1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
/* $XConsortium: spaces.c,v 1.4 91/10/10 11:19:16 rws Exp $ */
/* Copyright International Business Machines, Corp. 1991
* All Rights Reserved
* Copyright Lexmark International, Inc. 1991
* All Rights Reserved
*
* License to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of IBM or Lexmark not be
* used in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission.
*
* IBM AND LEXMARK PROVIDE THIS SOFTWARE "AS IS", WITHOUT ANY WARRANTIES OF
* ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
* AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE ENTIRE RISK AS TO THE
* QUALITY AND PERFORMANCE OF THE SOFTWARE, INCLUDING ANY DUTY TO SUPPORT
* OR MAINTAIN, BELONGS TO THE LICENSEE. SHOULD ANY PORTION OF THE
* SOFTWARE PROVE DEFECTIVE, THE LICENSEE (NOT IBM OR LEXMARK) ASSUMES THE
* ENTIRE COST OF ALL SERVICING, REPAIR AND CORRECTION. IN NO EVENT SHALL
* IBM OR LEXMARK BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
* THIS SOFTWARE.
*/
/* SPACES CWEB V0021 ******** */
/*
:h1 id=spaces.SPACES Module - Handles Coordinate Spaces
This module is responsible for handling the TYPE1IMAGER "XYspace" object.
&author. Jeffrey B. Lotspiech (lotspiech@almaden.ibm.com)
:h3.Include Files
*/
#include "types.h"
#include "objects.h"
#include "spaces.h"
#include "paths.h"
#include "pictures.h"
#include "fonts.h"
#include "arith.h"
#include "trig.h"
static void FindFfcn();
static void FindIfcn();
/*
:h3.Entry Points Provided to the TYPE1IMAGER User
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Entry Points Provided to Other Modules
*/
/*
In addition, other modules call the SPACES module through function
vectors in the "XYspace" structure. The entry points accessed that
way are "FConvert()", "IConvert()", and "ForceFloat()".
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Macros and Typedefs Provided to Other Modules
:h4.Duplicating and Killing Spaces
Destroying XYspaces is so simple we can do it with a
macro:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
On the other hand, duplicating XYspaces is slightly more difficult
because of the need to keep a unique ID in the space, see
:hdref refid=dupspace..
:h4.Fixed Point Pel Representation
We represent pel positions with fixed point numbers. This does NOT
mean integer, but truly means fixed point, with a certain number
of binary digits (FRACTBITS) representing the fractional part of the
pel.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h2.Data Structures for Coordinate Spaces and Points
*/
/*
:h3 id=matrix.Matrices
TYPE1IMAGER uses 2x2 transformation matrices. We'll use C notation for
such a matrix (M[2][2]), the first index being rows, the second columns.
*/
/*
:h3.The "doublematrix" Structure
We frequently find it desirable to store both a matrix and its
inverse. We store these in a "doublematrix" structure.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.The "XYspace" Structure
The XYspace structure represents the XYspace object.
