1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
% arrow.tex: macros for commutative diagrams.
%
% Copyright (C) 1991,1992 Steven T. Smith.
% stsmith@ll.mit.edu
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2, or (at your option)
% any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
% Version 0 Released for alpha testing, November 16, 1991.
% Version 0.1 Morphism positions for slanted lines improved, Nov. 17, 1991.
% Version 0.11 \biline changed to \bisline for compatible naming. 11/21/91
% Version 0.2 Equate \lft & \rt w. _ and ^ instead of L_{12} & R_{12}. 1/20/92
% Version 1.0 Distributed with Eplain. 1/20/92
% Version 1.1 Purged \newcount's, etc.; Warner ref.; \getch@nnel logic. 4/21/92
% Version 1.11 Replace \smash with \smash@@ (for amstex compatibility) 3/27/96
% Syntax: \[arrow](X,Y) or
% \[arrow](X,Y)\lft{MOR} (morphism placed left of arrow) or
% \[arrow](X,Y)\rt{MOR} (morphism placed right of arrow)
%
% [arrow] is one of
% sline (straight line)
% dotline (dotted line) * Unimplemented
% arrow (straight arrow)
% dotarrow (dotted arrow) * Unimplemented
%
% The following allow plain versions and some combination of \lft and \rt.
% biarrow (two straight arrows)
% adjarrow (two adjoint arrows)
% bisline (two straight lines)
%
% Also, for left, right, up, and down mappings:
%
% \mapright (or \mapright^{f_*}, \mapright_{f_*})
% \mapleft (ditto)
% \mapup (use \rt and \lft as above)
% \mapdown (ditto)
%
% And variants of these (can use combinations of ^/_ and lft/rt):
%
% \bimapright (two right arrows)
% \bimapleft (two left arrows)
% \adjmapright (two adjoint arrows; <- over ->)
% \adjmapleft (two adjoint arrows; -> over <-)
% \hline (horizontal line)
% \dothline (dotted horizontal line) * Unimplemented
% \bihline (two horizontal lines)
%
% \bimapdown (two down arrows)
% \bimapup (two left arrows)
% \adjmapdown (two adjoint arrows; down then up)
% \adjmapup (two adjoint arrows; up then down)
% \vline (vertical line)
% \dotvline (dotted vertical line) * Unimplemented
% \bivline (two vertical lines)
% Use \thinlines temporarily to find the current catcode of @, so we can
% restore it at the end.
\edef\thinlines{\the\catcode`@ }%
\catcode`@ = 11
\let\@oldatcatcode = \thinlines
% I changed \smash to \smash@@ in these macros to avoid AMSTEX conflict.
\def\smash@@{\relax % \relax, in case this comes first in \halign
\ifmmode\def\next{\mathpalette\mathsm@sh}\else\let\next\makesm@sh
\fi\next}
\def\makesm@sh#1{\setbox\z@\hbox{#1}\finsm@sh}
\def\mathsm@sh#1#2{\setbox\z@\hbox{$\m@th#1{#2}$}\finsm@sh}
\def\finsm@sh{\ht\z@\z@ \dp\z@\z@ \box\z@}
% Adapted LaTeX code for drawing lines and vectors
% Note: to ensure compatibility with LaTeX, all LaTeX control
% sequences have been renamed. Control sequence names containing the
% at sign (@) have been changed to contain an ampersand (&) instead.
\edef\@oldandcatcode{\the\catcode`& }%
\catcode`& = 11
% LaTeX macros changed here:
% \line - changed to \drawline
% \vector - changed to \drawvector
% \@badlinearg - simply uses \errmessage now
% \@height, \@width, and \@depth are changed to height, width, and depth
% \@sline and \@svector - changed so that \hbox{\drawline...} yields
% a box of positive width and positive height for a positive slope
% and positive depth for a negative slope.
% \@hline and \@hvector - likewise
% \unitlength eliminated; pass dimensions to \drawline and \drawvector.
