1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
%%% ====================================================================
%%% @LaTeX-file{
%%% filename = "thmtest.tex",
%%% version = "2.01",
%%% date = "2004/08/02",
%%% time = "14:18:27 EDT",
%%% checksum = "26819 255 963 8277",
%%% author = "American Mathematical Society",
%%% copyright = "Copyright 1996, 2004 American Mathematical Society,
%%% all rights reserved. Copying of this file is
%%% authorized only if either:
%%% (1) you make absolutely no changes to your copy,
%%% including name; OR
%%% (2) if you do make changes, you first rename it
%%% to some other name.",
%%% address = "American Mathematical Society,
%%% Technical Support,
%%% Publications Technical Group,
%%% 201 Charles Street,
%%% Providence, RI 02904,
%%% USA",
%%% telephone = "401-455-4080 or (in the USA and Canada)
%%% 800-321-4AMS (321-4267)",
%%% FAX = "401-331-3842",
%%% email = "tech-support@ams.org (Internet)",
%%% codetable = "ISO/ASCII",
%%% supported = "yes",
%%% keywords = "latex, amslatex, ams-latex, theorem, proof",
%%% abstract = "This is part of the AMS-\LaTeX{} distribution.
%%% It is a sample document illustrating the use of
%%% the amsthm package.",
%%% docstring = "The checksum field above contains a CRC-16
%%% checksum as the first value, followed by the
%%% equivalent of the standard UNIX wc (word
%%% count) utility output of lines, words, and
%%% characters. This is produced by Robert
%%% Solovay's checksum utility.",
%%% }
%%% ====================================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Option test file, will be created during the first LaTeX run;
% this facility is not available when using an AMS document class.
\begin{filecontents}{exercise.thm}
\def\th@exercise{%
\normalfont % body font
\thm@headpunct{:}%
}
\end{filecontents}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass{article}
\title{Newtheorem and theoremstyle test}
\author{Michael Downes\\updated by Barbara Beeton}
\usepackage[exercise]{amsthm}
\newtheorem{thm}{Theorem}[section]
\newtheorem{cor}[thm]{Corollary}
\newtheorem{prop}{Proposition}
\newtheorem{lem}[thm]{Lemma}
\theoremstyle{remark}
\newtheorem*{rmk}{Remark}
\theoremstyle{plain}
\newtheorem*{Ahlfors}{Ahlfors' Lemma}
\newtheoremstyle{note}% name
{3pt}% Space above
{3pt}% Space below
{}% Body font
{}% Indent amount (empty = no indent, \parindent = para indent)
{\itshape}% Thm head font
{:}% Punctuation after thm head
{.5em}% Space after thm head: " " = normal interword space;
% \newline = linebreak
{}% Thm head spec (can be left empty, meaning `normal')
\theoremstyle{note}
\newtheorem{note}{Note}
\newtheoremstyle{citing}% name
{3pt}% Space above, empty = `usual value'
{3pt}% Space below
{\itshape}% Body font
{}% Indent amount (empty = no indent, \parindent = para indent)
{\bfseries}% Thm head font
{.}% Punctuation after thm head
{.5em}% Space after thm head: " " = normal interword space;
% \newline = linebreak
{\thmnote{#3}}% Thm head spec
\theoremstyle{citing}
\newtheorem*{varthm}{}% all text supplied in the note
\newtheoremstyle{break}% name
{9pt}% Space above, empty = `usual value'
{9pt}% Space below
{\itshape}% Body font
{}% Indent amount (empty = no indent, \parindent = para indent)
{\bfseries}% Thm head font
{.}% Punctuation after thm head
{\newline}% Space after thm head: \newline = linebreak
{}% Thm head spec
\theoremstyle{break}
\newtheorem{bthm}{B-Theorem}
\theoremstyle{exercise}
\newtheorem{exer}{Exercise}
\swapnumbers
\theoremstyle{plain}
\newtheorem{thmsw}{Theorem}[section]
\newtheorem{corsw}[thmsw]{Corollary}
\newtheorem{propsw}{Proposition}
\newtheorem{lemsw}[thmsw]{Lemma}
% Because the amsmath pkg is not used, we need to define a couple of
% commands in more primitive terms.