*/
/*SHARED LINE(S) ORIGINATED HERE*/
#define RESERVED 10 /* 'n' IDs are reserved for invalid & immortal spaces */
/*
*/
#define NEXTID ((SpaceID < RESERVED) ? (SpaceID = RESERVED) : ++SpaceID)
static unsigned int SpaceID = 1;
struct XYspace *CopySpace(S)
register struct XYspace *S;
{
S = (struct XYspace *)Allocate(sizeof(struct XYspace), S, 0);
S->ID = NEXTID;
return(S);
}
/*
:h3.The "fractpoint" Structure
A fractional point is just a "fractpel" x and y:
*/
/*SHARED LINE(S) ORIGINATED HERE*/
/*
:h3.Lazy Evaluation of Matrix Inverses
Calculating the inverse of a matrix is somewhat involved, and we usually
do not need them. So, we flag whether or not the space has the inverse
already calculated:
*/
#define HASINVERSE(flag) ((flag)&0x80)
/*
The following macro forces a space to have an inverse:
*/
#define CoerceInverse(S) if (!HASINVERSE((S)->flag)) { \
MatrixInvert((S)->tofract.normal, (S)->tofract.inverse); (S)->flag |= HASINVERSE(ON); }
/*
:h3.IDENTITY Space
IDENTITY space is (logically) the space corresponding to the identity
transformation matrix. However, since all our transformation matrices
have a common FRACTFLOAT scale factor to convert to 'fractpel's, that
is actually what we store in 'tofract' matrix of IDENTITY:
*/
static struct XYspace identity = { SPACETYPE, ISPERMANENT(ON) + ISIMMORTAL(ON)
+ HASINVERSE(ON), 2, /* added 3-26-91 PNM */
NULL, NULL,
NULL, NULL, NULL, NULL,
INVALIDID + 1, 0,
FRACTFLOAT, 0.0, 0.0, FRACTFLOAT,
1.0/FRACTFLOAT, 0.0, 0.0, 1.0/FRACTFLOAT,
0, 0, 0, 0 };
struct XYspace *IDENTITY = &identity;
/*
*/
#define MAXCONTEXTS 16
static struct doublematrix contexts[MAXCONTEXTS];
#ifdef notdef
static int nextcontext = 1;
/*SHARED LINE(S) ORIGINATED HERE*/
#if __STDC__
#define pointer void *
#else
#define pointer char *
#endif
/*
:h3.FindDeviceContext() - Find the Context Given a Device
This routine, given a device, returns the index of the device's
transformation matrix in the context array. If it cannot find it,
it will allocate a new array entry and fill it out.
*/
static int FindDeviceContext(device)
pointer device; /* device token */
{
DOUBLE M[2][2]; /* temporary matrix */
float Xres,Yres; /* device resolution */
int orient = -1; /* device orientation */
int rc = -1; /* return code for QueryDeviceState */
if (rc != 0) /* we only bother with this check once */
t1_abort("Context: QueryDeviceState didn't work");
M[0][0] = M[1][0] = M[0][1] = M[1][1] = 0.0;
switch (orient) {
case 0:
M[0][0] = Xres; M[1][1] = -Yres;
break;
case 1:
M[1][0] = Yres; M[0][1] = Xres;
break;
case 2:
M[0][0] = -Xres; M[1][1] = Yres;
break;
case 3:
M[1][0] = -Yres; M[0][1] = -Xres;
break;
default:
t1_abort("QueryDeviceState returned invalid orientation");
}
return(FindContext(M));
}
/*
:h3.FindContext() - Find the Context Given a Matrix
This routine, given a matrix, returns the index of that matrix matrix in
the context array. If it cannot find it, it will allocate a new array
entry and fill it out.
*/
int FindContext(M)
DOUBLE M[2][2]; /* array to search for */
{
register int i; /* loop variable for search */
for (i=0; i < nextcontext; i++)
if (M[0][0] == contexts[i].normal[0][0] && M[1][0] == contexts[i].normal[1][0]
&& M[0][1] == contexts[i].normal[0][1] && M[1][1] == contexts[i].normal[1][1])
break;
if (i >= nextcontext) {
if (i >= MAXCONTEXTS)
t1_abort("Context: out of them");
LONGCOPY(contexts[i].normal, M, sizeof(contexts[i].normal));
MatrixInvert(M, contexts[i].inverse);
nextcontext++;
}
return(i);
}
/*
:h3.Context() - Create a Coordinate Space for a Device
This user operator is implemented by first finding the device context
array index, then transforming IDENTITY space to create an appropriate
cooridnate space.
