1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098
|
% Copyright 1990 - 1995 by AT&T Bell Laboratories.
% Permission to use, copy, modify, and distribute this software
% and its documentation for any purpose and without fee is hereby
% granted, provided that the above copyright notice appear in all
% copies and that both that the copyright notice and this
% permission notice and warranty disclaimer appear in supporting
% documentation, and that the names of AT&T Bell Laboratories or
% any of its entities not be used in advertising or publicity
% pertaining to distribution of the software without specific,
% written prior permission.
% AT&T disclaims all warranties with regard to this software,
% including all implied warranties of merchantability and fitness.
% In no event shall AT&T be liable for any special, indirect or
% consequential damages or any damages whatsoever resulting from
% loss of use, data or profits, whether in an action of contract,
% negligence or other tortious action, arising out of or in
% connection with the use or performance of this software.
% Much of this program was copied with permission from MF.web Version 1.9
% It interprets a language very similar to D.E. Knuth's METAFONT, but with
% changes designed to make it more suitable for PostScript output.
% TeX is a trademark of the American Mathematical Society.
% METAFONT is a trademark of Addison-Wesley Publishing Company.
% PostScript is a trademark of Adobe Systems Incorporated.
% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\noindent\ignorespaces}
\def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
\def\PASCAL{Pascal}
\def\ps{PostScript}
\def\ph{\hbox{Pascal-H}}
\def\psqrt#1{\sqrt{\mathstrut#1}}
\def\k{_{k+1}}
\def\pct!{{\char`\%}} % percent sign in ordinary text
\font\tenlogo=logo10 % font used for the METAFONT logo
\font\logos=logosl10
\def\MF{{\tenlogo META}\-{\tenlogo FONT}}
\def\MP{{\tenlogo META}\-{\tenlogo POST}}
\def\<#1>{$\langle#1\rangle$}
\def\section{\mathhexbox278}
\let\swap=\leftrightarrow
\def\round{\mathop{\rm round}\nolimits}
\mathchardef\vb="026A % synonym for `\|'
\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
\outer\def\N#1. \[#2]#3.{\MN#1.\vfil\eject % begin starred section
\def\rhead{PART #2:\uppercase{#3}} % define running headline
\message{*\modno} % progress report
\edef\next{\write\cont{\Z{\?#2]#3}{\modno}{\the\pageno}}}\next
\ifon\startsection{\bf\ignorespaces#3.\quad}\ignorespaces}
\let\?=\relax % we want to be able to \write a \?
\def\title{MetaPost}
\def\topofcontents{\hsize 5.5in
\vglue -30pt plus 1fil minus 1.5in
\def\?##1]{\hbox to 1in{\hfil##1.\ }}
}
\def\botofcontents{\vskip 0pt plus 1fil minus 1.5in}
\pageno=3
\def\glob{13} % this should be the section number of "<Global...>"
\def\gglob{20, 26} % this should be the next two sections of "<Global...>"
@* \[1] Introduction.
This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
The \PASCAL\ program that follows defines a standard version
@:PASCAL}{\PASCAL@>
of \MP\ that is designed to be highly portable so that identical output
will be obtainable on a great variety of computers.
The main purpose of the following program is to explain the algorithms of \MP\
as clearly as possible. As a result, the program will not necessarily be very
efficient when a particular \PASCAL\ compiler has translated it into a
particular machine language. However, the program has been written so that it
can be tuned to run efficiently in a wide variety of operating environments
by making comparatively few changes. Such flexibility is possible because
the documentation that follows is written in the \.{WEB} language, which is
at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
to \PASCAL\ is able to introduce most of the necessary refinements.
Semi-automatic translation to other languages is also feasible, because the
program below does not make extensive use of features that are peculiar to
\PASCAL.
A large piece of software like \MP\ has inherent complexity that cannot
be reduced below a certain level of difficulty, although each individual
part is fairly simple by itself. The \.{WEB} language is intended to make
the algorithms as readable as possible, by reflecting the way the
individual program pieces fit together and by providing the
cross-references that connect different parts. Detailed comments about
what is going on, and about why things were done in certain ways, have
been liberally sprinkled throughout the program. These comments explain
features of the implementation, but they rarely attempt to explain the
\MP\ language itself, since the reader is supposed to be familiar with
{\sl The {\logos METAFONT\/}book} as well as the manual
@.WEB@>
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
{\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
AT\AM T Bell Laboratories.
@ The present implementation is a preliminary version, but the possibilities
for new features are limited by the desire to remain as nearly compatible
with \MF\ as possible.
On the other hand, the \.{WEB} description can be extended without changing
the core of the program, and it has been designed so that such
extensions are not extremely difficult to make.
The |banner| string defined here should be changed whenever \MP\
undergoes any modifications, so that it will be clear which version of
\MP\ might be the guilty party when a problem arises.
@^extensions to \MP@>
@^system dependencies@>
@d banner=='This is MetaPost, Version 0.641' {printed when \MP\ starts}
@ Different \PASCAL s have slightly different conventions, and the present
@!@:PASCAL H}{\ph@>
program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
Constructions that apply to
this particular compiler, which we shall call \ph, should help the
reader see how to make an appropriate interface for other systems
if necessary. (\ph\ is Charles Hedrick's modification of a compiler
@^Hedrick, Charles Locke@>
for the DECsystem-10 that was originally developed at the University of
Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
29--42. The \MP\ program below is intended to be adaptable, without
extensive changes, to most other versions of \PASCAL\ and commonly used
\PASCAL-to-C translators, so it does not fully
@!@:C@>
use the admirable features of \ph. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard
\PASCAL\ itself, so that most of the code can be translated mechanically
into other high-level languages. For example, the `\&{with}' and `\\{new}'
features are not used, nor are pointer types, set types, or enumerated
scalar types; there are no `\&{var}' parameters, except in the case of files;
there are no tag fields on variant records; there are no |real| variables;
no procedures are declared local to other procedures.)
The portions of this program that involve system-dependent code, where
changes might be necessary because of differences between \PASCAL\ compilers
and/or differences between
operating systems, can be identified by looking at the sections whose
numbers are listed under `system dependencies' in the index. Furthermore,
the index entries for `dirty \PASCAL' list all places where the restrictions
of \PASCAL\ have not been followed perfectly, for one reason or another.
@!@^system dependencies@>
@!@^dirty \PASCAL@>
@ The program begins with a normal \PASCAL\ program heading, whose
components will be filled in later, using the conventions of \.{WEB}.
@.WEB@>
For example, the portion of the program called `\X\glob:Global
variables\X' below will be replaced by a sequence of variable declarations
that starts in $\section\glob$ of this documentation. In this way, we are able
to define each individual global variable when we are prepared to
understand what it means; we do not have to define all of the globals at
once. Cross references in $\section\glob$, where it says ``See also
sections \gglob, \dots,'' also make it possible to look at the set of
all global variables, if desired. Similar remarks apply to the other
portions of the program heading.
Actually the heading shown here is not quite normal: The |program| line
does not mention any |output| file, because \ph\ would ask the \MP\ user
to specify a file name if |output| were specified here.
@^system dependencies@>
@d mtype==t@&y@&p@&e {this is a \.{WEB} coding trick:}
@f mtype==type {`\&{mtype}' will be equivalent to `\&{type}'}
@f type==true {but `|type|' will not be treated as a reserved word}
@p @t\4@>@<Compiler directives@>@/
program MP; {all file names are defined dynamically}
label @<Labels in the outer block@>@/
const @<Constants in the outer block@>@/
mtype @<Types in the outer block@>@/
var @<Global variables@>@/
@#
procedure initialize; {this procedure gets things started properly}
var @<Local variables for initialization@>@/
begin @<Set initial values of key variables@>@/
end;@#
@t\4@>@<Basic printing procedures@>@/
@t\4@>@<Error handling procedures@>@/
@ The overall \MP\ program begins with the heading just shown, after which
comes a bunch of procedure declarations and function declarations.
Finally we will get to the main program, which begins with the
comment `|start_here|'. If you want to skip down to the
main program now, you can look up `|start_here|' in the index.
But the author suggests that the best way to understand this program
is to follow pretty much the order of \MP's components as they appear in the
\.{WEB} description you are now reading, since the present ordering is
intended to combine the advantages of the ``bottom up'' and ``top down''
approaches to the problem of understanding a somewhat complicated system.
@ Three labels must be declared in the main program, so we give them
symbolic names.
@d start_of_MP=1 {go here when \MP's variables are initialized}
@d end_of_MP=9998 {go here to close files and terminate gracefully}
@d final_end=9999 {this label marks the ending of the program}
@<Labels in the out...@>=
start_of_MP@t\hskip-2pt@>, end_of_MP@t\hskip-2pt@>,@,final_end;
{key control points}
@ Some of the code below is intended to be used only when diagnosing the
strange behavior that sometimes occurs when \MP\ is being installed or
when system wizards are fooling around with \MP\ without quite knowing
what they are doing. Such code will not normally be compiled; it is
delimited by the codewords `$|debug|\ldots|gubed|$', with apologies
to people who wish to preserve the purity of English.
Similarly, there is some conditional code delimited by
`$|stat|\ldots|tats|$' that is intended for use when statistics are to be
kept about \MP's memory usage.
@^debugging@>
@d debug==@{ {change this to `$\\{debug}\equiv\null$' when debugging}
@d gubed==@t@>@} {change this to `$\\{gubed}\equiv\null$' when debugging}
@f debug==begin
@f gubed==end
@#
@d stat==@{ {change this to `$\\{stat}\equiv\null$' when gathering
usage statistics}
@d tats==@t@>@} {change this to `$\\{tats}\equiv\null$' when gathering
usage statistics}
@f stat==begin
@f tats==end
@ This program has two important variations: (1) There is a long and slow
version called \.{INIMP}, which does the extra calculations needed to
@.INIMP@>
initialize \MP's internal tables; and (2)~there is a shorter and faster
production version, which cuts the initialization to a bare minimum.
Parts of the program that are needed in (1) but not in (2) are delimited by
the codewords `$|init|\ldots|tini|$'.
@d init== {change this to `$\\{init}\equiv\.{@@\{}$' in the production version}
@d tini== {change this to `$\\{tini}\equiv\.{@@\}}$' in the production version}
@f init==begin
@f tini==end
@ If the first character of a \PASCAL\ comment is a dollar sign,
\ph\ treats the comment as a list of ``compiler directives'' that will
affect the translation of this program into machine language. The
directives shown below specify full checking and inclusion of the \PASCAL\
debugger when \MP\ is being debugged, but they cause range checking and other
redundant code to be eliminated when the production system is being generated.
Arithmetic overflow will be detected in all cases.
@^system dependencies@>
@^Overflow in arithmetic@>
@<Compiler directives@>=
@{@&$C-,A+,D-@} {no range check, catch arithmetic overflow, no debug overhead}
@!debug @{@&$C+,D+@}@+ gubed {but turn everything on when debugging}
@ This \MP\ implementation conforms to the rules of the {\sl Pascal User
@:PASCAL}{\PASCAL@>
@^system dependencies@>
Manual} published by Jensen and Wirth in 1975, except where system-dependent
@^Wirth, Niklaus@>
@^Jensen, Kathleen@>
code is necessary to make a useful system program, and except in another
respect where such conformity would unnecessarily obscure the meaning
and clutter up the code: We assume that |case| statements may include a
default case that applies if no matching label is found. Thus, we shall use
constructions like
$$\vbox{\halign{\ignorespaces#\hfil\cr
|case x of|\cr
1: $\langle\,$code for $x=1\,\rangle$;\cr
3: $\langle\,$code for $x=3\,\rangle$;\cr
|othercases| $\langle\,$code for |x<>1| and |x<>3|$\,\rangle$\cr
|endcases|\cr}}$$
since most \PASCAL\ compilers have plugged this hole in the language by
incorporating some sort of default mechanism. For example, the \ph\
compiler allows `|others|:' as a default label, and other \PASCAL s allow
syntaxes like `\&{else}' or `\&{otherwise}' or `\\{otherwise}:', etc. The
definitions of |othercases| and |endcases| should be changed to agree with
local conventions. Note that no semicolon appears before |endcases| in
this program, so the definition of |endcases| should include a semicolon
if the compiler wants one. (Of course, if no default mechanism is
available, the |case| statements of \MP\ will have to be laboriously
extended by listing all remaining cases. People who are stuck with such
\PASCAL s have, in fact, done this, successfully but not happily!)
@d othercases == others: {default for cases not listed explicitly}
@d endcases == @+end {follows the default case in an extended |case| statement}
@f othercases == else
@f endcases == end
@ The following parameters can be changed at compile time to extend or
reduce \MP's capacity. They may have different values in \.{INIMP} and
in production versions of \MP.
@.INIMP@>
@^system dependencies@>
@<Constants...@>=
@!mem_max=30000; {greatest index in \MP's internal |mem| array;
must be strictly less than |max_halfword|;
must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top|}
@!max_internal=100; {maximum number of internal quantities}
@!buf_size=500; {maximum number of characters simultaneously present in
current lines of open files; must not exceed |max_halfword|}
@!error_line=72; {width of context lines on terminal error messages}
@!half_error_line=42; {width of first lines of contexts in terminal
error messages; should be between 30 and |error_line-15|}
@!max_print_line=79; {width of longest text lines output; should be at least 60}
@!emergency_line_length=255;
{\ps\ output lines can be this long in unusual circumstances}
@!stack_size=30; {maximum number of simultaneous input sources}
@!max_read_files=4; {maximum number of simultaneously open \&{readfrom} files}
@!max_strings=2500; {maximum number of strings; must not exceed |max_halfword|}
@!string_vacancies=9000; {the minimum number of characters that should be
available for the user's identifier names and strings,
after \MP's own error messages are stored}
@!strings_vacant=1000; {the minimum number of strings that should be available}
@!pool_size=32000; {maximum number of characters in strings, including all
error messages and help texts, and the names of all identifiers;
must exceed |string_vacancies| by the total
length of \MP's own strings, which is currently about 22000}
@!font_max=50; {maximum font number for included text fonts}
@!font_mem_size=10000; {number of words for \.{TFM} information for text fonts}
@!file_name_size=40; {file names shouldn't be longer than this}
@!pool_name='MPlib:MP.POOL ';
{string of length |file_name_size|; tells where the string pool appears}
@.MPlib@>
@!ps_tab_name='MPlib:PSFONTS.MAP ';
{string of length |file_name_size|; locates font name translation table}
@!path_size=300; {maximum number of knots between breakpoints of a path}
@!bistack_size=785; {size of stack for bisection algorithms;
should probably be left at this value}
@!header_size=100; {maximum number of \.{TFM} header words, times~4}
@!lig_table_size=5000; {maximum number of ligature/kern steps, must be
at least 255 and at most 32510}
@!max_kerns=500; {maximum number of distinct kern amounts}
@!max_font_dimen=50; {maximum number of \&{fontdimen} parameters}
@ Like the preceding parameters, the following quantities can be changed
at compile time to extend or reduce \MP's capacity. But if they are changed,
it is necessary to rerun the initialization program \.{INIMP}
@.INIMP@>
to generate new tables for the production \MP\ program.
One can't simply make helter-skelter changes to the following constants,
since certain rather complex initialization
numbers are computed from them. They are defined here using
\.{WEB} macros, instead of being put into \PASCAL's |const| list, in order to
emphasize this distinction.
@d mem_min=0 {smallest index in the |mem| array, must not be less
than |min_halfword|}
@d mem_top==30000 {largest index in the |mem| array dumped by \.{INIMP};
must be substantially larger than |mem_min|
and not greater than |mem_max|}
@d hash_size=2100 {maximum number of symbolic tokens,
must be less than |max_halfword-3*param_size|}
@d hash_prime=1777 {a prime number equal to about 85\pct! of |hash_size|}
@d max_in_open=6 {maximum number of input files and error insertions that
can be going on simultaneously}
@d param_size=150 {maximum number of simultaneous macro parameters}
@d max_write_files=4 {maximum number of simultaneously open \&{write} files}
@^system dependencies@>
@ In case somebody has inadvertently made bad settings of the ``constants,''
\MP\ checks them using a global variable called |bad|.
This is the first of many sections of \MP\ where global variables are
defined.
@<Glob...@>=
@!bad:integer; {is some ``constant'' wrong?}
@ Later on we will say `\ignorespaces|if mem_max>=max_halfword then bad:=10|',
or something similar. (We can't do that until |max_halfword| has been defined.)
@<Check the ``constant'' values for consistency@>=
bad:=0;
if (half_error_line<30)or(half_error_line>error_line-15) then bad:=1;
if max_print_line<60 then bad:=2;
if emergency_line_length<max_print_line then bad:=3;
if mem_min+1100>mem_top then bad:=4;
if hash_prime>hash_size then bad:=5;
if header_size mod 4 <> 0 then bad:=6;
if(lig_table_size<255)or(lig_table_size>32510)then bad:=7;
@ Labels are given symbolic names by the following definitions, so that
occasional |goto| statements will be meaningful. We insert the label
`|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
which we have used the `|return|' statement defined below; the label
`|restart|' is occasionally used at the very beginning of a procedure; and
the label `|reswitch|' is occasionally used just prior to a |case|
statement in which some cases change the conditions and we wish to branch
to the newly applicable case. Loops that are set up with the |loop|
construction defined below are commonly exited by going to `|done|' or to
`|found|' or to `|not_found|', and they are sometimes repeated by going to
`|continue|'. If two or more parts of a subroutine start differently but
end up the same, the shared code may be gathered together at
`|common_ending|'.
Incidentally, this program never declares a label that isn't actually used,
because some fussy \PASCAL\ compilers will complain about redundant labels.
@d exit=10 {go here to leave a procedure}
@d restart=20 {go here to start a procedure again}
@d reswitch=21 {go here to start a case statement again}
@d continue=22 {go here to resume a loop}
@d done=30 {go here to exit a loop}
@d done1=31 {like |done|, when there is more than one loop}
@d done2=32 {for exiting the second loop in a long block}
@d done3=33 {for exiting the third loop in a very long block}
@d done4=34 {for exiting the fourth loop in an extremely long block}
@d done5=35 {for exiting the fifth loop in an immense block}
@d done6=36 {for exiting the sixth loop in a block}
@d found=40 {go here when you've found it}
@d found1=41 {like |found|, when there's more than one per routine}
@d found2=42 {like |found|, when there's more than two per routine}
@d not_found=45 {go here when you've found nothing}
@d common_ending=50 {go here when you want to merge with another branch}
@ Here are some macros for common programming idioms.
@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@d negate(#) == #:=-# {change the sign of a variable}
@d double(#) == #:=#+# {multiply a variable by two}
@d loop == @+ while true do@+ {repeat over and over until a |goto| happens}
@f loop == xclause
{\.{WEB}'s |xclause| acts like `\ignorespaces|while true do|\unskip'}
@d do_nothing == {empty statement}
@d return == goto exit {terminate a procedure call}
@f return == nil {\.{WEB} will henceforth say |return| instead of \\{return}}
@* \[2] The character set.
In order to make \MP\ readily portable to a wide variety of
computers, all of its input text is converted to an internal eight-bit
code that includes standard ASCII, the ``American Standard Code for
Information Interchange.'' This conversion is done immediately when each
character is read in. Conversely, characters are converted from ASCII to
the user's external representation just before they are output to a
text file.
@^ASCII code@>
Such an internal code is relevant to users of \MP\ only with respect to
the \&{char} and \&{ASCII} operations, and the comparison of strings.
@ Characters of text that have been converted to \MP's internal form
are said to be of type |ASCII_code|, which is a subrange of the integers.
@<Types...@>=
@!ASCII_code=0..255; {eight-bit numbers}
@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
character sets were common, so it did not make provision for lowercase
letters. Nowadays, of course, we need to deal with both capital and small
letters in a convenient way, especially in a program for font design;
so the present specification of \MP\ has been written under the assumption
that the \PASCAL\ compiler and run-time system permit the use of text files
with more than 64 distinguishable characters. More precisely, we assume that
the character set contains at least the letters and symbols associated
with ASCII codes @'40 through @'176; all of these characters are now
available on most computer terminals.
Since we are dealing with more characters than were present in the first
\PASCAL\ compilers, we have to decide what to call the associated data
type. Some \PASCAL s use the original name |char| for the
characters in text files, even though there now are more than 64 such
characters, while other \PASCAL s consider |char| to be a 64-element
subrange of a larger data type that has some other name.
In order to accommodate this difference, we shall use the name |text_char|
to stand for the data type of the characters that are converted to and
from |ASCII_code| when they are input and output. We shall also assume
that |text_char| consists of the elements |chr(first_text_char)| through
|chr(last_text_char)|, inclusive. The following definitions should be
adjusted if necessary.
@^system dependencies@>
@d text_char == char {the data type of characters in text files}
@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
@d last_text_char=255 {ordinal number of the largest element of |text_char|}
@<Local variables for init...@>=
@!i:integer;
@ The \MP\ processor converts between ASCII code and
the user's external character set by means of arrays |xord| and |xchr|
that are analogous to \PASCAL's |ord| and |chr| functions.
@<Glob...@>=
@!xord: array [text_char] of ASCII_code;
{specifies conversion of input characters}
@!xchr: array [ASCII_code] of text_char;
{specifies conversion of output characters}
@ Since we are assuming that our \PASCAL\ system is able to read and
write the visible characters of standard ASCII (although not
necessarily using the ASCII codes to represent them), the following
assignment statements initialize the standard part of the |xchr| array
properly, without needing any system-dependent changes. On the other
hand, it is possible to implement \MP\ with less complete character
sets, and in such cases it will be necessary to change something here.
@^system dependencies@>
@<Set init...@>=
xchr[@'40]:=' ';
xchr[@'41]:='!';
xchr[@'42]:='"';
xchr[@'43]:='#';
xchr[@'44]:='$';
xchr[@'45]:='%';
xchr[@'46]:='&';
xchr[@'47]:='''';@/
xchr[@'50]:='(';
xchr[@'51]:=')';
xchr[@'52]:='*';
xchr[@'53]:='+';
xchr[@'54]:=',';
xchr[@'55]:='-';
xchr[@'56]:='.';
xchr[@'57]:='/';@/
xchr[@'60]:='0';
xchr[@'61]:='1';
xchr[@'62]:='2';
xchr[@'63]:='3';
xchr[@'64]:='4';
xchr[@'65]:='5';
xchr[@'66]:='6';
xchr[@'67]:='7';@/
xchr[@'70]:='8';
xchr[@'71]:='9';
xchr[@'72]:=':';
xchr[@'73]:=';';
xchr[@'74]:='<';
xchr[@'75]:='=';
xchr[@'76]:='>';
xchr[@'77]:='?';@/
xchr[@'100]:='@@';
xchr[@'101]:='A';
xchr[@'102]:='B';
xchr[@'103]:='C';
xchr[@'104]:='D';
xchr[@'105]:='E';
xchr[@'106]:='F';
xchr[@'107]:='G';@/
xchr[@'110]:='H';
xchr[@'111]:='I';
xchr[@'112]:='J';
xchr[@'113]:='K';
xchr[@'114]:='L';
xchr[@'115]:='M';
xchr[@'116]:='N';
xchr[@'117]:='O';@/
xchr[@'120]:='P';
xchr[@'121]:='Q';
xchr[@'122]:='R';
xchr[@'123]:='S';
xchr[@'124]:='T';
xchr[@'125]:='U';
xchr[@'126]:='V';
xchr[@'127]:='W';@/
xchr[@'130]:='X';
xchr[@'131]:='Y';
xchr[@'132]:='Z';
xchr[@'133]:='[';
xchr[@'134]:='\';
xchr[@'135]:=']';
xchr[@'136]:='^';
xchr[@'137]:='_';@/
xchr[@'140]:='`';
xchr[@'141]:='a';
xchr[@'142]:='b';
xchr[@'143]:='c';
xchr[@'144]:='d';
xchr[@'145]:='e';
xchr[@'146]:='f';
xchr[@'147]:='g';@/
xchr[@'150]:='h';
xchr[@'151]:='i';
xchr[@'152]:='j';
xchr[@'153]:='k';
xchr[@'154]:='l';
xchr[@'155]:='m';
xchr[@'156]:='n';
xchr[@'157]:='o';@/
xchr[@'160]:='p';
xchr[@'161]:='q';
xchr[@'162]:='r';
xchr[@'163]:='s';
xchr[@'164]:='t';
xchr[@'165]:='u';
xchr[@'166]:='v';
xchr[@'167]:='w';@/
xchr[@'170]:='x';
xchr[@'171]:='y';
xchr[@'172]:='z';
xchr[@'173]:='{';
xchr[@'174]:='|';
xchr[@'175]:='}';
xchr[@'176]:='~';@/
@ The ASCII code is ``standard'' only to a certain extent, since many
computer installations have found it advantageous to have ready access
to more than 94 printing characters. If \MP\ is being used
on a garden-variety \PASCAL\ for which only standard ASCII
codes will appear in the input and output files, it doesn't really matter
what codes are specified in |xchr[0..@'37]|, but the safest policy is to
blank everything out by using the code shown below.