% LaTeX's while loop
\def\&whilenoop#1{}%
\def\&whiledim#1\do #2{\ifdim #1\relax#2\&iwhiledim{#1\relax#2}\fi}%
\def\&iwhiledim#1{\ifdim #1\let\&nextwhile=\&iwhiledim
\else\let\&nextwhile=\&whilenoop\fi\&nextwhile{#1}}%
% LaTeX's \line and \vector macros:
\newif\if&negarg
\newdimen\&wholewidth
\newdimen\&halfwidth
\font\tenln=line10
\def\thinlines{\let\&linefnt\tenln \let\&circlefnt\tencirc
\&wholewidth\fontdimen8\tenln \&halfwidth .5\&wholewidth}%
\def\thicklines{\let\&linefnt\tenlnw \let\&circlefnt\tencircw
\&wholewidth\fontdimen8\tenlnw \&halfwidth .5\&wholewidth}%
\def\drawline(#1,#2)#3{\&xarg #1\relax \&yarg #2\relax \&linelen=#3\relax
\ifnum\&xarg =0 \&vline \else \ifnum\&yarg =0 \&hline \else \&sline\fi\fi}%
\def\&sline{\leavevmode
\ifnum\&xarg< 0 \&negargtrue \&xarg -\&xarg \&yyarg -\&yarg
\else \&negargfalse \&yyarg \&yarg \fi
\ifnum \&yyarg >0 \&tempcnta\&yyarg \else \&tempcnta -\&yyarg \fi
\ifnum\&tempcnta>6 \&badlinearg \&yyarg0 \fi
\ifnum\&xarg>6 \&badlinearg \&xarg1 \fi
\setbox\&linechar\hbox{\&linefnt\&getlinechar(\&xarg,\&yyarg)}%
\ifnum \&yyarg >0 \let\&upordown\raise \&clnht\z@
\else\let\&upordown\lower \&clnht \ht\&linechar\fi
\&clnwd=\wd\&linechar
\&whiledim \&clnwd <\&linelen \do {%
\&upordown\&clnht\copy\&linechar
\advance\&clnht \ht\&linechar
\advance\&clnwd \wd\&linechar
}%
\advance\&clnht -\ht\&linechar
\advance\&clnwd -\wd\&linechar
\&tempdima\&linelen\advance\&tempdima -\&clnwd
\&tempdimb\&tempdima\advance\&tempdimb -\wd\&linechar
\hskip\&tempdimb \multiply\&tempdima \@m
\&tempcnta \&tempdima \&tempdima \wd\&linechar \divide\&tempcnta \&tempdima
\&tempdima \ht\&linechar \multiply\&tempdima \&tempcnta
\divide\&tempdima \@m
\advance\&clnht \&tempdima
\ifdim \&linelen <\wd\&linechar \hskip \wd\&linechar
\else\&upordown\&clnht\copy\&linechar\fi}%
\def\&hline{\vrule height \&halfwidth depth \&halfwidth width \&linelen}%
\def\&getlinechar(#1,#2){\&tempcnta#1\relax\multiply\&tempcnta 8
\advance\&tempcnta -9 \ifnum #2>0 \advance\&tempcnta #2\relax\else
\advance\&tempcnta -#2\relax\advance\&tempcnta 64 \fi
\char\&tempcnta}%
\def\drawvector(#1,#2)#3{\&xarg #1\relax \&yarg #2\relax
\&tempcnta \ifnum\&xarg<0 -\&xarg\else\&xarg\fi
\ifnum\&tempcnta<5\relax \&linelen=#3\relax
\ifnum\&xarg =0 \&vvector \else \ifnum\&yarg =0 \&hvector
\else \&svector\fi\fi\else\&badlinearg\fi}%
\def\&hvector{\ifnum\&xarg<0 \rlap{\&linefnt\&getlarrow(1,0)}\fi \&hline
\ifnum\&xarg>0 \llap{\&linefnt\&getrarrow(1,0)}\fi}%
\def\&vvector{\ifnum \&yarg <0 \&downvector \else \&upvector \fi}%
\def\&svector{\&sline
\&tempcnta\&yarg \ifnum\&tempcnta <0 \&tempcnta=-\&tempcnta\fi
\ifnum\&tempcnta <5
\if&negarg\ifnum\&yarg>0 % 3d quadrant; dp > 0
\llap{\lower\ht\&linechar\hbox to\&linelen{\&linefnt
\&getlarrow(\&xarg,\&yyarg)\hss}}\else % 4th quadrant; ht > 0
