1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
/*************************************************************************\
*
* Package: MyLib
* File: num.c
* Environment: ANSI C
*
* Copyright (c) 2002 Pierre L'Ecuyer, DIRO, Université de Montréal.
* e-mail: lecuyer@iro.umontreal.ca
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted without a fee for private, research,
* academic, or other non-commercial purposes.
* Any use of this software in a commercial environment requires a
* written licence from the copyright owner.
*
* Any changes made to this package must be clearly identified as such.
*
* In scientific publications which used this software, a reference to it
* would be appreciated.
*
* Redistributions of source code must retain this copyright notice
* and the following disclaimer.
*
* THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
\*************************************************************************/
#include "util.h"
#include "bitset.h"
#include "num.h"
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <limits.h>
#define Deux53 9007199254740992.0 /* 2^53 */
#define Deux17 131072.0 /* 2^17 */
#define UnDeux17 7.62939453125E-6 /* 1 / 2^17 */
#define MASK32 0xffffffffUL
double num_TwoExp[num_MaxTwoExp + 1] = {
1.0, 2.0, 4.0, 8.0, 1.6e1, 3.2e1,
6.4e1, 1.28e2, 2.56e2, 5.12e2, 1.024e3,
2.048e3, 4.096e3, 8.192e3, 1.6384e4, 3.2768e4,
6.5536e4, 1.31072e5, 2.62144e5, 5.24288e5,
1.048576e6, 2.097152e6, 4.194304e6, 8.388608e6,
1.6777216e7, 3.3554432e7, 6.7108864e7,
1.34217728e8, 2.68435456e8, 5.36870912e8,
1.073741824e9, 2.147483648e9, 4.294967296e9,
8.589934592e9, 1.7179869184e10, 3.4359738368e10,
6.8719476736e10, 1.37438953472e11, 2.74877906944e11,
5.49755813888e11, 1.099511627776e12, 2.199023255552e12,
4.398046511104e12, 8.796093022208e12,
1.7592186044416e13, 3.5184372088832e13,
7.0368744177664e13, 1.40737488355328e14,
2.81474976710656e14, 5.62949953421312e14,
1.125899906842624e15, 2.251799813685248e15,
4.503599627370496e15, 9.007199254740992e15,
1.8014398509481984e16, 3.6028797018963968e16,
7.2057594037927936e16, 1.44115188075855872e17,
2.88230376151711744e17, 5.76460752303423488e17,
1.152921504606846976e18, 2.305843009213693952e18,
4.611686018427387904e18, 9.223372036854775808e18,
1.8446744073709551616e19
};
double num_TENNEGPOW[] = {
1.0, 1.0e-1, 1.0e-2, 1.0e-3, 1.0e-4, 1.0e-5, 1.0e-6, 1.0e-7, 1.0e-8,
1.0e-9, 1.0e-10, 1.0e-11, 1.0e-12, 1.0e-13, 1.0e-14, 1.0e-15, 1.0e-16
};
int num_IsNumber (char S[])
/*********************************************************
* Returns TRUE if the string S begin with a number *
* (with the possibility of spaces and a + or - sign *
* before the number). *
* e.g. *
* ' + 2' returns TRUE *
* '-+ 2' returns FALSE *
* '4hello' returns TRUE *
* 'hello' returns FALSE *
*********************************************************/
{
int Max;
int i;
int Sign;
Max = (int) (strlen (S) - 1);
Sign = 0;
for (i = 0; i < Max; i++) {
if (S[i] != ' ') {
if (S[i] == '+' || S[i] == '-') {
if (Sign) {
return 0;
}
/* We already saw a sign */
Sign = 1;
} else if ((unsigned char) S[i] >= '0' &&
(unsigned char) S[i] <= '9') {
return 1;
} else {
return 0;
}
}
} /* end for */
return 0; /* There's no digit in S */
} /* end IsNumber() */
void num_IntToStrBase (long k, long b, char S[])
{
int Sign; /* insert a '-' if TRUE */
long Char0;
long i;
long total;
long uppbound;
if (b < 2 || b > 10) {
util_Error ("*** Erreur: IntToStrB demande une b entre 2 et 10 ***");
}
Char0 = 48;
if (k < 0) {
Sign = 1;
S[0] = '-';
k = -k;
} else {
if (k == 0) {
S[0] = '0';
S[1] = '\0';
return;
}
Sign = 0;
}
i = k;
total = 0;
while (i > 0) {
i = (i / b);
++total;
}
if (Sign)
uppbound = total + 1;
else
uppbound = total;
S[uppbound] = '\0';
for (i = 0; i < total - 1; i++) {
S[(uppbound - i) - 1] =
(char) ((int) fmod ((double) k, (double) b) + Char0);
k = (long) (k / b);
}
}
/*=========================================================================*/
void num_Uint2Uchar (unsigned char *output, unsigned int *input, int L)
{
int i, j;
for (i = 0, j = 0; i < L; i++, j += 4) {
output[j + 3] = (unsigned char) (input[i] & 0xff);
output[j + 2] = (unsigned char) ((input[i] >> 8) & 0xff);
output[j + 1] = (unsigned char) ((input[i] >> 16) & 0xff);
output[j] = (unsigned char) ((input[i] >> 24) & 0xff);
}
}
/*=========================================================================*/
