1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
% pb-examples.tex: nifty example using pb-diagram.sty
% Authors: Bill Richter et al.
% Version Number: 5.0
% Version Date: 20 Oct 1998
%
\def\tooee{LaTeX2e}
\ifx\fmtname\tooee
\documentclass[12pt]{article}\usepackage{pb-diagram}
\else
\documentstyle[12pt,pb-diagram]{article}
\fi
\title{Examples of the Diagram Environment}
\author{Stolen from Various Sources}
\begin{document}
\maketitle
\setlength{\fboxsep}{0pt}
This ridiculous example shows how the package fits
arrows in between the formulas, taking into account the
exact size of every formula. (The box around the diagram
shows how the shape of the entire diagram is made known to
\LaTeX.) Note that diagonal arrows are fitted to either
the tops or sides of the formulas, depending individual
circumstances.
\begin{center}\fbox{$
\begin{diagram}
\node{\left[\begin{array}{cc} A_{00} & A_{01} \\
A_{10} & A_{11}\end{array}\right]}
\arrow{e,t}{a} \arrow{s,l}{c} \arrow{ese,b,1}{u}
\node{B^*} \arrow{e,t}{b^*}
\node{C} \arrow{s,r}{d} \arrow{wsw,b,1}{v}
\\
\node{D} \arrow[2]{e,b}{e}
\node[2]{H^2(X,\, \omega_X \otimes L^{\otimes(-n^2+n)})}
\end{diagram}
$}\end{center}
% Catcode hack to get typewriter `\' inside arg of another command
% where \verb is illegal.
\begingroup \catcode`|=0 \catcode`\\=12
|gdef|bbb{{|tt\}}%
|endgroup
%
\makeatletter
\@ifundefined{lamsvector}{%
(There are some additional diagrams at this point in the file,
which you can see if you add
\ifx\fmtname\tooee
{\tt\bbb usepackage\{lamsarrow\}\bbb usepackage\{pb-lams\}}
at the end of the list of included packages.)
\else
\mbox{\tt lamsarrow,pb-lams} at the end of the
document style options.)
\fi
}{%
\newpage
This diagram shows off the fancy arrows fonts from LamS-\TeX.
\[
\begin{diagram}
\node{A} \arrow{e,t,V}{a} \arrow{s,l,'}{c} \arrow{ese,b,1,`}{u}
\node{B} \arrow{e,t,A}{b}
\node{C} \arrow{s,r,J}{d} \arrow{wsw,b,1,L}{v} \\
\node{D} \arrow[2]{e,b,S}{e}
\node[2]{E}
\end{diagram}
\]
The two diagrams below differ only in that the second has an extra diagonal
arrow. Because the first diagram is naturally very long, this diagonal arrow
could not be drawn into the first diagram even with the LamS-\TeX\ fonts. So
the diagram automatically compromises the diagram's aspect ratio to make the
arrow possible.
\[
\begin{diagram}
\node{\rule{80pt}{1pt}} \arrow[3]{e} % remove arrow: \arrow{seee,..}
\node[3]{\rule{80pt}{1pt}} \arrow{s}\\
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}}
\end{diagram}
\]
\[
\begin{diagram}
\node{\rule{80pt}{1pt}} \arrow[3]{e} \arrow{seee,..}
\node[3]{\rule{80pt}{1pt}} \arrow{s}\\
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}} \arrow{e}
\node{\rule{80pt}{1pt}}
\end{diagram}
\]}
\makeatother
\newpage
These examples show how to simulate split arrows by placing the diagram on a finer grid than logically necessary.
\[
\dgARROWLENGTH=0.6\dgARROWLENGTH
\begin{diagram}
\node[2]{A}\arrow[2]{s}\\
\node{B}\arrow{e,-} \node{}\arrow{e,t}{\alpha} \node{C} \\
\node[2]{D}\arrow{ne,b}{\beta}
\end{diagram}
\]
\[
\begin{diagram}
\node{A} \arrow[2]{e,t}{a} \arrow[2]{s,l}{c} \arrow[2]{ese,t,3}{u}
\node[2]{B^*} \arrow[2]{e,t}{b^*}
\node[2]{C} \arrow[2]{s,r}{d} \arrow{wsw,-}
\\
\node[3]{} \arrow{wsw,t}{v}
\\
\node{D} \arrow[4]{e,b}{e}
\node[4]{E}
\end{diagram}
\]
\newpage
Here are several ``real life'' examples from Bill Richter's work:
%%%% Note: for ease of tex-ing we don't assume extra fonts.