However, other settings of |xchr| will make \MP\ more friendly on
computers that have an extended character set, so that users can type things
like `\.^^Z' instead of `\.{<>}'.
People with extended character sets can
assign codes arbitrarily, giving an |xchr| equivalent to whatever
characters the users of \MP\ are allowed to have in their input files.
Appropriate changes to \MP's |char_class| table should then be made.
(Unlike \TeX, each installation of \MP\ has a fixed assignment of category
codes, called the |char_class|.) Such changes make portability of programs
more difficult, so they should be introduced cautiously if at all.
@^character set dependencies@>
@^system dependencies@>
@<Set init...@>=
for i:=0 to @'37 do xchr[i]:=' ';
for i:=@'177 to @'377 do xchr[i]:=' ';
@ The following system-independent code makes the |xord| array contain a
suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
where |i<j<@'177|, the value of |xord[xchr[i]]| will turn out to be
|j| or more; hence, standard ASCII code numbers will be used instead of
codes below @'40 in case there is a coincidence.
@<Set init...@>=
for i:=first_text_char to last_text_char do xord[chr(i)]:=@'177;
for i:=@'200 to @'377 do xord[xchr[i]]:=i;
for i:=0 to @'176 do xord[xchr[i]]:=i;
@* \[3] Input and output.
The bane of portability is the fact that different operating systems treat
input and output quite differently, perhaps because computer scientists
have not given sufficient attention to this problem. People have felt somehow
that input and output are not part of ``real'' programming. Well, it is true
that some kinds of programming are more fun than others. With existing
input/output conventions being so diverse and so messy, the only sources of
joy in such parts of the code are the rare occasions when one can find a
way to make the program a little less bad than it might have been. We have
two choices, either to attack I/O now and get it over with, or to postpone
I/O until near the end. Neither prospect is very attractive, so let's
get it over with.
The basic operations we need to do are (1)~inputting and outputting of
text, to or from a file or the user's terminal; (2)~inputting and
outputting of eight-bit bytes, to or from a file; (3)~instructing the
operating system to initiate (``open'') or to terminate (``close'') input or
output from a specified file; (4)~testing whether the end of an input
file has been reached; (5)~display of bits on the user's screen.
The bit-display operation will be discussed in a later section; we shall
deal here only with more traditional kinds of I/O.
\MP\ needs to deal with two kinds of files.
We shall use the term |alpha_file| for a file that contains textual data,
and the term |byte_file| for a file that contains eight-bit binary information.
These two types turn out to be the same on many computers, but
sometimes there is a significant distinction, so we shall be careful to
distinguish between them. Standard protocols for transferring
such files from computer to computer, via high-speed networks, are
now becoming available to more and more communities of users.
The program actually makes use also of a third kind of file, called a
|word_file|, when dumping and reloading mem information for its own
initialization. We shall define a word file later; but it will be possible
for us to specify simple operations on word files before they are defined.
@<Types...@>=
@!eight_bits=0..255; {unsigned one-byte quantity}
@!alpha_file=packed file of text_char; {files that contain textual data}
@!byte_file=packed file of eight_bits; {files that contain binary data}
@ Most of what we need to do with respect to input and output can be handled
by the I/O facilities that are standard in \PASCAL, i.e., the routines
called |get|, |put|, |eof|, and so on. But
standard \PASCAL\ does not allow file variables to be associated with file
names that are determined at run time, so it cannot be used to implement
\MP; some sort of extension to \PASCAL's ordinary |reset| and |rewrite|
is crucial for our purposes. We shall assume that |name_of_file| is a variable
of an appropriate type such that the \PASCAL\ run-time system being used to
implement \MP\ can open a file whose external name is specified by
|name_of_file|.
@^system dependencies@>
@<Glob...@>=
@!name_of_file:packed array[1..file_name_size] of char;@;@/
{on some systems this may be a \&{record} variable}
@!name_length:0..file_name_size;@/{this many characters are actually
relevant in |name_of_file| (the rest are blank)}
@ The \ph\ compiler with which the original version of \MF\ was prepared
extends the rules of \PASCAL\ in a very convenient way. To open file~|f|,
we can write
$$\vbox{\halign{#\hfil\qquad&#\hfil\cr
|reset(f,@t\\{name}@>,'/O')|&for input;\cr
|rewrite(f,@t\\{name}@>,'/O')|&for output.\cr}}$$
The `\\{name}' parameter, which is of type `\ignorespaces|packed
array[@t\<\\{any}>@>] of text_char|', stands for the name of
the external file that is being opened for input or output.
Blank spaces that might appear in \\{name} are ignored.
The `\.{/O}' parameter tells the operating system not to issue its own
error messages if something goes wrong. If a file of the specified name
cannot be found, or if such a file cannot be opened for some other reason
(e.g., someone may already be trying to write the same file), we will have
|@!erstat(f)<>0| after an unsuccessful |reset| or |rewrite|. This allows
\MP\ to undertake appropriate corrective action.
@:PASCAL H}{\ph@>
@^system dependencies@>
\MP's file-opening procedures return |false| if no file identified by
|name_of_file| could be opened.
@d reset_OK(#)==erstat(#)=0
@d rewrite_OK(#)==erstat(#)=0
@p function a_open_in(var @!f:alpha_file):boolean;
{open a text file for input}
begin reset(f,name_of_file,'/O'); a_open_in:=reset_OK(f);
end;
@#
function a_open_out(var @!f:alpha_file):boolean;
{open a text file for output}
begin rewrite(f,name_of_file,'/O'); a_open_out:=rewrite_OK(f);
end;
@#
function b_open_in(var @!f:byte_file):boolean;
{open a binary file for input}
begin reset(f,name_of_file,'/O'); b_open_in:=reset_OK(f);
end;
@#
function b_open_out(var @!f:byte_file):boolean;
{open a binary file for output}
begin rewrite(f,name_of_file,'/O'); b_open_out:=rewrite_OK(f);
end;
@#
function w_open_in(var @!f:word_file):boolean;
{open a word file for input}
begin reset(f,name_of_file,'/O'); w_open_in:=reset_OK(f);
end;
@#
function w_open_out(var @!f:word_file):boolean;
{open a word file for output}
begin rewrite(f,name_of_file,'/O'); w_open_out:=rewrite_OK(f);
end;
@ Files can be closed with the \ph\ routine `|close(f)|', which
@^system dependencies@>
should be used when all input or output with respect to |f| has been completed.
This makes |f| available to be opened again, if desired; and if |f| was used for
output, the |close| operation makes the corresponding external file appear
on the user's area, ready to be read.
@p procedure a_close(var @!f:alpha_file); {close a text file}
begin close(f);
end;
@#
procedure b_close(var @!f:byte_file); {close a binary file}
begin close(f);
end;
@#
procedure w_close(var @!f:word_file); {close a word file}
begin close(f);
end;
@ Binary input and output are done with \PASCAL's ordinary |get| and |put|
procedures, so we don't have to make any other special arrangements for
binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
The treatment of text input is more difficult, however, because
of the necessary translation to |ASCII_code| values.
\MP's conventions should be efficient, and they should
blend nicely with the user's operating environment.
@ Input from text files is read one line at a time, using a routine called
|input_ln|. This function is defined in terms of global variables called
|buffer|, |first|, and |last| that will be described in detail later; for
now, it suffices for us to know that |buffer| is an array of |ASCII_code|
values, and that |first| and |last| are indices into this array
representing the beginning and ending of a line of text.
@<Glob...@>=
@!buffer:array[0..buf_size] of ASCII_code; {lines of characters being read}
@!first:0..buf_size; {the first unused position in |buffer|}
@!last:0..buf_size; {end of the line just input to |buffer|}
@!max_buf_stack:0..buf_size; {largest index used in |buffer|}
@ The |input_ln| function brings the next line of input from the specified
field into available positions of the buffer array and returns the value
|true|, unless the file has already been entirely read, in which case it
returns |false| and sets |last:=first|. In general, the |ASCII_code|
numbers that represent the next line of the file are input into
|buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
global variable |last| is set equal to |first| plus the length of the
line. Trailing blanks are removed from the line; thus, either |last=first|
(in which case the line was entirely blank) or |buffer[last-1]<>" "|.
@^inner loop@>
An overflow error is given, however, if the normal actions of |input_ln|
would make |last>=buf_size|; this is done so that other parts of \MP\
can safely look at the contents of |buffer[last+1]| without overstepping
the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
|first<buf_size| will always hold, so that there is always room for an
``empty'' line.
The variable |max_buf_stack|, which is used to keep track of how large
the |buf_size| parameter must be to accommodate the present job, is
also kept up to date by |input_ln|.
If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
before looking at the first character of the line; this skips over
an |eoln| that was in |f^|. The procedure does not do a |get| when it
reaches the end of the line; therefore it can be used to acquire input
from the user's terminal as well as from ordinary text files.
Standard \PASCAL\ says that a file should have |eoln| immediately
before |eof|, but \MP\ needs only a weaker restriction: If |eof|
occurs in the middle of a line, the system function |eoln| should return
a |true| result (even though |f^| will be undefined).
@p function input_ln(var @!f:alpha_file;@!bypass_eoln:boolean):boolean;
{inputs the next line or returns |false|}
var @!last_nonblank:0..buf_size; {|last| with trailing blanks removed}
begin if bypass_eoln then if not eof(f) then get(f);
{input the first character of the line into |f^|}
last:=first; {cf.\ Matthew 19\thinspace:\thinspace30}
if eof(f) then input_ln:=false
else begin last_nonblank:=first;
while not eoln(f) do
begin if last>=max_buf_stack then
begin max_buf_stack:=last+1;
if max_buf_stack=buf_size then
@<Report overflow of the input buffer, and abort@>;
end;
buffer[last]:=xord[f^]; get(f); incr(last);
if buffer[last-1]<>" " then last_nonblank:=last;
end;
last:=last_nonblank; input_ln:=true;
end;
end;
@ The user's terminal acts essentially like other files of text, except
that it is used both for input and for output. When the terminal is
considered an input file, the file variable is called |term_in|, and when it
is considered an output file the file variable is |term_out|.
@^system dependencies@>
@<Glob...@>=
@!term_in:alpha_file; {the terminal as an input file}
@!term_out:alpha_file; {the terminal as an output file}
@ Here is how to open the terminal files
in \ph. The `\.{/I}' switch suppresses the first |get|.
@^system dependencies@>
@d t_open_in==reset(term_in,'TTY:','/O/I') {open the terminal for text input}
@d t_open_out==rewrite(term_out,'TTY:','/O') {open the terminal for text output}
@ Sometimes it is necessary to synchronize the input/output mixture that
happens on the user's terminal, and three system-dependent
procedures are used for this
purpose. The first of these, |update_terminal|, is called when we want
to make sure that everything we have output to the terminal so far has
actually left the computer's internal buffers and been sent.
The second, |clear_terminal|, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to
issue an unexpected error message). The third, |wake_up_terminal|,
is supposed to revive the terminal if the user has disabled it by
some instruction to the operating system. The following macros show how
these operations can be specified in \ph:
@^system dependencies@>
@d update_terminal == break(term_out) {empty the terminal output buffer}
@d clear_terminal == break_in(term_in,true) {clear the terminal input buffer}
@d wake_up_terminal == do_nothing {cancel the user's cancellation of output}
@ We need a special routine to read the first line of \MP\ input from
the user's terminal. This line is different because it is read before we
have opened the transcript file; there is sort of a ``chicken and
egg'' problem here. If the user types `\.{input cmr10}' on the first
line, or if some macro invoked by that line does such an \.{input},
the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
commands are performed during the first line of terminal input, the transcript
file will acquire its default name `\.{mpout.log}'. (The transcript file
will not contain error messages generated by the first line before the
first \.{input} command.)
The first line is even more special if we are lucky enough to have an operating
system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
program. It's nice to let the user start running a \MP\ job by typing
a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
as if the first line of input were `\.{cmr10}', i.e., the first line will
consist of the remainder of the command line, after the part that invoked \MP.
The first line is special also because it may be read before \MP\ has
input a mem file. In such cases, normal error messages cannot yet
be given. The following code uses concepts that will be explained later.
@<Report overflow of the input buffer, and abort@>=
if mem_ident=0 then
begin write_ln(term_out,'Buffer size exceeded!'); goto final_end;
@.Buffer size exceeded@>
end
else begin cur_input.loc_field:=first; cur_input.limit_field:=last-1;
overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
end
@ Different systems have different ways to get started. But regardless of
what conventions are adopted, the routine that initializes the terminal
should satisfy the following specifications:
\yskip\textindent{1)}It should open file |term_in| for input from the
terminal. (The file |term_out| will already be open for output to the
terminal.)
\textindent{2)}If the user has given a command line, this line should be
considered the first line of terminal input. Otherwise the
user should be prompted with `\.{**}', and the first line of input
should be whatever is typed in response.
\textindent{3)}The first line of input, which might or might not be a
command line, should appear in locations |first| to |last-1| of the
|buffer| array.
\textindent{4)}The global variable |loc| should be set so that the
character to be read next by \MP\ is in |buffer[loc]|. This
character should not be blank, and we should have |loc<last|.
\yskip\noindent(It may be necessary to prompt the user several times
before a non-blank line comes in. The prompt is `\.{**}' instead of the
later `\.*' because the meaning is slightly different: `\.{input}' need
not be typed immediately after~`\.{**}'.)
@d loc==cur_input.loc_field {location of first unread character in |buffer|}
@ The following program does the required initialization
without retrieving a possible command line.
It should be clear how to modify this routine to deal with command lines,
if the system permits them.
@^system dependencies@>
@p function init_terminal:boolean; {gets the terminal input started}
label exit;
begin t_open_in;
loop@+begin wake_up_terminal; write(term_out,'**'); update_terminal;
@.**@>
if not input_ln(term_in,true) then {this shouldn't happen}
begin write_ln(term_out);
write(term_out,'! End of file on the terminal... why?');
@.End of file on the terminal@>
init_terminal:=false; return;
end;
loc:=first;
while (loc<last)and(buffer[loc]=" ") do incr(loc);
if loc<last then
begin init_terminal:=true;
return; {return unless the line was all blank}
end;
write_ln(term_out,'Please type the name of your input file.');
end;
exit:end;
@* \[4] String handling.
Symbolic token names and diagnostic messages are variable-length strings
of eight-bit characters. Since \PASCAL\ does not have a well-developed string
mechanism, \MP\ does all of its string processing by homegrown methods.
\MP\ uses strings more extensively than \MF\ does, but the necessary
operations can still be handled with a fairly simple data structure.
The array |str_pool| contains all of the (eight-bit) ASCII codes in all
of the strings, and the array |str_start| contains indices of the starting
points of each string. Strings are referred to by integer numbers, so that
string number |s| comprises the characters |str_pool[j]| for
|str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
is allocated sequentially and |str_pool[pool_ptr]| is the next unused
location. The first string number not currently in use is |str_ptr|
and |next_str[str_ptr]| begins a list of free string numbers. String
pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
string currently being constructed.
String numbers 0 to 255 are reserved for strings that correspond to single
ASCII characters. This is in accordance with the conventions of \.{WEB},
@.WEB@>
which converts single-character strings into the ASCII code number of the
single character involved, while it converts other strings into integers
and builds a string pool file. Thus, when the string constant \.{"."} appears
in the program below, \.{WEB} converts it into the integer 46, which is the
ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
into some integer greater than~255. String number 46 will presumably be the
single character `\..'\thinspace; but some ASCII codes have no standard visible
representation, and \MP\ may need to be able to print an arbitrary
ASCII character, so the first 256 strings are used to specify exactly what
should be printed for each of the 256 possibilities.
Elements of the |str_pool| array must be ASCII codes that can actually be
printed; i.e., they must have an |xchr| equivalent in the local
character set. (This restriction applies only to preloaded strings,
not to those generated dynamically by the user.)
Some \PASCAL\ compilers won't pack integers into a single byte unless the
integers lie in the range |-128..127|. To accommodate such systems
we access the string pool via macros that can easily be redefined.
When accessing character dimensions for the \&{infont} operator, an explicit
offset is used to convert from |pool_ASCII_code| to |ASCII_code|.
@d si(#) == # {convert from |ASCII_code| to |pool_ASCII_code|}
@d so(#) == # {convert from |pool_ASCII_code| to |ASCII_code|}
@d min_pool_ASCII=0 {added to an |ASCII_code| to make a |pool_ASCII_code|}
@<Types...@>=
@!pool_pointer = 0..pool_size; {for variables that point into |str_pool|}
@!str_number = 0..max_strings; {for variables that point into |str_start|}
@!pool_ASCII_code = 0..255; {elements of |str_pool| array}
@ @<Glob...@>=
@!str_pool:packed array[pool_pointer] of pool_ASCII_code; {the characters}
@!str_start : array[str_number] of pool_pointer; {the starting pointers}
@!next_str : array[str_number] of str_number; {for linking strings in order}
@!pool_ptr : pool_pointer; {first unused position in |str_pool|}
@!str_ptr : str_number; {number of the current string being created}
@!init_pool_ptr : pool_pointer; {the starting value of |pool_ptr|}
@!init_str_use : str_number; {the initial number of strings in use}
@!max_pool_ptr : pool_pointer; {the maximum so far of |pool_ptr|}
@!max_str_ptr : str_number; {the maximum so far of |str_ptr|}
@ Except for |strs_used_up|, the following string statistics are only
maintained when code between |stat| $\ldots$ |tats| delimiters is not
commented out:
@<Glob...@>=
@!strs_used_up:integer; {strings in use or unused but not reclaimed}
@!pool_in_use:integer; {total number of cells of |str_pool| actually in use}
@!strs_in_use:integer; {total number of strings actually in use}
@!max_pl_used:integer; {maximum |pool_in_use| so far}
@!max_strs_used:integer; {maximum |strs_in_use| so far}
@ Several of the elementary string operations are performed using \.{WEB}
macros instead of \PASCAL\ procedures, because many of the
operations are done quite frequently and we want to avoid the
overhead of procedure calls. For example, here is
a simple macro that computes the length of a string.
@.WEB@>
@d str_stop(#)==str_start[next_str[#]] {one cell past the end of string
number \#}
@d length(#)==(str_stop(#)-str_start[#]) {the number of characters in string \#}
@ The length of the current string is called |cur_length|. If we decide that
the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
|cur_length| becomes zero.
@d cur_length == (pool_ptr - str_start[str_ptr])
@d flush_cur_string == pool_ptr:=str_start[str_ptr]
@ Strings are created by appending character codes to |str_pool|.
The |append_char| macro, defined here, does not check to see if the
value of |pool_ptr| has gotten too high; this test is supposed to be
made before |append_char| is used.
To test if there is room to append |l| more characters to |str_pool|,
we shall write |str_room(l)|, which tries to make sure there is enough room
by compacting the string pool if necessary. If this does not work,
|do_compaction| aborts \MP\ and gives an apologetic error message.
@d append_char(#) == {put |ASCII_code| \# at the end of |str_pool|}
begin str_pool[pool_ptr]:=si(#); incr(pool_ptr);
end
@d str_room(#) == {make sure that the pool hasn't overflowed}
begin if pool_ptr+# > max_pool_ptr then
if pool_ptr+# > pool_size then do_compaction(#)
else max_pool_ptr:=pool_ptr+#;
end
@ The following routine is similar to |str_room(1)| but it uses the
argument |pool_size| to prevent |do_compaction| from aborting when
string space is exhausted.
@<Declare the procedure called |unit_str_room|@>=
procedure unit_str_room;
begin if pool_ptr>=pool_size then do_compaction(pool_size);
if pool_ptr>=max_pool_ptr then max_pool_ptr:=pool_ptr+1;
end;
@ \MP's string expressions are implemented in a brute-force way: Every
new string or substring that is needed is simply copied into the string pool.
Space is eventually reclaimed by a procedure called |do_compaction| with
the aid of a simple system system of reference counts.
@^reference counts@>
The number of references to string number |s| will be |str_ref[s]|. The
special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
positive number of references; such strings will never be recycled. If
a string is ever referred to more than 126 times, simultaneously, we
put it in this category. Hence a single byte suffices to store each |str_ref|.
@d max_str_ref=127 {``infinite'' number of references}
@d add_str_ref(#)==begin if str_ref[#]<max_str_ref then incr(str_ref[#]);
end
@<Glob...@>=
@!str_ref:array[str_number] of 0..max_str_ref;
@ Here's what we do when a string reference disappears:
@d delete_str_ref(#)== begin if str_ref[#]<max_str_ref then
if str_ref[#]>1 then decr(str_ref[#])@+else flush_string(#);
end
@<Declare the procedure called |flush_string|@>=
procedure flush_string(@!s:str_number);
begin stat pool_in_use:=pool_in_use-length(s);
decr(strs_in_use);
tats@;
if next_str[s]<>str_ptr then str_ref[s]:=0
else begin str_ptr:=s;
decr(strs_used_up);
end;
pool_ptr:=str_start[str_ptr];
end;
@ Once a sequence of characters has been appended to |str_pool|, it
officially becomes a string when the function |make_string| is called.
This function returns the identification number of the new string as its
value.
When getting the next unused string number from the linked list, we pretend
that
$$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |max_strings|} $$
are linked sequentially even though the |next_str| entries have not been
initialized yet. We never allow |str_ptr| to reach |max_strings|;
|do_compaction| is responsible for making sure of this.
@p @t\4@>@<Declare the procedure called |do_compaction|@>@;
@t\4@>@<Declare the procedure called |unit_str_room|@>@;
function make_string : str_number; {current string enters the pool}
label restart;
var @!s:str_number; {the new string}
begin restart: s:=str_ptr;
str_ptr:=next_str[s];
if str_ptr>max_str_ptr then
if str_ptr=max_strings then
begin str_ptr:=s;
do_compaction(0);
goto restart;
end
else begin debug if strs_used_up<>max_str_ptr then confusion("s");@+gubed@/
@:this can't happen s}{\quad \.s@>
max_str_ptr:=str_ptr;
next_str[str_ptr]:=max_str_ptr+1;
end;
str_ref[s]:=1;
str_start[str_ptr]:=pool_ptr;
incr(strs_used_up);
stat incr(strs_in_use);
pool_in_use:=pool_in_use+length(s);
if pool_in_use>max_pl_used then max_pl_used:=pool_in_use;
if strs_in_use>max_strs_used then max_strs_used:=strs_in_use;
tats@;
make_string:=s;
end;
@ On rare occasions, we might decide after calling |make_string| that some
characters should be removed from the end of the last string and transferred
to the beginning of a string under construction. This basically a matter of
resetting |str_start[str_ptr]|. It is not practical to ensure that the new
value for this pointer is in range, so this procedure should be used carefully.
@p procedure chop_last_string(@!p:pool_pointer);
begin stat pool_in_use:=pool_in_use-(str_start[str_ptr]-p); @+tats;
str_start[str_ptr]:=p;
end;
@ The most interesting string operation is string pool compaction. The idea
is to recover unused space in the |str_pool| array by recopying the strings
to close the gaps created when some strings become unused. All string
numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
numbers after |str_ptr|. If this fails to free enough pool space we issue an
|overflow| error unless |needed=pool_size|. Calling |do_compaction|
with |needed=pool_size| supresses all overflow tests.
The compaction process starts with |last_fixed_str| because all lower numbered
strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
@<Glob...@>=
@!last_fixed_str:str_number; {last permanently allocated string}
@!fixed_str_use:str_number; {number of permanently allocated strings}
@ @<Declare the procedure called |do_compaction|@>=
procedure do_compaction(@!needed:pool_pointer);
label done;
var @!str_use:str_number; {a count of strings in use}
@!r,@!s,@!t:str_number; {strings being manipulated}
@!p,@!q:pool_pointer; {destination and source for copying string characters}
begin @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
r:=last_fixed_str;
s:=next_str[r];
p:=str_start[s];
while s<>str_ptr do
begin while str_ref[s]=0 do
@<Advance |s| and add the old |s| to the list of free string numbers;
then |goto done| if |s=str_ptr|@>;
r:=s; s:=next_str[s];
incr(str_use);
@<Move string |r| back so that |str_start[r]=p|; make |p| the location
after the end of the string@>;
end;
done: @<Move the current string back so that it starts at |p|@>;
if needed<pool_size then
@<Make sure that there is room for another string with |needed| characters@>;
stat @<Account for the compaction and make sure the statistics agree with the
global versions@>;
tats@;
strs_used_up:=str_use;
end;
@ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
t:=next_str[last_fixed_str];
while (str_ref[t]=max_str_ref)and(t<>str_ptr) do
begin incr(fixed_str_use);
last_fixed_str:=t;
t:=next_str[t];
end;
str_use:=fixed_str_use
@ Because of the way |flush_string| has been written, it should never be
necessary to |goto done| here. The extra line of code seems worthwhile to
preserve the generality of |do_compaction|.