*/
struct XYspace *Context(device, units)
pointer device; /* device token */
DOUBLE units; /* multiples of one inch */
{
DOUBLE M[2][2]; /* device transformation matrix */
register int n; /* will hold device context number */
register struct XYspace *S; /* XYspace constructed */
IfTrace2((MustTraceCalls),"Context(%x, %f)\n", device, &units);
ARGCHECK((device == NULL), "Context of NULLDEVICE not allowed",
NULL, IDENTITY, (0), struct XYspace *);
ARGCHECK((units == 0.0), "Context: bad units", NULL, IDENTITY, (0), struct XYspace *);
n = FindDeviceContext(device);
LONGCOPY(M, contexts[n].normal, sizeof(M));
M[0][0] *= units;
M[0][1] *= units;
M[1][0] *= units;
M[1][1] *= units;
S = (struct XYspace *)Xform(IDENTITY, M);
S->context = n;
return(S);
}
#endif
/*
:h3.ConsiderContext() - Adjust a Matrix to Take Out Device Transform
Remember, we have :f/x times U times D/ and :f/M/ and and we want :f/x
times U times M times D/. An easy way to do this is to calculate
:f/D sup <-1> times M times D/, because:
:formula.
x times U times D times D sup <-1> times M times D = x times U times M times D
:formula.
So this subroutine, given an :f/M/and an object, finds the :f/D/ for that
object and modifies :f/M/ so it is :f/D sup <-1> times M times D/.
*/
static void ConsiderContext(obj, M)
register struct xobject *obj; /* object to be transformed */
register DOUBLE M[2][2]; /* matrix (may be changed) */
{
register int context; /* index in contexts array */
if (obj == NULL) return;
if (ISPATHTYPE(obj->type)) {
struct segment *path = (struct segment *) obj;
context = path->context;
}
else if (obj->type == SPACETYPE) {
struct XYspace *S = (struct XYspace *) obj;
context = S->context;
}
else if (obj->type == PICTURETYPE) {
}
else
context = NULLCONTEXT;
if (context != NULLCONTEXT) {
MatrixMultiply(contexts[context].inverse, M, M);
MatrixMultiply(M, contexts[context].normal, M);
}
}
/*
:h2.Conversion from User's X,Y to "fractpel" X,Y
When the user is building paths (lines, moves, curves, etc.) he passes
the control points (x,y) for the paths together with an XYspace. We
must convert from the user's (x,y) to our internal representation
which is in pels (fractpels, actually). This involves transforming
the user's (x,y) under the coordinate space transformation. It is
important that we do this quickly. So, we store pointers to different
conversion functions right in the XYspace structure. This allows us
to have simpler special case functions for the more commonly
encountered types of transformations.
:h3.Convert(), IConvert(), and ForceFloat() - Called Through "XYspace" Structure
These are functions that fit in the "convert" and "iconvert" function
pointers in the XYspace structure. They call the "xconvert", "yconvert",
"ixconvert", and "iyconvert" as appropriate to actually do the work.
These secondary routines come in many flavors to handle different
special cases as quickly as possible.
*/
void FXYConvert(pt, S, x, y)
register struct fractpoint *pt; /* point to set */
register struct XYspace *S; /* relevant coordinate space */
register DOUBLE x,y; /* user's coordinates of point */
{
pt->x = (*S->xconvert)(S->tofract.normal[0][0], S->tofract.normal[1][0], x, y);
pt->y = (*S->yconvert)(S->tofract.normal[0][1], S->tofract.normal[1][1], x, y);
}
void IXYConvert(pt, S, x, y)
register struct fractpoint *pt; /* point to set */
register struct XYspace *S; /* relevant coordinate space */
register LONG x,y; /* user's coordinates of point */
{
pt->x = (*S->ixconvert)(S->itofract[0][0], S->itofract[1][0], x, y);
pt->y = (*S->iyconvert)(S->itofract[0][1], S->itofract[1][1], x, y);
}
/*
ForceFloat is a substitute for IConvert(), when we just do not have
enough significant digits in the coefficients to get high enough
precision in the answer with fixed point arithmetic. So, we force the
integers to floats, and do the arithmetic all with floats:
*/
void ForceFloat(pt, S, x, y)
register struct fractpoint *pt; /* point to set */
register struct XYspace *S; /* relevant coordinate space */
register LONG x,y; /* user's coordinates of point */
{
(*S->convert)(pt, S, (DOUBLE) x, (DOUBLE) y);
}
/*
:h3.FXYboth(), FXonly(), FYonly() - Floating Point Conversion
These are the routines we use when the user has given us floating
point numbers for x and y. FXYboth() is the general purpose routine;
FXonly() and FYonly() are special cases when one of the coefficients
is 0.0.