void num_WriteD (double x, int I, int J, int K)
{
int PosEntier = 0, /* Le nombre de positions occupees par la
partie entiere de x */
EntierSign, /* Le nombre de chiffres significatifs
avant le point */
Neg = 0; /* Nombre n'egatif */
char S[100];
char *p;
if (x == 0.0)
EntierSign = 1;
else {
EntierSign = PosEntier = floor (log10 (fabs (x)) + 1);
if (x < 0.0)
Neg = 1;
}
if (EntierSign <= 0)
PosEntier = 1;
if ((x == 0.0) ||
(((EntierSign + J) >= K) && (I >= (PosEntier + J + Neg + 1))))
printf ("%*.*f", I, J, x);
else { /* On doit utiliser la notation
scientifique. */
sprintf (S, "%*.*e", I, K - 1, x);
p = strstr (S, "e+0");
if (NULL == p)
p = strstr (S, "e-0");
/* remove the 0 in e-0 and in e+0 */
if (p) {
p += 2;
while ((*p = *(p + 1)))
p++;
printf (" "); /* pour utiliser au moins I espaces */
}
printf ("%s", S);
}
}
/***************************************************************************/
void num_WriteBits (unsigned long x, int k)
{
int i, n = CHAR_BIT * sizeof (unsigned long);
unsigned long mask = (unsigned long) 1 << (n - 1);
int spaces;
lebool flag = FALSE;
if (k > 0) {
spaces = k - n;
for (i = 0; i < spaces; i++)
printf (" ");
}
for (i = 0; i < n; i++) {
if (x & mask) {
printf ("1");
flag = TRUE;
} else if (flag)
printf ("0");
else
printf (" ");
mask >>= 1;
}
if (k < 0) {
spaces = -k - n;
for (i = 0; i < spaces; i++)
printf (" ");
}
}
/***************************************************************************/
#if LONG_MAX == 2147483647L
#define H 32768 /* = 2^d used in MultModL. */
#else
#define H 2147483648L
#endif
long num_MultModL (long a, long s, long c, long m)
/* Suppose que 0 < a < m et 0 < s < m. Retourne (a*s + c) % m. */
/* Cette procedure est tiree de : */
/* L'Ecuyer, P. et Cote, S., A Random Number Package with */
/* Splitting Facilities, ACM TOMS, 1991. */
/* On coupe les entiers en blocs de d bits. H doit etre egal a 2^d. */
{
long a0, a1, q, qh, rh, k, p;
if (a < H) {
a0 = a;
p = 0;
} else {
a1 = a / H;
a0 = a - H * a1;
qh = m / H;
rh = m - H * qh;
if (a1 >= H) {
a1 = a1 - H;
k = s / qh;
p = H * (s - k * qh) - k * rh;
if (p < 0)
p = (p + 1) % m + m - 1;
} else /* p = (A2 * s * h) % m. */
p = 0;
if (a1 != 0) {
q = m / a1;
k = s / q;
p -= k * (m - a1 * q);
if (p > 0)
p -= m;
p += a1 * (s - k * q);
if (p < 0)
p = (p + 1) % m + m - 1;
} /* p = ((A2 * h + a1) * s) % m. */
k = p / qh;
p = H * (p - k * qh) - k * rh;
if (p < 0)
p = (p + 1) % m + m - 1;
} /* p = ((A2 * h + a1) * h * s) % m */
if (a0 != 0) {
q = m / a0;
k = s / q;
p -= k * (m - a0 * q);
if (p > 0)
p -= m;
p += a0 * (s - k * q);
if (p < 0)
p = (p + 1) % m + m - 1;
}
p = (p - m) + c;
if (p < 0)
p += m;
return p;
}
/*************************************************************************/
double num_MultModD (double a, double s, double c, double m)
{
double V;
long k;
V = a * s + c;
if (V >= Deux53 || -V >= Deux53) {
k = a * UnDeux17;
a -= k * Deux17;
V = k * s;
k = V / m;
V -= k * m;
V = V * Deux17 + a * s + c;
}
k = V / m;
V -= k * m;
if (V < 0)
V += m;
return V;
}
/**************************************************************************/
long num_InvEuclid (long M, long x)
/*
* Compute the inverse of x mod M by the modified Euclide
* algorithm (Knuth V2 p. 325).
*/
{
long u1 = 0, u3 = M, v1 = 1, v3 = x;
long t1, t3, qq;
if (x == 0) return 0;
while (v3 != 0) {
qq = u3 / v3;
t1 = u1 - v1 * qq;
t3 = u3 - v3 * qq;
u1 = v1;
v1 = t1;
u3 = v3;
v3 = t3;
}
if (u1 < 0)
u1 += M;
if (u3 != 1) { /* In this case, the inverse does not exist! */
fprintf (stderr,
"ERROR in num_InvEuclid: inverse does not exist: m = %ld, x = %ld\n",
M, x);
return 0;
} else
return u1;
}
/*------------------------------------------------------------------------*/
unsigned long num_InvExpon (int E, unsigned long Z)
/*
* Compute the inverse of Z modulo M = 2^E by exponentiation
*/
{
int j;
unsigned long res = Z;
if (Z == 0) return 0;
if (!(Z & 1)) {
fprintf (stderr,
"ERROR in num_InvExpon: inverse does not exist: E = %d, Z = %ld\n",
E, Z);
return 0;
}
for (j = 1; j <= E - 3; j++)
res = res * res * Z;
return res & bitset_MASK[E];
}
/*------------------------------------------------------------------------*/
long num_RoundL (double x)
{
return (x >= 0) ? (long)(x + 0.5) : (long)(x - 0.5);
}
double num_RoundD (double x)
{
double z;
(x >= 0) ? modf(x + 0.5, &z) : modf(x - 0.5, &z);
return z;
}
/*------------------------------------------------------------------------*/
|