1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
|
% \iffalse
%
%% File `calc.dtx'.
%% Copyright (C) 1992--1995 Kresten Krab Thorup and Frank Jensen.
%% All rights reserved.
%
% Please send error reports and suggestions for improvements to:
%
% Frank Jensen
% Aalborg University
% DK-9220 Aalborg \O
% Denmark
% Internet: <fj@iesd.auc.dk>
% or
% NeXT Computer, Inc.
% Attn.: Kresten Krab Thorup
% 900 Chesapeake Drive
% Redwood City, CA 94063
% USA
% Internet: <krab@next.com>
%
% \fi
\def\fileversion{v4.0c (TEST)}
\def\filedate{1995/04/10}
% \CheckSum{371}
%% \CharacterTable
%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%% Digits \0\1\2\3\4\5\6\7\8\9
%% Exclamation \! Double quote \" Hash (number) \#
%% Dollar \$ Percent \% Ampersand \&
%% Acute accent \' Left paren \( Right paren \)
%% Asterisk \* Plus \+ Comma \,
%% Minus \- Point \. Solidus \/
%% Colon \: Semicolon \; Less than \<
%% Equals \= Greater than \> Question mark \?
%% Commercial at \@ Left bracket \[ Backslash \\
%% Right bracket \] Circumflex \^ Underscore \_
%% Grave accent \` Left brace \{ Vertical bar \|
%% Right brace \} Tilde \~}
%
% \iffalse
%<*driver>
\documentclass{ltxdoc}
\begin{document}
\DocInput{calc.dtx}
\end{document}
%</driver>
% \fi
%
% \title{The \texttt{calc} package: Infix notation
% arithmetic in \LaTeX\thanks{We thank Frank Mittelbach for his
% valuable comments and suggestions which have greatly improved
% this package.}}
% \author{Kresten Krab Thorup\and Frank Jensen}
% \date{\filedate}
%
% \maketitle
%
% \newenvironment{calc-syntax}
% {\par
% \parskip\medskipamount
% \def\is{\ \hangindent3\parindent$\longrightarrow$~}%
% \def\alt{\ $\vert$~}%
% \rightskip 0pt plus 1fil
% \def\<##1>{\mbox{\NormalSpaces$\langle$##1\/$\rangle$}}%
% \IgnoreSpaces\obeyspaces%
% }{\par\vskip\parskip}
% {\obeyspaces\gdef\NormalSpaces{\let =\space}\gdef\IgnoreSpaces{\def {}}}
%
% \def\<#1>{$\langle$#1\/$\rangle$}%
% \def\s#1{\ensuremath{[\![#1]\!]}}
% \def\savecode#1{\hbox{${}_{\hookrightarrow[#1]}$}}
% \def\gassign{\Leftarrow}
% \def\lassign{\leftarrow}
%
% \begin{abstract}
% The \texttt{calc} package reimplements the \LaTeX\ commands
% |\setcounter|, |\addtocounter|, |\setlength|, and |\addtolength|.
% Instead of a simple value, these commands now accept an infix
% notation expression.
% \end{abstract}
%
% \section{Introduction}
%
% Arithmetic in \TeX\ is done using low-level operations such as
% |\advance| and |\multiply|. This may be acceptable when developing
% a macro package, but it is not an acceptable interface for the
% end-user.
%
% This package introduces proper infix notation arithmetic which is
% much more familiar to most people. The infix notation is more
% readable and easier to modify than the alternative: a sequence of
% assignment and arithmetic instructions. One of the arithmetic
% instructions (|\divide|) does not even have an equivalent in
% standard \LaTeX.
%
% The infix expressions can be used in arguments to macros (the
% \texttt{calc} package doesn't employ category code changes to
% achieve its goals).
%
% \section{Informal description}
%
% Standard \LaTeX\ provides the following set of commands to
% manipulate counters and lengths \cite[pages 194 and~216]{latexman}.
% \begin{itemize}
% \item[]\hskip-\leftmargin
% |\setcounter{|\textit{ctr}|}{|\textit{num}|}| sets the
% value of the counter \textit{ctr} equal to (the value of)
% \textit{num}. (Fragile)
% \item[]\hskip-\leftmargin
% |\addtocounter{|\textit{ctr}|}{|\textit{num}|}|
% increments the value of the counter \textit{ctr} by (the
% value of) \textit{num}. (Fragile)
%
% \item[]\hskip-\leftmargin
% |\setlength{|\textit{cmd}|}{|\textit{len}|}| sets the value of
% the length command \textit{cmd} equal to (the value of) \textit{len}.