\llap{\hbox to\&linelen{\&linefnt\&getlarrow(\&xarg,\&yyarg)\hss}}\fi
\else\ifnum\&yarg>0 % 1st quadrant; ht > 0
\&tempdima\&linelen \multiply\&tempdima\&yarg
\divide\&tempdima\&xarg \advance\&tempdima-\ht\&linechar
\raise\&tempdima\llap{\&linefnt\&getrarrow(\&xarg,\&yyarg)}\else
\&tempdima\&linelen \multiply\&tempdima-\&yarg % 2d quadrant; dp > 0
\divide\&tempdima\&xarg
\lower\&tempdima\llap{\&linefnt\&getrarrow(\&xarg,\&yyarg)}\fi\fi
\else\&badlinearg\fi}%
\def\&getlarrow(#1,#2){\ifnum #2 =\z@ \&tempcnta='33\else
\&tempcnta=#1\relax\multiply\&tempcnta \sixt@@n \advance\&tempcnta
-9 \&tempcntb=#2\relax\multiply\&tempcntb \tw@
\ifnum \&tempcntb >0 \advance\&tempcnta \&tempcntb\relax
\else\advance\&tempcnta -\&tempcntb\advance\&tempcnta 64
\fi\fi\char\&tempcnta}%
\def\&getrarrow(#1,#2){\&tempcntb=#2\relax
\ifnum\&tempcntb < 0 \&tempcntb=-\&tempcntb\relax\fi
\ifcase \&tempcntb\relax \&tempcnta='55 \or
\ifnum #1<3 \&tempcnta=#1\relax\multiply\&tempcnta
24 \advance\&tempcnta -6 \else \ifnum #1=3 \&tempcnta=49
\else\&tempcnta=58 \fi\fi\or
\ifnum #1<3 \&tempcnta=#1\relax\multiply\&tempcnta
24 \advance\&tempcnta -3 \else \&tempcnta=51\fi\or
\&tempcnta=#1\relax\multiply\&tempcnta
\sixt@@n \advance\&tempcnta -\tw@ \else
\&tempcnta=#1\relax\multiply\&tempcnta
\sixt@@n \advance\&tempcnta 7 \fi\ifnum #2<0 \advance\&tempcnta 64 \fi
\char\&tempcnta}%
\def\&vline{\ifnum \&yarg <0 \&downline \else \&upline\fi}%
\def\&upline{\hbox to \z@{\hskip -\&halfwidth \vrule width \&wholewidth
height \&linelen depth \z@\hss}}%
\def\&downline{\hbox to \z@{\hskip -\&halfwidth \vrule width \&wholewidth
height \z@ depth \&linelen \hss}}%
\def\&upvector{\&upline\setbox\&tempboxa\hbox{\&linefnt\char'66}\raise
\&linelen \hbox to\z@{\lower \ht\&tempboxa\box\&tempboxa\hss}}%
\def\&downvector{\&downline\lower \&linelen
\hbox to \z@{\&linefnt\char'77\hss}}%
\def\&badlinearg{\errmessage{Bad \string\arrow\space argument.}}%
%INITIALIZATION
\thinlines
% Allocate registers using the rules of p.~346 of {\sl The \TeX book}.
\countdef\&xarg 0
\countdef\&yarg 2
\countdef\&yyarg 4
\countdef\&tempcnta 6
\countdef\&tempcntb 8
\dimendef\&linelen 0
\dimendef\&clnwd 2
\dimendef\&clnht 4
\dimendef\&tempdima 6
\dimendef\&tempdimb 8
\chardef\@arrbox 0
\chardef\&linechar 2
\chardef\&tempboxa 2 % \&linechar and \&tempboxa don't interfere.
% Macros for abstract nonsense
% Macros for slanted lines and arrows.
\let\lft^%
\let\rt_% distinguish between \rt and \lft
\newif\if@pslope % test for positive slope
\def\@findslope(#1,#2){\ifnum#1>0
\ifnum#2>0 \@pslopetrue \else\@pslopefalse\fi \else
\ifnum#2>0 \@pslopefalse \else\@pslopetrue\fi\fi}%
\def\generalsmap(#1,#2){\getm@rphposn(#1,#2)\plnmorph\futurelet\next\addm@rph}%
% Put arrow in \@arrbox, then add morphisms later.