\let\lvert=|\let\rvert=|
\newcommand{\Ric}{\mathop{\mathrm{Ric}}\nolimits}
% Dispel annoying problem of slightly overlong lines:
\addtolength{\textwidth}{8pt}
\begin{document}
\maketitle
\section{Test of standard theorem styles}
Ahlfors' Lemma gives the principal criterion for obtaining lower bounds
on the Kobayashi metric.
\begin{Ahlfors}
Let $ds^2 = h(z)\lvert dz\rvert^2$ be a Hermitian pseudo-metric on
$\mathbf{D}_r$, $h\in C^2(\mathbf{D}_r)$, with $\omega$ the associated
$(1,1)$-form. If $\Ric\omega\geq\omega$ on $\mathbf{D}_r$,
then $\omega\leq\omega_r$ on all of $\mathbf{D}_r$ (or equivalently,
$ds^2\leq ds_r^2$).
\end{Ahlfors}
\begin{lem}[negatively curved families]
Let $\{ds_1^2,\dots,ds_k^2\}$ be a negatively curved family of metrics
on $\mathbf{D}_r$, with associated forms $\omega^1$, \dots, $\omega^k$.
Then $\omega^i \leq\omega_r$ for all $i$.
\end{lem}
Then our main theorem:
\begin{thm}\label{pigspan}
Let $d_{\max}$ and $d_{\min}$ be the maximum, resp.\ minimum distance
between any two adjacent vertices of a quadrilateral $Q$. Let $\sigma$
be the diagonal pigspan of a pig $P$ with four legs.
Then $P$ is capable of standing on the corners of $Q$ iff
\begin{equation}\label{sdq}
\sigma\geq \sqrt{d_{\max}^2+d_{\min}^2}.
\end{equation}
\end{thm}
\begin{cor}
Admitting reflection and rotation, a three-legged pig $P$ is capable of
standing on the corners of a triangle $T$ iff (\ref{sdq}) holds.
\end{cor}
\begin{rmk}
As two-legged pigs generally fall over, the case of a polygon of order
$2$ is uninteresting.
\end{rmk}
\section{Custom theorem styles}
\begin{exer}
Generalize Theorem~\ref{pigspan} to three and four dimensions.
\end{exer}
\begin{note}
This is a test of the custom theorem style `note'. It is supposed to have
variant fonts and other differences.
\end{note}
\begin{bthm}
Test of the `linebreak' style of theorem heading.
\end{bthm}
This is a test of a citing theorem to cite a theorem from some other source.
\begin{varthm}[Theorem 3.6 in \cite{thatone}]
No hyperlinking available here yet \dots\ but that's not a
bad idea for the future.
\end{varthm}
\section{The proof environment}
\begin{proof}
Here is a test of the proof environment.
\end{proof}
\begin{proof}[Proof of Theorem \ref{pigspan}]
And another test.
\end{proof}
\begin{proof}[Proof \textup(necessity\textup)]
And another.
\end{proof}
\begin{proof}[Proof \textup(sufficiency\textup)]
And another, ending with a display:
\[
1+1=2\,. \qedhere
\]
\end{proof}
\section{Test of number-swapping}
This is a repeat of the first section but with numbers in theorem heads
swapped to the left.
Ahlfors' Lemma gives the principal criterion for obtaining lower bounds
on the Kobayashi metric.
\begin{Ahlfors}
Let $ds^2 = h(z)\lvert dz\rvert^2$ be a Hermitian pseudo-metric on
$\mathbf{D}_r$, $h\in C^2(\mathbf{D}_r)$, with $\omega$ the associated
$(1,1)$-form. If $\Ric\omega\geq\omega$ on $\mathbf{D}_r$,
then $\omega\leq\omega_r$ on all of $\mathbf{D}_r$ (or equivalently,
$ds^2\leq ds_r^2$).
\end{Ahlfors}
\begin{lemsw}[negatively curved families]
Let $\{ds_1^2,\dots,ds_k^2\}$ be a negatively curved family of metrics
on $\mathbf{D}_r$, with associated forms $\omega^1$, \dots, $\omega^k$.
Then $\omega^i \leq\omega_r$ for all $i$.
\end{lemsw}
Then our main theorem:
\begin{thmsw}
Let $d_{\max}$ and $d_{\min}$ be the maximum, resp.\ minimum distance
between any two adjacent vertices of a quadrilateral $Q$. Let $\sigma$
be the diagonal pigspan of a pig $P$ with four legs.
Then $P$ is capable of standing on the corners of $Q$ iff
\begin{equation}\label{sdqsw}
\sigma\geq \sqrt{d_{\max}^2+d_{\min}^2}.
\end{equation}
\end{thmsw}
\begin{corsw}
Admitting reflection and rotation, a three-legged pig $P$ is capable of
standing on the corners of a triangle $T$ iff (\ref{sdqsw}) holds.
\end{corsw}
\begin{thebibliography}{99}
\bibitem{thatone} Dummy entry.
\end{thebibliography}
\end{document}
|