% (Robust)
% \item[]\hskip-\leftmargin
% |\addtolength{|\textit{cmd}|}{|\textit{len}|}| sets the value of
% the length command \textit{cmd} equal to its current value plus
% (the value of) \textit{len}. (Robust)
% \end{itemize}
% (The |\setcounter| and |\addtocounter| commands have global effect,
% while the |\setlength| and |\addtolength| commands obey the normal
% scoping rules.) In standard \LaTeX, the arguments to these commands
% must be simple values. The \texttt{calc} package extends these
% commands to accept infix notation expressions, denoting values of
% appropriate types. Using the \texttt{calc} package, \textit{num} is
% replaced by \<integer expression>, and \textit{len} is replaced by
% \<glue expression>. The formal syntax of \<integer expression> and
% \<glue expression> is given below.
%
% In the following, we shall use standard \TeX\ terminology. The
% correspondence between \TeX\ and \LaTeX\ terminology is as follows:
% \LaTeX\ counters correspond to \TeX's count registers; they hold
% quantities of type \<number>. \LaTeX\ length commands correspond to
% \TeX's dimen (for rigid lengths) and skip (for rubber lengths)
% registers; they hold quantities of types \<dimen> and \<glue>,
% respectively.
%
% \TeX\ gives us primitive operations to perform arithmetic on registers as
% follows:
% \begin{itemize}
% \item addition and subtraction on all types of quantities without
% restrictions;
% \item multiplication and division by an \emph{integer} can be
% performed on a register of any type;
% \item multiplication by a \emph{real} number (i.e., a number with a
% fractional part) can be performed on a register of any type,
% but the stretch and shrink components of a glue quantity are
% discarded.
% \end{itemize}
% The \texttt{calc} package uses these \TeX\ primitives but provides a
% more user-friendly notation for expressing the arithmetic.
%
% An expression is formed of numerical quantitites (such as explicit
% constants and \LaTeX\ counters and length commands) and binary
% operators (the tokens `\texttt{+}', `\texttt{-}', `\texttt{*}', and
% `\texttt{/}' with their usual meaning) using the familiar infix
% notation; parentheses may be used to override the usual precedences
% (that multiplication/division have higher precedence than
% addition/subtraction).
%
% Expressions must be properly typed. This means, e.g., that a dimen
% expression must be a sum of dimen terms: i.e., you cannot say
% `\texttt{2cm+4}' but `\texttt{2cm+4pt}' is valid.
%
% In a dimen term, the dimension part must come first; the same holds
% for glue terms. Also, multiplication and division by non-integer
% quantities require a special syntax; see below.
%
% Evaluation of subexpressions at the same level of precedence
% proceeds from left to right. Consider a dimen term such as
% ``\texttt{4cm*3*4}''. First, the value of the factor \texttt{4cm} is
% assigned to a dimen register, then this register is multiplied
% by~$3$ (using |\multiply|), and, finally, the register is multiplied
% by~$4$ (again using |\multiply|). This also explains why the
% dimension part (i.e., the part with the unit designation) must come
% first; \TeX\ simply doesn't allow untyped constants to be assigned
% to a dimen register.
%
% The \texttt{calc} package also allows multiplication and division by
% real numbers. However, a special syntax is required: you must use
% |\real{|\<decimal constant>|}|\footnote{Actually, instead of
% \<decimal constant>, the more general \<optional signs>\<factor> can
% be used. However, that doesn't add any extra expressive power to
% the language of infix expressions.} or
% |\ratio{|\<dimen expression>|}{|\<dimen expression>|}| to denote a
% real value to be used for multiplication/division. The first form has
% the obvious meaning, and the second form denotes the number obtained
% by dividing the value of the first expression by the value of the
% second expression.
%
% \TeX\ discards the stretch and shrink components of glue when glue
% is multiplied by a real number. So, for example,
%\begin{verbatim}
% \setlength{\parskip}{3pt plus 3pt * \real{1.5}}
%\end{verbatim}
% will set the paragraph separation to 4.5pt with no stretch or
% shrink. (Incidentally, note how spaces can be used to enhance
% readability.)