% Single lines and arrows.
\def\sline(#1,#2){\setbox\@arrbox=\hbox{\drawline(#1,#2){\sarrowlength}}%
\@findslope(#1,#2)\d@@blearrfalse\generalsmap(#1,#2)}%
\def\arrow(#1,#2){\setbox\@arrbox=\hbox{\drawvector(#1,#2){\sarrowlength}}%
\@findslope(#1,#2)\d@@blearrfalse\generalsmap(#1,#2)}%
% Double lines, arrows, and adjoint arrows.
\newif\ifd@@blearr
\def\bisline(#1,#2){\@findslope(#1,#2)%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\getch@nnel(#1,#2)\setbox\@arrbox=\hbox{\@upordown\@vchannel
\rlap{\drawline(#1,#2){\sarrowlength}}%
\hskip\@hchannel\hbox{\drawline(#1,#2){\sarrowlength}}}%
\d@@blearrtrue\generalsmap(#1,#2)}%
\def\biarrow(#1,#2){\@findslope(#1,#2)%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\getch@nnel(#1,#2)\setbox\@arrbox=\hbox{\@upordown\@vchannel
\rlap{\drawvector(#1,#2){\sarrowlength}}%
\hskip\@hchannel\hbox{\drawvector(#1,#2){\sarrowlength}}}%
\d@@blearrtrue\generalsmap(#1,#2)}%
\def\adjarrow(#1,#2){\@findslope(#1,#2)%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\getch@nnel(#1,#2)\setbox\@arrbox=\hbox{\@upordown\@vchannel
\rlap{\drawvector(#1,#2){\sarrowlength}}%
\hskip\@hchannel\hbox{\drawvector(-#1,-#2){\sarrowlength}}}%
\d@@blearrtrue\generalsmap(#1,#2)}%
% Morphism placement.
% Logic for positioning morphisms on slanted arrows:
% If \lft then
% \hskip by -\@hmorphdflt
% if \@pslopetrue then \raise by \@vmorphdflt
% else \lower by \@vmorphdflt
% Else if \rt then
% \hskip by \@hmorphdflt
% if \@pslopetrue then \lower by \@vmorphdflt
% else \raise by \@vmorphdflt
%
% \@hmorphdflt and \@vmorphdflt defined by \getm@rphposn
% Advance \morphdist by .5\channelwidth if double arrows
%
% Use \@shiftmorph to allow users to move morphisms
% Logic for \@shiftmorph:
% If \rtm@rph then
% if \hmorphposnrt=0 then hshift by\hmorphposn else hshift by\hmorphposnrt
% if \vmorphposnrt=0 then vshift by\vmorphposn else vshift by\vmorphposnrt
% Else
% if \hmorphposnlft=0 then hshift by\hmorphposn else hshift by\hmorphposnlft
% if \vmorphposnlft=0 then vshift by\vmorphposn else vshift by\vmorphposnlft
\newif\ifrtm@rph
\def\@shiftmorph#1{\hbox{\setbox0=\hbox{$\scriptstyle#1$}%
\setbox1=\hbox{\hskip\@hm@rphshift\raise\@vm@rphshift\copy0}%
\wd1=\wd0 \ht1=\ht0 \dp1=\dp0 \box1}}%
\def\@hm@rphshift{\ifrtm@rph
\ifdim\hmorphposnrt=\z@\hmorphposn\else\hmorphposnrt\fi \else
\ifdim\hmorphposnlft=\z@\hmorphposn\else\hmorphposnlft\fi \fi}%
\def\@vm@rphshift{\ifrtm@rph
\ifdim\vmorphposnrt=\z@\vmorphposn\else\vmorphposnrt\fi \else
\ifdim\vmorphposnlft=\z@\vmorphposn\else\vmorphposnlft\fi \fi}%
\def\addm@rph{\ifx\next\lft\let\temp=\lftmorph\else
\ifx\next\rt\let\temp=\rtmorph\else\let\temp\relax\fi\fi \temp}%