*/
fractpel FXYboth(cx, cy, x, y)
register DOUBLE cx,cy; /* x and y coefficients */
register DOUBLE x,y; /* user x,y */
{
register DOUBLE r; /* temporary float */
r = x * cx + y * cy;
return((fractpel) r);
}
/*ARGSUSED*/
fractpel FXonly(cx, cy, x, y)
register DOUBLE cx,cy; /* x and y coefficients */
register DOUBLE x,y; /* user x,y */
{
register DOUBLE r; /* temporary float */
r = x * cx;
return((fractpel) r);
}
/*ARGSUSED*/
fractpel FYonly(cx, cy, x, y)
register DOUBLE cx,cy; /* x and y coefficients */
register DOUBLE x,y; /* user x,y */
{
register DOUBLE r; /* temporary float */
r = y * cy;
return((fractpel) r);
}
/*
:h3.IXYboth(), IXonly(), IYonly() - Simple Integer Conversion
These are the routines we use when the user has given us integers for
x and y, and the coefficients have enough significant digits to
provide precise answers with only "long" (32 bit?) multiplication.
IXYboth() is the general purpose routine; IXonly() and IYonly() are
special cases when one of the coefficients is 0.
*/
fractpel IXYboth(cx, cy, x, y)
register fractpel cx,cy; /* x and y coefficients */
register LONG x,y; /* user x,y */
{
return(x * cx + y * cy);
}
/*ARGSUSED*/
fractpel IXonly(cx, cy, x, y)
register fractpel cx,cy; /* x and y coefficients */
register LONG x,y; /* user x,y */
{
return(x * cx);
}
/*ARGSUSED*/
fractpel IYonly(cx, cy, x, y)
register fractpel cx,cy; /* x and y coefficients */
register LONG x,y; /* user x,y */
{
return(y * cy);
}
/*
:h3.FPXYboth(), FPXonly(), FPYonly() - More Involved Integer Conversion
These are the routines we use when the user has given us integers for
x and y, but the coefficients do not have enough significant digits to
provide precise answers with only "long" (32 bit?) multiplication.
We have increased the number of significant bits in the coefficients
by FRACTBITS; therefore we must use "double long" (64 bit?)
multiplication by calling FPmult(). FPXYboth() is the general purpose
routine; FPXonly() and FPYonly() are special cases when one of the
coefficients is 0.
Note that it is perfectly possible for us to calculate X with the
"FP" method and Y with the "I" method, or vice versa. It all depends
on how the functions in the XYspace structure are filled out.
*/
fractpel FPXYboth(cx, cy, x, y)
register fractpel cx,cy; /* x and y coefficients */
register LONG x,y; /* user x,y */
{
return( FPmult(x, cx) + FPmult(y, cy) );
}
/*ARGSUSED*/
fractpel FPXonly(cx, cy, x, y)
register fractpel cx,cy; /* x and y coefficients */
register LONG x,y; /* user x,y */
{
return( FPmult(x, cx) );
}
/*ARGSUSED*/
fractpel FPYonly(cx, cy, x, y)
register fractpel cx,cy; /* x and y coefficients */
register LONG x,y; /* user x,y */
{
return( FPmult(y, cy) );
}
/*
:h3.FillOutFcns() - Determine the Appropriate Functions to Use for Conversion
This function fills out the "convert" and "iconvert" function pointers
in an XYspace structure, and also fills the "helper"
functions that actually do the work.