@<Advance |s| and add the old |s| to the list of free string numbers;...@>=
begin t:=s;
s:=next_str[s];
next_str[r]:=s;
next_str[t]:=next_str[str_ptr];
next_str[str_ptr]:=t;
if s=str_ptr then goto done;
end
@ The string currently starts at |str_start[r]| and ends just before
|str_start[s]|. We don't change |str_start[s]| because it might be needed
to locate the next string.
@<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
q:=str_start[r];
str_start[r]:=p;
while q<str_start[s] do
begin str_pool[p]:=str_pool[q];
incr(p); incr(q);
end
@ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
we do this, anything between them should be moved.
@ @<Move the current string back so that it starts at |p|@>=
q:=str_start[str_ptr];
str_start[str_ptr]:=p;
while q<pool_ptr do
begin str_pool[p]:=str_pool[q];
incr(p); incr(q);
end;
pool_ptr:=p
@ We must remember that |str_ptr| is not allowed to reach |max_strings|.
@<Make sure that there is room for another string with |needed| char...@>=
begin if str_use>=max_strings-1 then
begin str_overflowed:=true;
overflow("number of strings", max_strings-1-init_str_use);
@:MetaPost capacity exceeded number of strings}{\quad number of strings@>
end;
if pool_ptr+needed>max_pool_ptr then
if pool_ptr+needed>pool_size then
begin str_overflowed:=true;
overflow("pool size", pool_size-init_pool_ptr);
@:MetaPost capacity exceeded pool size}{\quad pool size@>
end
else max_pool_ptr:=pool_ptr+needed;
end
@ Routines that can be called after string overflow need a way of checking
whether it is safe to use |str_room|, |make_string|, or |do_compaction|.
@<Glob...@>=
@!str_overflowed:boolean; {is \MP\ aborting due to pool size of number of
strings?}
@ @<Account for the compaction and make sure the statistics agree with...@>=
if (str_start[str_ptr]<>pool_in_use)or(str_use<>strs_in_use) then
confusion("string");
@:this can't happen string}{\quad string@>
incr(pact_count);
pact_chars:=pact_chars+pool_ptr-str_stop(last_fixed_str);
pact_strs:=pact_strs+str_use-fixed_str_use;
debug s:=str_ptr; t:=str_use;
while s<=max_str_ptr do
begin if t>max_str_ptr then confusion("""");
incr(t); s:=next_str[s];
end;
if t<=max_str_ptr then confusion("""");
gubed
@ A few more global variables are needed to keep track of statistics when
|stat| $\ldots$ |tats| blocks are not commented out.
@<Glob...@>=
@!pact_count:integer; {number of string pool compactions so far}
@!pact_chars:integer; {total number of characters moved during compactions}
@!pact_strs:integer; {total number of strings moved during compactions}
@ @<Initialize compaction statistics@>=
pact_count:=0;
pact_chars:=0;
pact_strs:=0@;
@ The following subroutine compares string |s| with another string of the
same length that appears in |buffer| starting at position |k|;
the result is |true| if and only if the strings are equal.
@p function str_eq_buf(@!s:str_number;@!k:integer):boolean;
{test equality of strings}
label not_found; {loop exit}
var @!j: pool_pointer; {running index}
@!result: boolean; {result of comparison}
begin j:=str_start[s];
while j<str_stop(s) do
begin if so(str_pool[j])<>buffer[k] then
begin result:=false; goto not_found;
end;
incr(j); incr(k);
end;
result:=true;
not_found: str_eq_buf:=result;
end;
@ Here is a similar routine, but it compares two strings in the string pool,
and it does not assume that they have the same length. If the first string
is lexicographically greater than, less than, or equal to the second,
the result is respectively positive, negative, or zero.
@p function str_vs_str(@!s,@!t:str_number):integer;
{test equality of strings}
label exit;
var @!j,@!k: pool_pointer; {running indices}
@!ls,@!lt:integer; {lengths}
@!l:integer; {length remaining to test}
begin ls:=length(s); lt:=length(t);
if ls<=lt then l:=ls@+else l:=lt;
j:=str_start[s]; k:=str_start[t];
while l>0 do
begin if str_pool[j]<>str_pool[k] then
begin str_vs_str:=str_pool[j]-str_pool[k]; return;
end;
incr(j); incr(k); decr(l);
end;
str_vs_str:=ls-lt;
exit:end;
@ The initial values of |str_pool|, |str_start|, |pool_ptr|,
and |str_ptr| are computed by the \.{INIMP} program, based in part
on the information that \.{WEB} has output while processing \MP.
@.INIMP@>
@^string pool@>
@p @!init function get_strings_started:boolean; {initializes the string pool,
but returns |false| if something goes wrong}
label done,exit;
var @!k,@!l:0..255; {small indices or counters}
@!m,@!n:text_char; {characters input from |pool_file|}
@!g:str_number; {garbage}
@!a:integer; {accumulator for check sum}
@!c:boolean; {check sum has been checked}
begin pool_ptr:=0; str_ptr:=0; max_pool_ptr:=0; max_str_ptr:=0;
str_start[0]:=0;
next_str[0]:=1;
str_overflowed:=false;
stat pool_in_use:=0; strs_in_use:=0;
max_pl_used:=0; max_strs_used:=0;
@<Initialize compaction statistics@>;
tats@;
strs_used_up:=0;
@<Make the first 256 strings@>;
@<Read the other strings from the \.{MP.POOL} file and return |true|,
or give an error message and return |false|@>;
last_fixed_str:=str_ptr-1;
fixed_str_use:=str_ptr;
exit:end;
tini
@ The first 256 strings will consist of a single character only.
@<Make the first 256...@>=
for k:=0 to 255 do
begin append_char(k);
g:=make_string; str_ref[g]:=max_str_ref;
end;
@ The first 128 strings will contain 95 standard ASCII characters, and the
other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
unless a system-dependent change is made here. Installations that have
an extended character set, where for example |xchr[@'32]=@t\.{\'^^Z\'}@>|,
would like string @'32 to be printed as the single character @'32 instead
of the three characters @'136, @'136, @'132 (\.{\^\^Z}). On the other hand,
even people with an extended character set will want to represent string
@'15 by \.{\^\^M}, since @'15 is ASCII's ``carriage return'' code; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns
or bell-rings or characters that are treated anomalously in text files.
Unprintable characters of codes 128--255 are, similarly, rendered
\.{\^\^80}--\.{\^\^ff}.
The boolean expression defined here should be |true| unless \MP\ internal
code number~|k| corresponds to a non-troublesome visible symbol in the
local character set.
If character |k| cannot be printed, and |k<@'200|, then character |k+@'100| or
|k-@'100| must be printable; moreover, ASCII codes |[@'60..@'71, @'141..@'146]|
must be printable.
@^character set dependencies@>
@^system dependencies@>
@<Character |k| cannot be printed@>=
(k<" ")or(k>"~")
@ When the \.{WEB} system program called \.{TANGLE} processes the \.{MP.WEB}
description that you are now reading, it outputs the \PASCAL\ program
\.{MP.PAS} and also a string pool file called \.{MP.POOL}. The \.{INIMP}
@.WEB@>@.INIMP@>
program reads the latter file, where each string appears as a two-digit decimal
length followed by the string itself, and the information is recorded in
\MP's string memory.
@<Glob...@>=
@!init @!pool_file:alpha_file; {the string-pool file output by \.{TANGLE}}
tini
@ @d bad_pool(#)==begin wake_up_terminal; write_ln(term_out,#);
a_close(pool_file); get_strings_started:=false; return;
end
@<Read the other strings...@>=
name_of_file:=pool_name; {we needn't set |name_length|}
if a_open_in(pool_file) then
begin c:=false;
repeat @<Read one string, but return |false| if the
string memory space is getting too tight for comfort@>;
until c;
a_close(pool_file); get_strings_started:=true;
end
else bad_pool('! I can''t read MP.POOL.')
@.I can't read MP.POOL@>
@ @<Read one string...@>=
begin if eof(pool_file) then bad_pool('! MP.POOL has no check sum.');
@.MP.POOL has no check sum@>
read(pool_file,m,n); {read two digits of string length}
if m='*' then @<Check the pool check sum@>
else begin if (xord[m]<"0")or(xord[m]>"9")or@|
(xord[n]<"0")or(xord[n]>"9") then
bad_pool('! MP.POOL line doesn''t begin with two digits.');
@.MP.POOL line doesn't...@>
l:=xord[m]*10+xord[n]-"0"*11; {compute the length}
if pool_ptr+l+string_vacancies>pool_size then
bad_pool('! You have to increase POOLSIZE.');
@.You have to increase POOLSIZE@>
if str_ptr+strings_vacant>=max_strings then
bad_pool('! You have to increase MAXSTRINGS.');
@.You have to increase MAXSTRINGS@>
for k:=1 to l do
begin if eoln(pool_file) then m:=' '@+else read(pool_file,m);
append_char(xord[m]);
end;
read_ln(pool_file); g:=make_string; str_ref[g]:=max_str_ref;
end;
end
@ The \.{WEB} operation \.{@@\$} denotes the value that should be at the
end of this \.{MP.POOL} file; any other value means that the wrong pool
file has been loaded.
@^check sum@>
@<Check the pool check sum@>=
begin a:=0; k:=1;
loop@+ begin if (xord[n]<"0")or(xord[n]>"9") then
bad_pool('! MP.POOL check sum doesn''t have nine digits.');
@.MP.POOL check sum...@>
a:=10*a+xord[n]-"0";
if k=9 then goto done;
incr(k); read(pool_file,n);
end;
done: if a<>@$ then bad_pool('! MP.POOL doesn''t match; TANGLE me again.');
@.MP.POOL doesn't match@>
c:=true;
end
@* \[5] On-line and off-line printing.
Messages that are sent to a user's terminal and to the transcript-log file
are produced by several `|print|' procedures. These procedures will
direct their output to a variety of places, based on the setting of
the global variable |selector|, which has the following possible
values:
\yskip
\hang |term_and_log|, the normal setting, prints on the terminal and on the
transcript file.
\hang |log_only|, prints only on the transcript file.
\hang |term_only|, prints only on the terminal.
\hang |no_print|, doesn't print at all. This is used only in rare cases
before the transcript file is open.
\hang |ps_file_only| prints only on the \ps\ output file.
\hang |pseudo|, puts output into a cyclic buffer that is used
by the |show_context| routine; when we get to that routine we shall discuss
the reasoning behind this curious mode.
\hang |new_string|, appends the output to the current string in the
string pool.
\hang |0..max_write_files-1| prints on one of the files used for the \&{write}
@:write_}{\&{write} primitive@>
command.
\yskip
\noindent The symbolic names `|term_and_log|', etc., have been assigned
numeric codes that satisfy the convenient relations |no_print+1=term_only|,
|no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
relations are not used when |selector| could be |pseudo|, |new_string|,
or |ps_file_only|. We need not check for unprintable characters when
|selector<pseudo|.
Four additional global variables, |tally|, |term_offset|, |file_offset|,
and |ps_offset| record the number of characters that have been printed
since they were most recently cleared to zero. We use |tally| to record
the length of (possibly very long) stretches of printing; |term_offset|,
|file_offset|, and |ps_offset|, on the other hand, keep track of how many
characters have appeared so far on the current line that has been output
to the terminal, the transcript file, or the \ps\ output file, respectively.
@d new_string=max_write_files {printing is deflected to the string pool}
@d ps_file_only=new_string+1 {printing goes to the \ps\ output file}
@d pseudo=new_string+2 {special |selector| setting for |show_context|}
@d no_print=new_string+3 {|selector| setting that makes data disappear}
@d term_only=new_string+4 {printing is destined for the terminal only}
@d log_only=new_string+5 {printing is destined for the transcript file only}
@d term_and_log=new_string+6 {normal |selector| setting}
@d max_selector=term_and_log {highest selector setting}
@<Glob...@>=
@!log_file : alpha_file; {transcript of \MP\ session}
@!ps_file: alpha_file; {the generic font output goes here}
@!selector : 0..max_selector; {where to print a message}
@!dig : array[0..22] of 0..15; {digits in a number being output}
@!tally : integer; {the number of characters recently printed}
@!term_offset : 0..max_print_line;
{the number of characters on the current terminal line}
@!file_offset : 0..max_print_line;
{the number of characters on the current file line}
@!ps_offset : integer;
{the number of characters on the current \ps\ file line}
@!trick_buf:array[0..error_line] of ASCII_code; {circular buffer for
pseudoprinting}
@!trick_count: integer; {threshold for pseudoprinting, explained later}
@!first_count: integer; {another variable for pseudoprinting}
@ @<Initialize the output routines@>=
selector:=term_only; tally:=0; term_offset:=0; file_offset:=0; ps_offset:=0;
@ Macro abbreviations for output to the terminal and to the log file are
defined here for convenience. Some systems need special conventions
for terminal output, and it is possible to adhere to those conventions
by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
@^system dependencies@>
@d wterm(#)==write(term_out,#)
@d wterm_ln(#)==write_ln(term_out,#)
@d wterm_cr==write_ln(term_out)
@d wlog(#)==write(log_file,#)
@d wlog_ln(#)==write_ln(log_file,#)
@d wlog_cr==write_ln(log_file)
@d wps(#)==write(ps_file,#)
@d wps_ln(#)==write_ln(ps_file,#)
@d wps_cr==write_ln(ps_file)
@ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
use an array |wr_file| that will be declared later.
@<Basic print...@>=
procedure print_ln; {prints an end-of-line}
begin case selector of
term_and_log: begin wterm_cr; wlog_cr;
term_offset:=0; file_offset:=0;
end;
log_only: begin wlog_cr; file_offset:=0;
end;
term_only: begin wterm_cr; term_offset:=0;
end;
ps_file_only: begin wps_cr; ps_offset:=0;
end;
no_print,pseudo,new_string: do_nothing;
othercases write_ln(wr_file[selector])
endcases;
end; {note that |tally| is not affected}
@ The |print_visible_char| procedure sends one character to the desired
destination, using the |xchr| array to map it into an external character
compatible with |input_ln|. (It assumes that it is always called with
a visible ASCII character.) All printing comes through |print_ln| or
|print_char|, which ultimately calls |print_visible_char|, hence these
routines are the ones that limit lines to at most |max_print_line| characters.
But we must make an exception for the \ps\ output file since it is not safe
to cut up lines arbitrarily in \ps.
Procedure |unit_str_room| needs to be declared |forward| here because it calls
|do_compaction| and |do_compaction| can call the error routines. Actually,
|unit_str_room| avoids |overflow| errors but it can call |confusion|.
@<Basic printing...@>=
procedure@?unit_str_room; forward;@t\2@>@/
procedure print_visible_char(@!s:ASCII_code); {prints a single character}
label done;
begin case selector of
term_and_log: begin wterm(xchr[s]); wlog(xchr[s]);
incr(term_offset); incr(file_offset);
if term_offset=max_print_line then
begin wterm_cr; term_offset:=0;
end;
if file_offset=max_print_line then
begin wlog_cr; file_offset:=0;
end;
end;
log_only: begin wlog(xchr[s]); incr(file_offset);
if file_offset=max_print_line then print_ln;
end;
term_only: begin wterm(xchr[s]); incr(term_offset);
if term_offset=max_print_line then print_ln;
end;
ps_file_only: begin wps(xchr[s]); incr(ps_offset);
end;
no_print: do_nothing;
pseudo: if tally<trick_count then trick_buf[tally mod error_line]:=s;
new_string: begin if pool_ptr>=max_pool_ptr then
begin unit_str_room;
if pool_ptr>=pool_size then goto done;
{drop characters if string space is full}
end;
append_char(s);
end;
othercases write(wr_file[selector],xchr[s])
endcases;
done:incr(tally);
end;
@ The |print_char| procedure sends one character to the desired destination.
File names and string expressions might contain |ASCII_code| values that
can't be printed using |print_visible_char|. These characters will be
printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
(This procedure assumes that it is safe to bypass all checks for unprintable
characters when |selector| is in the range |0..max_write_files-1| or when
|selector=ps_file_only|. In the former case the user might want to write
unprintable characters, and in the latter case the \ps\ printing routines
check their arguments themselves before calling |print_char| or |print|.)
@d print_lc_hex(#)==l:=#;
if l<10 then print_visible_char(l+"0")@+else print_visible_char(l-10+"a")
@<Basic printing...@>=
procedure print_char(@!k:ASCII_code); {prints a single character}
var l:0..255; {small index or counter}
begin if selector<pseudo then print_visible_char(k)
else if @<Character |k| cannot be printed@> then
begin print_visible_char("^"); print_visible_char("^");
if k<@'100 then print_visible_char(k+@'100)
else if k<@'200 then print_visible_char(k-@'100)
else begin print_lc_hex(k div 16); print_lc_hex(k mod 16);
end;
end
else print_visible_char(k);
end;
@ An entire string is output by calling |print|. Note that if we are outputting
the single standard ASCII character \.c, we could call |print("c")|, since
|"c"=99| is the number of a single-character string, as explained above. But
|print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
routine when it knows that this is safe. (The present implementation
assumes that it is always safe to print a visible ASCII character.)
@^system dependencies@>
@<Basic print...@>=
procedure print(@!s:integer); {prints string |s|}
var @!j:pool_pointer; {current character code position}
begin if (s<0)or(s>max_str_ptr) then s:="???"; {this can't happen}
@.???@>
j:=str_start[s];
while j<str_stop(s) do
begin print_char(so(str_pool[j])); incr(j);
end;
end;
@ By popular demand, \MP\ prints the banner line only on the transcript file.
Thus there is nothing special to be printed here.
@<Initialize the output...@>=
update_terminal;
@ The procedure |print_nl| is like |print|, but it makes sure that the
string appears at the beginning of a new line.
@<Basic print...@>=
procedure print_nl(@!s:str_number); {prints string |s| at beginning of line}
begin case selector of
term_and_log: if (term_offset>0)or(file_offset>0) then print_ln;
log_only: if file_offset>0 then print_ln;
term_only: if term_offset>0 then print_ln;
ps_file_only: if ps_offset>0 then print_ln;
no_print,pseudo,new_string: do_nothing;
end; {there are no other cases}
print(s);
end;
@ An array of digits in the range |0..9| is printed by |print_the_digs|.
@<Basic print...@>=
procedure print_the_digs(@!k:eight_bits);
{prints |dig[k-1]|$\,\ldots\,$|dig[0]|}
begin while k>0 do
begin decr(k); print_char("0"+dig[k]);
end;
end;
@ The following procedure, which prints out the decimal representation of a
given integer |n|, has been written carefully so that it works properly
if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
to negative arguments, since such operations are not implemented consistently
by all \PASCAL\ compilers.
@<Basic print...@>=
procedure print_int(@!n:integer); {prints an integer in decimal form}
var k:0..23; {index to current digit; we assume that $|n|<10^{23}$}
@!m:integer; {used to negate |n| in possibly dangerous cases}
begin k:=0;
if n<0 then
begin print_char("-");
if n>-100000000 then negate(n)
else begin m:=-1-n; n:=m div 10; m:=(m mod 10)+1; k:=1;
if m<10 then dig[0]:=m
else begin dig[0]:=0; incr(n);
end;
end;
end;
repeat dig[k]:=n mod 10; n:=n div 10; incr(k);
until n=0;
print_the_digs(k);
end;
@ \MP\ also makes use of a trivial procedure to print two digits. The
following subroutine is usually called with a parameter in the range |0<=n<=99|.
@p procedure print_dd(@!n:integer); {prints two least significant digits}
begin n:=abs(n) mod 100; print_char("0"+(n div 10));
print_char("0"+(n mod 10));
end;
@ Here is a procedure that asks the user to type a line of input,
assuming that the |selector| setting is either |term_only| or |term_and_log|.
The input is placed into locations |first| through |last-1| of the
|buffer| array, and echoed on the transcript file if appropriate.
This procedure is never called when |interaction<scroll_mode|.
@d prompt_input(#)==begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input}
@p procedure term_input; {gets a line from the terminal}
var @!k:0..buf_size; {index into |buffer|}
begin update_terminal; {Now the user sees the prompt for sure}
if not input_ln(term_in,true) then fatal_error("End of file on the terminal!");
@.End of file on the terminal@>
term_offset:=0; {the user's line ended with \<\rm return>}
decr(selector); {prepare to echo the input}
if last<>first then for k:=first to last-1 do print(buffer[k]);
print_ln; buffer[last]:="%"; incr(selector); {restore previous status}
end;
@* \[6] Reporting errors.
When something anomalous is detected, \MP\ typically does something like this:
$$\vbox{\halign{#\hfil\cr
|print_err("Something anomalous has been detected");|\cr
|help3("This is the first line of my offer to help.")|\cr
|("This is the second line. I'm trying to")|\cr
|("explain the best way for you to proceed.");|\cr
|error;|\cr}}$$
A two-line help message would be given using |help2|, etc.; these informal
helps should use simple vocabulary that complements the words used in the
official error message that was printed. (Outside the U.S.A., the help
messages should preferably be translated into the local vernacular. Each
line of help is at most 60 characters long, in the present implementation,
so that |max_print_line| will not be exceeded.)
The |print_err| procedure supplies a `\.!' before the official message,
and makes sure that the terminal is awake if a stop is going to occur.
The |error| procedure supplies a `\..' after the official message, then it
shows the location of the error; and if |interaction=error_stop_mode|,
it also enters into a dialog with the user, during which time the help
message may be printed.
@^system dependencies@>
@ The global variable |interaction| has four settings, representing increasing
amounts of user interaction:
@d batch_mode=0 {omits all stops and omits terminal output}
@d nonstop_mode=1 {omits all stops}
@d scroll_mode=2 {omits error stops}
@d error_stop_mode=3 {stops at every opportunity to interact}
@d print_err(#)==begin if interaction=error_stop_mode then wake_up_terminal;
print_nl("! "); print(#);
@.!\relax@>
end
@<Glob...@>=
@!interaction:batch_mode..error_stop_mode; {current level of interaction}
@ @<Set init...@>=interaction:=error_stop_mode;
@ \MP\ is careful not to call |error| when the print |selector| setting
might be unusual. The only possible values of |selector| at the time of
error messages are
\yskip\hang|no_print| (when |interaction=batch_mode|
and |log_file| not yet open);
\hang|term_only| (when |interaction>batch_mode| and |log_file| not yet open);
\hang|log_only| (when |interaction=batch_mode| and |log_file| is open);
\hang|term_and_log| (when |interaction>batch_mode| and |log_file| is open).
@<Initialize the print |selector| based on |interaction|@>=
if interaction=batch_mode then selector:=no_print@+else selector:=term_only
@ A global variable |deletions_allowed| is set |false| if the |get_next|
routine is active when |error| is called; this ensures that |get_next|
will never be called recursively.
@^recursion@>
The global variable |history| records the worst level of error that
has been detected. It has four possible values: |spotless|, |warning_issued|,
|error_message_issued|, and |fatal_error_stop|.
Another global variable, |error_count|, is increased by one when an
|error| occurs without an interactive dialog, and it is reset to zero at
the end of every statement. If |error_count| reaches 100, \MP\ decides
that there is no point in continuing further.
@d spotless=0 {|history| value when nothing has been amiss yet}
@d warning_issued=1 {|history| value when |begin_diagnostic| has been called}
@d error_message_issued=2 {|history| value when |error| has been called}
@d fatal_error_stop=3 {|history| value when termination was premature}
@<Glob...@>=
@!deletions_allowed:boolean; {is it safe for |error| to call |get_next|?}
@!history:spotless..fatal_error_stop; {has the source input been clean so far?}
@!error_count:-1..100; {the number of scrolled errors since the
last statement ended}
@ The value of |history| is initially |fatal_error_stop|, but it will
be changed to |spotless| if \MP\ survives the initialization process.
@<Set init...@>=
deletions_allowed:=true; error_count:=0; {|history| is initialized elsewhere}
@ Since errors can be detected almost anywhere in \MP, we want to declare the
error procedures near the beginning of the program. But the error procedures
in turn use some other procedures, which need to be declared |forward|
before we get to |error| itself.