\def\plnmorph{\dimen1\wd\@arrbox \ifdim\dimen1<\z@ \dimen1-\dimen1\fi
\vcenter{\box\@arrbox}}%
\def\lftmorph\lft#1{\rtm@rphfalse \setbox0=\@shiftmorph{#1}%
\if@pslope \let\@upordown\raise \else \let\@upordown\lower\fi
\llap{\@upordown\@vmorphdflt\hbox to\dimen1{\hss % \dimen1=\wd\@arrbox
\llap{\box0}\hss}\hskip\@hmorphdflt}\futurelet\next\addm@rph}%
\def\rtmorph\rt#1{\rtm@rphtrue \setbox0=\@shiftmorph{#1}%
\if@pslope \let\@upordown\lower \else \let\@upordown\raise\fi
\llap{\@upordown\@vmorphdflt\hbox to\dimen1{\hss
\rlap{\box0}\hss}\hskip-\@hmorphdflt}\futurelet\next\addm@rph}%
% Get appropriate shifts for morphisms and double lines at various slopes
% Syntax e.g.: \@getshift(1,2){\@hchannel}{\@vchannel}{\channelwidth}%
\def\getm@rphposn(#1,#2){\ifd@@blearr \dimen@\morphdist \advance\dimen@ by
.5\channelwidth \@getshift(#1,#2){\@hmorphdflt}{\@vmorphdflt}{\dimen@}\else
\@getshift(#1,#2){\@hmorphdflt}{\@vmorphdflt}{\morphdist}\fi}%
\def\getch@nnel(#1,#2){\ifdim\hchannel=\z@ \ifdim\vchannel=\z@
\@getshift(#1,#2){\@hchannel}{\@vchannel}{\channelwidth}%
\else \@hchannel\hchannel \@vchannel\vchannel \fi
\else \@hchannel\hchannel \@vchannel\vchannel \fi}%
\def\@getshift(#1,#2)#3#4#5{\dimen@ #5\relax
\&xarg #1\relax \&yarg #2\relax
\ifnum\&xarg<0 \&xarg -\&xarg \fi
\ifnum\&yarg<0 \&yarg -\&yarg \fi
\ifnum\&xarg<\&yarg \&negargtrue \&yyarg\&xarg \&xarg\&yarg \&yarg\&yyarg\fi
\ifcase\&xarg \or % There is no case 0
\ifcase\&yarg % case 1
\dimen@i \z@ \dimen@ii \dimen@ \or % case (1,0)
\dimen@i .7071\dimen@ \dimen@ii .7071\dimen@ \fi \or
\ifcase\&yarg % case 2
\or % case 0,2 wrong
\dimen@i .4472\dimen@ \dimen@ii .8944\dimen@ \fi \or
\ifcase\&yarg % case 3
\or % case 0,3 wrong
\dimen@i .3162\dimen@ \dimen@ii .9486\dimen@ \or
\dimen@i .5547\dimen@ \dimen@ii .8321\dimen@ \fi \or
\ifcase\&yarg % case 4
\or % case 0,2,4 wrong
\dimen@i .2425\dimen@ \dimen@ii .9701\dimen@ \or\or
\dimen@i .6\dimen@ \dimen@ii .8\dimen@ \fi \or
\ifcase\&yarg % case 5
\or % case 0,5 wrong
\dimen@i .1961\dimen@ \dimen@ii .9801\dimen@ \or
\dimen@i .3714\dimen@ \dimen@ii .9284\dimen@ \or
\dimen@i .5144\dimen@ \dimen@ii .8575\dimen@ \or
\dimen@i .6247\dimen@ \dimen@ii .7801\dimen@ \fi \or
\ifcase\&yarg % case 6
\or % case 0,2,3,4,6 wrong
\dimen@i .1645\dimen@ \dimen@ii .9864\dimen@ \or\or\or\or
\dimen@i .6402\dimen@ \dimen@ii .7682\dimen@ \fi \fi
\if&negarg \&tempdima\dimen@i \dimen@i\dimen@ii \dimen@ii\&tempdima\fi
#3\dimen@i\relax #4\dimen@ii\relax }%
\catcode`\&=4 % Back to alignment tab
% Macros for horizontal and vertical lines and arrows.
% These macros use an idea from Appendix~D, p.~374 of the Texbook.
% Usage: `\mapright^f', `\mapleft', etc.