*/
static void FillOutFcns(S)
register struct XYspace *S; /* functions will be set in this structure */
{
S->convert = FXYConvert;
S->iconvert = IXYConvert;
FindFfcn(S->tofract.normal[0][0], S->tofract.normal[1][0], &S->xconvert);
FindFfcn(S->tofract.normal[0][1], S->tofract.normal[1][1], &S->yconvert);
FindIfcn(S->tofract.normal[0][0], S->tofract.normal[1][0],
&S->itofract[0][0], &S->itofract[1][0], &S->ixconvert);
FindIfcn(S->tofract.normal[0][1], S->tofract.normal[1][1],
&S->itofract[0][1], &S->itofract[1][1], &S->iyconvert);
if (S->ixconvert == NULL || S->iyconvert == NULL)
S->iconvert = ForceFloat;
}
/*
:h4.FindFfcn() - Subroutine of FillOutFcns() to Fill Out Floating Functions
This function tests for the special case of one of the coefficients
being zero:
*/
static void FindFfcn(cx, cy, fcnP)
register DOUBLE cx,cy; /* x and y coefficients */
register fractpel (**fcnP)(); /* pointer to function to set */
{
if (cx == 0.0)
*fcnP = FYonly;
else if (cy == 0.0)
*fcnP = FXonly;
else
*fcnP = FXYboth;
}
/*
:h4.FindIfcn() - Subroutine of FillOutFcns() to Fill Out Integer Functions
There are two types of integer functions, the 'I' type and the 'FP' type.
We use the I type functions when we are satisfied with simple integer
arithmetic. We used the FP functions when we feel we need higher
precision (but still fixed point) arithmetic. If all else fails,
we store a NULL indicating that this we should do the conversion in
floating point.
*/
static void FindIfcn(cx, cy, icxP, icyP, fcnP)
register DOUBLE cx,cy; /* x and y coefficients */
register fractpel *icxP,*icyP; /* fixed point coefficients to set */
register fractpel (**fcnP)(); /* pointer to function to set */
{
register fractpel imax; /* maximum of cx and cy */
*icxP = cx;
*icyP = cy;
if (cx != (float) (*icxP) || cy != (float) (*icyP)) {
/*
At this point we know our integer approximations of the coefficients
are not exact. However, we will still use them if the maximum
coefficient will not fit in a 'fractpel'. Of course, we have little
choice at that point, but we haven't lost that much precision by
staying with integer arithmetic. We have enough significant digits
so that
any error we introduce is less than one part in 2:sup/16/.
*/
imax = MAX(ABS(*icxP), ABS(*icyP));
if (imax < (fractpel) (1<<(FRACTBITS-1)) ) {
/*
At this point we know our integer approximations just do not have
enough significant digits for accuracy. We will add FRACTBITS
significant digits to the coefficients (by multiplying them by
1<<FRACTBITS) and go to the "FP" form of the functions. First, we
check to see if we have ANY significant digits at all (that is, if
imax == 0). If we don't, we suspect that adding FRACTBITS digits
won't help, so we punt the whole thing.
*/
if (imax == 0) {
*fcnP = NULL;
return;
}
cx *= FRACTFLOAT;
cy *= FRACTFLOAT;
*icxP = cx;
*icyP = cy;
*fcnP = FPXYboth;
}
else
*fcnP = IXYboth;
}
else
*fcnP = IXYboth;
/*
Now we check for special cases where one coefficient is zero (after
integer conversion):
*/
if (*icxP == 0)
*fcnP = (*fcnP == FPXYboth) ? FPYonly : IYonly;
else if (*icyP == 0)
*fcnP = (*fcnP == FPXYboth) ? FPXonly : IXonly;
}
/*
:h3.UnConvert() - Find User Coordinates From FractPoints
The interesting thing with this routine is that we avoid calculating
the matrix inverse of the device transformation until we really need
it, which is to say, until this routine is called for the first time
with a given coordinate space.
We also only calculate it only once. If the inverted matrix is valid,
we don't calculate it; if not, we do. We never expect matrices with
zero determinants, so by convention, we mark the matrix is invalid by
marking both X terms zero.