It is possible for |error| to be called recursively if some error arises
when |get_next| is being used to delete a token, and/or if some fatal error
occurs while \MP\ is trying to fix a non-fatal one. But such recursion
@^recursion@>
is never more than two levels deep.
@<Error handling...@>=
procedure@?normalize_selector; forward;@t\2@>@/
procedure@?get_next; forward;@t\2@>@/
procedure@?term_input; forward;@t\2@>@/
procedure@?show_context; forward;@t\2@>@/
procedure@?begin_file_reading; forward;@t\2@>@/
procedure@?open_log_file; forward;@t\2@>@/
procedure@?close_files_and_terminate; forward;@t\2@>@/
procedure@?clear_for_error_prompt; forward;@t\2@>@/
@t\4\hskip-\fontdimen2\font@>@;@+@!debug@+procedure@?debug_help;
forward;@;@+gubed@;@/
@t\4@>@<Declare the procedure called |flush_string|@>
@ Individual lines of help are recorded in the array |help_line|, which
contains entries in positions |0..(help_ptr-1)|. They should be printed
in reverse order, i.e., with |help_line[0]| appearing last.
@d hlp1(#)==help_line[0]:=#;@+end
@d hlp2(#)==help_line[1]:=#; hlp1
@d hlp3(#)==help_line[2]:=#; hlp2
@d hlp4(#)==help_line[3]:=#; hlp3
@d hlp5(#)==help_line[4]:=#; hlp4
@d hlp6(#)==help_line[5]:=#; hlp5
@d help0==help_ptr:=0 {sometimes there might be no help}
@d help1==@+begin help_ptr:=1; hlp1 {use this with one help line}
@d help2==@+begin help_ptr:=2; hlp2 {use this with two help lines}
@d help3==@+begin help_ptr:=3; hlp3 {use this with three help lines}
@d help4==@+begin help_ptr:=4; hlp4 {use this with four help lines}
@d help5==@+begin help_ptr:=5; hlp5 {use this with five help lines}
@d help6==@+begin help_ptr:=6; hlp6 {use this with six help lines}
@<Glob...@>=
@!help_line:array[0..5] of str_number; {helps for the next |error|}
@!help_ptr:0..6; {the number of help lines present}
@!use_err_help:boolean; {should the |err_help| string be shown?}
@!err_help:str_number; {a string set up by \&{errhelp}}
@ @<Set init...@>=
help_ptr:=0; use_err_help:=false; err_help:=0;
@ The |jump_out| procedure just cuts across all active procedure levels and
goes to |end_of_MP|. This is the only nonlocal |@!goto| statement in the
whole program. It is used when there is no recovery from a particular error.
Some \PASCAL\ compilers do not implement non-local |goto| statements.
@^system dependencies@>
In such cases the body of |jump_out| should simply be
`|close_files_and_terminate|;\thinspace' followed by a call on some system
procedure that quietly terminates the program.
@<Error hand...@>=
procedure jump_out;
begin goto end_of_MP;
end;
@ Here now is the general |error| routine.
@<Error hand...@>=
procedure error; {completes the job of error reporting}
label continue,exit;
var @!c:ASCII_code; {what the user types}
@!s1,@!s2,@!s3:integer; {used to save global variables when deleting tokens}
@!j:pool_pointer; {character position being printed}
begin if history<error_message_issued then history:=error_message_issued;
print_char("."); show_context;
if interaction=error_stop_mode then @<Get user's advice and |return|@>;
incr(error_count);
if error_count=100 then
begin print_nl("(That makes 100 errors; please try again.)");
@.That makes 100 errors...@>
history:=fatal_error_stop; jump_out;
end;
@<Put help message on the transcript file@>;
exit:end;
@ @<Get user's advice...@>=
loop@+begin continue: clear_for_error_prompt; prompt_input("? ");
@.?\relax@>
if last=first then return;
c:=buffer[first];
if c>="a" then c:=c+"A"-"a"; {convert to uppercase}
@<Interpret code |c| and |return| if done@>;
end
@ It is desirable to provide an `\.E' option here that gives the user
an easy way to return from \MP\ to the system editor, with the offending
line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the
file that should be
edited and the relevant line number.
@^system dependencies@>
There is a secret `\.D' option available when the debugging routines haven't
been commented~out.
@^debugging@>
@<Interpret code |c| and |return| if done@>=
case c of
"0","1","2","3","4","5","6","7","8","9": if deletions_allowed then
@<Delete |c-"0"| tokens and |goto continue|@>;
@t\4\4@>@;@+@!debug "D":begin debug_help;goto continue;@+end;@+gubed@/
"E": if file_ptr>0 then
begin print_nl("You want to edit file ");
@.You want to edit file x@>
print(input_stack[file_ptr].name_field);
print(" at line "); print_int(true_line);@/
interaction:=scroll_mode; jump_out;
end;
"H": @<Print the help information and |goto continue|@>;
"I":@<Introduce new material from the terminal and |return|@>;
"Q","R","S":@<Change the interaction level and |return|@>;
"X":begin interaction:=scroll_mode; jump_out;
end;
othercases do_nothing
endcases;@/
@<Print the menu of available options@>
@ @<Print the menu...@>=
begin print("Type <return> to proceed, S to scroll future error messages,");@/
@.Type <return> to proceed...@>
print_nl("R to run without stopping, Q to run quietly,");@/
print_nl("I to insert something, ");
if file_ptr>0 then print("E to edit your file,");
if deletions_allowed then
print_nl("1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
print_nl("H for help, X to quit.");
end
@ Here the author of \MP\ apologizes for making use of the numerical
relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
|batch_mode|, |nonstop_mode|, |scroll_mode|.
@^Knuth, Donald Ervin@>
@<Change the interaction...@>=
begin error_count:=0; interaction:=batch_mode+c-"Q";
print("OK, entering ");
case c of
"Q":begin print("batchmode"); decr(selector);
end;
"R":print("nonstopmode");
"S":print("scrollmode");
end; {there are no other cases}
print("..."); print_ln; update_terminal; return;
end
@ When the following code is executed, |buffer[(first+1)..(last-1)]| may
contain the material inserted by the user; otherwise another prompt will
be given. In order to understand this part of the program fully, you need
to be familiar with \MP's input stacks.
@<Introduce new material...@>=
begin begin_file_reading; {enter a new syntactic level for terminal input}
if last>first+1 then
begin loc:=first+1; buffer[first]:=" ";
end
else begin prompt_input("insert>"); loc:=first;
@.insert>@>
end;
first:=last+1; cur_input.limit_field:=last; return;
end
@ We allow deletion of up to 99 tokens at a time.
@<Delete |c-"0"| tokens...@>=
begin s1:=cur_cmd; s2:=cur_mod; s3:=cur_sym; OK_to_interrupt:=false;
if (last>first+1) and (buffer[first+1]>="0")and(buffer[first+1]<="9") then
c:=c*10+buffer[first+1]-"0"*11
else c:=c-"0";
while c>0 do
begin get_next; {one-level recursive call of |error| is possible}
@<Decrease the string reference count, if the current token is a string@>;
decr(c);
end;
cur_cmd:=s1; cur_mod:=s2; cur_sym:=s3; OK_to_interrupt:=true;
help2("I have just deleted some text, as you asked.")@/
("You can now delete more, or insert, or whatever.");
show_context; goto continue;
end
@ @<Print the help info...@>=
begin if use_err_help then
begin @<Print the string |err_help|, possibly on several lines@>;
use_err_help:=false;
end
else begin if help_ptr=0 then
help2("Sorry, I don't know how to help in this situation.")@/
@t\kern1em@>("Maybe you should try asking a human?");
repeat decr(help_ptr); print(help_line[help_ptr]); print_ln;
until help_ptr=0;
end;
help4("Sorry, I already gave what help I could...")@/
("Maybe you should try asking a human?")@/
("An error might have occurred before I noticed any problems.")@/
("``If all else fails, read the instructions.''");@/
goto continue;
end
@ @<Print the string |err_help|, possibly on several lines@>=
j:=str_start[err_help];
while j<str_stop(err_help) do
begin if str_pool[j]<>si("%") then print(so(str_pool[j]))
else if j+1=str_stop(err_help) then print_ln
else if str_pool[j+1]<>si("%") then print_ln
else begin incr(j); print_char("%");
end;
incr(j);
end
@ @<Put help message on the transcript file@>=
if interaction>batch_mode then decr(selector); {avoid terminal output}
if use_err_help then
begin print_nl("");
@<Print the string |err_help|, possibly on several lines@>;
end
else while help_ptr>0 do
begin decr(help_ptr); print_nl(help_line[help_ptr]);
end;
print_ln;
if interaction>batch_mode then incr(selector); {re-enable terminal output}
print_ln
@ In anomalous cases, the print selector might be in an unknown state;
the following subroutine is called to fix things just enough to keep
running a bit longer.
@p procedure normalize_selector;
begin if log_opened then selector:=term_and_log
else selector:=term_only;
if job_name=0 then open_log_file;
if interaction=batch_mode then decr(selector);
end;
@ The following procedure prints \MP's last words before dying.
@d succumb==begin if interaction=error_stop_mode then
interaction:=scroll_mode; {no more interaction}
if log_opened then error;
@!debug if interaction>batch_mode then debug_help;@;@+gubed@;@/
history:=fatal_error_stop; jump_out; {irrecoverable error}
end
@<Error hand...@>=
procedure fatal_error(@!s:str_number); {prints |s|, and that's it}
begin normalize_selector;@/
print_err("Emergency stop"); help1(s); succumb;
@.Emergency stop@>
end;
@ Here is the most dreaded error message.
@<Error hand...@>=
procedure overflow(@!s:str_number;@!n:integer); {stop due to finiteness}
begin normalize_selector;
print_err("MetaPost capacity exceeded, sorry [");
@.MetaPost capacity exceeded ...@>
print(s); print_char("="); print_int(n); print_char("]");
help2("If you really absolutely need more capacity,")@/
("you can ask a wizard to enlarge me.");
succumb;
end;
@ The program might sometime run completely amok, at which point there is
no choice but to stop. If no previous error has been detected, that's bad
news; a message is printed that is really intended for the \MP\
maintenance person instead of the user (unless the user has been
particularly diabolical). The index entries for `this can't happen' may
help to pinpoint the problem.
@^dry rot@>
@<Error hand...@>=
procedure confusion(@!s:str_number);
{consistency check violated; |s| tells where}
begin normalize_selector;
if history<error_message_issued then
begin print_err("This can't happen ("); print(s); print_char(")");
@.This can't happen@>
help1("I'm broken. Please show this to someone who can fix can fix");
end
else begin print_err("I can't go on meeting you like this");
@.I can't go on...@>
help2("One of your faux pas seems to have wounded me deeply...")@/
("in fact, I'm barely conscious. Please fix it and try again.");
end;
succumb;
end;
@ Users occasionally want to interrupt \MP\ while it's running.
If the \PASCAL\ runtime system allows this, one can implement
a routine that sets the global variable |interrupt| to some nonzero value
when such an interrupt is signaled. Otherwise there is probably at least
a way to make |interrupt| nonzero using the \PASCAL\ debugger.
@^system dependencies@>
@^debugging@>
@d check_interrupt==begin if interrupt<>0 then pause_for_instructions;
end
@<Global...@>=
@!interrupt:integer; {should \MP\ pause for instructions?}
@!OK_to_interrupt:boolean; {should interrupts be observed?}
@ @<Set init...@>=
interrupt:=0; OK_to_interrupt:=true;
@ When an interrupt has been detected, the program goes into its
highest interaction level and lets the user have the full flexibility of
the |error| routine. \MP\ checks for interrupts only at times when it is
safe to do this.
@p procedure pause_for_instructions;
begin if OK_to_interrupt then
begin interaction:=error_stop_mode;
if (selector=log_only)or(selector=no_print) then
incr(selector);
print_err("Interruption");
@.Interruption@>
help3("You rang?")@/
("Try to insert some instructions for me (e.g.,`I show x'),")@/
("unless you just want to quit by typing `X'.");
deletions_allowed:=false; error; deletions_allowed:=true;
interrupt:=0;
end;
end;
@ Many of \MP's error messages state that a missing token has been
inserted behind the scenes. We can save string space and program space
by putting this common code into a subroutine.
@p procedure missing_err(@!s:str_number);
begin print_err("Missing `"); print(s); print("' has been inserted");
@.Missing...inserted@>
end;
@* \[7] Arithmetic with scaled numbers.
The principal computations performed by \MP\ are done entirely in terms of
integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
program can be carried out in exactly the same way on a wide variety of
computers, including some small ones.
@^small computers@>
But \PASCAL\ does not define the @!|div|
operation in the case of negative dividends; for example, the result of
|(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
There are two principal types of arithmetic: ``translation-preserving,''
in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
two \MP s, which can produce different results, although the differences
should be negligible when the language is being used properly.
The \TeX\ processor has been defined carefully so that both varieties
of arithmetic will produce identical output, but it would be too
inefficient to constrain \MP\ in a similar way.
@d el_gordo == @'17777777777 {$2^{31}-1$, the largest value that \MP\ likes}
@ One of \MP's most common operations is the calculation of
$\lfloor{a+b\over2}\rfloor$,
the midpoint of two given integers |a| and~|b|. The only decent way to do
this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
far more efficient to calculate `|(a+b)| right shifted one bit'.
Therefore the midpoint operation will always be denoted by `|half(a+b)|'
in this program. If \MP\ is being implemented with languages that permit
binary shifting, the |half| macro should be changed to make this operation
as efficient as possible. Since some languages have shift operators that can
only be trusted to work on positive numbers, there is also a macro |halfp|
that is used only when the quantity being halved is known to be positive
or zero.
@d half(#)==(#) div 2
@d halfp(#)==(#) div 2
@ A single computation might use several subroutine calls, and it is
desirable to avoid producing multiple error messages in case of arithmetic
overflow. So the routines below set the global variable |arith_error| to |true|
instead of reporting errors directly to the user.
@<Glob...@>=
@!arith_error:boolean; {has arithmetic overflow occurred recently?}
@ @<Set init...@>=
arith_error:=false;
@ At crucial points the program will say |check_arith|, to test if
an arithmetic error has been detected.
@d check_arith==begin if arith_error then clear_arith;@+end
@p procedure clear_arith;
begin print_err("Arithmetic overflow");
@.Arithmetic overflow@>
help4("Uh, oh. A little while ago one of the quantities that I was")@/
("computing got too large, so I'm afraid your answers will be")@/
("somewhat askew. You'll probably have to adopt different")@/
("tactics next time. But I shall try to carry on anyway.");
error; arith_error:=false;
end;
@ Addition is not always checked to make sure that it doesn't overflow,
but in places where overflow isn't too unlikely the |slow_add| routine
is used.
@p function slow_add(@!x,@!y:integer):integer;
begin if x>=0 then
if y<=el_gordo-x then slow_add:=x+y
else begin arith_error:=true; slow_add:=el_gordo;
end
else if -y<=el_gordo+x then slow_add:=x+y
else begin arith_error:=true; slow_add:=-el_gordo;
end;
end;
@ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
positions from the right end of a binary computer word.
@d quarter_unit == @'40000 {$2^{14}$, represents 0.250000}
@d half_unit == @'100000 {$2^{15}$, represents 0.50000}
@d three_quarter_unit == @'140000 {$3\cdot2^{14}$, represents 0.75000}
@d unity == @'200000 {$2^{16}$, represents 1.00000}
@d two == @'400000 {$2^{17}$, represents 2.00000}
@d three == @'600000 {$2^{17}+2^{16}$, represents 3.00000}
@<Types...@>=
@!scaled = integer; {this type is used for scaled integers}
@!small_number=0..63; {this type is self-explanatory}
@ The following function is used to create a scaled integer from a given decimal
fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
given in |dig[i]|, and the calculation produces a correctly rounded result.
@p function round_decimals(@!k:small_number) : scaled;
{converts a decimal fraction}
var @!a:integer; {the accumulator}
begin a:=0;
while k>0 do
begin decr(k); a:=(a+dig[k]*two) div 10;
end;
round_decimals:=halfp(a+1);
end;
@ Conversely, here is a procedure analogous to |print_int|. If the output
of this procedure is subsequently read by \MP\ and converted by the
|round_decimals| routine above, it turns out that the original value will
be reproduced exactly. A decimal point is printed only if the value is
not an integer. If there is more than one way to print the result with
the optimum number of digits following the decimal point, the closest
possible value is given.
The invariant relation in the \&{repeat} loop is that a sequence of
decimal digits yet to be printed will yield the original number if and only if
they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
We can stop if and only if $f=0$ satisfies this condition; the loop will
terminate before $s$ can possibly become zero.
@<Basic printing...@>=
procedure print_scaled(@!s:scaled); {prints scaled real, rounded to five
digits}
var @!delta:scaled; {amount of allowable inaccuracy}
begin if s<0 then
begin print_char("-"); negate(s); {print the sign, if negative}
end;
print_int(s div unity); {print the integer part}
s:=10*(s mod unity)+5;
if s<>5 then
begin delta:=10; print_char(".");
repeat if delta>unity then
s:=s+@'100000-(delta div 2); {round the final digit}
print_char("0"+(s div unity)); s:=10*(s mod unity); delta:=delta*10;
until s<=delta;
end;
end;
@ We often want to print two scaled quantities in parentheses,
separated by a comma.
@<Basic printing...@>=
procedure print_two(@!x,@!y:scaled); {prints `|(x,y)|'}
begin print_char("("); print_scaled(x); print_char(","); print_scaled(y);
print_char(")");
end;
@ The |scaled| quantities in \MP\ programs are generally supposed to be
less than $2^{12}$ in absolute value, so \MP\ does much of its internal
arithmetic with 28~significant bits of precision. A |fraction| denotes
a scaled integer whose binary point is assumed to be 28 bit positions
from the right.
@d fraction_half==@'1000000000 {$2^{27}$, represents 0.50000000}
@d fraction_one==@'2000000000 {$2^{28}$, represents 1.00000000}
@d fraction_two==@'4000000000 {$2^{29}$, represents 2.00000000}
@d fraction_three==@'6000000000 {$3\cdot2^{28}$, represents 3.00000000}
@d fraction_four==@'10000000000 {$2^{30}$, represents 4.00000000}
@<Types...@>=
@!fraction=integer; {this type is used for scaled fractions}
@ In fact, the two sorts of scaling discussed above aren't quite
sufficient; \MP\ has yet another, used internally to keep track of angles
in units of $2^{-20}$ degrees.
@d forty_five_deg==@'264000000 {$45\cdot2^{20}$, represents $45^\circ$}
@d ninety_deg==@'550000000 {$90\cdot2^{20}$, represents $90^\circ$}
@d one_eighty_deg==@'1320000000 {$180\cdot2^{20}$, represents $180^\circ$}
@d three_sixty_deg==@'2640000000 {$360\cdot2^{20}$, represents $360^\circ$}
@<Types...@>=
@!angle=integer; {this type is used for scaled angles}
@ The |make_fraction| routine produces the |fraction| equivalent of
|p/q|, given integers |p| and~|q|; it computes the integer
$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
positive. If |p| and |q| are both of the same scaled type |t|,
the ``type relation'' |make_fraction(t,t)=fraction| is valid;
and it's also possible to use the subroutine ``backwards,'' using
the relation |make_fraction(t,fraction)=t| between scaled types.
If the result would have magnitude $2^{31}$ or more, |make_fraction|
sets |arith_error:=true|. Most of \MP's internal computations have
been designed to avoid this sort of error.
If this subroutine were programmed in assembly language on a typical
machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
double-precision product can often be input to a fixed-point division
instruction. But when we are restricted to \PASCAL\ arithmetic it
is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique
would be about three times faster than the code adopted here, but it
would be comparatively long and tricky, involving about sixteen
additional multiplications and divisions.
This operation is part of \MP's ``inner loop''; indeed, it will
consume nearly 10\pct! of the running time (exclusive of input and output)
if the code below is left unchanged. A machine-dependent recoding
will therefore make \MP\ run faster. The present implementation
is highly portable, but slow; it avoids multiplication and division
except in the initial stage. System wizards should be careful to
replace it with a routine that is guaranteed to produce identical
results in all cases.
@^system dependencies@>
As noted below, a few more routines should also be replaced by machine-dependent
code, for efficiency. But when a procedure is not part of the ``inner loop,''
such changes aren't advisable; simplicity and robustness are
preferable to trickery, unless the cost is too high.
@^inner loop@>
@p function make_fraction(@!p,@!q:integer):fraction;
var @!f:integer; {the fraction bits, with a leading 1 bit}
@!n:integer; {the integer part of $\vert p/q\vert$}
@!negative:boolean; {should the result be negated?}
@!be_careful:integer; {disables certain compiler optimizations}
begin if p>=0 then negative:=false
else begin negate(p); negative:=true;
end;
if q<=0 then
begin debug if q=0 then confusion("/");@;@+gubed@;@/
@:this can't happen /}{\quad \./@>
negate(q); negative:=not negative;
end;
n:=p div q; p:=p mod q;
if n>=8 then
begin arith_error:=true;
if negative then make_fraction:=-el_gordo@+else make_fraction:=el_gordo;
end
else begin n:=(n-1)*fraction_one;
@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
if negative then make_fraction:=-(f+n)@+else make_fraction:=f+n;
end;
end;
@ The |repeat| loop here preserves the following invariant relations
between |f|, |p|, and~|q|:
(i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
$p_0$ is the original value of~$p$.
Notice that the computation specifies
|(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
Let us hope that optimizing compilers do not miss this point; a
special variable |be_careful| is used to emphasize the necessary
order of computation. Optimizing compilers should keep |be_careful|
in a register, not store it in memory.
@^inner loop@>
@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
f:=1;
repeat be_careful:=p-q; p:=be_careful+p;
if p>=0 then f:=f+f+1
else begin double(f); p:=p+q;
end;
until f>=fraction_one;
be_careful:=p-q;
if be_careful+p>=0 then incr(f)
@ The dual of |make_fraction| is |take_fraction|, which multiplies a
given integer~|q| by a fraction~|f|. When the operands are positive, it
computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
of |q| and~|f|.
This routine is even more ``inner loopy'' than |make_fraction|;
the present implementation consumes almost 20\pct! of \MP's computation
time during typical jobs, so a machine-language substitute is advisable.
@^inner loop@> @^system dependencies@>
@p function take_fraction(@!q:integer;@!f:fraction):integer;
var @!p:integer; {the fraction so far}
@!negative:boolean; {should the result be negated?}
@!n:integer; {additional multiple of $q$}
@!be_careful:integer; {disables certain compiler optimizations}
begin @<Reduce to the case that |f>=0| and |q>0|@>;
if f<fraction_one then n:=0
else begin n:=f div fraction_one; f:=f mod fraction_one;
if q<=el_gordo div n then n:=n*q
else begin arith_error:=true; n:=el_gordo;
end;
end;
f:=f+fraction_one;
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
be_careful:=n-el_gordo;
if be_careful+p>0 then
begin arith_error:=true; n:=el_gordo-p;
end;
if negative then take_fraction:=-(n+p)
else take_fraction:=n+p;
end;
@ @<Reduce to the case that |f>=0| and |q>0|@>=
if f>=0 then negative:=false
else begin negate(f); negative:=true;
end;
if q<0 then
begin negate(q); negative:=not negative;
end;
@ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
=\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
$f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
@^inner loop@>
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
p:=fraction_half; {that's $2^{27}$; the invariants hold now with $k=28$}
if q<fraction_four then
repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p);
f:=halfp(f);
until f=1
else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p);
f:=halfp(f);
until f=1
@ When we want to multiply something by a |scaled| quantity, we use a scheme
analogous to |take_fraction| but with a different scaling.
Given positive operands, |take_scaled|
computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
Once again it is a good idea to use a machine-language replacement if
possible; otherwise |take_scaled| will use more than 2\pct! of the running time
when the Computer Modern fonts are being generated.
@^inner loop@>
@p function take_scaled(@!q:integer;@!f:scaled):integer;
var @!p:integer; {the fraction so far}
@!negative:boolean; {should the result be negated?}
@!n:integer; {additional multiple of $q$}
@!be_careful:integer; {disables certain compiler optimizations}
begin @<Reduce to the case that |f>=0| and |q>0|@>;
if f<unity then n:=0
else begin n:=f div unity; f:=f mod unity;
if q<=el_gordo div n then n:=n*q
else begin arith_error:=true; n:=el_gordo;
end;
end;
f:=f+unity;
@<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
be_careful:=n-el_gordo;
if be_careful+p>0 then
begin arith_error:=true; n:=el_gordo-p;
end;
if negative then take_scaled:=-(n+p)
else take_scaled:=n+p;
end;
@ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
p:=half_unit; {that's $2^{15}$; the invariants hold now with $k=16$}
@^inner loop@>
if q<fraction_four then
repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p);
f:=halfp(f);
until f=1
else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p);
f:=halfp(f);
until f=1
@ For completeness, there's also |make_scaled|, which computes a
quotient as a |scaled| number instead of as a |fraction|.