% `\mapdown\lft{f}', `\mapup\rt{g}', `\mapdown', etc.
% \toks@ will contain the token sequence that defines the arrow and morphisms;
% ensure that \toks@={\mathop{\vcenter{\smash@@{horiz. arrow}}}\limits} to start.
\def\generalhmap{\futurelet\next\@generalhmap}%
\def\@generalhmap{\ifx\next^ \let\temp\generalhm@rph\else
\ifx\next_ \let\temp\generalhm@rph\else \let\temp\m@kehmap\fi\fi \temp}%
\def\generalhm@rph#1#2{\ifx#1^
\toks@=\expandafter{\the\toks@#1{\rtm@rphtrue\@shiftmorph{#2}}}\else
\toks@=\expandafter{\the\toks@#1{\rtm@rphfalse\@shiftmorph{#2}}}\fi
\generalhmap}%
\def\m@kehmap{\mathrel{\smash@@{\the\toks@}}}%
\def\mapright{\toks@={\mathop{\vcenter{\smash@@{\drawrightarrow}}}\limits}%
\generalhmap}%
\def\mapleft{\toks@={\mathop{\vcenter{\smash@@{\drawleftarrow}}}\limits}%
\generalhmap}%
\def\bimapright{\toks@={\mathop{\vcenter{\smash@@{\drawbirightarrow}}}\limits}%
\generalhmap}%
\def\bimapleft{\toks@={\mathop{\vcenter{\smash@@{\drawbileftarrow}}}\limits}%
\generalhmap}%
\def\adjmapright{\toks@={\mathop{\vcenter{\smash@@{\drawadjrightarrow}}}\limits}%
\generalhmap}%
\def\adjmapleft{\toks@={\mathop{\vcenter{\smash@@{\drawadjleftarrow}}}\limits}%
\generalhmap}%
\def\hline{\toks@={\mathop{\vcenter{\smash@@{\drawhline}}}\limits}%
\generalhmap}%
\def\bihline{\toks@={\mathop{\vcenter{\smash@@{\drawbihline}}}\limits}%
\generalhmap}%
\def\drawrightarrow{\hbox{\drawvector(1,0){\harrowlength}}}%
\def\drawleftarrow{\hbox{\drawvector(-1,0){\harrowlength}}}%
\def\drawbirightarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(1,0){\harrowlength}}}}%
\def\drawbileftarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(-1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(-1,0){\harrowlength}}}}%
\def\drawadjrightarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(-1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(1,0){\harrowlength}}}}%
\def\drawadjleftarrow{\hbox{\raise.5\channelwidth
\hbox{\drawvector(1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawvector(-1,0){\harrowlength}}}}%
\def\drawhline{\hbox{\drawline(1,0){\harrowlength}}}%
\def\drawbihline{\hbox{\raise.5\channelwidth
\hbox{\drawline(1,0){\harrowlength}}\lower.5\channelwidth
\llap{\drawline(1,0){\harrowlength}}}}%
% Vertical arrows are handled differently because there is no \mathop.
% \toks@ will contain the token sequence that defines the arrow and morphisms;
% ensure that \toks@={\vcenter{vertical arrow}} to start.
\def\generalvmap{\futurelet\next\@generalvmap}%
\def\@generalvmap{\ifx\next\lft \let\temp\generalvm@rph\else
\ifx\next\rt \let\temp\generalvm@rph\else \let\temp\m@kevmap\fi\fi \temp}%
% Prepend or append to \toks@ depending on \rt or \lft.
