1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// (C) Copyright 2017, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef TESSERACT_UNITTEST_LSTM_TEST_H_
#define TESSERACT_UNITTEST_LSTM_TEST_H_
#include <memory>
#include <string>
#include <utility>
#include "include_gunit.h"
#include "helpers.h"
#include "tprintf.h"
#include "functions.h"
#include "lang_model_helpers.h"
#include "log.h" // for LOG
#include "lstmtrainer.h"
#include "unicharset.h"
namespace tesseract {
#if DEBUG_DETAIL == 0
// Number of iterations to run all the trainers.
const int kTrainerIterations = 600;
// Number of iterations between accuracy checks.
const int kBatchIterations = 100;
#else
// Number of iterations to run all the trainers.
const int kTrainerIterations = 2;
// Number of iterations between accuracy checks.
const int kBatchIterations = 1;
#endif
// The fixture for testing LSTMTrainer.
class LSTMTrainerTest : public testing::Test {
protected:
void SetUp() override {
std::locale::global(std::locale(""));
file::MakeTmpdir();
}
LSTMTrainerTest() = default;
std::string TestDataNameToPath(const std::string &name) {
return file::JoinPath(TESTDATA_DIR, "" + name);
}
std::string TessDataNameToPath(const std::string &name) {
return file::JoinPath(TESSDATA_DIR, "" + name);
}
std::string TestingNameToPath(const std::string &name) {
return file::JoinPath(TESTING_DIR, "" + name);
}
void SetupTrainerEng(const std::string &network_spec, const std::string &model_name, bool recode,
bool adam) {
SetupTrainer(network_spec, model_name, "eng/eng.unicharset", "eng.Arial.exp0.lstmf", recode,
adam, 5e-4, false, "eng");
}
void SetupTrainer(const std::string &network_spec, const std::string &model_name,
const std::string &unicharset_file, const std::string &lstmf_file, bool recode,
bool adam, float learning_rate, bool layer_specific, const std::string &kLang) {
// constexpr char kLang[] = "eng"; // Exact value doesn't matter.
std::string unicharset_name = TestDataNameToPath(unicharset_file);
UNICHARSET unicharset;
ASSERT_TRUE(unicharset.load_from_file(unicharset_name.c_str(), false));
std::string script_dir = file::JoinPath(LANGDATA_DIR, "");
std::vector<std::string> words;
EXPECT_EQ(0, CombineLangModel(unicharset, script_dir, "", FLAGS_test_tmpdir, kLang, !recode,
words, words, words, false, nullptr, nullptr));
std::string model_path = file::JoinPath(FLAGS_test_tmpdir, model_name);
std::string checkpoint_path = model_path + "_checkpoint";
trainer_ = std::make_unique<LSTMTrainer>(model_path.c_str(), checkpoint_path.c_str(), 0, 0);
trainer_->InitCharSet(
file::JoinPath(FLAGS_test_tmpdir, kLang, kLang) + ".traineddata");
int net_mode = adam ? NF_ADAM : 0;
// Adam needs a higher learning rate, due to not multiplying the effective
// rate by 1/(1-momentum).
if (adam) {
learning_rate *= 20.0f;
}
if (layer_specific) {
net_mode |= NF_LAYER_SPECIFIC_LR;
}
EXPECT_TRUE(
trainer_->InitNetwork(network_spec.c_str(), -1, net_mode, 0.1, learning_rate, 0.9, 0.999));
std::vector<std::string> filenames;
filenames.emplace_back(TestDataNameToPath(lstmf_file).c_str());
EXPECT_TRUE(trainer_->LoadAllTrainingData(filenames, CS_SEQUENTIAL, false));
LOG(INFO) << "Setup network:" << model_name << "\n";
}
// Trains for a given number of iterations and returns the char error rate.
double TrainIterations(int max_iterations) {
int iteration = trainer_->training_iteration();
int iteration_limit = iteration + max_iterations;
double best_error = 100.0;
do {
std::stringstream log_str;
int target_iteration = iteration + kBatchIterations;
// Train a few.
double mean_error = 0.0;
while (iteration < target_iteration && iteration < iteration_limit) {
trainer_->TrainOnLine(trainer_.get(), false);
iteration = trainer_->training_iteration();
mean_error += trainer_->LastSingleError(ET_CHAR_ERROR);
}
trainer_->MaintainCheckpoints(nullptr, log_str);
iteration = trainer_->training_iteration();
mean_error *= 100.0 / kBatchIterations;
if (mean_error < best_error) {
best_error = mean_error;
}
} while (iteration < iteration_limit);
LOG(INFO) << "Trainer error rate = " << best_error << "\n";
return best_error;
}
// Tests for a given number of iterations and returns the char error rate.
double TestIterations(int max_iterations) {
CHECK_GT(max_iterations, 0);
int iteration = trainer_->sample_iteration();
double mean_error = 0.0;
int error_count = 0;
while (error_count < max_iterations) {
const ImageData &trainingdata =
*trainer_->mutable_training_data()->GetPageBySerial(iteration);
NetworkIO fwd_outputs, targets;
if (trainer_->PrepareForBackward(&trainingdata, &fwd_outputs, &targets) != UNENCODABLE) {
mean_error += trainer_->NewSingleError(ET_CHAR_ERROR);
++error_count;
}
trainer_->SetIteration(++iteration);
}
mean_error *= 100.0 / max_iterations;
LOG(INFO) << "Tester error rate = " << mean_error << "\n";
return mean_error;
}
// Tests that the current trainer_ can be converted to int mode and still gets
// within 1% of the error rate. Returns the increase in error from float to
// int.
double TestIntMode(int test_iterations) {
std::vector<char> trainer_data;
EXPECT_TRUE(trainer_->SaveTrainingDump(NO_BEST_TRAINER, *trainer_, &trainer_data));
// Get the error on the next few iterations in float mode.
double float_err = TestIterations(test_iterations);
// Restore the dump, convert to int and test error on that.
EXPECT_TRUE(trainer_->ReadTrainingDump(trainer_data, *trainer_));
trainer_->ConvertToInt();
double int_err = TestIterations(test_iterations);
EXPECT_LT(int_err, float_err + 1.0);
return int_err - float_err;
}
// Sets up a trainer with the given language and given recode+ctc condition.
// It then verifies that the given str encodes and decodes back to the same
// string.
void TestEncodeDecode(const std::string &lang, const std::string &str, bool recode) {
std::string unicharset_name = lang + "/" + lang + ".unicharset";
std::string lstmf_name = lang + ".Arial_Unicode_MS.exp0.lstmf";
SetupTrainer("[1,1,0,32 Lbx100 O1c1]", "bidi-lstm", unicharset_name, lstmf_name, recode, true,
5e-4f, true, lang);
std::vector<int> labels;
EXPECT_TRUE(trainer_->EncodeString(str.c_str(), &labels));
std::string decoded = trainer_->DecodeLabels(labels);
std::string decoded_str(&decoded[0], decoded.length());
EXPECT_EQ(str, decoded_str);
}
// Calls TestEncodeDeode with both recode on and off.
void TestEncodeDecodeBoth(const std::string &lang, const std::string &str) {
TestEncodeDecode(lang, str, false);
TestEncodeDecode(lang, str, true);
}
std::unique_ptr<LSTMTrainer> trainer_;
};
} // namespace tesseract.
#endif // THIRD_PARTY_TESSERACT_UNITTEST_LSTM_TEST_H_
|