*/
void UnConvert(S, pt, xp, yp)
register struct XYspace *S; /* relevant coordinate space */
register struct fractpoint *pt; /* device coordinates */
DOUBLE *xp,*yp; /* where to store resulting x,y */
{
DOUBLE x,y;
CoerceInverse(S);
x = pt->x;
y = pt->y;
*xp = S->tofract.inverse[0][0] * x + S->tofract.inverse[1][0] * y;
*yp = S->tofract.inverse[0][1] * x + S->tofract.inverse[1][1] * y;
}
/*
:h2.Transformations
*/
/*
:h3 id=xform.Xform() - Transform Object in X and Y
TYPE1IMAGER wants transformations of objects like paths to be identical
to transformations of spaces. For example, if you scale a line(1,1)
by 10 it should yield the same result as generating the line(1,1) in
a coordinate space that has been scaled by 10.
We handle fonts by storing the accumulated transform, for example, SR
(accumulating on the right). Then when we map the font through space TD,
for example, we multiply the accumulated font transform on the left by
the space transform on the right, yielding SRTD in this case. We will
get the same result if we did S, then R, then T on the space and mapping
an unmodified font through that space.
*/
struct xobject *t1_Xform(obj, M)
register struct xobject *obj; /* object to transform */
register DOUBLE M[2][2]; /* transformation matrix */
{
if (obj == NULL)
return(NULL);
if (obj->type == FONTTYPE) {
register struct font *F = (struct font *) obj;
F = UniqueFont(F);
return((struct xobject*)F);
}
if (obj->type == PICTURETYPE) {
/*
In the case of a picture, we choose both to update the picture's
transformation matrix and keep the handles up to date.
*/
register struct picture *P = (struct picture *) obj;
register struct segment *handles; /* temporary path to transform handles */
P = UniquePicture(P);
handles = PathSegment(LINETYPE, P->origin.x, P->origin.y);
handles = Join(handles,
PathSegment(LINETYPE, P->ending.x, P->ending.y) );
handles = (struct segment *)Xform((struct xobject *) handles, M);
P->origin = handles->dest;
P->ending = handles->link->dest;
KillPath(handles);
return((struct xobject *)P);
}
if (ISPATHTYPE(obj->type)) {
struct XYspace pseudo; /* local temporary space */
PseudoSpace(&pseudo, M);
return((struct xobject *) PathTransform(obj, &pseudo));
}
if (obj->type == SPACETYPE) {
register struct XYspace *S = (struct XYspace *) obj;
/* replaced ISPERMANENT(S->flag) with S->references > 1 3-26-91 PNM */
if (S->references > 1)
S = CopySpace(S);
else
S->ID = NEXTID;
MatrixMultiply(S->tofract.normal, M, S->tofract.normal);
/*
* mark inverted matrix invalid:
*/
S->flag &= ~HASINVERSE(ON);
FillOutFcns(S);
return((struct xobject *) S);
}
return(ArgErr("Untransformable object", obj, obj));
}
/*
:h3.Transform() - Transform an Object
This is the external user's entry point.
*/
struct xobject *t1_Transform(obj, cxx, cyx, cxy, cyy)
struct xobject *obj;
DOUBLE cxx,cyx,cxy,cyy; /* 2x2 transform matrix elements in row order */
{
DOUBLE M[2][2];
IfTrace1((MustTraceCalls),"Transform(%z,", obj);
IfTrace4((MustTraceCalls)," %f %f %f %f)\n", &cxx, &cyx, &cxy, &cyy);
M[0][0] = cxx;
M[0][1] = cyx;
M[1][0] = cxy;
M[1][1] = cyy;
ConsiderContext(obj, M);
return(Xform(obj, M));
}
/*
:h3.Scale() - Special Case of Transform()
This is a user operator.
*/
struct xobject *t1_Scale(obj, sx, sy)
struct xobject *obj; /* object to scale */
DOUBLE sx,sy; /* scale factors in x and y */
{
DOUBLE M[2][2];
IfTrace3((MustTraceCalls),"Scale(%z, %f, %f)\n", obj, &sx, &sy);
M[0][0] = sx;
M[1][1] = sy;
M[1][0] = M[0][1] = 0.0;
ConsiderContext(obj, M);
return(Xform(obj, M));
}
/*
:h3 id=rotate.Rotate() - Special Case of Transform()
We special-case different settings of 'degrees' for performance
and accuracy within the DegreeSin() and DegreeCos() routines themselves.