In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
operands are positive. \ (This procedure is not used especially often,
so it is not part of \MP's inner loop.)
@p function make_scaled(@!p,@!q:integer):scaled;
var @!f:integer; {the fraction bits, with a leading 1 bit}
@!n:integer; {the integer part of $\vert p/q\vert$}
@!negative:boolean; {should the result be negated?}
@!be_careful:integer; {disables certain compiler optimizations}
begin if p>=0 then negative:=false
else begin negate(p); negative:=true;
end;
if q<=0 then
begin debug if q=0 then confusion("/");@+gubed@;@/
@:this can't happen /}{\quad \./@>
negate(q); negative:=not negative;
end;
n:=p div q; p:=p mod q;
if n>=@'100000 then
begin arith_error:=true;
if negative then make_scaled:=-el_gordo@+else make_scaled:=el_gordo;
end
else begin n:=(n-1)*unity;
@<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
if negative then make_scaled:=-(f+n)@+else make_scaled:=f+n;
end;
end;
@ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
f:=1;
repeat be_careful:=p-q; p:=be_careful+p;
if p>=0 then f:=f+f+1
else begin double(f); p:=p+q;
end;
until f>=unity;
be_careful:=p-q;
if be_careful+p>=0 then incr(f)
@ Here is a typical example of how the routines above can be used.
It computes the function
$${1\over3\tau}f(\theta,\phi)=
{\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
(\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
fudge factor for placing the first control point of a curve that starts
at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
(Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
(It's a sum of eight terms whose absolute values can be bounded using
relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
is positive; and since the tension $\tau$ is constrained to be at least
$3\over4$, the numerator is less than $16\over3$. The denominator is
nonnegative and at most~6. Hence the fixed-point calculations below
are guaranteed to stay within the bounds of a 32-bit computer word.
The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
$\sin\phi$, and $\cos\phi$, respectively.
@p function velocity(@!st,@!ct,@!sf,@!cf:fraction;@!t:scaled):fraction;
var @!acc,@!num,@!denom:integer; {registers for intermediate calculations}
begin acc:=take_fraction(st-(sf div 16), sf-(st div 16));
acc:=take_fraction(acc,ct-cf);
num:=fraction_two+take_fraction(acc,379625062);
{$2^{28}\sqrt2\approx379625062.497$}
denom:=fraction_three+take_fraction(ct,497706707)+take_fraction(cf,307599661);
{$3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
$3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$}
if t<>unity then num:=make_scaled(num,t);
{|make_scaled(fraction,scaled)=fraction|}
if num div 4>=denom then velocity:=fraction_four
else velocity:=make_fraction(num,denom);
end;
@ The following somewhat different subroutine tests rigorously if $ab$ is
greater than, equal to, or less than~$cd$,
given integers $(a,b,c,d)$. In most cases a quick decision is reached.
The result is $+1$, 0, or~$-1$ in the three respective cases.
@d return_sign(#)==begin ab_vs_cd:=#; return;
end
@p function ab_vs_cd(@!a,b,c,d:integer):integer;
label exit;
var @!q,@!r:integer; {temporary registers}
begin @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
loop@+ begin q := a div d; r := c div b;
if q<>r then
if q>r then return_sign(1)@+else return_sign(-1);
q := a mod d; r := c mod b;
if r=0 then
if q=0 then return_sign(0)@+else return_sign(1);
if q=0 then return_sign(-1);
a:=b; b:=q; c:=d; d:=r;
end; {now |a>d>0| and |c>b>0|}
exit:end;
@ @<Reduce to the case that |a...@>=
if a<0 then
begin negate(a); negate(b);
end;
if c<0 then
begin negate(c); negate(d);
end;
if d<=0 then
begin if b>=0 then
if ((a=0)or(b=0))and((c=0)or(d=0)) then return_sign(0)
else return_sign(1);
if d=0 then
if a=0 then return_sign(0)@+else return_sign(-1);
q:=a; a:=c; c:=q; q:=-b; b:=-d; d:=q;
end
else if b<=0 then
begin if b<0 then if a>0 then return_sign(-1);
if c=0 then return_sign(0) else return_sign(-1);
end
@ We conclude this set of elementary routines with some simple rounding
and truncation operations that are coded in a machine-independent fashion.
The routines are slightly complicated because we want them to work
without overflow whenever $-2^{31}\L x<2^{31}$.
@p function floor_scaled(@!x:scaled):scaled;
{$2^{16}\lfloor x/2^{16}\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=0 then floor_scaled:=x-(x mod unity)
else begin be_careful:=x+1;
floor_scaled:=x+((-be_careful) mod unity)+1-unity;
end;
end;
@#
function round_unscaled(@!x:scaled):integer;
{$\lfloor x/2^{16}+.5\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=half_unit then round_unscaled:=1+((x-half_unit) div unity)
else if x>=-half_unit then round_unscaled:=0
else begin be_careful:=x+1;
round_unscaled:=-(1+((-be_careful-half_unit) div unity));
end;
end;
@#
function round_fraction(@!x:fraction):scaled;
{$\lfloor x/2^{12}+.5\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=2048 then round_fraction:=1+((x-2048) div 4096)
else if x>=-2048 then round_fraction:=0
else begin be_careful:=x+1;
round_fraction:=-(1+((-be_careful-2048) div 4096));
end;
end;
@* \[8] Algebraic and transcendental functions.
\MP\ computes all of the necessary special functions from scratch, without
relying on |real| arithmetic or system subroutines for sines, cosines, etc.
@ To get the square root of a |scaled| number |x|, we want to calculate
$s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
determines $s$ by an iterative method that maintains the invariant
relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
-s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
might, however, be zero at the start of the first iteration.
@p function square_rt(@!x:scaled):scaled;
var @!k:small_number; {iteration control counter}
@!y,@!q:integer; {registers for intermediate calculations}
begin if x<=0 then @<Handle square root of zero or negative argument@>
else begin k:=23; q:=2;
while x<fraction_two do {i.e., |while x<@t$2^{29}$@>|\unskip}
begin decr(k); x:=x+x+x+x;
end;
if x<fraction_four then y:=0
else begin x:=x-fraction_four; y:=1;
end;
repeat @<Decrease |k| by 1, maintaining the invariant
relations between |x|, |y|, and~|q|@>;
until k=0;
square_rt:=halfp(q);
end;
end;
@ @<Handle square root of zero...@>=
begin if x<0 then
begin print_err("Square root of ");
@.Square root...replaced by 0@>
print_scaled(x); print(" has been replaced by 0");
help2("Since I don't take square roots of negative numbers,")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error;
end;
square_rt:=0;
end
@ @<Decrease |k| by 1, maintaining...@>=
double(x); double(y);
if x>=fraction_four then {note that |fraction_four=@t$2^{30}$@>|}
begin x:=x-fraction_four; incr(y);
end;
double(x); y:=y+y-q; double(q);
if x>=fraction_four then
begin x:=x-fraction_four; incr(y);
end;
if y>q then
begin y:=y-q; q:=q+2;
end
else if y<=0 then
begin q:=q-2; y:=y+q;
end;
decr(k)
@ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
@^Moler, Cleve Barry@>
@^Morrison, Donald Ross@>
of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
in such a way that their Pythagorean sum remains invariant, while the
smaller argument decreases.
@p function pyth_add(@!a,@!b:integer):integer;
label done;
var @!r:fraction; {register used to transform |a| and |b|}
@!big:boolean; {is the result dangerously near $2^{31}$?}
begin a:=abs(a); b:=abs(b);
if a<b then
begin r:=b; b:=a; a:=r;
end; {now |0<=b<=a|}
if b>0 then
begin if a<fraction_two then big:=false
else begin a:=a div 4; b:=b div 4; big:=true;
end; {we reduced the precision to avoid arithmetic overflow}
@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
if big then
if a<fraction_two then a:=a+a+a+a
else begin arith_error:=true; a:=el_gordo;
end;
end;
pyth_add:=a;
end;
@ The key idea here is to reflect the vector $(a,b)$ about the
line through $(a,b/2)$.
@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
loop@+ begin r:=make_fraction(b,a);
r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
if r=0 then goto done;
r:=make_fraction(r,fraction_four+r);
a:=a+take_fraction(a+a,r); b:=take_fraction(b,r);
end;
done:
@ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
It converges slowly when $b$ is near $a$, but otherwise it works fine.
@p function pyth_sub(@!a,@!b:integer):integer;
label done;
var @!r:fraction; {register used to transform |a| and |b|}
@!big:boolean; {is the input dangerously near $2^{31}$?}
begin a:=abs(a); b:=abs(b);
if a<=b then @<Handle erroneous |pyth_sub| and set |a:=0|@>
else begin if a<fraction_four then big:=false
else begin a:=halfp(a); b:=halfp(b); big:=true;
end;
@<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
if big then a:=a+a;
end;
pyth_sub:=a;
end;
@ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
loop@+ begin r:=make_fraction(b,a);
r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
if r=0 then goto done;
r:=make_fraction(r,fraction_four-r);
a:=a-take_fraction(a+a,r); b:=take_fraction(b,r);
end;
done:
@ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
begin if a<b then
begin print_err("Pythagorean subtraction "); print_scaled(a);
print("+-+"); print_scaled(b); print(" has been replaced by 0");
@.Pythagorean...@>
help2("Since I don't take square roots of negative numbers,")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error;
end;
a:=0;
end
@ The subroutines for logarithm and exponential involve two tables.
The first is simple: |two_to_the[k]| equals $2^k$. The second involves
a bit more calculation, which the author claims to have done correctly:
|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
nearest integer.
@<Glob...@>=
@!two_to_the:array[0..30] of integer; {powers of two}
@!spec_log:array[1..28] of integer; {special logarithms}
@ @<Local variables for initialization@>=
@!k:integer; {all-purpose loop index}
@ @<Set init...@>=
two_to_the[0]:=1;
for k:=1 to 30 do two_to_the[k]:=2*two_to_the[k-1];
spec_log[1]:=93032640;
spec_log[2]:=38612034;
spec_log[3]:=17922280;
spec_log[4]:=8662214;
spec_log[5]:=4261238;
spec_log[6]:=2113709;
spec_log[7]:=1052693;
spec_log[8]:=525315;
spec_log[9]:=262400;
spec_log[10]:=131136;
spec_log[11]:=65552;
spec_log[12]:=32772;
spec_log[13]:=16385;
for k:=14 to 27 do spec_log[k]:=two_to_the[27-k];
spec_log[28]:=1;
@ Here is the routine that calculates $2^8$ times the natural logarithm
of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
when |x| is a given positive integer.
The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
and the logarithm of $2^{30}x$ remains to be added to an accumulator
register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
during the calculation, and sixteen auxiliary bits to extend |y| are
kept in~|z| during the initial argument reduction. (We add
$100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
not become negative; also, the actual amount subtracted from~|y| is~96,
not~100, because we want to add~4 for rounding before the final division by~8.)
@p function m_log(@!x:scaled):scaled;
var @!y,@!z:integer; {auxiliary registers}
@!k:integer; {iteration counter}
begin if x<=0 then @<Handle non-positive logarithm@>
else begin y:=1302456956+4-100; {$14\times2^{27}\ln2\approx1302456956.421063$}
z:=27595+6553600; {and $2^{16}\times .421063\approx 27595$}
while x<fraction_four do
begin double(x); y:=y-93032639; z:=z-48782;
end; {$2^{27}\ln2\approx 93032639.74436163$
and $2^{16}\times.74436163\approx 48782$}
y:=y+(z div unity); k:=2;
while x>fraction_four+4 do
@<Increase |k| until |x| can be multiplied by a
factor of $2^{-k}$, and adjust $y$ accordingly@>;
m_log:=y div 8;
end;
end;
@ @<Increase |k| until |x| can...@>=
begin z:=((x-1) div two_to_the[k])+1; {$z=\lceil x/2^k\rceil$}
while x<fraction_four+z do
begin z:=halfp(z+1); k:=k+1;
end;
y:=y+spec_log[k]; x:=x-z;
end
@ @<Handle non-positive logarithm@>=
begin print_err("Logarithm of ");
@.Logarithm...replaced by 0@>
print_scaled(x); print(" has been replaced by 0");
help2("Since I don't take logs of non-positive numbers,")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error; m_log:=0;
end
@ Conversely, the exponential routine calculates $\exp(x/2^8)$,
when |x| is |scaled|. The result is an integer approximation to
$2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
@p function m_exp(@!x:scaled):scaled;
var @!k:small_number; {loop control index}
@!y,@!z:integer; {auxiliary registers}
begin if x>174436200 then
{$2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$}
begin arith_error:=true; m_exp:=el_gordo;
end
else if x<-197694359 then m_exp:=0
{$2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$}
else begin if x<=0 then
begin z:=-8*x; y:=@'4000000; {$y=2^{20}$}
end
else begin if x<=127919879 then z:=1023359037-8*x
{$2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$}
else z:=8*(174436200-x); {|z| is always nonnegative}
y:=el_gordo;
end;
@<Multiply |y| by $\exp(-z/2^{27})$@>;
if x<=127919879 then m_exp:=(y+8) div 16@+else m_exp:=y;
end;
end;
@ The idea here is that subtracting |spec_log[k]| from |z| corresponds
to multiplying |y| by $1-2^{-k}$.
A subtle point (which had to be checked) was that if $x=127919879$, the
value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
$z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
and by~16 when |k=27|.
@<Multiply |y| by...@>=
k:=1;
while z>0 do
begin while z>=spec_log[k] do
begin z:=z-spec_log[k];
y:=y-1-((y-two_to_the[k-1]) div two_to_the[k]);
end;
incr(k);
end
@ The trigonometric subroutines use an auxiliary table such that
|spec_atan[k]| contains an approximation to the |angle| whose tangent
is~$1/2^k$.
@<Glob...@>=
@!spec_atan:array[1..26] of angle; {$\arctan2^{-k}$ times $2^{20}\cdot180/\pi$}
@ @<Set init...@>=
spec_atan[1]:=27855475;
spec_atan[2]:=14718068;
spec_atan[3]:=7471121;
spec_atan[4]:=3750058;
spec_atan[5]:=1876857;
spec_atan[6]:=938658;
spec_atan[7]:=469357;
spec_atan[8]:=234682;
spec_atan[9]:=117342;
spec_atan[10]:=58671;
spec_atan[11]:=29335;
spec_atan[12]:=14668;
spec_atan[13]:=7334;
spec_atan[14]:=3667;
spec_atan[15]:=1833;
spec_atan[16]:=917;
spec_atan[17]:=458;
spec_atan[18]:=229;
spec_atan[19]:=115;
spec_atan[20]:=57;
spec_atan[21]:=29;
spec_atan[22]:=14;
spec_atan[23]:=7;
spec_atan[24]:=4;
spec_atan[25]:=2;
spec_atan[26]:=1;
@ Given integers |x| and |y|, not both zero, the |n_arg| function
returns the |angle| whose tangent points in the direction $(x,y)$.
This subroutine first determines the correct octant, then solves the
problem for |0<=y<=x|, then converts the result appropriately to
return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
(The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
|-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
The octants are represented in a ``Gray code,'' since that turns out
to be computationally simplest.
@d negate_x=1
@d negate_y=2
@d switch_x_and_y=4
@d first_octant=1
@d second_octant=first_octant+switch_x_and_y
@d third_octant=first_octant+switch_x_and_y+negate_x
@d fourth_octant=first_octant+negate_x
@d fifth_octant=first_octant+negate_x+negate_y
@d sixth_octant=first_octant+switch_x_and_y+negate_x+negate_y
@d seventh_octant=first_octant+switch_x_and_y+negate_y
@d eighth_octant=first_octant+negate_y
@p function n_arg(@!x,@!y:integer):angle;
var @!z:angle; {auxiliary register}
@!t:integer; {temporary storage}
@!k:small_number; {loop counter}
@!octant:first_octant..sixth_octant; {octant code}
begin if x>=0 then octant:=first_octant
else begin negate(x); octant:=first_octant+negate_x;
end;
if y<0 then
begin negate(y); octant:=octant+negate_y;
end;
if x<y then
begin t:=y; y:=x; x:=t; octant:=octant+switch_x_and_y;
end;
if x=0 then @<Handle undefined arg@>
else begin @<Set variable |z| to the arg of $(x,y)$@>;
@<Return an appropriate answer based on |z| and |octant|@>;
end;
end;
@ @<Handle undefined arg@>=
begin print_err("angle(0,0) is taken as zero");
@.angle(0,0)...zero@>
help2("The `angle' between two identical points is undefined.")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error; n_arg:=0;
end
@ @<Return an appropriate answer...@>=
case octant of
first_octant:n_arg:=z;
second_octant:n_arg:=ninety_deg-z;
third_octant:n_arg:=ninety_deg+z;
fourth_octant:n_arg:=one_eighty_deg-z;
fifth_octant:n_arg:=z-one_eighty_deg;
sixth_octant:n_arg:=-z-ninety_deg;
seventh_octant:n_arg:=z-ninety_deg;
eighth_octant:n_arg:=-z;
end {there are no other cases}
@ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
will be made.
@<Set variable |z| to the arg...@>=
while x>=fraction_two do
begin x:=halfp(x); y:=halfp(y);
end;
z:=0;
if y>0 then
begin while x<fraction_one do
begin double(x); double(y);
end;
@<Increase |z| to the arg of $(x,y)$@>;
end
@ During the calculations of this section, variables |x| and~|y|
represent actual coordinates $(x,2^{-k}y)$. We will maintain the
condition |x>=y|, so that the tangent will be at most $2^{-k}$.
If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
$(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
coordinates whose angle has decreased by~$\phi$; in the special case
$a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
@^Meggitt, John E.@>
{\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
The initial value of |x| will be multiplied by at most
$(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
there is no chance of integer overflow.
@<Increase |z|...@>=
k:=0;
repeat double(y); incr(k);
if y>x then
begin z:=z+spec_atan[k]; t:=x; x:=x+(y div two_to_the[k+k]); y:=y-t;
end;
until k=15;
repeat double(y); incr(k);
if y>x then
begin z:=z+spec_atan[k]; y:=y-x;
end;
until k=26
@ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
and cosine of that angle. The results of this routine are
stored in global integer variables |n_sin| and |n_cos|.
@<Glob...@>=
@!n_sin,@!n_cos:fraction; {results computed by |n_sin_cos|}
@ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
the purpose of |n_sin_cos(z)| is to set
|x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
for some rather large number~|r|. The maximum of |x| and |y|
will be between $2^{28}$ and $2^{30}$, so that there will be hardly
any loss of accuracy. Then |x| and~|y| are divided by~|r|.
@p procedure n_sin_cos(@!z:angle); {computes a multiple of the sine and cosine}
var @!k:small_number; {loop control variable}
@!q:0..7; {specifies the quadrant}
@!r:fraction; {magnitude of |(x,y)|}
@!x,@!y,@!t:integer; {temporary registers}
begin while z<0 do z:=z+three_sixty_deg;
z:=z mod three_sixty_deg; {now |0<=z<three_sixty_deg|}
q:=z div forty_five_deg; z:=z mod forty_five_deg;
x:=fraction_one; y:=x;
if not odd(q) then z:=forty_five_deg-z;
@<Subtract angle |z| from |(x,y)|@>;
@<Convert |(x,y)| to the octant determined by~|q|@>;
r:=pyth_add(x,y); n_cos:=make_fraction(x,r); n_sin:=make_fraction(y,r);
end;
@ In this case the octants are numbered sequentially.
@<Convert |(x,...@>=
case q of
0:do_nothing;
1:begin t:=x; x:=y; y:=t;
end;
2:begin t:=x; x:=-y; y:=t;
end;
3:negate(x);
4:begin negate(x); negate(y);
end;
5:begin t:=x; x:=-y; y:=-t;
end;
6:begin t:=x; x:=y; y:=-t;
end;
7:negate(y);
end {there are no other cases}
@ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
applied in reverse. The values of |spec_atan[k]| decrease slowly enough
that this loop is guaranteed to terminate before the (nonexistent) value
|spec_atan[27]| would be required.
@<Subtract angle |z|...@>=
k:=1;
while z>0 do
begin if z>=spec_atan[k] then
begin z:=z-spec_atan[k]; t:=x;@/
x:=t+y div two_to_the[k];
y:=y-t div two_to_the[k];
end;
incr(k);
end;
if y<0 then y:=0 {this precaution may never be needed}
@ And now let's complete our collection of numeric utility routines
by considering random number generation.
\MP\ generates pseudo-random numbers with the additive scheme recommended
in Section 3.6 of {\sl The Art of Computer Programming}; however, the
results are random fractions between 0 and |fraction_one-1|, inclusive.
There's an auxiliary array |randoms| that contains 55 pseudo-random
fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
The global variable |j_random| tells which element has most recently
been consumed.
@<Glob...@>=
@!randoms:array[0..54] of fraction; {the last 55 random values generated}
@!j_random:0..54; {the number of unused |randoms|}
@ To consume a random fraction, the program below will say `|next_random|'
and then it will fetch |randoms[j_random]|.
@d next_random==if j_random=0 then new_randoms
else decr(j_random)
@p procedure new_randoms;
var @!k:0..54; {index into |randoms|}
@!x:fraction; {accumulator}
begin for k:=0 to 23 do
begin x:=randoms[k]-randoms[k+31];
if x<0 then x:=x+fraction_one;
randoms[k]:=x;
end;
for k:=24 to 54 do
begin x:=randoms[k]-randoms[k-24];
if x<0 then x:=x+fraction_one;
randoms[k]:=x;
end;
j_random:=54;
end;
@ To initialize the |randoms| table, we call the following routine.
@p procedure init_randoms(@!seed:scaled);
var @!j,@!jj,@!k:fraction; {more or less random integers}
@!i:0..54; {index into |randoms|}
begin j:=abs(seed);
while j>=fraction_one do j:=halfp(j);
k:=1;
for i:=0 to 54 do
begin jj:=k; k:=j-k; j:=jj;
if k<0 then k:=k+fraction_one;
randoms[(i*21)mod 55]:=j;
end;
new_randoms; new_randoms; new_randoms; {``warm up'' the array}
end;
@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
Note that the call of |take_fraction| will produce the values 0 and~|x|
with about half the probability that it will produce any other particular
values between 0 and~|x|, because it rounds its answers.
@p function unif_rand(@!x:scaled):scaled;
var @!y:scaled; {trial value}
begin next_random; y:=take_fraction(abs(x),randoms[j_random]);
if y=abs(x) then unif_rand:=0
else if x>0 then unif_rand:=y
else unif_rand:=-y;
end;
@ Finally, a normal deviate with mean zero and unit standard deviation
can readily be obtained with the ratio method (Algorithm 3.4.1R in
{\sl The Art of Computer Programming\/}).
@p function norm_rand:scaled;
var @!x,@!u,@!l:integer; {what the book would call $2^{16}X$, $2^{28}U$,
and $-2^{24}\ln U$}
begin repeat
repeat next_random;
x:=take_fraction(112429,randoms[j_random]-fraction_half);
{$2^{16}\sqrt{8/e}\approx 112428.82793$}
next_random; u:=randoms[j_random];
until abs(x)<u;
x:=make_fraction(x,u);
l:=139548960-m_log(u); {$2^{24}\cdot12\ln2\approx139548959.6165$}
until ab_vs_cd(1024,l,x,x)>=0;
norm_rand:=x;
end;
@* \[9] Packed data.
In order to make efficient use of storage space, \MP\ bases its major data
structures on a |memory_word|, which contains either a (signed) integer,
possibly scaled, or a small number of fields that are one half or one
quarter of the size used for storing integers.
If |x| is a variable of type |memory_word|, it contains up to four
fields that can be referred to as follows:
$$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
|x|&.|int|&(an |integer|)\cr
|x|&.|sc|\qquad&(a |scaled| integer)\cr
|x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
|x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
field)\cr
|x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
&\qquad\qquad\qquad(four quarterword fields)\cr}}$$
This is somewhat cumbersome to write, and not very readable either, but
macros will be used to make the notation shorter and more transparent.
The \PASCAL\ code below gives a formal definition of |memory_word| and
its subsidiary types, using packed variant records. \MP\ makes no
assumptions about the relative positions of the fields within a word.