%
% When \TeX\ performs arithmetic on integers, any fractional part of
% the results are discarded. For example,
%\begin{verbatim}
% \setcounter{x}{7/2}
% \setcounter{y}{3*\real{1.6}}
% \setcounter{z}{3*\real{1.7}}
%\end{verbatim}
% will assign the value~$3$ to the counter~\texttt{x}, the value~$4$
% to~\texttt{y}, and the value~$5$ to~\texttt{z}. This truncation
% also applies to \emph{intermediate} results in the sequential
% computation of a composite expression; thus, the following command
%\begin{verbatim}
% \setcounter{x}{3 * \real{1.6} * \real{1.7}}
%\end{verbatim}
% will assign~$6$ to~\texttt{x}.
%
% As an example of the use of |\ratio|, consider the problem of
% scaling a figure to occupy the full width (i.e., |\textwidth|) of
% the body of a page. Assume that the original dimensions of the
% figure are given by the dimen (length) variables, |\Xsize| and
% |\Ysize|. The height of the scaled figure can then be expressed by
%\begin{verbatim}
% \setlength{\newYsize}{\Ysize*\ratio{\textwidth}{\Xsize}}
%\end{verbatim}
%
% \section{Formal syntax}
%
% The syntax is described by the following set of rules.
% Note that the definitions of \<number>, \<dimen>, \<glue>,
% \<decimal constant>, and \<plus or minus> are
% defined in Chapter~24 of The \TeX book~\cite{texbook}.
% We use \textit{type} as a meta-veriable, standing for
% `integer', `dimen', and `glue'.\footnote{This version of the
% \texttt{calc} package doesn't support evaluation of muglue expressions.}
% \begin{calc-syntax}
% \<\textit{type} expression>
% \is \<\textit{type} term>
% \alt \<\textit{type} expression> \<plus or minus> \<\textit{type} term>
%
% \<\textit{type} term>
% \is \<\textit{type} factor>
% \alt \<\textit{type} term> \<multiply or divide> \<integer factor>
% \alt \<\textit{type} term> \<multiply or divide> \<real number>
%
% \<\textit{type} factor>
% \is \<\textit{type}>
% \alt |(|$_{12}$ \<\textit{type} expression> |)|$_{12}$
%
% \<integer> \is \<number>
%
% \<multiply or divide>
% \is |*|$_{12}$
% \alt |/|$_{12}$
%
% \<real number>
% \is |\ratio{| \<dimen expression> |}{| \<dimen expression> |}|
% \alt |\real{| \<decimal constant> |}|
% \end{calc-syntax}
%
% \StopEventually{
% \begin{thebibliography}{1}
% \bibitem{texbook}
% \textsc{D. E. Knuth}.
% \newblock \textit{The \TeX{}book} (Computers \& Typesetting Volume A).
% \newblock Addison-Wesley, Reading, Massachusetts, 1986.
% \bibitem{latexman}
% \textsc{L. Lamport}.
% \newblock \textit{\LaTeX, A Document Preparation System.}
% \newblock Addison-Wesley, Reading, Massachusetts, Second
% edition 1994/1985.
% \end{thebibliography}
% }
%
% \section{The evaluation scheme}
% \label{evaluation:scheme}
%
% In this section, we shall for simplicity consider only expressions
% containing `$+$' (addition) and `$*$' (multiplication) operators.
% It is trivial to add subtraction and division.
%
% An expression $E$ is a sum of terms: $T_1+\cdots+T_n$; a term is a
% product of factors: $F_1*\cdots*F_m$; a factor is either a simple
% numeric quantity~$f$ (like \<number> as described in the \TeX book),
% or a parenthesized expression~$(E')$.
%
% Since the \TeX\ engine can only execute arithmetic operations in a
% machine-code like manner, we have to find a way to translate the
% infix notation into this `instruction set'.
%
% Our goal is to design a translation scheme that translates~$X$ (an
% expression, a term, or a factor) into a sequence of \TeX\ instructions
% that does the following [Invariance Property]: correctly
% evaluates~$X$, leaves the result in a global register~$A$ (using a
% global assignment), and does not perform global assignments to the
% scratch register~$B$; moreover, the code sequence must be balanced
% with respect to \TeX\ groups. We shall denote the code sequence
% corresponding to~$X$ by \s{X}.
%
% In the replacement code specified below, we use the following
% conventions:
% \begin{itemize}
% \item $A$ and $B$ denote registers; all assignments to~$A$ will
% be global, and all assignments to~$B$ will be local.