*/
#ifdef notdef
struct xobject *xiRotate(obj, degrees)
struct xobject *obj; /* object to be transformed */
DOUBLE degrees; /* degrees of COUNTER-clockwise rotation */
{
DOUBLE M[2][2];
IfTrace2((MustTraceCalls),"Rotate(%z, %f)\n", obj, °rees);
M[0][0] = M[1][1] = DegreeCos(degrees);
M[1][0] = - (M[0][1] = DegreeSin(degrees));
ConsiderContext(obj, M);
return(Xform(obj, M));
}
#endif
/*
:h3.PseudoSpace() - Build a Coordinate Space from a Matrix
Since we have built all this optimized code that, given an (x,y) and
a coordinate space, yield transformed (x,y), it seems a shame not to
use the same logic when we need to multiply an (x,y) by an arbitrary
matrix that is not (initially) part of a coordinate space. This
subroutine takes the arbitrary matrix and builds a coordinate
space, with all its nifty function pointers.
*/
void PseudoSpace(S, M)
struct XYspace *S; /* coordinate space structure to fill out */
DOUBLE M[2][2]; /* matrix that will become 'tofract.normal' */
{
S->type = SPACETYPE;
S->flag = ISPERMANENT(ON) + ISIMMORTAL(ON);
S->references = 2; /* 3-26-91 added PNM */
S->tofract.normal[0][0] = M[0][0];
S->tofract.normal[1][0] = M[1][0];
S->tofract.normal[0][1] = M[0][1];
S->tofract.normal[1][1] = M[1][1];
FillOutFcns(S);
}
/*
:h2 id=matrixa.Matrix Arithmetic
Following the convention in Newman and Sproull, :hp1/Interactive
Computer Graphics/,
matrices are organized:
:xmp.
| cxx cyx |
| cxy cyy |
:exmp.
A point is horizontal, for example:
:xmp.
[ x y ]
:exmp.
This means that:
:formula/x prime = cxx times x + cxy times y/
:formula/y prime = cyx times x + cyy times y/
I've seen the other convention, where transform matrices are
transposed, equally often in the literature.
*/
/*
:h3.MatrixMultiply() - Implements Multiplication of Two Matrices
Implements matrix multiplication, A * B = C.
To remind myself, matrix multiplication goes rows of A times columns
of B.
The output matrix may be the same as one of the input matrices.
*/
void MatrixMultiply(A, B, C)
register DOUBLE A[2][2],B[2][2]; /* input matrices */
register DOUBLE C[2][2]; /* output matrix */
{
register DOUBLE txx,txy,tyx,tyy;
txx = A[0][0] * B[0][0] + A[0][1] * B[1][0];
txy = A[1][0] * B[0][0] + A[1][1] * B[1][0];
tyx = A[0][0] * B[0][1] + A[0][1] * B[1][1];
tyy = A[1][0] * B[0][1] + A[1][1] * B[1][1];
C[0][0] = txx;
C[1][0] = txy;
C[0][1] = tyx;
C[1][1] = tyy;
}
/*
:h3.MatrixInvert() - Invert a Matrix
My reference for matrix inversion was :hp1/Elementary Linear Algebra/
by Paul C. Shields, Worth Publishers, Inc., 1968.
*/
void MatrixInvert(M, Mprime)
DOUBLE M[2][2]; /* input matrix */
DOUBLE Mprime[2][2]; /* output inverted matrix */
{
register DOUBLE D; /* determinant of matrix M */
register DOUBLE txx,txy,tyx,tyy;
txx = M[0][0];
txy = M[1][0];
tyx = M[0][1];
tyy = M[1][1];
D = M[1][1] * M[0][0] - M[1][0] * M[0][1];
if (D == 0.0)
t1_abort("MatrixInvert: can't");
Mprime[0][0] = tyy / D;
Mprime[1][0] = -txy / D;
Mprime[0][1] = -tyx / D;
Mprime[1][1] = txx / D;
}
/*
:h2.Initialization, Queries, and Debug
*/
/*
:h3.InitSpaces() - Initialize Constant Spaces
For compatibility, we initialize a coordinate space called USER which
maps 72nds of an inch to pels on the default device.