\toksdef\toks@@=1
\def\generalvm@rph#1#2{\ifx#1\rt % append
\toks@=\expandafter{\the\toks@
\rlap{$\vcenter{\rtm@rphtrue\@shiftmorph{#2}}$}}\else % prepend
\toks@@={\llap{$\vcenter{\rtm@rphfalse\@shiftmorph{#2}}$}}%
\toks@=\expandafter\expandafter\expandafter{\expandafter\the\expandafter
\toks@@ \the\toks@}\fi \generalvmap}%
\def\m@kevmap{\the\toks@}%
\def\mapdown{\toks@={\vcenter{\drawdownarrow}}\generalvmap}%
\def\mapup{\toks@={\vcenter{\drawuparrow}}\generalvmap}%
\def\bimapdown{\toks@={\vcenter{\drawbidownarrow}}\generalvmap}%
\def\bimapup{\toks@={\vcenter{\drawbiuparrow}}\generalvmap}%
\def\adjmapdown{\toks@={\vcenter{\drawadjdownarrow}}\generalvmap}%
\def\adjmapup{\toks@={\vcenter{\drawadjuparrow}}\generalvmap}%
\def\vline{\toks@={\vcenter{\drawvline}}\generalvmap}%
\def\bivline{\toks@={\vcenter{\drawbivline}}\generalvmap}%
\def\drawdownarrow{\hbox to5pt{\hss\drawvector(0,-1){\varrowlength}\hss}}%
\def\drawuparrow{\hbox to5pt{\hss\drawvector(0,1){\varrowlength}\hss}}%
\def\drawbidownarrow{\hbox to5pt{\hss\hbox{\drawvector(0,-1){\varrowlength}}%
\hskip\channelwidth\hbox{\drawvector(0,-1){\varrowlength}}\hss}}%
\def\drawbiuparrow{\hbox to5pt{\hss\hbox{\drawvector(0,1){\varrowlength}}%
\hskip\channelwidth\hbox{\drawvector(0,1){\varrowlength}}\hss}}%
\def\drawadjdownarrow{\hbox to5pt{\hss\hbox{\drawvector(0,-1){\varrowlength}}%
\hskip\channelwidth\lower\varrowlength
\hbox{\drawvector(0,1){\varrowlength}}\hss}}%
\def\drawadjuparrow{\hbox to5pt{\hss\hbox{\drawvector(0,1){\varrowlength}}%
\hskip\channelwidth\raise\varrowlength
\hbox{\drawvector(0,-1){\varrowlength}}\hss}}%
\def\drawvline{\hbox to5pt{\hss\drawline(0,1){\varrowlength}\hss}}%
\def\drawbivline{\hbox to5pt{\hss\hbox{\drawline(0,1){\varrowlength}}%
\hskip\channelwidth\hbox{\drawline(0,1){\varrowlength}}\hss}}%
% Macros for setting commutative diagrams.
% A macro inspired by Ex.~18.46 of the TeXbook.
\def\commdiag#1{\null\,
\vcenter{\commdiagbaselines
\m@th\ialign{\hfil$##$\hfil&&\hfil$\mkern4mu ##$\hfil\crcr
\mathstrut\crcr\noalign{\kern-\baselineskip}
#1\crcr\mathstrut\crcr\noalign{\kern-\baselineskip}}}\,}%
\def\commdiagbaselines{\baselineskip15pt \lineskip3pt \lineskiplimit3pt }%
% A macro inspired by Francis Borceux's Diagram macros for LaTeX
% (FBORCEUX@BUCLLN11.BITNET).
\def\gridcommdiag#1{\null\,
\vcenter{\offinterlineskip
\m@th\ialign{&\vbox to\vgrid{\vss
\hbox to\hgrid{\hss\smash@@{$##$}\hss}}\crcr
\mathstrut\crcr\noalign{\kern-\vgrid}
#1\crcr\mathstrut\crcr\noalign{\kern-.5\vgrid}}}\,}%
% Default parameters
% Define default heights and widths for arrows using the golden ratio.
% Note that 5:3 (for sline) and 3:2 (for vector) approximate this ratio.
\newdimen\harrowlength \harrowlength=60pt
\newdimen\varrowlength \varrowlength=.618\harrowlength
\newdimen\sarrowlength \sarrowlength=\harrowlength
% Morphism placement
\newdimen\hmorphposn \hmorphposn=\z@
\newdimen\vmorphposn \vmorphposn=\z@
\newdimen\morphdist \morphdist=4pt
\dimendef\@hmorphdflt 0 % These two dimensions are
\dimendef\@vmorphdflt 2 % defined by \getm@rphposn
\newdimen\hmorphposnrt \hmorphposnrt=\z@
\newdimen\hmorphposnlft \hmorphposnlft=\z@
\newdimen\vmorphposnrt \vmorphposnrt=\z@
\newdimen\vmorphposnlft \vmorphposnlft=\z@
\let\hmorphposnup=\hmorphposnrt
\let\hmorphposndn=\hmorphposnlft
\let\vmorphposnup=\vmorphposnrt
\let\vmorphposndn=\vmorphposnlft
% Default grid size for \gridcommdiag
\newdimen\hgrid \hgrid=15pt
\newdimen\vgrid \vgrid=15pt
% Horizontal and vertical distance between double lines and arrows.