% \item ``$\gassign$'' means global assignment to the register on
% the lhs.
% \item ``$\lassign $'' means local assignment to the register on
% the lhs.
% \item ``\savecode C'' means ``save the code~$C$ until the current
% group (scope) ends, then execute it.'' This corresponds to
% the \TeX-primitive |\aftergroup|.
% \item ``$\{$'' denotes the start of a new group, and ``$\}$''
% denotes the end of a group.
% \end{itemize}
%
% Let us consider an expression $T_1+T_2+\cdots+T_n$. Assuming that
% \s{T_k} ($1\le k\le n$) attains the stated goal, the following code
% clearly attains the stated goal for their sum:
% \begin{eqnarray*}
% \s{T_1+T_2+\cdots+T_n}&\Longrightarrow&
% \{\,\s{T_1}\,\} \; B\lassign A \quad
% \{\,\s{T_2}\,\} \; B\lassign B+A \\
% &&\qquad \ldots \quad \{\,\s{T_n}\,\} \; B\lassign B+A
% \quad A\gassign B
% \end{eqnarray*}
% Note the extra level of grouping enclosing each of \s{T_1}, \s{T_2},
% \ldots,~\s{T_n}. This will ensure that register~$B$, used to
% compute the sum of the terms, is not clobbered by the intermediate
% computations of the individual terms. Actually, the group
% enclosing~\s{T_1} is unnecessary, but it turns out to be simpler if
% all terms are treated the same way.
%
% The code sequence ``$\{\,\s{T_2}\,\}\;B\lassign B+A$'' can be translated
% into the following equivalent code sequence:
% ``$\{\savecode{B\lassign B+A}\,\s{T_2}\,\}$''. This observation turns
% out to be the key to the implementation: The ``$\savecode{B\lassign
% B+A}$'' is generated \emph{before} $T_2$ is translated, at the same
% time as the `$+$' operator between $T_1$ and~$T_2$ is seen.
%
% Now, the specification of the translation scheme is straightforward:
% \begin{eqnarray*}
% \s{f}&\Longrightarrow&A\gassign f\\[\smallskipamount]
% \s{(E')}&\Longrightarrow&\s{E'}\\[\smallskipamount]
% \s{F_1*F_2*\cdots*F_m}&\Longrightarrow&
% \{\savecode{B\lassign A}\,\s{F_1}\,\} \quad
% \{\savecode{B\lassign B*A}\,\s{F_2}\,\}\\
% &&\qquad \ldots \quad \{\savecode{B\lassign B*A}\,\s{F_m}\,\} \quad
% A\gassign B \\[\smallskipamount]
% \s{T_1+T_2+\cdots+T_n}&\Longrightarrow&
% \{\savecode{B\lassign A}\,\s{T_1}\,\} \quad
% \{\savecode{B\lassign B+A}\,\s{T_2}\,\} \\
% &&\qquad \ldots \quad \{\savecode{B\lassign B+A}\,\s{T_n}\,\}
% \quad A\gassign B
% \end{eqnarray*}
% By structural induction, it is easily seen that the stated property
% is attained.
%
% By inspection of this translation scheme, we see that we have to
% generate the following code:
% \begin{itemize}
% \item we must generate ``$\{\savecode{B\lassign
% A}\{\savecode{B\lassign A}$'' at the left border of an
% expression (i.e., for each left parenthesis and the implicit
% left parenthesis at the beginning of the whole expression);
% \item we must generate ``$\}A\gassign B\}A\gassign B$'' at the
% right border of an expression (i.e., each right parenthesis
% and the implicit right parenthesis at the end of the full
% expression);
% \item `\texttt{*}' is replaced by ``$\}\{\savecode{B\lassign
% B*A}$'';
% \item `\texttt{+}' is replaced by
% ``$\}A\gassign B\}\{\savecode{B\lassign
% B+A}\{\savecode{B\lassign A}$'';
% \item when we see (expect) a numeric quantity, we insert the
% assignment code ``$A\gassign$'' in front of the quantity and let
% \TeX\ parse it.
% \end{itemize}
%
% \section{Implementation}
%
% For brevity define
% \begin{calc-syntax}
% \<numeric> \is \<number> \alt \<dimen> \alt \<glue> \alt \<muglue>
% \end{calc-syntax}
% So far we have ignored the question of how to determine the type of
% register to be used in the code. However, it is easy to see that
% (1)~`$*$' always initiates an \<integer factor>, (2)~all
% \<numeric>s in an expression, except those which are part of an
% \<integer factor>, are of the same type as the whole expression, and
% all \<numeric>s in an \<integer factor> are \<number>s.