Since we are assuming 32-bit integers, a halfword must contain at least
16 bits, and a quarterword must contain at least 8 bits.
@^system dependencies@>
But it doesn't hurt to have more bits; for example, with enough 36-bit
words you might be able to have |mem_max| as large as 262142.
N.B.: Valuable memory space will be dreadfully wasted unless \MP\ is compiled
by a \PASCAL\ that packs all of the |memory_word| variants into
the space of a single integer. Some \PASCAL\ compilers will pack an
integer whose subrange is `|0..255|' into an eight-bit field, but others
insist on allocating space for an additional sign bit; on such systems you
can get 256 values into a quarterword only if the subrange is `|-128..127|'.
The present implementation tries to accommodate as many variations as possible,
so it makes few assumptions. If integers having the subrange
`|min_quarterword..max_quarterword|' can be packed into a quarterword,
and if integers having the subrange `|min_halfword..max_halfword|'
can be packed into a halfword, everything should work satisfactorily.
It is usually most efficient to have |min_quarterword=min_halfword=0|,
so one should try to achieve this unless it causes a severe problem.
The values defined here are recommended for most 32-bit computers.
@d min_quarterword=0 {smallest allowable value in a |quarterword|}
@d max_quarterword=255 {largest allowable value in a |quarterword|}
@d min_halfword==0 {smallest allowable value in a |halfword|}
@d max_halfword==65535 {largest allowable value in a |halfword|}
@ Here are the inequalities that the quarterword and halfword values
must satisfy (or rather, the inequalities that they mustn't satisfy):
@<Check the ``constant''...@>=
init if mem_max<>mem_top then bad:=8;@+tini@;@/
if mem_max<mem_top then bad:=8;
if (min_quarterword>0)or(max_quarterword<127) then bad:=9;
if (min_halfword>0)or(max_halfword<32767) then bad:=10;
if (min_quarterword<min_halfword)or@|
(max_quarterword>max_halfword) then bad:=11;
if (mem_min<min_halfword)or(mem_max>=max_halfword) then bad:=12;
if max_strings>max_halfword then bad:=13;
if buf_size>max_halfword then bad:=14;
if font_max>max_halfword then bad:=15;
if (max_quarterword-min_quarterword<255)or@|
(max_halfword-min_halfword<65535) then bad:=16;
@ The operation of subtracting |min_halfword| occurs rather frequently in
\MP, so it is convenient to abbreviate this operation by using the macro
|ho| defined here. \MP\ will run faster with respect to compilers that
don't optimize the expression `|x-0|', if this macro is simplified in the
obvious way when |min_halfword=0|. Similarly, |qi| and |qo| are used for
input to and output from quarterwords.
@^system dependencies@>
@d ho(#)==#-min_halfword
{to take a sixteen-bit item from a halfword}
@d qo(#)==#-min_quarterword {to read eight bits from a quarterword}
@d qi(#)==#+min_quarterword {to store eight bits in a quarterword}
@ The reader should study the following definitions closely:
@^system dependencies@>
@d sc==int {|scaled| data is equivalent to |integer|}
@<Types...@>=
@!quarterword = min_quarterword..max_quarterword; {1/4 of a word}
@!halfword=min_halfword..max_halfword; {1/2 of a word}
@!two_choices = 1..2; {used when there are two variants in a record}
@!three_choices = 1..3; {used when there are three variants in a record}
@!two_halves = packed record@;@/
@!rh:halfword;
case two_choices of
1: (@!lh:halfword);
2: (@!b0:quarterword; @!b1:quarterword);
end;
@!four_quarters = packed record@;@/
@!b0:quarterword;
@!b1:quarterword;
@!b2:quarterword;
@!b3:quarterword;
end;
@!memory_word = record@;@/
case three_choices of
1: (@!int:integer);
2: (@!hh:two_halves);
3: (@!qqqq:four_quarters);
end;
@!word_file = file of memory_word;
@ When debugging, we may want to print a |memory_word| without knowing
what type it is; so we print it in all modes.
@^dirty \PASCAL@>@^debugging@>
@p @!debug procedure print_word(@!w:memory_word);
{prints |w| in all ways}
begin print_int(w.int); print_char(" ");@/
print_scaled(w.sc); print_char(" "); print_scaled(w.sc div @'10000); print_ln;@/
print_int(w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":");
print_int(w.hh.b1); print_char(";"); print_int(w.hh.rh); print_char(" ");@/
print_int(w.qqqq.b0); print_char(":"); print_int(w.qqqq.b1); print_char(":");
print_int(w.qqqq.b2); print_char(":"); print_int(w.qqqq.b3);
end;
gubed
@* \[10] Dynamic memory allocation.
The \MP\ system does nearly all of its own memory allocation, so that it
can readily be transported into environments that do not have automatic
facilities for strings, garbage collection, etc., and so that it can be in
control of what error messages the user receives. The dynamic storage
requirements of \MP\ are handled by providing a large array |mem| in
which consecutive blocks of words are used as nodes by the \MP\ routines.
Pointer variables are indices into this array, or into another array
called |eqtb| that will be explained later. A pointer variable might
also be a special flag that lies outside the bounds of |mem|, so we
allow pointers to assume any |halfword| value. The minimum memory
index represents a null pointer.
@d pointer==halfword {a flag or a location in |mem| or |eqtb|}
@d null==mem_min {the null pointer}
@ The |mem| array is divided into two regions that are allocated separately,
but the dividing line between these two regions is not fixed; they grow
together until finding their ``natural'' size in a particular job.
Locations less than or equal to |lo_mem_max| are used for storing
variable-length records consisting of two or more words each. This region
is maintained using an algorithm similar to the one described in exercise
2.5--19 of {\sl The Art of Computer Programming}. However, no size field
appears in the allocated nodes; the program is responsible for knowing the
relevant size when a node is freed. Locations greater than or equal to
|hi_mem_min| are used for storing one-word records; a conventional
\.{AVAIL} stack is used for allocation in this region.
Locations of |mem| between |mem_min| and |mem_top| may be dumped as part
of preloaded format files, by the \.{INIMP} preprocessor.
@.INIMP@>
Production versions of \MP\ may extend the memory at the top end in order to
provide more space; these locations, between |mem_top| and |mem_max|,
are always used for single-word nodes.
The key pointers that govern |mem| allocation have a prescribed order:
$$\hbox{|null=mem_min<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
@<Glob...@>=
@!mem : array[mem_min..mem_max] of memory_word; {the big dynamic storage area}
@!lo_mem_max : pointer; {the largest location of variable-size memory in use}
@!hi_mem_min : pointer; {the smallest location of one-word memory in use}
@ Users who wish to study the memory requirements of particular applications can
can use optional special features that keep track of current and
maximum memory usage. When code between the delimiters |@!stat| $\ldots$
|tats| is not ``commented out,'' \MP\ will run a bit slower but it will
report these statistics when |tracing_stats| is positive.
@<Glob...@>=
@!var_used, @!dyn_used : integer; {how much memory is in use}
@ Let's consider the one-word memory region first, since it's the
simplest. The pointer variable |mem_end| holds the highest-numbered location
of |mem| that has ever been used. The free locations of |mem| that
occur between |hi_mem_min| and |mem_end|, inclusive, are of type
|two_halves|, and we write |info(p)| and |link(p)| for the |lh|
and |rh| fields of |mem[p]| when it is of this type. The single-word
free locations form a linked list
$$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
terminated by |null|.
@d link(#) == mem[#].hh.rh {the |link| field of a memory word}
@d info(#) == mem[#].hh.lh {the |info| field of a memory word}
@<Glob...@>=
@!avail : pointer; {head of the list of available one-word nodes}
@!mem_end : pointer; {the last one-word node used in |mem|}
@ If one-word memory is exhausted, it might mean that the user has forgotten
a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
later that try to help pinpoint the trouble.
@p @t\4@>@<Declare the procedure called |show_token_list|@>@;
@t\4@>@<Declare the procedure called |runaway|@>
@ The function |get_avail| returns a pointer to a new one-word node whose
|link| field is null. However, \MP\ will halt if there is no more room left.
@^inner loop@>
@p function get_avail : pointer; {single-word node allocation}
var @!p:pointer; {the new node being got}
begin p:=avail; {get top location in the |avail| stack}
if p<>null then avail:=link(avail) {and pop it off}
else if mem_end<mem_max then {or go into virgin territory}
begin incr(mem_end); p:=mem_end;
end
else begin decr(hi_mem_min); p:=hi_mem_min;
if hi_mem_min<=lo_mem_max then
begin runaway; {if memory is exhausted, display possible runaway text}
overflow("main memory size",mem_max+1-mem_min);
{quit; all one-word nodes are busy}
@:MetaPost capacity exceeded main memory size}{\quad main memory size@>
end;
end;
link(p):=null; {provide an oft-desired initialization of the new node}
@!stat incr(dyn_used);@+tats@;{maintain statistics}
get_avail:=p;
end;
@ Conversely, a one-word node is recycled by calling |free_avail|.
@d free_avail(#)== {single-word node liberation}
begin link(#):=avail; avail:=#;
@!stat decr(dyn_used);@+tats@/
end
@ There's also a |fast_get_avail| routine, which saves the procedure-call
overhead at the expense of extra programming. This macro is used in
the places that would otherwise account for the most calls of |get_avail|.
@^inner loop@>
@d fast_get_avail(#)==@t@>@;@/
begin #:=avail; {avoid |get_avail| if possible, to save time}
if #=null then #:=get_avail
else begin avail:=link(#); link(#):=null;
@!stat incr(dyn_used);@+tats@/
end;
end
@ The available-space list that keeps track of the variable-size portion
of |mem| is a nonempty, doubly-linked circular list of empty nodes,
pointed to by the roving pointer |rover|.
Each empty node has size 2 or more; the first word contains the special
value |max_halfword| in its |link| field and the size in its |info| field;
the second word contains the two pointers for double linking.
Each nonempty node also has size 2 or more. Its first word is of type
|two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
Otherwise there is complete flexibility with respect to the contents
of its other fields and its other words.
(We require |mem_max<max_halfword| because terrible things can happen
when |max_halfword| appears in the |link| field of a nonempty node.)
@d empty_flag == max_halfword {the |link| of an empty variable-size node}
@d is_empty(#) == (link(#)=empty_flag) {tests for empty node}
@d node_size == info {the size field in empty variable-size nodes}
@d llink(#) == info(#+1) {left link in doubly-linked list of empty nodes}
@d rlink(#) == link(#+1) {right link in doubly-linked list of empty nodes}
@<Glob...@>=
@!rover : pointer; {points to some node in the list of empties}
@ A call to |get_node| with argument |s| returns a pointer to a new node
of size~|s|, which must be 2~or more. The |link| field of the first word
of this new node is set to null. An overflow stop occurs if no suitable
space exists.
If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
areas and returns the value |max_halfword|.
@p function get_node(@!s:integer):pointer; {variable-size node allocation}
label found,exit,restart;
var @!p:pointer; {the node currently under inspection}
@!q:pointer; {the node physically after node |p|}
@!r:integer; {the newly allocated node, or a candidate for this honor}
@!t,@!tt:integer; {temporary registers}
@^inner loop@>
begin restart: p:=rover; {start at some free node in the ring}
repeat @<Try to allocate within node |p| and its physical successors,
and |goto found| if allocation was possible@>;
p:=rlink(p); {move to the next node in the ring}
until p=rover; {repeat until the whole list has been traversed}
if s=@'10000000000 then
begin get_node:=max_halfword; return;
end;
if lo_mem_max+2<hi_mem_min then if lo_mem_max+2<=mem_min+max_halfword then
@<Grow more variable-size memory and |goto restart|@>;
overflow("main memory size",mem_max+1-mem_min);
{sorry, nothing satisfactory is left}
@:MetaPost capacity exceeded main memory size}{\quad main memory size@>
found: link(r):=null; {this node is now nonempty}
@!stat var_used:=var_used+s; {maintain usage statistics}
tats@;@/
get_node:=r;
exit:end;
@ The lower part of |mem| grows by 1000 words at a time, unless
we are very close to going under. When it grows, we simply link
a new node into the available-space list. This method of controlled
growth helps to keep the |mem| usage consecutive when \MP\ is
implemented on ``virtual memory'' systems.
@^virtual memory@>
@<Grow more variable-size memory and |goto restart|@>=
begin if hi_mem_min-lo_mem_max>=1998 then t:=lo_mem_max+1000
else t:=lo_mem_max+1+(hi_mem_min-lo_mem_max) div 2;
{|lo_mem_max+2<=t<hi_mem_min|}
if t>mem_min+max_halfword then t:=mem_min+max_halfword;
p:=llink(rover); q:=lo_mem_max; rlink(p):=q; llink(rover):=q;@/
rlink(q):=rover; llink(q):=p; link(q):=empty_flag; node_size(q):=t-lo_mem_max;@/
lo_mem_max:=t; link(lo_mem_max):=null; info(lo_mem_max):=null;
rover:=q; goto restart;
end
@ @<Try to allocate...@>=
q:=p+node_size(p); {find the physical successor}
while is_empty(q) do {merge node |p| with node |q|}
begin t:=rlink(q); tt:=llink(q);
@^inner loop@>
if q=rover then rover:=t;
llink(t):=tt; rlink(tt):=t;@/
q:=q+node_size(q);
end;
r:=q-s;
if r>p+1 then @<Allocate from the top of node |p| and |goto found|@>;
if r=p then if rlink(p)<>p then
@<Allocate entire node |p| and |goto found|@>;
node_size(p):=q-p {reset the size in case it grew}
@ @<Allocate from the top...@>=
begin node_size(p):=r-p; {store the remaining size}
rover:=p; {start searching here next time}
goto found;
end
@ Here we delete node |p| from the ring, and let |rover| rove around.
@<Allocate entire...@>=
begin rover:=rlink(p); t:=llink(p);
llink(rover):=t; rlink(t):=rover;
goto found;
end
@ Conversely, when some variable-size node |p| of size |s| is no longer needed,
the operation |free_node(p,s)| will make its words available, by inserting
|p| as a new empty node just before where |rover| now points.
@p procedure free_node(@!p:pointer; @!s:halfword); {variable-size node
liberation}
var @!q:pointer; {|llink(rover)|}
begin node_size(p):=s; link(p):=empty_flag;
@^inner loop@>
q:=llink(rover); llink(p):=q; rlink(p):=rover; {set both links}
llink(rover):=p; rlink(q):=p; {insert |p| into the ring}
@!stat var_used:=var_used-s;@+tats@;{maintain statistics}
end;
@ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
available space list. The list is probably very short at such times, so a
simple insertion sort is used. The smallest available location will be
pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
@p @!init procedure sort_avail; {sorts the available variable-size nodes
by location}
var @!p,@!q,@!r: pointer; {indices into |mem|}
@!old_rover:pointer; {initial |rover| setting}
begin p:=get_node(@'10000000000); {merge adjacent free areas}
p:=rlink(rover); rlink(rover):=max_halfword; old_rover:=rover;
while p<>old_rover do @<Sort |p| into the list starting at |rover|
and advance |p| to |rlink(p)|@>;
p:=rover;
while rlink(p)<>max_halfword do
begin llink(rlink(p)):=p; p:=rlink(p);
end;
rlink(p):=rover; llink(rover):=p;
end;
tini
@ The following |while| loop is guaranteed to
terminate, since the list that starts at
|rover| ends with |max_halfword| during the sorting procedure.
@<Sort |p|...@>=
if p<rover then
begin q:=p; p:=rlink(q); rlink(q):=rover; rover:=q;
end
else begin q:=rover;
while rlink(q)<p do q:=rlink(q);
r:=rlink(p); rlink(p):=rlink(q); rlink(q):=p; p:=r;
end
@* \[11] Memory layout.
Some areas of |mem| are dedicated to fixed usage, since static allocation is
more efficient than dynamic allocation when we can get away with it. For
example, locations |mem_min| to |mem_min+1| are always used to store a
two-word dummy token whose second word is zero.
The following macro definitions accomplish the static allocation by giving
symbolic names to the fixed positions. Static variable-size nodes appear
in locations |mem_min| through |lo_mem_stat_max|, and static single-word nodes
appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
@d null_dash==mem_min+2 {the first two words are reserved for a null value}
@d dep_head==null_dash+3 {we will define |dash_node_size=3|}
@d zero_val==dep_head+2 {two words for a permanently zero value}
@d temp_val==zero_val+2 {two words for a temporary value node}
@d end_attr==temp_val {we use |end_attr+2| only}
@d inf_val==end_attr+2 {and |inf_val+1| only}
@d test_pen==inf_val+2
{nine words for a pen used when testing the turning number}
@d bad_vardef==test_pen+9 {two words for \&{vardef} error recovery}
@d lo_mem_stat_max==bad_vardef+1 {largest statically
allocated word in the variable-size |mem|}
@#
@d sentinel==mem_top {end of sorted lists}
@d temp_head==mem_top-1 {head of a temporary list of some kind}
@d hold_head==mem_top-2 {head of a temporary list of another kind}
@d spec_head==mem_top-3 {head of a list of unprocessed \&{special} items}
@d hi_mem_stat_min==mem_top-3 {smallest statically allocated word in
the one-word |mem|}
@ The following code gets the dynamic part of |mem| off to a good start,
when \MP\ is initializing itself the slow way.
@<Initialize table entries (done by \.{INIMP} only)@>=
@^data structure assumptions@>
rover:=lo_mem_stat_max+1; {initialize the dynamic memory}
link(rover):=empty_flag;
node_size(rover):=1000; {which is a 1000-word available node}
llink(rover):=rover; rlink(rover):=rover;@/
lo_mem_max:=rover+1000; link(lo_mem_max):=null; info(lo_mem_max):=null;@/
for k:=hi_mem_stat_min to mem_top do
mem[k]:=mem[lo_mem_max]; {clear list heads}
avail:=null; mem_end:=mem_top;
hi_mem_min:=hi_mem_stat_min; {initialize the one-word memory}
var_used:=lo_mem_stat_max+1-mem_min; dyn_used:=mem_top+1-(hi_mem_stat_min);
{initialize statistics}
@<Initialize a pen at |test_pen| so that it fits in nine words@>;
@ The procedure |flush_list(p)| frees an entire linked list of one-word
nodes that starts at a given position, until coming to |sentinel| or a
pointer that is not in the one-word region. Another procedure,
|flush_node_list|, frees an entire linked list of one-word and two-word
nodes, until coming to a |null| pointer.
@^inner loop@>
@p procedure flush_list(@!p:pointer); {makes list of single-word nodes
available}
label done;
var @!q,@!r:pointer; {list traversers}
begin if p>=hi_mem_min then if p<>sentinel then
begin r:=p;
repeat q:=r; r:=link(r); @!stat decr(dyn_used);@+tats@/
if r<hi_mem_min then goto done;
until r=sentinel;
done: {now |q| is the last node on the list}
link(q):=avail; avail:=p;
end;
end;
@#
procedure flush_node_list(@!p:pointer);
var @!q:pointer; {the node being recycled}
begin while p<>null do
begin q:=p; p:=link(p);
if q<hi_mem_min then free_node(q,2)@+else free_avail(q);
end;
end;
@ If \MP\ is extended improperly, the |mem| array might get screwed up.
For example, some pointers might be wrong, or some ``dead'' nodes might not
have been freed when the last reference to them disappeared. Procedures
|check_mem| and |search_mem| are available to help diagnose such
problems. These procedures make use of two arrays called |free| and
|was_free| that are present only if \MP's debugging routines have
been included. (You may want to decrease the size of |mem| while you
@^debugging@>
are debugging.)
@<Glob...@>=
@!debug @!free: packed array [mem_min..mem_max] of boolean; {free cells}
@t\hskip1em@>@!was_free: packed array [mem_min..mem_max] of boolean;
{previously free cells}
@t\hskip1em@>@!was_mem_end,@!was_lo_max,@!was_hi_min: pointer;
{previous |mem_end|, |lo_mem_max|,and |hi_mem_min|}
@t\hskip1em@>@!panicking:boolean; {do we want to check memory constantly?}
gubed
@ @<Set initial...@>=
@!debug was_mem_end:=mem_min; {indicate that everything was previously free}
was_lo_max:=mem_min; was_hi_min:=mem_max;
panicking:=false;
gubed
@ Procedure |check_mem| makes sure that the available space lists of
|mem| are well formed, and it optionally prints out all locations
that are reserved now but were free the last time this procedure was called.
@p @!debug procedure check_mem(@!print_locs : boolean);
label done1,done2,done3; {loop exits}
var @!p,@!q,@!r:pointer; {current locations of interest in |mem|}
@!clobbered:boolean; {is something amiss?}
begin for p:=mem_min to lo_mem_max do free[p]:=false; {you can probably
do this faster}
for p:=hi_mem_min to mem_end do free[p]:=false; {ditto}
@<Check single-word |avail| list@>;
@<Check variable-size |avail| list@>;
@<Check flags of unavailable nodes@>;
@<Check the list of linear dependencies@>;
if print_locs then @<Print newly busy locations@>;
for p:=mem_min to lo_mem_max do was_free[p]:=free[p];
for p:=hi_mem_min to mem_end do was_free[p]:=free[p];
{|was_free:=free| might be faster}
was_mem_end:=mem_end; was_lo_max:=lo_mem_max; was_hi_min:=hi_mem_min;
end;
gubed
@ @<Check single-word...@>=
p:=avail; q:=null; clobbered:=false;
while p<>null do
begin if (p>mem_end)or(p<hi_mem_min) then clobbered:=true
else if free[p] then clobbered:=true;
if clobbered then
begin print_nl("AVAIL list clobbered at ");
@.AVAIL list clobbered...@>
print_int(q); goto done1;
end;
free[p]:=true; q:=p; p:=link(q);
end;
done1:
@ @<Check variable-size...@>=
p:=rover; q:=null; clobbered:=false;
repeat if (p>=lo_mem_max)or(p<mem_min) then clobbered:=true
else if (rlink(p)>=lo_mem_max)or(rlink(p)<mem_min) then clobbered:=true
else if not(is_empty(p))or(node_size(p)<2)or@|
(p+node_size(p)>lo_mem_max)or@| (llink(rlink(p))<>p) then clobbered:=true;
if clobbered then
begin print_nl("Double-AVAIL list clobbered at ");
@.Double-AVAIL list clobbered...@>
print_int(q); goto done2;
end;
for q:=p to p+node_size(p)-1 do {mark all locations free}
begin if free[q] then
begin print_nl("Doubly free location at ");
@.Doubly free location...@>
print_int(q); goto done2;
end;
free[q]:=true;
end;
q:=p; p:=rlink(p);
until p=rover;
done2:
@ @<Check flags...@>=
p:=mem_min;
while p<=lo_mem_max do {node |p| should not be empty}
begin if is_empty(p) then
begin print_nl("Bad flag at "); print_int(p);
@.Bad flag...@>
end;
while (p<=lo_mem_max) and not free[p] do incr(p);
while (p<=lo_mem_max) and free[p] do incr(p);
end
@ @<Print newly busy...@>=
begin @<Do intialization required before printing new busy locations@>;
print_nl("New busy locs:");
@.New busy locs@>
for p:=mem_min to lo_mem_max do
if not free[p] and ((p>was_lo_max) or was_free[p]) then
@<Indicate that |p| is a new busy location@>;
for p:=hi_mem_min to mem_end do
if not free[p] and
((p<was_hi_min) or (p>was_mem_end) or was_free[p]) then
@<Indicate that |p| is a new busy location@>;
@<Finish printing new busy locations@>;
end
@ There might be many new busy locations so we are careful to print contiguous
blocks compactly. During this operation |q| is the last new busy location and
|r| is the start of the block containing |q|.
@<Indicate that |p| is a new busy location@>=
begin if p>q+1 then
begin if q>r then
begin print(".."); print_int(q);
end;
print_char(" "); print_int(p);
r:=p;
end;
q:=p;
end
@ @<Do intialization required before printing new busy locations@>=
q:=mem_max; r:=mem_max
@ @<Finish printing new busy locations@>=
if q>r then
begin print(".."); print_int(q);
end
@ The |search_mem| procedure attempts to answer the question ``Who points
to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
that might not be of type |two_halves|. Strictly speaking, this is
@^dirty \PASCAL@>
undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
point to |p| purely by coincidence). But for debugging purposes, we want
to rule out the places that do {\sl not\/} point to |p|, so a few false
drops are tolerable.