*/
struct XYspace *USER = &identity;
void InitSpaces()
{
extern char *DEFAULTDEVICE;
IDENTITY->type = SPACETYPE;
FillOutFcns(IDENTITY);
contexts[NULLCONTEXT].normal[1][0]
= contexts[NULLCONTEXT].normal[0][1]
= contexts[NULLCONTEXT].inverse[1][0]
= contexts[NULLCONTEXT].inverse[0][1] = 0.0;
contexts[NULLCONTEXT].normal[0][0]
= contexts[NULLCONTEXT].normal[1][1]
= contexts[NULLCONTEXT].inverse[0][0]
= contexts[NULLCONTEXT].inverse[1][1] = 1.0;
USER->flag |= ISIMMORTAL(ON);
CoerceInverse(USER);
}
/*
:h3.QuerySpace() - Returns the Transformation Matrix of a Space
Since the tofract matrix of an XYspace includes the scale factor
necessary to produce fractpel results (i.e., FRACTFLOAT), this
must be taken out before we return the matrix to the user. Fortunately,
this is simple: just multiply by the inverse of IDENTITY!
*/
void QuerySpace(S, cxxP, cyxP, cxyP, cyyP)
register struct XYspace *S; /* space asked about */
register DOUBLE *cxxP,*cyxP,*cxyP,*cyyP; /* where to put answer */
{
DOUBLE M[2][2]; /* temp matrix to build user's answer */
if (S->type != SPACETYPE) {
ArgErr("QuerySpace: not a space", S, NULL);
return;
}
MatrixMultiply(S->tofract.normal, IDENTITY->tofract.inverse, M);
*cxxP = M[0][0];
*cxyP = M[1][0];
*cyxP = M[0][1];
*cyyP = M[1][1];
}
/*
:h3.FormatFP() - Format a Fixed Point Pel
We format the pel as "dddd.XXXX", where XX's are hexidecimal digits,
and the dd's are decimal digits. This might be a little confusing
mixing hexidecimal and decimal like that, but it is convenient
to use for debug.
We make sure we have N (FRACTBITS/4) digits past the decimal point.
*/
#define FRACTMASK ((1<<FRACTBITS)-1) /* mask for fractional part */
void FormatFP(str, fpel)
register char *str; /* output str */
register fractpel fpel; /* fractional pel input */
{
char temp[8];
register char *s;
register char *sign;
if (fpel < 0) {
sign = "-";
fpel = -fpel;
}
else
sign = "";
sprintf(temp, "000%x", fpel & FRACTMASK);
s = temp + strlen(temp) - (FRACTBITS/4);
sprintf(str, "%s%d.%sx", sign, fpel >> FRACTBITS, s);
}
/*
:h3.DumpSpace() - Display a Coordinate Space
*/
/*ARGSUSED*/
void DumpSpace(S)
register struct XYspace *S;
{
IfTrace4(TRUE,"--Coordinate space at %x,ID=%d,convert=%x,iconvert=%x\n",
S, S->ID, S->convert, S->iconvert);
IfTrace2(TRUE," | %12.3f %12.3f |",
&S->tofract.normal[0][0], &S->tofract.normal[0][1]);
IfTrace2(TRUE," [ %p %p ]\n", S->itofract[0][0], S->itofract[0][1]);
IfTrace2(TRUE," | %12.3f %12.3f |",
&S->tofract.normal[1][0], &S->tofract.normal[1][1]);
IfTrace2(TRUE," [ %p %p ]\n", S->itofract[1][0], S->itofract[1][1]);
}
|