%
% We have to ensure that $A$ and~$B$ always have an appropriate type
% for the \<numeric>s they manipulate. We can achieve this by having
% an instance of $A$ and~$B$ for each type. Initially, $A$~and~$B$
% refer to registers of the proper type for the whole expression.
% When an \<integer factor> is expected, we must change $A$ and~$B$ to
% refer to integer type registers. We can accomplish this by
% including instructions to change the type of $A$ and~$B$ to integer
% type as part of the replacement code for~`$*$; if we append such
% instructions to the replacement code described above, we also ensure
% that the type-change is local (provided that the type-changing
% instructions only have local effect). However, note that the
% instance of~$A$ referred to in $\savecode{B\lassign B*A}$ is the
% integer instance of~$A$.
%
% We shall use |\begingroup| and |\endgroup| for the open-group and
% close-group characters. This avoids problems with spacing in math
% (as pointed out to us by Frank Mittelbach).
%
% \subsection{Getting started}
%
% Now we have enough insight to do the actual implementation in \TeX.
% First, we announce the macro package.
% \begin{macrocode}
%<*package>
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{calc}[\filedate\space\fileversion]
\typeout{Package: `calc' \fileversion\space <\filedate> (KKT and FJ)}
% \end{macrocode}
%
% \subsection{Assignment macros}
%
% \begin{macro}{\calc@assign@generic}
% The |\calc@assign@generic| macro takes four arguments: (1~and~2) the
% registers to be used
% for global and local manipulations, respectively; (3)~the lvalue
% part; (4)~the expression to be evaluated.
%
% The third argument (the lvalue) will be used as a prefix to a
% register that contains the value of the specified expression (the
% fourth argument).
%
% In general, an lvalue is anything that may be followed by a variable
% of the appropriate type. As an example, |\linepenalty| and
% |\global\advance\linepenalty| may both be followed by an \<integer
% variable>.
%
% The macros described below refer to the registers by the names
% |\calc@A| and |\calc@B|; this is accomplished by
% |\let|-assignments.
%
% As discovered in Section~\ref{evaluation:scheme}, we have to
% generate code as
% if the expression is parenthesized. As described below,
% |\calc@open| is the macro that replaces a left parentheseis by its
% corresponding \TeX\ code sequence. When the scanning process sees
% the exclamation point, it generates an |\endgroup| and stops. As we
% recall from Section~\ref{evaluation:scheme}, the correct expansion
% of a right
% parenthesis is ``$\}A\gassign B\}A\gassign B$''. The remaining
% tokens of this expansion are inserted explicitly, except that the
% last assignment has been replaced by the lvalue part (i.e.,
% argument~|#3| of |\calc@assign@generic|) followed by |\calc@B|.
% \end{macro}
% \begin{macrocode}
\def\calc@assign@generic#1#2#3#4{\let\calc@A#1\let\calc@B#2%
\expandafter\calc@open\expandafter(#4!%
\global\calc@A\calc@B\endgroup#3\calc@B}
% \end{macrocode}
% (The |\expandafter| tokens allow the user to use expressions stored
% in macros as arguments in assignment commands.)
%
% \begin{macro}{\calc@assign@count}
% \begin{macro}{\calc@assign@dimen}
% \begin{macro}{\calc@assign@skip}
% We need three instances of the |\calc@assign@generic| macro,
% corresponding to the types \<integer>, \<dimen>, and \<glue>.
% \begin{macrocode}
\def\calc@assign@count{\calc@assign@generic\calc@Acount\calc@Bcount}
\def\calc@assign@dimen{\calc@assign@generic\calc@Adimen\calc@Bdimen}
\def\calc@assign@skip{\calc@assign@generic\calc@Askip\calc@Bskip}
% \end{macrocode}
% \end{macro}\end{macro}\end{macro}
% These macros each refer to two registers, one
% to be used globally and one to be used locally.
% We must allocate these registers.
% \begin{macrocode}
\newcount\calc@Acount \newcount\calc@Bcount
\newdimen\calc@Adimen \newdimen\calc@Bdimen
\newskip\calc@Askip \newskip\calc@Bskip
% \end{macrocode}
%
% \subsection{The \LaTeX\ interface}
%
% As promised, we redefine the following standard \LaTeX\ commands:
% |\setcounter|,
% |\addtocounter|, |\setlength|, and |\addtolength|.