@p @!debug procedure search_mem(@!p:pointer); {look for pointers to |p|}
var @!q:integer; {current position being searched}
begin for q:=mem_min to lo_mem_max do
begin if link(q)=p then
begin print_nl("LINK("); print_int(q); print_char(")");
end;
if info(q)=p then
begin print_nl("INFO("); print_int(q); print_char(")");
end;
end;
for q:=hi_mem_min to mem_end do
begin if link(q)=p then
begin print_nl("LINK("); print_int(q); print_char(")");
end;
if info(q)=p then
begin print_nl("INFO("); print_int(q); print_char(")");
end;
end;
@<Search |eqtb| for equivalents equal to |p|@>;
end;
gubed
@* \[12] The command codes.
Before we can go much further, we need to define symbolic names for the internal
code numbers that represent the various commands obeyed by \MP. These codes
are somewhat arbitrary, but not completely so. For example,
some codes have been made adjacent so that |case| statements in the
program need not consider cases that are widely spaced, or so that |case|
statements can be replaced by |if| statements. A command can begin an
expression if and only if its code lies between |min_primary_command| and
|max_primary_command|, inclusive. The first token of a statement that doesn't
begin with an expression has a command code between |min_command| and
|max_statement_command|, inclusive. Anything less than |min_command| is
eliminated during macro expansions, and anything no more than |max_pre_command|
is eliminated when expanding \TeX\ material. Ranges such as
|min_secondary_command..max_secondary_command| are used when parsing
expressions, but the relative ordering within such a range is generally not
critical.
The ordering of the highest-numbered commands
(|comma<semicolon<end_group<stop|) is crucial for the parsing and
error-recovery methods of this program as is the ordering |if_test<fi_or_else|
for the smallest two commands. The ordering is also important in the ranges
|numeric_token..plus_or_minus| and |left_brace..ampersand|.
At any rate, here is the list, for future reference.
@d start_tex=1 {begin \TeX\ material (\&{btex}, \&{verbatimtex})}
@d etex_marker=2 {end \TeX\ material (\&{etex})}
@d mpx_break=3 {stop reading an \.{MPX} file (\&{mpxbreak})}
@d max_pre_command=mpx_break
@d if_test=4 {conditional text (\&{if})}
@d fi_or_else=5 {delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}}
@d input=6 {input a source file (\&{input}, \&{endinput})}
@d iteration=7 {iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor})}
@d repeat_loop=8 {special command substituted for \&{endfor}}
@d exit_test=9 {premature exit from a loop (\&{exitif})}
@d relax=10 {do nothing (\.{\char`\\})}
@d scan_tokens=11 {put a string into the input buffer}
@d expand_after=12 {look ahead one token}
@d defined_macro=13 {a macro defined by the user}
@d min_command=defined_macro+1
@d save_command=14 {save a list of tokens (\&{save})}
@d interim_command=15 {save an internal quantity (\&{interim})}
@d let_command=16 {redefine a symbolic token (\&{let})}
@d new_internal=17 {define a new internal quantity (\&{newinternal})}
@d macro_def=18 {define a macro (\&{def}, \&{vardef}, etc.)}
@d ship_out_command=19 {output a character (\&{shipout})}
@d add_to_command=20 {add to edges (\&{addto})}
@d bounds_command=21 {add bounding path to edges (\&{setbounds}, \&{clip})}
@d tfm_command=22 {command for font metric info (\&{ligtable}, etc.)}
@d protection_command=23 {set protection flag (\&{outer}, \&{inner})}
@d show_command=24 {diagnostic output (\&{show}, \&{showvariable}, etc.)}
@d mode_command=25 {set interaction level (\&{batchmode}, etc.)}
@d random_seed=26 {initialize random number generator (\&{randomseed})}
@d message_command=27 {communicate to user (\&{message}, \&{errmessage})}
@d every_job_command=28 {designate a starting token (\&{everyjob})}
@d delimiters=29 {define a pair of delimiters (\&{delimiters})}
@d special_command=30 {output special info (\&{special})}
@d write_command=31 {write text to a file (\&{write})}
@d type_name=32 {declare a type (\&{numeric}, \&{pair}, etc.}
@d max_statement_command=type_name
@d min_primary_command=type_name
@d left_delimiter=33 {the left delimiter of a matching pair}
@d begin_group=34 {beginning of a group (\&{begingroup})}
@d nullary=35 {an operator without arguments (e.g., \&{normaldeviate})}
@d unary=36 {an operator with one argument (e.g., \&{sqrt})}
@d str_op=37 {convert a suffix to a string (\&{str})}
@d cycle=38 {close a cyclic path (\&{cycle})}
@d primary_binary=39 {binary operation taking `\&{of}' (e.g., \&{point})}
@d capsule_token=40 {a value that has been put into a token list}
@d string_token=41 {a string constant (e.g., |"hello"|)}
@d internal_quantity=42 {internal numeric parameter (e.g., \&{pausing})}
@d min_suffix_token=internal_quantity
@d tag_token=43 {a symbolic token without a primitive meaning}
@d numeric_token=44 {a numeric constant (e.g., \.{3.14159})}
@d max_suffix_token=numeric_token
@d plus_or_minus=45 {either `\.+' or `\.-'}
@d max_primary_command=plus_or_minus {should also be |numeric_token+1|}
@d min_tertiary_command=plus_or_minus
@d tertiary_secondary_macro=46 {a macro defined by \&{secondarydef}}
@d tertiary_binary=47 {an operator at the tertiary level (e.g., `\.{++}')}
@d max_tertiary_command=tertiary_binary
@d left_brace=48 {the operator `\.{\char`\{}'}
@d min_expression_command=left_brace
@d path_join=49 {the operator `\.{..}'}
@d ampersand=50 {the operator `\.\&'}
@d expression_tertiary_macro=51 {a macro defined by \&{tertiarydef}}
@d expression_binary=52 {an operator at the expression level (e.g., `\.<')}
@d equals=53 {the operator `\.='}
@d max_expression_command=equals
@d and_command=54 {the operator `\&{and}'}
@d min_secondary_command=and_command
@d secondary_primary_macro=55 {a macro defined by \&{primarydef}}
@d slash=56 {the operator `\./'}
@d secondary_binary=57 {an operator at the binary level (e.g., \&{shifted})}
@d max_secondary_command=secondary_binary
@d param_type=58 {type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.)}
@d controls=59 {specify control points explicitly (\&{controls})}
@d tension=60 {specify tension between knots (\&{tension})}
@d at_least=61 {bounded tension value (\&{atleast})}
@d curl_command=62 {specify curl at an end knot (\&{curl})}
@d macro_special=63 {special macro operators (\&{quote}, \.{\#\AT!}, etc.)}
@d right_delimiter=64 {the right delimiter of a matching pair}
@d left_bracket=65 {the operator `\.['}
@d right_bracket=66 {the operator `\.]'}
@d right_brace=67 {the operator `\.{\char`\}}'}
@d with_option=68 {option for filling (\&{withpen}, \&{withweight}, etc.)}
@d thing_to_add=69
{variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also})}
@d of_token=70 {the operator `\&{of}'}
@d to_token=71 {the operator `\&{to}'}
@d step_token=72 {the operator `\&{step}'}
@d until_token=73 {the operator `\&{until}'}
@d within_token=74 {the operator `\&{within}'}
@d lig_kern_token=75
{the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc.}
@d assignment=76 {the operator `\.{:=}'}
@d skip_to=77 {the operation `\&{skipto}'}
@d bchar_label=78 {the operator `\.{\char'174\char'174:}'}
@d double_colon=79 {the operator `\.{::}'}
@d colon=80 {the operator `\.:'}
@#
@d comma=81 {the operator `\.,', must be |colon+1|}
@d end_of_statement==cur_cmd>comma
@d semicolon=82 {the operator `\.;', must be |comma+1|}
@d end_group=83 {end a group (\&{endgroup}), must be |semicolon+1|}
@d stop=84 {end a job (\&{end}, \&{dump}), must be |end_group+1|}
@d max_command_code=stop
@d outer_tag=max_command_code+1 {protection code added to command code}
@<Types...@>=
@!command_code=1..max_command_code;
@ Variables and capsules in \MP\ have a variety of ``types,''
distinguished by the code numbers defined here. These numbers are also
not completely arbitrary. Things that get expanded must have types
|>independent|; a type remaining after expansion is numeric if and only if
its code number is at least |numeric_type|; objects containing numeric
parts must have types between |transform_type| and |pair_type|;
all other types must be smaller than |transform_type|; and among the types
that are not unknown or vacuous, the smallest two must be |boolean_type|
and |string_type| in that order.
@d undefined=0 {no type has been declared}
@d unknown_tag=1 {this constant is added to certain type codes below}
@d vacuous=1 {no expression was present}
@d boolean_type=2 {\&{boolean} with a known value}
@d unknown_boolean=boolean_type+unknown_tag
@d string_type=4 {\&{string} with a known value}
@d unknown_string=string_type+unknown_tag
@d pen_type=6 {\&{pen} with a known value}
@d unknown_pen=pen_type+unknown_tag
@d path_type=8 {\&{path} with a known value}
@d unknown_path=path_type+unknown_tag
@d picture_type=10 {\&{picture} with a known value}
@d unknown_picture=picture_type+unknown_tag
@d transform_type=12 {\&{transform} variable or capsule}
@d color_type=13 {\&{color} variable or capsule}
@d pair_type=14 {\&{pair} variable or capsule}
@d numeric_type=15 {variable that has been declared \&{numeric} but not used}
@d known=16 {\&{numeric} with a known value}
@d dependent=17 {a linear combination with |fraction| coefficients}
@d proto_dependent=18 {a linear combination with |scaled| coefficients}
@d independent=19 {\&{numeric} with unknown value}
@d token_list=20 {variable name or suffix argument or text argument}
@d structured=21 {variable with subscripts and attributes}
@d unsuffixed_macro=22 {variable defined with \&{vardef} but no \.{\AT!\#}}
@d suffixed_macro=23 {variable defined with \&{vardef} and \.{\AT!\#}}
@#
@d unknown_types==unknown_boolean,unknown_string,
unknown_pen,unknown_picture,unknown_path
@<Basic printing procedures@>=
procedure print_type(@!t:small_number);
begin case t of
vacuous:print("vacuous");
boolean_type:print("boolean");
unknown_boolean:print("unknown boolean");
string_type:print("string");
unknown_string:print("unknown string");
pen_type:print("pen");
unknown_pen:print("unknown pen");
path_type:print("path");
unknown_path:print("unknown path");
picture_type:print("picture");
unknown_picture:print("unknown picture");
transform_type:print("transform");
color_type:print("color");
pair_type:print("pair");
known:print("known numeric");
dependent:print("dependent");
proto_dependent:print("proto-dependent");
numeric_type:print("numeric");
independent:print("independent");
token_list:print("token list");
structured:print("structured");
unsuffixed_macro:print("unsuffixed macro");
suffixed_macro:print("suffixed macro");
othercases print("undefined")
endcases;
end;
@ Values inside \MP\ are stored in two-word nodes that have a |name_type|
as well as a |type|. The possibilities for |name_type| are defined
here; they will be explained in more detail later.
@d root=0 {|name_type| at the top level of a variable}
@d saved_root=1 {same, when the variable has been saved}
@d structured_root=2 {|name_type| where a |structured| branch occurs}
@d subscr=3 {|name_type| in a subscript node}
@d attr=4 {|name_type| in an attribute node}
@d x_part_sector=5 {|name_type| in the \&{xpart} of a node}
@d y_part_sector=6 {|name_type| in the \&{ypart} of a node}
@d xx_part_sector=7 {|name_type| in the \&{xxpart} of a node}
@d xy_part_sector=8 {|name_type| in the \&{xypart} of a node}
@d yx_part_sector=9 {|name_type| in the \&{yxpart} of a node}
@d yy_part_sector=10 {|name_type| in the \&{yypart} of a node}
@d red_part_sector=11 {|name_type| in the \&{redpart} of a node}
@d green_part_sector=12 {|name_type| in the \&{greenpart} of a node}
@d blue_part_sector=13 {|name_type| in the \&{bluepart} of a node}
@d capsule=14 {|name_type| in stashed-away subexpressions}
@d token=15 {|name_type| in a numeric token or string token}
@ Primitive operations that produce values have a secondary identification
code in addition to their command code; it's something like genera and species.
For example, `\.*' has the command code |primary_binary|, and its
secondary identification is |times|. The secondary codes start at 30 so that
they don't overlap with the type codes; some type codes (e.g., |string_type|)
are used as operators as well as type identifications. The relative values
are not critical, except for |true_code..false_code|, |or_op..and_op|,
and |filled_op..bounded_op|. The restrictions are that
|and_op-false_code=or_op-true_code|, that the ordering of
|x_part...blue_part| must match that of |x_part_sector..blue_part_sector|,
and the ordering of |filled_op..bounded_op| must match that of the code
values they test for.
@d true_code=30 {operation code for \.{true}}
@d false_code=31 {operation code for \.{false}}
@d null_picture_code=32 {operation code for \.{nullpicture}}
@d null_pen_code=33 {operation code for \.{nullpen}}
@d job_name_op=34 {operation code for \.{jobname}}
@d read_string_op=35 {operation code for \.{readstring}}
@d pen_circle=36 {operation code for \.{pencircle}}
@d normal_deviate=37 {operation code for \.{normaldeviate}}
@d read_from_op=38 {operation code for \.{readfrom}}
@d close_from_op=39 {operation code for \.{closefrom}}
@d odd_op=40 {operation code for \.{odd}}
@d known_op=41 {operation code for \.{known}}
@d unknown_op=42 {operation code for \.{unknown}}
@d not_op=43 {operation code for \.{not}}
@d decimal=44 {operation code for \.{decimal}}
@d reverse=45 {operation code for \.{reverse}}
@d make_path_op=46 {operation code for \.{makepath}}
@d make_pen_op=47 {operation code for \.{makepen}}
@d oct_op=48 {operation code for \.{oct}}
@d hex_op=49 {operation code for \.{hex}}
@d ASCII_op=50 {operation code for \.{ASCII}}
@d char_op=51 {operation code for \.{char}}
@d length_op=52 {operation code for \.{length}}
@d turning_op=53 {operation code for \.{turningnumber}}
@d x_part=54 {operation code for \.{xpart}}
@d y_part=55 {operation code for \.{ypart}}
@d xx_part=56 {operation code for \.{xxpart}}
@d xy_part=57 {operation code for \.{xypart}}
@d yx_part=58 {operation code for \.{yxpart}}
@d yy_part=59 {operation code for \.{yypart}}
@d red_part=60 {operation code for \.{redpart}}
@d green_part=61 {operation code for \.{greenpart}}
@d blue_part=62 {operation code for \.{bluepart}}
@d font_part=63 {operation code for \.{fontpart}}
@d text_part=64 {operation code for \.{textpart}}
@d path_part=65 {operation code for \.{pathpart}}
@d pen_part=66 {operation code for \.{penpart}}
@d dash_part=67 {operation code for \.{dashpart}}
@d sqrt_op=68 {operation code for \.{sqrt}}
@d m_exp_op=69 {operation code for \.{mexp}}
@d m_log_op=70 {operation code for \.{mlog}}
@d sin_d_op=71 {operation code for \.{sind}}
@d cos_d_op=72 {operation code for \.{cosd}}
@d floor_op=73 {operation code for \.{floor}}
@d uniform_deviate=74 {operation code for \.{uniformdeviate}}
@d char_exists_op=75 {operation code for \.{charexists}}
@d font_size=76 {operation code for \.{fontsize}}
@d ll_corner_op=77 {operation code for \.{llcorner}}
@d lr_corner_op=78 {operation code for \.{lrcorner}}
@d ul_corner_op=79 {operation code for \.{ulcorner}}
@d ur_corner_op=80 {operation code for \.{urcorner}}
@d arc_length=81 {operation code for \.{arclength}}
@d angle_op=82 {operation code for \.{angle}}
@d cycle_op=83 {operation code for \.{cycle}}
@d filled_op=84 {operation code for \.{filled}}
@d stroked_op=85 {operation code for \.{stroked}}
@d textual_op=86 {operation code for \.{textual}}
@d clipped_op=87 {operation code for \.{clipped}}
@d bounded_op=88 {operation code for \.{bounded}}
@d plus=89 {operation code for \.+}
@d minus=90 {operation code for \.-}
@d times=91 {operation code for \.*}
@d over=92 {operation code for \./}
@d pythag_add=93 {operation code for \.{++}}
@d pythag_sub=94 {operation code for \.{+-+}}
@d or_op=95 {operation code for \.{or}}
@d and_op=96 {operation code for \.{and}}
@d less_than=97 {operation code for \.<}
@d less_or_equal=98 {operation code for \.{<=}}
@d greater_than=99 {operation code for \.>}
@d greater_or_equal=100 {operation code for \.{>=}}
@d equal_to=101 {operation code for \.=}
@d unequal_to=102 {operation code for \.{<>}}
@d concatenate=103 {operation code for \.\&}
@d rotated_by=104 {operation code for \.{rotated}}
@d slanted_by=105 {operation code for \.{slanted}}
@d scaled_by=106 {operation code for \.{scaled}}
@d shifted_by=107 {operation code for \.{shifted}}
@d transformed_by=108 {operation code for \.{transformed}}
@d x_scaled=109 {operation code for \.{xscaled}}
@d y_scaled=110 {operation code for \.{yscaled}}
@d z_scaled=111 {operation code for \.{zscaled}}
@d in_font=112 {operation code for \.{infont}}
@d intersect=113 {operation code for \.{intersectiontimes}}
@d double_dot=114 {operation code for improper \.{..}}
@d substring_of=115 {operation code for \.{substring}}
@d min_of=substring_of
@d subpath_of=116 {operation code for \.{subpath}}
@d direction_time_of=117 {operation code for \.{directiontime}}
@d point_of=118 {operation code for \.{point}}
@d precontrol_of=119 {operation code for \.{precontrol}}
@d postcontrol_of=120 {operation code for \.{postcontrol}}
@d pen_offset_of=121 {operation code for \.{penoffset}}
@d arc_time_of=122 {operation code for \.{arctime}}
@p procedure print_op(@!c:quarterword);
begin if c<=numeric_type then print_type(c)
else case c of
true_code:print("true");
false_code:print("false");
null_picture_code:print("nullpicture");
null_pen_code:print("nullpen");
job_name_op:print("jobname");
read_string_op:print("readstring");
pen_circle:print("pencircle");
normal_deviate:print("normaldeviate");
read_from_op:print("readfrom");
close_from_op:print("closefrom");
odd_op:print("odd");
known_op:print("known");
unknown_op:print("unknown");
not_op:print("not");
decimal:print("decimal");
reverse:print("reverse");
make_path_op:print("makepath");
make_pen_op:print("makepen");
oct_op:print("oct");
hex_op:print("hex");
ASCII_op:print("ASCII");
char_op:print("char");
length_op:print("length");
turning_op:print("turningnumber");
x_part:print("xpart");
y_part:print("ypart");
xx_part:print("xxpart");
xy_part:print("xypart");
yx_part:print("yxpart");
yy_part:print("yypart");
red_part:print("redpart");
green_part:print("greenpart");
blue_part:print("bluepart");
font_part:print("fontpart");
text_part:print("textpart");
path_part:print("pathpart");
pen_part:print("penpart");
dash_part:print("dashpart");
sqrt_op:print("sqrt");
m_exp_op:print("mexp");
m_log_op:print("mlog");
sin_d_op:print("sind");
cos_d_op:print("cosd");
floor_op:print("floor");
uniform_deviate:print("uniformdeviate");
char_exists_op:print("charexists");
font_size:print("fontsize");
ll_corner_op:print("llcorner");
lr_corner_op:print("lrcorner");
ul_corner_op:print("ulcorner");
ur_corner_op:print("urcorner");
arc_length:print("arclength");
angle_op:print("angle");
cycle_op:print("cycle");
filled_op:print("filled");
stroked_op:print("stroked");
textual_op:print("textual");
clipped_op:print("clipped");
bounded_op:print("bounded");
plus:print_char("+");
minus:print_char("-");
times:print_char("*");
over:print_char("/");
pythag_add:print("++");
pythag_sub:print("+-+");
or_op:print("or");
and_op:print("and");
less_than:print_char("<");
less_or_equal:print("<=");
greater_than:print_char(">");
greater_or_equal:print(">=");
equal_to:print_char("=");
unequal_to:print("<>");
concatenate:print("&");
rotated_by:print("rotated");
slanted_by:print("slanted");
scaled_by:print("scaled");
shifted_by:print("shifted");
transformed_by:print("transformed");
x_scaled:print("xscaled");
y_scaled:print("yscaled");
z_scaled:print("zscaled");
in_font:print("infont");
intersect:print("intersectiontimes");
substring_of:print("substring");
subpath_of:print("subpath");
direction_time_of:print("directiontime");
point_of:print("point");
precontrol_of:print("precontrol");
postcontrol_of:print("postcontrol");
pen_offset_of:print("penoffset");
arc_time_of:print("arctime");
othercases print("..")
endcases;
end;
@ \MP\ also has a bunch of internal parameters that a user might want to
fuss with. Every such parameter has an identifying code number, defined here.
@d tracing_titles=1 {show titles online when they appear}
@d tracing_equations=2 {show each variable when it becomes known}
@d tracing_capsules=3 {show capsules too}
@d tracing_choices=4 {show the control points chosen for paths}
@d tracing_specs=5 {show path subdivision prior to filling with polygonal a pen}
@d tracing_commands=6 {show commands and operations before they are performed}
@d tracing_restores=7 {show when a variable or internal is restored}
@d tracing_macros=8 {show macros before they are expanded}
@d tracing_output=9 {show digitized edges as they are output}
@d tracing_stats=10 {show memory usage at end of job}
@d tracing_lost_chars=11 {show characters that aren't \&{infont}}
@d tracing_online=12 {show long diagnostics on terminal and in the log file}
@d year=13 {the current year (e.g., 1984)}
@d month=14 {the current month (e.g, 3 $\equiv$ March)}
@d day=15 {the current day of the month}
@d time=16 {the number of minutes past midnight when this job started}
@d char_code=17 {the number of the next character to be output}
@d char_ext=18 {the extension code of the next character to be output}
@d char_wd=19 {the width of the next character to be output}
@d char_ht=20 {the height of the next character to be output}
@d char_dp=21 {the depth of the next character to be output}
@d char_ic=22 {the italic correction of the next character to be output}
@d design_size=23 {the unit of measure used for |char_wd..char_ic|, in points}
@d pausing=24 {positive to display lines on the terminal before they are read}
@d showstopping=25 {positive to stop after each \&{show} command}
@d fontmaking=26 {positive if font metric output is to be produced}
@d linejoin=27 {as in \ps: 0 for mitered, 1 for round, 2 for beveled}
@d linecap=28 {as in \ps: 0 for butt, 1 for round, 2 for square}
@d miterlimit=29 {controls miter length as in \ps}
@d warning_check=30 {controls error message when variable value is large}
@d boundary_char=31 {the right boundary character for ligatures}
@d prologues=32 {positive to output conforming PostScript using built-in fonts}
@d true_corners=33 {positive to make \&{llcorner} etc. ignore \&{setbounds}}
@d max_given_internal=33
@<Glob...@>=
@!internal:array[1..max_internal] of scaled;
{the values of internal quantities}
@!int_name:array[1..max_internal] of str_number;
{their names}
@!int_ptr:max_given_internal..max_internal;
{the maximum internal quantity defined so far}
@ @<Set init...@>=
for k:=1 to max_given_internal do internal[k]:=0;
int_ptr:=max_given_internal;
@ The symbolic names for internal quantities are put into \MP's hash table
by using a routine called |primitive|, which will be defined later. Let us
enter them now, so that we don't have to list all those names again
anywhere else.
