata";
LSTMTrainer trainer2;
trainer2.InitCharSet(traineddata2);
std::vector<int> labels2;
EXPECT_TRUE(trainer2.EncodeString(kTestString, &labels2));
std::string test2_decoded = trainer2.DecodeLabels(labels2);
std::string test2_str(&test2_decoded[0], test2_decoded.length());
LOG(INFO) << "Labels2=" << test2_str << "\n";
// encode kTestStringRupees.
std::vector<int> labels3;
EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels3));
std::string test3_decoded = trainer2.DecodeLabels(labels3);
std::string test3_str(&test3_decoded[0], test3_decoded.length());
LOG(INFO) << "labels3=" << test3_str << "\n";
// Copy labels1 to a std::vector, renumbering the null char to match trainer2.
// Since Tensor Flow's CTC implementation insists on having the null be the
// last label, and we want to be compatible, null has to be renumbered when
// we add a class.
int null1 = trainer1.null_char();
int null2 = trainer2.null_char();
EXPECT_EQ(null1 + 1, null2);
std::vector<int> labels1_v(labels1.size());
for (unsigned i = 0; i < labels1.size(); ++i) {
if (labels1[i] == null1) {
labels1_v[i] = null2;
} else {
labels1_v[i] = labels1[i];
}
}
EXPECT_THAT(labels1_v, testing::ElementsAreArray(&labels2[0], labels2.size()));
// To make sure we we are not cheating somehow, we can now encode the Rupee
// symbol, which we could not do before.
EXPECT_FALSE(trainer1.EncodeString(kTestStringRupees, &labels1));
EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels2));
}
// Same as above test, for hin instead of eng
TEST(LangModelTest, AddACharacterHindi) {
constexpr char kTestString[] = "हिन्दी में एक लाइन लिखें";
constexpr char kTestStringRupees[] = "हिंदी में रूपये का चिन्ह प्रयोग करें ₹१००.००";
// Setup the arguments.
std::string script_dir = LANGDATA_DIR;
std::string hin_dir = file::JoinPath(script_dir, "hin");
std::string unicharset_path = TestDataNameToPath("hin_beam.unicharset");
UNICHARSET unicharset;
EXPECT_TRUE(unicharset.load_from_file(unicharset_path.c_str()));
std::string version_str = "TestVersion";
file::MakeTmpdir();
std::string output_dir = FLAGS_test_tmpdir;
LOG(INFO) << "Output dir=" << output_dir << "\n";
std::string lang1 = "hin";
bool pass_through_recoder = false;
// If these reads fail, we get a warning message and an empty list of words.
std::vector<std::string> words = split(ReadFile(file::JoinPath(hin_dir, "hin.wordlist")), '\n');
EXPECT_GT(words.size(), 0);
std::vector<std::string> puncs = split(ReadFile(file::JoinPath(hin_dir, "hin.punc")), '\n');
EXPECT_GT(puncs.size(), 0);
std::vector<std::string> numbers = split(ReadFile(file::JoinPath(hin_dir, "hin.numbers")), '\n');
EXPECT_GT(numbers.size(), 0);
bool lang_is_rtl = false;
// Generate the traineddata file.
EXPECT_EQ(0, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang1,
pass_through_recoder, words, puncs, numbers, lang_is_rtl, nullptr,
nullptr));
// Init a trainer with it, and encode kTestString.
std::string traineddata1 = file::JoinPath(output_dir, lang1, lang1) + ".traineddata";
LSTMTrainer trainer1;
trainer1.InitCharSet(traineddata1);
std::vector<int> labels1;
EXPECT_TRUE(trainer1.EncodeString(kTestString, &labels1));
std::string test1_decoded = trainer1.DecodeLabels(labels1);
std::string test1_str(&test1_decoded[0], test1_decoded.length());
LOG(INFO) << "Labels1=" << test1_str << "\n";
// Add a new character to the unicharset and try again.
int size_before = unicharset.size();
unicharset.unichar_insert("₹");
SetupBasicProperties(/*report_errors*/ true, /*decompose (NFD)*/ false, &unicharset);
EXPECT_EQ(size_before + 1, unicharset.size());
// Generate the traineddata file.
std::string lang2 = "extendedhin";
EXPECT_EQ(EXIT_SUCCESS, CombineLangModel(unicharset, script_dir, version_str, output_dir, lang2,
pass_through_recoder, words, puncs, numbers, lang_is_rtl,
nullptr, nullptr));
// Init a trainer with it, and encode kTestString.
std::string traineddata2 = file::JoinPath(output_dir, lang2, lang2) + ".traineddata";
LSTMTrainer trainer2;
trainer2.InitCharSet(traineddata2);
std::vector<int> labels2;
EXPECT_TRUE(trainer2.EncodeString(kTestString, &labels2));
std::string test2_decoded = trainer2.DecodeLabels(labels2);
std::string test2_str(&test2_decoded[0], test2_decoded.length());
LOG(INFO) << "Labels2=" << test2_str << "\n";
// encode kTestStringRupees.
std::vector<int> labels3;
EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels3));
std::string test3_decoded = trainer2.DecodeLabels(labels3);
std::string test3_str(&test3_decoded[0], test3_decoded.length());
LOG(INFO) << "labels3=" << test3_str << "\n";
// Copy labels1 to a std::vector, renumbering the null char to match trainer2.
// Since Tensor Flow's CTC implementation insists on having the null be the
// last label, and we want to be compatible, null has to be renumbered when
// we add a class.
int null1 = trainer1.null_char();
int null2 = trainer2.null_char();
EXPECT_EQ(null1 + 1, null2);
std::vector<int> labels1_v(labels1.size());
for (unsigned i = 0; i < labels1.size(); ++i) {
if (labels1[i] == null1) {
labels1_v[i] = null2;
} else {
labels1_v[i] = labels1[i];
}
}
EXPECT_THAT(labels1_v, testing::ElementsAreArray(&labels2[0], labels2.size()));
// To make sure we we are not cheating somehow, we can now encode the Rupee
// symbol, which we could not do before.
EXPECT_FALSE(trainer1.EncodeString(kTestStringRupees, &labels1));
EXPECT_TRUE(trainer2.EncodeString(kTestStringRupees, &labels2));
}
} // namespace tesseract
|