% \begin{macrocode}
\def\setcounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}%
{\calc@assign@count{\global\csname c@#1\endcsname}{#2}}}
\def\addtocounter#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}%
{\calc@assign@count{\global\advance\csname c@#1\endcsname}{#2}}}
% \end{macrocode}
% \begin{macrocode}
\DeclareRobustCommand\setlength{\calc@assign@skip}
\DeclareRobustCommand\addtolength[1]{\calc@assign@skip{\advance#1}}
% \end{macrocode}
% (|\setlength| and |\addtolength| are robust according to
% \cite{latexman}.)
%
% \subsection{The scanner}
%
% We evaluate expressions by explicit scanning of characters. We do
% not rely on active characters for this.
%
% The scanner consists of two parts, |\calc@pre@scan| and
% |\calc@post@scan|; |\calc@pre@scan| consumes left parentheses, and
% |\calc@post@scan| consumes binary operator, |\real|, |\ratio|, and
% right parenthesis tokens.
% \begin{macro}{\calc@pre@scan}
% |\calc@pre@scan| reads the initial part (until some \<numeric> is seen)
% of expressions; only left parentheses are allowed here, everything
% else is taken to be a \<numeric> of some sort; this allows unary
% `\texttt{+}' and unary `\texttt{-}' to be treated correctly.
% \begin{macrocode}
\def\calc@pre@scan#1{%
\ifx(#1%
\let\calc@next\calc@open
\else
\let\calc@next\calc@numeric
\fi
\calc@next#1}
% \end{macrocode}
% \end{macro}
% |\calc@open| is used when there is a left parenthesis right ahead.
% This parenthesis is replaced by \TeX\ code corresponding to the code
% sequence ``$\{\savecode{B\lassign A}\{\savecode{B\lassign A}$''
% derived in Section~\ref{evaluation:scheme}. Finally,
% |\calc@pre@scan| is
% called again.
% \begin{macrocode}
\def\calc@open({\begingroup\aftergroup\calc@initB
\begingroup\aftergroup\calc@initB
\calc@pre@scan}
\def\calc@initB{\calc@B\calc@A}
% \end{macrocode}
% |\calc@numeric| assigns the following value to |\calc@A| and then
% transfers control to |\calc@post@scan|.
% \begin{macrocode}
\def\calc@numeric{\afterassignment\calc@post@scan \global\calc@A}
% \end{macrocode}
%
% \begin{macro}{\calc@post@scan}
% The macro |\calc@post@scan| is called right after a value has been
% read. At this point, a binary operator, a sequence of right
% parentheses, and the end-of-expression mark (`|!|') is allowed.
% Depending on our findings, we call a suitable macro to generate the
% corresponding \TeX\ code (except when we detect the
% end-of-expression marker: then scanning ends, and
% control is returned to |\calc@assign@generic|).
%
% This macro may be optimized by selecting a different order of
% |\ifx|-tests. The test for `\texttt{!}' (end-of-expression) is
% placed first as it will always be performed: this is the only test
% to be performed if the expression consists of a single \<numeric>.
% This ensures that documents that do not use the extra expressive
% power provided by the \texttt{calc} package only suffer a minimum
% slowdown in processing time.
% \end{macro}
% \begin{macrocode}
\def\calc@post@scan#1{%
\ifx#1!\let\calc@next\endgroup \else
\ifx#1+\let\calc@next\calc@add \else
\ifx#1-\let\calc@next\calc@subtract \else
\ifx#1*\let\calc@next\calc@multiplyx \else
\ifx#1/\let\calc@next\calc@dividex \else
\ifx#1)\let\calc@next\calc@close \else \calc@error#1%
\fi
\fi
\fi
\fi
\fi
\fi
\calc@next}
% \end{macrocode}
%
% The replacement code for the binary operators `\texttt{+}' and
% `\texttt{-}' follow a common pattern; the only difference is the
% token that is stored away by |\aftergroup|. After this replacement
% code, control is transferred to |\calc@pre@scan|.
