1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
\documentclass{amsart}
\usepackage{amsrefs}
%\usepackage{dual} % not released yet, needs more work
%\setlength{\dualindent}{-2em}
\newenvironment{dual}{%
\par\medskip
\trivlist\item[]%
}{%
\endtrivlist
}
\newcommand{\backup}{%
\vspace*{-\baselineskip}\vspace*{-\medskipamount}\nopagebreak
}
\newtheorem{thm}{Theorem}[section]
\begin{document}
\title{Citation tests}
\author{Michael Downes}
The following examples are derived from
\emph{Homology manifold bordism} by Heather Johnston and Andrew
Ranicki (Trans.\ Amer.\ Math.\ Soc.\ \textbf{352} no 11 (2000), PII: S
0002-9947(00)02630-1).
\bigskip \noindent \rule{\columnwidth}{0.5pt}\par
\setcounter{section}{3}
\begin{dual}
The results of Johnston \cite{Jo} on homology
manifolds are extended here. It is not
possible to investigate transversality by
geometric methods---as in \cite{Jo} we employ
bordism and surgery instead.
\end{dual}
%Kirby and Siebenmann \cite{KS} (III,\S 1),
\begin{dual}
The proof of transversality is indirect,
relying heavily on surgery theory\mdash see
Kirby and Siebenmann \cite{KS}*{III, \S 1},
Marin \cite{M} and Quinn \cite{Q3}. We shall
use the formulation in terms of topological
block bundles of Rourke and Sanderson
\cite{RS}.
\end{dual}
\begin{dual}
$Q$ is a codimension $q$ subspace by Theorem
4.9 of Rourke and Sanderson \cite{RS}.
(Hughes, Taylor and Williams \cite{HTW}
obtained a topological regular neighborhood
theorem for arbitrary submanifolds \dots.)
\end{dual}
%Wall \cite{Wa} (Chapter 11) obtained a
\begin{dual}
Wall \cite{Wa}*{Chapter 11} obtained a
codimension $q$ splitting obstruction \dots.
\end{dual}
\begin{dual}
\dots\ following the work of Cohen \cite{Co}
on $PL$ manifold transversality.
\end{dual}
\begin{dual}
In this case each inverse image is
automatically a $PL$ submanifold of
codimension $\sigma$ (Cohen \cite{Co}), so
there is no need to use $s$-cobordisms.
\end{dual}
%Quinn (\cite{Q2}, 1.1) proved that \dots
\begin{dual}
Quinn \cite{Q2}*{1.1} proved that \dots
\end{dual}
\begin{dual}\backup
\begin{thm}[The additive structure of
homology manifold bordism, Johnston
\cite{Jo}]
\dots
\end{thm}
\end{dual}
\begin{dual}
For $m\geq 5$ the Novikov-Wall surgery theory
for topological manifolds gives an exact
sequence (Wall \cite{Wa}*{Chapter 10}.
\end{dual}
\begin{dual}
The surgery theory of topological manifolds
was extended to homology manifolds in Quinn
\cites{Q1,Q2} and Bryant, Ferry, Mio
and Weinberger \cite{BFMW}.
\end{dual}
\begin{dual}
The 4-periodic obstruction is equivalent to
an $m$-dimensional homology manifold, by
\cite{BFMW}.
\end{dual}
\begin{dual}
Thus, the surgery exact sequence of
\cite{BFMW} does not follow Wall \cite{Wa} in
relating homology manifold structures and
normal invariants.
\end{dual}
\begin{dual}
\dots\ the canonical $TOP$ reduction
(\cite{FP}) of the Spivak normal fibration of
$M$ \dots
\end{dual}
\begin{dual}\backup
\begin{thm}[Johnston \cite{Jo}]
\dots
\end{thm}
\end{dual}
\begin{dual}
Actually \cite{Jo}*{(5.2)} is for $m\geq 7$,
but we can improve to $m\geq 6$ by a slight
variation of the proof as described below.
\end{dual}
\begin{dual}
(This type of surgery on a Poincar\'e space
is in the tradition of Lowell Jones
\cite{Jn}.)
\end{dual}
\bibliographystyle{amsxport}
\bibliography{jr}
\end{document}
|