\newdimen\hchannel \hchannel=0pt
\newdimen\vchannel \vchannel=0pt
\newdimen\channelwidth \channelwidth=3pt
\dimendef\@hchannel 0 % Defined via the
\dimendef\@vchannel 2 % macro \getch@nnel
\catcode`& = \@oldandcatcode
\catcode`@ = \@oldatcatcode
% Some examples
%\parskip=20pt
%
%The first example:
%$$\commdiag{A&\mapright^f&B&\mapleft^g&C\cr
%\mapdown\lft\psi&\arrow(3,-2)\rt s&\mapup\rt\phi&
%\arrow(-3,2)\lft l&\mapdown\rt\theta\cr
%D&\mapright_h&E&\mapleft_{\int_0^t{\bf A}\,d\sigma}&F\cr}$$
%
%
%Covering homotopy property (Bott and Tu, {\it Differential Forms in
%Algebraic Topology}):
%$$\commdiag{Y&\mapright^f&E\cr \mapdown&\arrow(3,2)\lft{f_t}&\mapdown\cr
%Y\times I&\mapright^{\bar f_t}&X}$$
%
%
%Universal mapping property (Warner, {\it Foundations of Differentiable
%Manifolds and Lie Groups}): $$\varrowlength=20pt
%\commdiag{V\otimes W\cr \mapup\lft\phi&\arrow(3,-1)\rt{\tilde l}\cr
%V\times W&\mapright^l&U\cr}$$
%
%
%A cube (Francis Borceux):
%$$\harrowlength=48pt \varrowlength=48pt \sarrowlength=20pt
%\def\cross#1#2{\setbox0=\hbox{$#1$}%
% \hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}}
%\gridcommdiag{&&B&&\mapright^b&&D\cr
%&\arrow(1,1)\lft a&&&&\arrow(1,1)\lft d\cr
%A&&\cross{\hmorphposn=12pt\mapright^c}{\vmorphposn=-12pt\mapdown\lft f}
%&&C&&\mapdown\rt h\cr\cr
%\mapdown\lft e&&F&&\cross{\hmorphposn=-12pt\mapright_j}
%{\vmorphposn=12pt\mapdown\rt g}&&H\cr
%&\arrow(1,1)\lft i&&&&\arrow(1,1)\rt l\cr
%E&&\mapright_k&&G\cr}$$
%
%Zassenhaus's Butterfly Lemma (Lang, {\it Algebra}):
%$$\hgrid=16pt \vgrid=8pt \sarrowlength=32pt
%\def\cross#1#2{\setbox0=\hbox{$#1$}%
% \hbox to\wd0{\hss\hbox{$#2$}\hss}\llap{\unhbox0}}
%\def\l#1{\llap{$#1$\hskip.5em}}
%\def\r#1{\rlap{\hskip.5em$#1$}}
%\gridcommdiag{&&U&&&&V\cr &&\bullet&&&&\bullet\cr
%&&\sarrowlength=16pt\sline(0,1)&&&&\sarrowlength=16pt\sline(0,1)\cr
%&&\l{u(U\cap V)}\bullet&&&&\bullet\r{(U\cap V)v}\cr
%&&&\sline(2,-1)&&\sline(2,1)\cr
%&&\cross{=}{\sline(0,1)}&&\bullet&&\cross{=}{\sline(0,1)}\cr\cr
%&&\l{^{\textstyle u(U\cap v)}}\bullet&&\cross{=}{\sline(0,1)}&&
% \bullet\r{^{\textstyle(u\cap V)v}}\cr
%&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)\cr
%\l{u}\bullet&&&&\bullet&&&&\bullet\r{v}\cr
%&\sline(2,-1)&&\sline(2,1)&&\sline(2,-1)&&\sline(2,1)\cr
%&&\bullet&&&&\bullet\cr &&u\cap V&&&&U\cap v\cr}$$
|