% \begin{macrocode}
\def\calc@add{\calc@generic@add\calc@addAtoB}
\def\calc@subtract{\calc@generic@add\calc@subtractAfromB}
\def\calc@generic@add#1{\endgroup\global\calc@A\calc@B\endgroup
\begingroup\aftergroup#1\begingroup\aftergroup\calc@initB
\calc@pre@scan}
\def\calc@addAtoB{\advance\calc@B\calc@A}
\def\calc@subtractAfromB{\advance\calc@B-\calc@A}
% \end{macrocode}
%
% The multiplicative operators, `\texttt{*}' and `\texttt{/}', may be
% followed by a |\real| or a |\ratio| token. Those control sequences
% are not defined (at least not by the \texttt{calc} package).
% \begin{macrocode}
\def\calc@multiplyx#1{\def\calc@tmp{#1}%
\ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@multiply \else
\ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@multiply \else
\let\calc@next\calc@multiply
\fi
\fi
\calc@next#1}
\def\calc@dividex#1{\def\calc@tmp{#1}%
\ifx\calc@tmp\calc@ratio@x \let\calc@next\calc@ratio@divide \else
\ifx\calc@tmp\calc@real@x \let\calc@next\calc@real@divide \else
\let\calc@next\calc@divide
\fi
\fi
\calc@next#1}
\def\calc@ratio@x{\ratio}
\def\calc@real@x{\real}
% \end{macrocode}
% The binary operators `\texttt{*}' and `\texttt{/}' also insert code
% as determined above. Moreover, the meaning of |\calc@A| and
% |\calc@B| is changed as factors following a multiplication and
% division operator always have integer type; the original meaning of
% these macros will be restored when the factor has been read and
% evaluated.
% \begin{macrocode}
\def\calc@multiply{\calc@generic@multiply\calc@multiplyBbyA}
\def\calc@divide{\calc@generic@multiply\calc@divideBbyA}
\def\calc@generic@multiply#1{\endgroup\begingroup
\let\calc@A\calc@Acount \let\calc@B\calc@Bcount
\aftergroup#1\calc@pre@scan}
\def\calc@multiplyBbyA{\multiply\calc@B\calc@Acount}
\def\calc@divideBbyA{\divide\calc@B\calc@Acount}
% \end{macrocode}
% Since the value to use in the multiplication/division operation is
% stored in the |\calc@Acount| register, the |\calc@multiplyBbyA| and
% |\calc@divideBbyA| macros use this register.
%
% |\calc@close| generates code for a right parenthesis (which was
% derived to be ``$\}A\gassign B\}A\gassign B$'' in
% Section~\ref{evaluation:scheme}). After this code, the control is
% returned to
% |\calc@post@scan| in order to look for another right parenthesis or
% a binary operator.
% \begin{macrocode}
\def\calc@close
{\endgroup\global\calc@A\calc@B
\endgroup\global\calc@A\calc@B
\calc@post@scan}
% \end{macrocode}
%
% \subsection{Calculating a ratio}
%
% When |\calc@post@scan| encounters a |\ratio| control sequence, it hands
% control to one of the macros |\calc@ratio@multiply| or |\calc@ratio@divide|,
% depending on the preceding character. Those macros both forward the
% control to the macro |\calc@ratio@evaluate|, which performs two steps: (1) it
% calculates the ratio, which is saved in the global macro token
% |\calc@the@ratio|; (2) it makes sure that the value of |\calc@B| will be
% multiplied by the ratio as soon as the current group ends.
%
% The following macros call |\calc@ratio@evaluate| which multiplies
% |\calc@B| by the ratio, but |\calc@ratio@divide| flips the arguments
% so that the `opposite' fraction is actually evaluated.
% \begin{macrocode}
\def\calc@ratio@multiply\ratio{\calc@ratio@evaluate}
\def\calc@ratio@divide\ratio#1#2{\calc@ratio@evaluate{#2}{#1}}
% \end{macrocode}
% We shall need two registers for temporary usage in the
% calculations. We can save one register since we can reuse
% |\calc@Bcount|.
% \begin{macrocode}
\let\calc@numerator=\calc@Bcount
\newcount\calc@denominator
% \end{macrocode}
% Here is the macro that handles the actual evaluation of ratios. The
% procedure is
% this: First, the two expressions are evaluated and coerced to
% integers. The whole procedure is enclosed in a group to be able to
% use the registers |\calc@numerator| and |\calc@denominator| for temporary
% manipulations.
