1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
// Copyright (c) 2017-2023, University of Tennessee. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// This program is free software: you can redistribute it and/or modify it under
// the terms of the BSD 3-Clause license. See the accompanying LICENSE file.
#include "test.hh"
// -----------------------------------------------------------------------------
/// An enum class without to_string, from_string.
enum class EnumOld
{
a, b, c
};
// -----------------------------------------------------------------------------
/// An enum class with wrong to_string, from_string.
enum class EnumOld2
{
a, b, c
};
const char* to_string( EnumOld2 value )
{
return "value";
}
void from_string( std::string const& str, EnumOld2 value )
{
}
// -----------------------------------------------------------------------------
/// An enum class with to_string, from_string.
enum class EnumNew
{
x, y, z
};
std::string to_string( EnumNew value )
{
return "value";
}
void from_string( std::string const& str, EnumNew* value )
{
*value = EnumNew::x;
}
// -----------------------------------------------------------------------------
// traits class maps data type to real_t and scalar_t.
// for float, double:
// norm and scalar are float, double, respectively.
template <typename T>
class traits
{
public:
typedef T real_t;
typedef T scalar_t;
};
// for std::complex<float>, std::complex<double>:
// norm is float, double, respectively;
// scalar is std::complex<float>, std::complex<double>, respectively.
template <typename T>
class traits< std::complex<T> >
{
public:
typedef T real_t;
typedef std::complex<T> scalar_t;
};
// -----------------------------------------------------------------------------
// Example function to test.
// In this case, it sorts the vector x, using C++ std::sort.
//
template <typename scalar_t>
void my_sort( std::vector<scalar_t>& x )
{
std::sort( x.begin(), x.end() );
}
// -----------------------------------------------------------------------------
// Comparison function for qsort. Returns negative, zero, or positive
// if x is less than, equal to, or greater than y, respectively.
//
template <typename T>
int compare( const void* x, const void* y )
{
T x_ = ((T*)x)[0];
T y_ = ((T*)y)[0];
return (x_ < y_ ? -1 : x_ == y_ ? 0 : 1);
}
// -----------------------------------------------------------------------------
// Example function to test -- reference implementation.
// In this case, it sorts the vector x, using C's qsort.
//
template <typename T>
void ref_sort( std::vector<T>& x )
{
qsort( &x[0], x.size(), sizeof(T), compare<T> );
}
// -----------------------------------------------------------------------------
// Print vector.
//
template <typename T>
void print( const char* label, std::vector<T>& x )
{
printf( "%s = [\n", label );
for (auto x_i: x) {
printf( " %9.6f\n", x_i );
}
printf( "];\n" );
}
// -----------------------------------------------------------------------------
template <typename scalar_t>
void test_sort_work( Params ¶ms, bool run )
{
using llong = long long;
using testsweeper::get_wtime;
typedef typename traits<scalar_t>::real_t real_t;
// get & mark input and non-standard output values
int64_t nb = params.nb();
int64_t m = params.dim.m();
int64_t n = params.dim.n();
int64_t k = params.dim.k();
int64_t cache = params.cache();
int verbose = params.verbose();
bool check = (params.check() == 'y');
bool ref = (params.ref() == 'y') || check; // check requires ref
scalar_t alpha = params.alpha.get<scalar_t>();
real_t beta = params.beta();
(void) nb; // Mark as unused.
// mark non-standard output values
params.gflops();
params.ref_time();
params.ref_gflops();
// adjust header to msec
params.time.name( "SLATE\ntime (ms)" );
params.gflops.name( "gflop/s" );
params.ref_time.name( "LAPACK Reference\ntime (ms)" );
params.ref_gflops.name( "LAPACK\nreference gflop/s" );
assert( params.time.width() == 9 ); // default width
assert( params.gflops.width() == 12 ); // default width
assert( params.ref_time.width() == 16 ); // LAPACK Reference (1st line)
assert( params.ref_gflops.width() == 17 ); // reference gflop/s (2nd line)
if (! run)
return;
//----------
// Test has_to_string, has_from_string
static_assert( ! testsweeper::has_to_string<EnumOld>::value );
static_assert( ! testsweeper::has_from_string<EnumOld>::value );
static_assert( ! testsweeper::has_to_string<EnumOld2>::value );
static_assert( ! testsweeper::has_from_string<EnumOld2>::value );
static_assert( testsweeper::has_to_string<EnumNew>::value );
static_assert( testsweeper::has_from_string<EnumNew>::value );
// ----------
// setup
int64_t imax = 100000;
size_t len = std::min( m, imax ) + std::min( n, imax ) + std::min( k, imax );
std::vector<real_t> x( len );
for (auto& x_i: x) {
x_i = rand() / double(RAND_MAX) + std::abs( alpha ) + beta;
}
std::vector<real_t> x_ref = x; // copy
if (verbose >= 2) {
print( "x_in", x );
}
double time;
double gflop = len * log2( len ) * 1e-9;
// run test
testsweeper::flush_cache( cache );
time = get_wtime();
my_sort( x );
time = get_wtime() - time;
params.time() = time * 1000; // msec
params.gflops() = gflop / time;
if (verbose >= 2) {
print( "x_out", x );
}
if (ref) {
// run reference
testsweeper::flush_cache( cache );
time = get_wtime();
ref_sort( x_ref ); // reference implementation
time = get_wtime() - time;
params.ref_time() = time * 1000; // msec
params.ref_gflops() = gflop / time;
if (verbose >= 2) {
print( "x_ref", x_ref );
}
}
// check error
if (check) {
real_t error = 0;
error = 1.23456e-17 * n; // placeholder; fails for n >= 900
for (size_t i = 0; i < len; ++i) {
error += std::abs( x[i] - x_ref[i] );
}
real_t eps = std::numeric_limits< real_t >::epsilon();
real_t tol = params.tol() * eps;
params.error() = error;
params.okay() = (error < tol);
}
}
// -----------------------------------------------------------------------------
void test_sort( Params ¶ms, bool run )
{
switch (params.datatype()) {
case testsweeper::DataType::Single:
test_sort_work< float >( params, run );
break;
case testsweeper::DataType::Double:
test_sort_work< double >( params, run );
break;
case testsweeper::DataType::SingleComplex:
test_sort_work< std::complex<float> >( params, run );
break;
case testsweeper::DataType::DoubleComplex:
test_sort_work< std::complex<double> >( params, run );
break;
default:
throw std::runtime_error(
"unknown datatype: " + to_string( params.datatype() ) );
break;
}
}
// -----------------------------------------------------------------------------
void test_bar( Params ¶ms, bool run )
{
test_sort( params, run );
}
// -----------------------------------------------------------------------------
void test_baz( Params ¶ms, bool run )
{
test_sort( params, run );
}
|