1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
# Package: TestU01
# File: LCGGood.par
# Description: Parameter values for the good (with respect to the spectral
# test in up to dimension 8) LCG (Linear Congruential Generators).
# The values are taken from L'Ecuyer's article latrules \cite{rLEC99c}.
#-----------------------------------------------------------------
# Give the name of the family first
LCGGood
# For each generator, the following parameters must be given in
# the right order on the same line
# h m a
# where h is (very close to) the base-2 logarithm of m, m is the modulus,
# and a is the multiplier, the constant c is 0. The multiplier a has been
# chosen in such a way that a*m < 2^{53}. Thus we use the floating-point
# version of the LCG as it is often faster than the integer version.
10 1021 65
11 2039 995
12 4093 209
13 8191 884
14 16381 572
15 32749 219
16 65521 17364
17 131071 43165
18 262139 92717
19 524287 283741
20 1048573 380985
21 2097143 360889
22 4194301 914334
23 8388593 653276
24 16777213 6423135
25 33554393 25907312
26 67108859 26590841
27 134217689 45576512
28 268435399 31792125
29 536870909 16538103
30 1073741789 5122456
31 2147483647 1389796
32 4294967291 1588635695
33 8589934583 7425194315
34 17179869143 5295517759
35 34359738337 3124199165
36 68719476731 49865143810
37 137438953447 76886758244
38 274877906899 17838542566
39 549755813881 61992693052
40 1099511627689 1038914804222
41 2199023255531 1013262675629
42 4398046511093 2214813540776
43 8796093022151 4114249742626
44 17592186044399 6307617245999
45 35184372088777 25933916233908
46 70368744177643 63975993200055
47 140737488355213 102306498730560
48 281474976710597 49235258628958
49 562949953421231 265609885904224
50 1125899906842597 1087141320185010
51 2251799813685119 349044191547257
52 4503599627370449 4359287924442956
53 9007199254740881 2333175048965096
54 18014398509481951 17554612001638734
55 36028797018963913 33266544676670489
56 72057594037927931 39159994680362565
57 144115188075855859 75953708294752990
58 288230376151711717 252847049180516155
59 576460752303423433 346764851511064641
60 1152921504606846883 561860773102413563
|