% \begin{macrocode}
\def\calc@ratio@evaluate#1#2{%
\endgroup\begingroup
\calc@assign@dimen\calc@numerator{#1}%
\calc@assign@dimen\calc@denominator{#2}%
% \end{macrocode}
% Here we calculate the ratio. First, we check for negative numerator
% and/or denominator; note that \TeX\ interprets two minus signs the
% same as a plus sign. Then, we calculate the integer part.
% The minus sign(s), the integer part, and a decimal point, form the
% initial expansion of the |\calc@the@ratio| macro.
% \begin{macrocode}
\gdef\calc@the@ratio{}%
\ifnum\calc@numerator<0 \calc@numerator-\calc@numerator
\gdef\calc@the@ratio{-}%
\fi
\ifnum\calc@denominator<0 \calc@denominator-\calc@denominator
\xdef\calc@the@ratio{\calc@the@ratio-}%
\fi
\calc@Acount\calc@numerator
\divide\calc@Acount\calc@denominator
\xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount.}%
% \end{macrocode}
% Now we generate the digits after the decimal point, one at a time.
% When \TeX\ scans these digits (in the actual multiplication
% operation), it forms a fixed-point number with 16~bits for
% the fractional part. We hope that six digits is sufficient, even
% though the last digit may not be rounded correctly.
% \begin{macrocode}
\calc@next@digit \calc@next@digit \calc@next@digit
\calc@next@digit \calc@next@digit \calc@next@digit
\endgroup
% \end{macrocode}
% Now we have the ratio represented (as the expansion of the global
% macro |\calc@the@ratio|) in the syntax \<decimal constant>
% \cite[page~270]{texbook}. This is fed to |\calc@multiply@by@real|
% that will
% perform the actual multiplication. It is important that the
% multiplication takes place at the correct grouping level so that the
% correct instance of the $B$ register will be used. Also note that
% we do not need the |\aftergroup| mechanism in this case.
% \begin{macrocode}
\calc@multiply@by@real\calc@the@ratio
\begingroup
\calc@post@scan}
% \end{macrocode}
% The |\begingroup| inserted before the |\calc@post@scan| will be
% matched by the |\endgroup| generated as part of the replacement of a
% subsequent binary operator or right parenthesis.
% \begin{macrocode}
\def\calc@next@digit{%
\multiply\calc@Acount\calc@denominator
\advance\calc@numerator -\calc@Acount
\multiply\calc@numerator 10
\calc@Acount\calc@numerator
\divide\calc@Acount\calc@denominator
\xdef\calc@the@ratio{\calc@the@ratio\number\calc@Acount}}
% \end{macrocode}
% In the following code, it is important that we first assign the
% result to a dimen register. Otherwise, \TeX\ won't allow us to
% multiply with a real number.
% \begin{macrocode}
\def\calc@multiply@by@real#1{\calc@Bdimen #1\calc@B \calc@B\calc@Bdimen}
% \end{macrocode}
% (Note that this code wouldn't work if |\calc@B| were a muglue
% register. This is the real reason why the \texttt{calc} package
% doesn't support muglue expressions. To support muglue expressions
% in full, the |\calc@multiply@by@real| macro must use a muglue register
% instead of |\calc@Bdimen| when |\calc@B| is a muglue register;
% otherwise, a dimen register should be used. Since integer
% expressions can appear as part of a muglue expression, it would be
% necessary to determine the correct register to use each time a
% multiplication is made.)
%
% \subsection{Multiplication by real numbers}
%
% This is similar to the |\calc@ratio@evaluate| macro above, except that
% it is considerably simplified since we don't need to calculate the
% factor explicitly.
% \begin{macrocode}
\def\calc@real@multiply\real#1{\endgroup
\calc@multiply@by@real{#1}\begingroup
\calc@post@scan}
\def\calc@real@divide\real#1{\calc@ratio@evaluate{1pt}{#1pt}}
% \end{macrocode}
%
% \section{Reporting errors}
%
% If |\calc@post@scan| reads a character that is not one of `\texttt{+}',
% `\texttt{-}', `\texttt{*}', `\texttt{/}', or `\texttt{)}', an error
% has occurred, and this is reported to the user. Violations in the
% syntax of \<numeric>s will be detected and reported by \TeX.
% \begin{macrocode}
\def\calc@error#1{%
\errhelp{Calc error: I expected to see one of: + - * / )}%
\errmessage{Invalid character `#1' in arithmetic expression}}
%</package>
% \end{macrocode}
%
% \Finale
\endinput
|