File: LCGGood.par

package info (click to toggle)
testu01 1.2.3%2Bds-2
  • links: PTS, VCS
  • area: non-free
  • in suites: stretch
  • size: 17,740 kB
  • ctags: 4,799
  • sloc: ansic: 52,384; makefile: 241; sh: 53
file content (73 lines) | stat: -rw-r--r-- 2,392 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Package:    TestU01
# File:       LCGGood.par

# Description:   Parameter values for the good (with respect to the spectral
# test in up to dimension 8) LCG (Linear Congruential Generators). 
# The values are taken from L'Ecuyer's article latrules \cite{rLEC99c}.
#-----------------------------------------------------------------

# Give the name of the family first

LCGGood


# For each generator, the following parameters must be given in 
# the right order on the same line
#	              h   m   a
# where h is (very close to) the base-2 logarithm of m, m is the modulus, 
# and a is the multiplier, the constant c is 0. The multiplier a has been
# chosen in such a way that a*m < 2^{53}. Thus we use the floating-point
# version of the LCG as it is often faster than the integer version. 

10	1021	        65    
11	2039	       	995   
12 	4093	       	209   
13 	8191	       	884   
14 	16381	       	572   
15 	32749	       	219   
16 	65521	       	17364 
17 	131071	       	43165 
18 	262139	       	92717 
19 	524287	       	283741
20 	1048573		380985
21 	2097143		360889
22 	4194301		914334
23 	8388593		653276
24 	16777213	6423135
25 	33554393	25907312
26 	67108859	26590841
27 	134217689	45576512
28 	268435399	31792125
29 	536870909	16538103
30 	1073741789	5122456
31 	2147483647	1389796

32   4294967291   1588635695
33   8589934583    7425194315
34   17179869143   5295517759
35   34359738337   3124199165
36   68719476731   49865143810
37   137438953447   76886758244
38   274877906899   17838542566
39   549755813881   61992693052
40   1099511627689   1038914804222
41   2199023255531   1013262675629
42   4398046511093   2214813540776
43   8796093022151   4114249742626
44   17592186044399   6307617245999
45   35184372088777   25933916233908
46   70368744177643   63975993200055
47   140737488355213   102306498730560
48   281474976710597   49235258628958
49   562949953421231   265609885904224
50   1125899906842597   1087141320185010
51   2251799813685119   349044191547257
52   4503599627370449   4359287924442956
53   9007199254740881   2333175048965096
54   18014398509481951   17554612001638734
55   36028797018963913   33266544676670489
56   72057594037927931   39159994680362565
57   144115188075855859   75953708294752990
58   288230376151711717   252847049180516155
59   576460752303423433   346764851511064641
60   1152921504606846883   561860773102413563