\let\frak\relax
\let\Bbb=\relax
%%%%
%\font\tenfrak=eufm10 scaled \magstep1
%\font\sevenfrak=eufm7 scaled \magstep1
%\font\fivefrak=eufm5 scaled \magstep1
%\newfam\frakfam \def\frak{\fam\frakfam\tenfrak} \textfont\frakfam=\tenfrak
%\scriptfont\frakfam=\sevenfrak \scriptscriptfont\frakfam=\fivefrak
%%%%
%%%%
\def\a{ \alpha }
\def\d{ \delta }
\def\s{ \sigma }
\def\l{ \lambda }
\def\p{ \partial }
\def\st{{\tilde\s}}
\def\O{ \Omega }
\def\S{\Sigma}
\def\Z{{\Bbb Z }}
\def\@{ \otimes }
\def\^{ \wedge }
\def\({ \left( }
\def\){ \right) }
\def\K#1{{ K\(\Z/2,#1\) }}
\def\KZ#1{{K\(\Z/4,#1\) }}
\def\id{ \mathop{id}\nolimits }
\def\h{ {\frak h} }
\def\e{ {\frak e} }
\def\G{ G }
\def\pinch{{ \mathop{{\rm pinch}} }}
\def\tuber{{ \bar\tau }}
%%%%
%%%%
\[
\begin{diagram}
\node[4]{ \K{8n+1} }
\\
\node[2]{ \KZ{8n-1} } \arrow{e} \arrow{ene,t}{Sq^2}
\node{E} \arrow{ne,b}{\Theta} \arrow{s,l}{\pi}
\\
\node{ \S\O X \^ \O X } \arrow{e,t}{H_\mu} \arrow{ne,t}{\s(\a\@\a)}
\node{ \Sigma \O X } \arrow{e,t}{\sigma} \arrow{ne,t}{\st}
\node{ X } \arrow{e,t}{\a^2}
\node{ \KZ{8n}. }
\end{diagram}
\]
\[
\begin{diagram}
\node[3]{\O\S A} \arrow[2]{e,t}{\l_2}
\node[2]{\O^2 \( \S A \^ \S A \)}
\\
\node[4]{\#}
\\
% Note: the next two lines are like
% \node{\O B} \arrow[2]{e,t,1}{\d} \arrow[2]{ne,t}{\O\(\p\)}
% but put a gap in first arrow to make room for crossing arrow
\node{\O B} \arrow{e,t,-}{\d} \arrow[2]{ne,t}{\O\(\p\)}
\node{} \arrow{e}
\node{F} \arrow[2]{e,t}{\h} \arrow[2]{s,r}{\pi} \arrow[2]{n,r}{J}
\node[2]{\O^2 \( B \^ \S A \)} \arrow[2]{n,r}{\O^2\(\p\^\id\)}
\\
\\
\node{A} \arrow[2]{ne,t}{\e} \arrow[2]{e,t}{f} \arrow[2]{nne,t,1}{E}
\node[2]{X} \arrow[2]{e,t}{h}
\node[2]{B.}
\end{diagram}
\]
\[
\divide\dgARROWLENGTH by3
\begin{diagram}
\node[9]{\O S^5}
\\
\\
\\
\node[8]{\scriptstyle\quad (\beta)}
\\
\node{\O\( M^5_{2\iota}\)} \arrow[4]{e,t}{\O\(\pinch\)}
\node[4]{\O S^5} \arrow[2]{e,t,-}{\d} \arrow[4]{ne,t}{\O\(2\iota\)}
\node[2]{} \arrow[2]{e}
\node[2]{\G} \arrow[4]{e,t}{\h_2}
\arrow[2]{s,r,-}{\pi} \arrow[4]{n,r}{J}
\node[4]{J\(S^4\^S^4\)}
\\
\\
\node[3]{J_2\( M^4_{2\iota}\)} \arrow[3]{e,t,3,-}{\d_2} \arrow[2]{ne,t}{\iota}
\node[3]{} \arrow{e}
\node{\G_2} \arrow[4]{e,t,3}{\h_2} \arrow[2]{ne,t}{\iota}
\node[2]{} \arrow[2]{s}
\node[2]{S^8} \arrow[2]{ne,b}{E}
\\
\node[4]{\scriptstyle (\alpha)}
\\
\node{M^{12}_{2\iota}} \arrow[4]{e,t}{\tuber} \arrow[2]{ne,t}{\tau}
\node[4]{S^4} \arrow[4]{e,t}{\iota} \arrow[2]{ne,t}{\e} \arrow[4]{nne,t,3}{E}
\node[4]{M^5_{2\iota}} \arrow[4]{e,t}{\pinch}
\node[4]{S^5}
\end{diagram}
\]
\newpage
Example by Anders Thorup (thorup@math.ku.dk), originally done with a
package developed by himself and Steven Kleiman
(kleiman@math.mit.edu):
\[
\begin{diagram}
\node{H^k(B_G\times N;Q)=H^k_G(N;Q)}
\arrow[2]{e,t}{f^*_j} \arrow[2]{s,l}{p^*} \arrow{se,t}{\tilde f^*}
\node[2]{H^k_G(F_j;Q)} \arrow[2]{s,r}{q^*_j}
\\
\node[2]{H^k_G(M;Q)} \arrow{ne,t}{i^*_j} \arrow[2]{s,l,1}{i^*}
\\
\node{H^k(N;Q)}\arrow{e,t,-}{\tilde f^*_j=f^*_j}\arrow{se,b}{\tilde f^*=f^*}
\node{} \arrow{e}
\node{H^k(F_j;Q)}
\\
\node[2]{H^k(M;Q)} \arrow{ne,b}{i^*_j}
\end{diagram}
\]
\end{document}
|