@<Put each of \MP's primitives into the hash table@>=
primitive("tracingtitles",internal_quantity,tracing_titles);@/
@!@:tracingtitles_}{\&{tracingtitles} primitive@>
primitive("tracingequations",internal_quantity,tracing_equations);@/
@!@:tracing_equations_}{\&{tracingequations} primitive@>
primitive("tracingcapsules",internal_quantity,tracing_capsules);@/
@!@:tracing_capsules_}{\&{tracingcapsules} primitive@>
primitive("tracingchoices",internal_quantity,tracing_choices);@/
@!@:tracing_choices_}{\&{tracingchoices} primitive@>
primitive("tracingspecs",internal_quantity,tracing_specs);@/
@!@:tracing_specs_}{\&{tracingspecs} primitive@>
primitive("tracingcommands",internal_quantity,tracing_commands);@/
@!@:tracing_commands_}{\&{tracingcommands} primitive@>
primitive("tracingrestores",internal_quantity,tracing_restores);@/
@!@:tracing_restores_}{\&{tracingrestores} primitive@>
primitive("tracingmacros",internal_quantity,tracing_macros);@/
@!@:tracing_macros_}{\&{tracingmacros} primitive@>
primitive("tracingoutput",internal_quantity,tracing_output);@/
@!@:tracing_output_}{\&{tracingoutput} primitive@>
primitive("tracingstats",internal_quantity,tracing_stats);@/
@!@:tracing_stats_}{\&{tracingstats} primitive@>
primitive("tracinglostchars",internal_quantity,tracing_lost_chars);@/
@!@:tracing_lost_chars_}{\&{tracinglostchars} primitive@>
primitive("tracingonline",internal_quantity,tracing_online);@/
@!@:tracing_online_}{\&{tracingonline} primitive@>
primitive("year",internal_quantity,year);@/
@!@:year_}{\&{year} primitive@>
primitive("month",internal_quantity,month);@/
@!@:month_}{\&{month} primitive@>
primitive("day",internal_quantity,day);@/
@!@:day_}{\&{day} primitive@>
primitive("time",internal_quantity,time);@/
@!@:time_}{\&{time} primitive@>
primitive("charcode",internal_quantity,char_code);@/
@!@:char_code_}{\&{charcode} primitive@>
primitive("charext",internal_quantity,char_ext);@/
@!@:char_ext_}{\&{charext} primitive@>
primitive("charwd",internal_quantity,char_wd);@/
@!@:char_wd_}{\&{charwd} primitive@>
primitive("charht",internal_quantity,char_ht);@/
@!@:char_ht_}{\&{charht} primitive@>
primitive("chardp",internal_quantity,char_dp);@/
@!@:char_dp_}{\&{chardp} primitive@>
primitive("charic",internal_quantity,char_ic);@/
@!@:char_ic_}{\&{charic} primitive@>
primitive("designsize",internal_quantity,design_size);@/
@!@:design_size_}{\&{designsize} primitive@>
primitive("pausing",internal_quantity,pausing);@/
@!@:pausing_}{\&{pausing} primitive@>
primitive("showstopping",internal_quantity,showstopping);@/
@!@:showstopping_}{\&{showstopping} primitive@>
primitive("fontmaking",internal_quantity,fontmaking);@/
@!@:fontmaking_}{\&{fontmaking} primitive@>
primitive("linejoin",internal_quantity,linejoin);@/
@!@:linejoin_}{\&{linejoin} primitive@>
primitive("linecap",internal_quantity,linecap);@/
@!@:linecap_}{\&{linecap} primitive@>
primitive("miterlimit",internal_quantity,miterlimit);@/
@!@:miterlimit_}{\&{miterlimit} primitive@>
primitive("warningcheck",internal_quantity,warning_check);@/
@!@:warning_check_}{\&{warningcheck} primitive@>
primitive("boundarychar",internal_quantity,boundary_char);@/
@!@:boundary_char_}{\&{boundarychar} primitive@>
primitive("prologues",internal_quantity,prologues);@/
@!@:prologues_}{\&{prologues} primitive@>
primitive("truecorners",internal_quantity,true_corners);@/
@!@:true_corners_}{\&{truecorners} primitive@>
@ Well, we do have to list the names one more time, for use in symbolic
printouts.
@<Initialize table...@>=
int_name[tracing_titles]:="tracingtitles";
int_name[tracing_equations]:="tracingequations";
int_name[tracing_capsules]:="tracingcapsules";
int_name[tracing_choices]:="tracingchoices";
int_name[tracing_specs]:="tracingspecs";
int_name[tracing_commands]:="tracingcommands";
int_name[tracing_restores]:="tracingrestores";
int_name[tracing_macros]:="tracingmacros";
int_name[tracing_output]:="tracingoutput";
int_name[tracing_stats]:="tracingstats";
int_name[tracing_lost_chars]:="tracinglostchars";
int_name[tracing_online]:="tracingonline";
int_name[year]:="year";
int_name[month]:="month";
int_name[day]:="day";
int_name[time]:="time";
int_name[char_code]:="charcode";
int_name[char_ext]:="charext";
int_name[char_wd]:="charwd";
int_name[char_ht]:="charht";
int_name[char_dp]:="chardp";
int_name[char_ic]:="charic";
int_name[design_size]:="designsize";
int_name[pausing]:="pausing";
int_name[showstopping]:="showstopping";
int_name[fontmaking]:="fontmaking";
int_name[linejoin]:="linejoin";
int_name[linecap]:="linecap";
int_name[miterlimit]:="miterlimit";
int_name[warning_check]:="warningcheck";
int_name[boundary_char]:="boundarychar";
int_name[prologues]:="prologues";
int_name[true_corners]:="truecorners";
@ The following procedure, which is called just before \MP\ initializes its
input and output, establishes the initial values of the date and time.
@^system dependencies@>
Since standard \PASCAL\ cannot provide such information, something special
is needed. The program here simply specifies July 4, 1776, at noon; but
users probably want a better approximation to the truth.
Note that the values are |scaled| integers. Hence \MP\ can no longer
be used after the year 32767.
@p procedure fix_date_and_time;
begin internal[time]:=12*60*unity; {minutes since midnight}
internal[day]:=4*unity; {fourth day of the month}
internal[month]:=7*unity; {seventh month of the year}
internal[year]:=1776*unity; {Anno Domini}
end;
@ \MP\ is occasionally supposed to print diagnostic information that
goes only into the transcript file, unless |tracing_online| is positive.
Now that we have defined |tracing_online| we can define
two routines that adjust the destination of print commands:
@<Basic printing...@>=
@<Declare a function called |true_line|@>@;
procedure begin_diagnostic; {prepare to do some tracing}
begin old_setting:=selector;
if selector=ps_file_only then selector:=non_ps_setting;
if(internal[tracing_online]<=0)and(selector=term_and_log) then
begin decr(selector);
if history=spotless then history:=warning_issued;
end;
end;
@#
procedure end_diagnostic(@!blank_line:boolean);
{restore proper conditions after tracing}
begin print_nl("");
if blank_line then print_ln;
selector:=old_setting;
end;
@ The global variable |non_ps_setting| is initialized when it is time to print
on |ps_file|.
@<Glob...@>=
@!old_setting,@!non_ps_setting:0..max_selector;
@ We will occasionally use |begin_diagnostic| in connection with line-number
printing, as follows. (The parameter |s| is typically |"Path"| or
|"Cycle spec"|, etc.)
@<Basic printing...@>=
procedure print_diagnostic(@!s,@!t:str_number;@!nuline:boolean);
begin begin_diagnostic;
if nuline then print_nl(s)@+else print(s);
print(" at line "); print_int(true_line);
print(t); print_char(":");
end;
@ The 256 |ASCII_code| characters are grouped into classes by means of
the |char_class| table. Individual class numbers have no semantic
or syntactic significance, except in a few instances defined here.
There's also |max_class|, which can be used as a basis for additional
class numbers in nonstandard extensions of \MP.
@d digit_class=0 {the class number of \.{0123456789}}
@d period_class=1 {the class number of `\..'}
@d space_class=2 {the class number of spaces and nonstandard characters}
@d percent_class=3 {the class number of `\.\%'}
@d string_class=4 {the class number of `\."'}
@d right_paren_class=8 {the class number of `\.)'}
@d isolated_classes==5,6,7,8 {characters that make length-one tokens only}
@d letter_class=9 {letters and the underline character}
@d left_bracket_class=17 {`\.['}
@d right_bracket_class=18 {`\.]'}
@d invalid_class=20 {bad character in the input}
@d max_class=20 {the largest class number}
@<Glob...@>=
@!char_class:array[ASCII_code] of 0..max_class; {the class numbers}
@ If changes are made to accommodate non-ASCII character sets, they should
follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
@^system dependencies@>
@<Set init...@>=
for k:="0" to "9" do char_class[k]:=digit_class;
char_class["."]:=period_class;
char_class[" "]:=space_class;
char_class["%"]:=percent_class;
char_class[""""]:=string_class;@/
char_class[","]:=5;
char_class[";"]:=6;
char_class["("]:=7;
char_class[")"]:=right_paren_class;
for k:="A" to "Z" do char_class[k]:=letter_class;
for k:="a" to "z" do char_class[k]:=letter_class;
char_class["_"]:=letter_class;@/
char_class["<"]:=10;
char_class["="]:=10;
char_class[">"]:=10;
char_class[":"]:=10;
char_class["|"]:=10;@/
char_class["`"]:=11;
char_class["'"]:=11;@/
char_class["+"]:=12;
char_class["-"]:=12;@/
char_class["/"]:=13;
char_class["*"]:=13;
char_class["\"]:=13;@/
char_class["!"]:=14;
char_class["?"]:=14;@/
char_class["#"]:=15;
char_class["&"]:=15;
char_class["@@"]:=15;
char_class["$"]:=15;@/
char_class["^"]:=16;
char_class["~"]:=16;@/
char_class["["]:=left_bracket_class;
char_class["]"]:=right_bracket_class;@/
char_class["{"]:=19;
char_class["}"]:=19;@/
for k:=0 to " "-1 do char_class[k]:=invalid_class;
for k:=127 to 255 do char_class[k]:=invalid_class;
@* \[13] The hash table.
Symbolic tokens are stored and retrieved by means of a fairly standard hash
table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
table, it is never removed.
The actual sequence of characters forming a symbolic token is
stored in the |str_pool| array together with all the other strings. An
auxiliary array |hash| consists of items with two halfword fields per
word. The first of these, called |next(p)|, points to the next identifier
belonging to the same coalesced list as the identifier corresponding to~|p|;
and the other, called |text(p)|, points to the |str_start| entry for
|p|'s identifier. If position~|p| of the hash table is empty, we have
|text(p)=0|; if position |p| is either empty or the end of a coalesced
hash list, we have |next(p)=0|.
An auxiliary pointer variable called |hash_used| is maintained in such a
way that all locations |p>=hash_used| are nonempty. The global variable
|st_count| tells how many symbolic tokens have been defined, if statistics
are being kept.
The first 256 locations of |hash| are reserved for symbols of length one.
There's a parallel array called |eqtb| that contains the current equivalent
values of each symbolic token. The entries of this array consist of
two halfwords called |eq_type| (a command code) and |equiv| (a secondary
piece of information that qualifies the |eq_type|).
@d next(#) == hash[#].lh {link for coalesced lists}
@d text(#) == hash[#].rh {string number for symbolic token name}
@d eq_type(#) == eqtb[#].lh {the current ``meaning'' of a symbolic token}
@d equiv(#) == eqtb[#].rh {parametric part of a token's meaning}
@d hash_base=257 {hashing actually starts here}
@d hash_is_full == (hash_used=hash_base) {are all positions occupied?}
@<Glob...@>=
@!hash_used:pointer; {allocation pointer for |hash|}
@!st_count:integer; {total number of known identifiers}
@ Certain entries in the hash table are ``frozen'' and not redefinable,
since they are used in error recovery.
@d hash_top==hash_base+hash_size {the first location of the frozen area}
@d frozen_inaccessible==hash_top {|hash| location to protect the frozen area}
@d frozen_repeat_loop==hash_top+1 {|hash| location of a loop-repeat token}
@d frozen_right_delimiter==hash_top+2 {|hash| location of a permanent `\.)'}
@d frozen_left_bracket==hash_top+3 {|hash| location of a permanent `\.['}
@d frozen_slash==hash_top+4 {|hash| location of a permanent `\./'}
@d frozen_colon==hash_top+5 {|hash| location of a permanent `\.:'}
@d frozen_semicolon==hash_top+6 {|hash| location of a permanent `\.;'}
@d frozen_end_for==hash_top+7 {|hash| location of a permanent \&{endfor}}
@d frozen_end_def==hash_top+8 {|hash| location of a permanent \&{enddef}}
@d frozen_fi==hash_top+9 {|hash| location of a permanent \&{fi}}
@d frozen_end_group==hash_top+10
{|hash| location of a permanent `\.{endgroup}'}
@d frozen_etex==hash_top+11 {|hash| location of a permanent \&{etex}}
@d frozen_mpx_break==hash_top+12 {|hash| location of a permanent \&{mpxbreak}}
@d frozen_bad_vardef==hash_top+13 {|hash| location of `\.{a bad variable}'}
@d frozen_undefined==hash_top+14 {|hash| location that never gets defined}
@d hash_end==hash_top+14 {the actual size of the |hash| and |eqtb| arrays}
@<Glob...@>=
@!hash: array[1..hash_end] of two_halves; {the hash table}
@!eqtb: array[1..hash_end] of two_halves; {the equivalents}
@ @<Set init...@>=
next(1):=0; text(1):=0; eq_type(1):=tag_token; equiv(1):=null;
for k:=2 to hash_end do
begin hash[k]:=hash[1]; eqtb[k]:=eqtb[1];
end;
@ @<Initialize table entries...@>=
hash_used:=frozen_inaccessible; {nothing is used}
st_count:=0;@/
text(frozen_bad_vardef):="a bad variable";
text(frozen_etex):="etex";
text(frozen_mpx_break):="mpxbreak";
text(frozen_fi):="fi";
text(frozen_end_group):="endgroup";
text(frozen_end_def):="enddef";
text(frozen_end_for):="endfor";@/
text(frozen_semicolon):=";";
text(frozen_colon):=":";
text(frozen_slash):="/";
text(frozen_left_bracket):="[";
text(frozen_right_delimiter):=")";@/
text(frozen_inaccessible):=" INACCESSIBLE";@/
eq_type(frozen_right_delimiter):=right_delimiter;
@ @<Check the ``constant'' values...@>=
if hash_end+max_internal>max_halfword then bad:=17;
@ Here is the subroutine that searches the hash table for an identifier
that matches a given string of length~|l| appearing in |buffer[j..
(j+l-1)]|. If the identifier is not found, it is inserted; hence it
will always be found, and the corresponding hash table address
will be returned.
@p function id_lookup(@!j,@!l:integer):pointer; {search the hash table}
label found; {go here when you've found it}
var @!h:integer; {hash code}
@!p:pointer; {index in |hash| array}
@!k:pointer; {index in |buffer| array}
begin if l=1 then @<Treat special case of length 1 and |goto found|@>;
@<Compute the hash code |h|@>;
p:=h+hash_base; {we start searching here; note that |0<=h<hash_prime|}
loop@+ begin if text(p)>0 then if length(text(p))=l then
if str_eq_buf(text(p),j) then goto found;
if next(p)=0 then
@<Insert a new symbolic token after |p|, then
make |p| point to it and |goto found|@>;
p:=next(p);
end;
found: id_lookup:=p;
end;
@ @<Treat special case of length 1...@>=
begin p:=buffer[j]+1; text(p):=p-1; goto found;
end
@ @<Insert a new symbolic...@>=
begin if text(p)>0 then
begin repeat if hash_is_full then
overflow("hash size",hash_size);
@:MetaPost capacity exceeded hash size}{\quad hash size@>
decr(hash_used);
until text(hash_used)=0; {search for an empty location in |hash|}
next(p):=hash_used; p:=hash_used;
end;
str_room(l);
for k:=j to j+l-1 do append_char(buffer[k]);
text(p):=make_string; str_ref[text(p)]:=max_str_ref;
@!stat incr(st_count);@+tats@;@/
goto found;
end
@ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
should be a prime number. The theory of hashing tells us to expect fewer
than two table probes, on the average, when the search is successful.
[See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
@^Vitter, Jeffrey Scott@>
@<Compute the hash code |h|@>=
h:=buffer[j];
for k:=j+1 to j+l-1 do
begin h:=h+h+buffer[k];
while h>=hash_prime do h:=h-hash_prime;
end
@ @<Search |eqtb| for equivalents equal to |p|@>=
for q:=1 to hash_end do
begin if equiv(q)=p then
begin print_nl("EQUIV("); print_int(q); print_char(")");
end;
end
@ We need to put \MP's ``primitive'' symbolic tokens into the hash
table, together with their command code (which will be the |eq_type|)
and an operand (which will be the |equiv|). The |primitive| procedure
does this, in a way that no \MP\ user can. The global value |cur_sym|
contains the new |eqtb| pointer after |primitive| has acted.
@p @!init procedure primitive(@!s:str_number;@!c:halfword;@!o:halfword);
var @!k:pool_pointer; {index into |str_pool|}
@!j:small_number; {index into |buffer|}
@!l:small_number; {length of the string}
begin k:=str_start[s]; l:=str_stop(s)-k;
{we will move |s| into the (empty) |buffer|}
for j:=0 to l-1 do buffer[j]:=so(str_pool[k+j]);
cur_sym:=id_lookup(0,l);@/
if s>=256 then {we don't want to have the string twice}
begin flush_string(text(cur_sym)); text(cur_sym):=s;
end;
eq_type(cur_sym):=c; equiv(cur_sym):=o;
end;
tini
@ Many of \MP's primitives need no |equiv|, since they are identifiable
by their |eq_type| alone. These primitives are loaded into the hash table
as follows:
@<Put each of \MP's primitives into the hash table@>=
primitive("..",path_join,0);@/
@!@:.._}{\.{..} primitive@>
primitive("[",left_bracket,0); eqtb[frozen_left_bracket]:=eqtb[cur_sym];@/
@!@:[ }{\.{[} primitive@>
primitive("]",right_bracket,0);@/
@!@:] }{\.{]} primitive@>
primitive("}",right_brace,0);@/
@!@:]]}{\.{\char`\}} primitive@>
primitive("{",left_brace,0);@/
@!@:][}{\.{\char`\{} primitive@>
primitive(":",colon,0); eqtb[frozen_colon]:=eqtb[cur_sym];@/
@!@:: }{\.{:} primitive@>
primitive("::",double_colon,0);@/
@!@::: }{\.{::} primitive@>
primitive("||:",bchar_label,0);@/
@!@:::: }{\.{\char'174\char'174:} primitive@>
primitive(":=",assignment,0);@/
@!@::=_}{\.{:=} primitive@>
primitive(",",comma,0);@/
@!@:, }{\., primitive@>
primitive(";",semicolon,0); eqtb[frozen_semicolon]:=eqtb[cur_sym];@/
@!@:; }{\.; primitive@>
primitive("\",relax,0);@/
@!@:]]\\}{\.{\char`\\} primitive@>
@#
primitive("addto",add_to_command,0);@/
@!@:add_to_}{\&{addto} primitive@>
primitive("atleast",at_least,0);@/
@!@:at_least_}{\&{atleast} primitive@>
primitive("begingroup",begin_group,0); bg_loc:=cur_sym;@/
@!@:begin_group_}{\&{begingroup} primitive@>
primitive("controls",controls,0);@/
@!@:controls_}{\&{controls} primitive@>
primitive("curl",curl_command,0);@/
@!@:curl_}{\&{curl} primitive@>
primitive("delimiters",delimiters,0);@/
@!@:delimiters_}{\&{delimiters} primitive@>
primitive("endgroup",end_group,0);
eqtb[frozen_end_group]:=eqtb[cur_sym]; eg_loc:=cur_sym;@/
@!@:endgroup_}{\&{endgroup} primitive@>
primitive("everyjob",every_job_command,0);@/
@!@:every_job_}{\&{everyjob} primitive@>
primitive("exitif",exit_test,0);@/
@!@:exit_if_}{\&{exitif} primitive@>
primitive("expandafter",expand_after,0);@/
@!@:expand_after_}{\&{expandafter} primitive@>
primitive("interim",interim_command,0);@/
@!@:interim_}{\&{interim} primitive@>
primitive("let",let_command,0);@/
@!@:let_}{\&{let} primitive@>
primitive("newinternal",new_internal,0);@/
@!@:new_internal_}{\&{newinternal} primitive@>
primitive("of",of_token,0);@/
@!@:of_}{\&{of} primitive@>
primitive("randomseed",random_seed,0);@/
@!@:random_seed_}{\&{randomseed} primitive@>
primitive("save",save_command,0);@/
@!@:save_}{\&{save} primitive@>
primitive("scantokens",scan_tokens,0);@/
@!@:scan_tokens_}{\&{scantokens} primitive@>
primitive("shipout",ship_out_command,0);@/
@!@:ship_out_}{\&{shipout} primitive@>
primitive("skipto",skip_to,0);@/
@!@:skip_to_}{\&{skipto} primitive@>
primitive("special",special_command,0);
@!@:special}{\&{special} primitive@>
primitive("step",step_token,0);@/
@!@:step_}{\&{step} primitive@>
primitive("str",str_op,0);@/
@!@:str_}{\&{str} primitive@>
primitive("tension",tension,0);@/
@!@:tension_}{\&{tension} primitive@>
primitive("to",to_token,0);@/
@!@:to_}{\&{to} primitive@>
primitive("until",until_token,0);@/
@!@:until_}{\&{until} primitive@>
primitive("within",within_token,0);@/
@!@:within_}{\&{within} primitive@>
primitive("write",write_command,0);@/
@!@:write_}{\&{write} primitive@>
@ Each primitive has a corresponding inverse, so that it is possible to
display the cryptic numeric contents of |eqtb| in symbolic form.
Every call of |primitive| in this program is therefore accompanied by some
straightforward code that forms part of the |print_cmd_mod| routine
explained below.
@<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
add_to_command:print("addto");
assignment:print(":=");
at_least:print("atleast");
bchar_label:print("||:");
begin_group:print("begingroup");
colon:print(":");
comma:print(",");
controls:print("controls");
curl_command:print("curl");
delimiters:print("delimiters");
double_colon:print("::");
end_group:print("endgroup");
every_job_command:print("everyjob");
exit_test:print("exitif");
expand_after:print("expandafter");
interim_command:print("interim");
left_brace:print("{");
left_bracket:print("[");
let_command:print("let");
new_internal:print("newinternal");
of_token:print("of");
path_join:print("..");
random_seed:print("randomseed");
relax:print_char("\");
right_brace:print("}");
right_bracket:print("]");
save_command:print("save");
scan_tokens:print("scantokens");
semicolon:print(";");
ship_out_command:print("shipout");
skip_to:print("skipto");
special_command: print("special");
step_token:print("step");
str_op:print("str");
tension:print("tension");
to_token:print("to");
until_token:print("until");
within_token:print("within");
write_command:print("write");
@ We will deal with the other primitives later, at some point in the program
where their |eq_type| and |equiv| values are more meaningful. For example,
the primitives for macro definitions will be loaded when we consider the
routines that define macros.
It is easy to find where each particular
primitive was treated by looking in the index at the end; for example, the
section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
@* \[14] Token lists.
A \MP\ token is either symbolic or numeric or a string, or it denotes
a macro parameter or capsule; so there are five corresponding ways to encode it
@^token@>
internally: (1)~A symbolic token whose hash code is~|p|
is represented by the number |p|, in the |info| field of a single-word
node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
represented in a two-word node of~|mem|; the |type| field is |known|,
the |name_type| field is |token|, and the |value| field holds~|v|.
The fact that this token appears in a two-word node rather than a
one-word node is, of course, clear from the node address.
(3)~A string token is also represented in a two-word node; the |type|
field is |string_type|, the |name_type| field is |token|, and the
|value| field holds the corresponding |str_number|. (4)~Capsules have
|name_type=capsule|, and their |type| and |value| fields represent
arbitrary values (in ways to be explained later). (5)~Macro parameters
are like symbolic tokens in that they appear in |info| fields of
one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
Actual values of these parameters are kept in a separate stack, as we will
see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
of course, chosen so that there will be no confusion between symbolic
tokens and parameters of various types.
Note that
the `\\{type}' field of a node has nothing to do with ``type'' in a
printer's sense. It's curious that the same word is used in such different ways.
@d type(#) == mem[#].hh.b0 {identifies what kind of value this is}
@d name_type(#) == mem[#].hh.b1 {a clue to the name of this value}
@d token_node_size=2 {the number of words in a large token node}
@d value_loc(#)==#+1 {the word that contains the |value| field}
@d value(#)==mem[value_loc(#)].int {the value stored in a large token node}
@d expr_base==hash_end+1 {code for the zeroth \&{expr} parameter}
@d suffix_base==expr_base+param_size {code for the zeroth \&{suffix} parameter}
@d text_base==suffix_base+param_size {code for the zeroth \&{text} parameter}
@<Check the ``constant''...@>=
if text_base+param_size>max_halfword then bad:=18;
@ We have set aside a two word node beginning at |null| so that we can have
|value(null)=0|. We will make use of this coincidence later.
@<Initialize table entries...@>=
link(null):=null;
value(null):=0;
@ A numeric token is created by the following trivial routine.
@p function new_num_tok(@!v:scaled):pointer;
var @!p:pointer; {the new node}
begin p:=get_node(token_node_size); value(p):=v;
type(p):=known; name_type(p):=token; new_num_tok:=p;
end;
@ A token list is a singly linked list of nodes in |mem|, where
each node contains a token and a link. Here's a subroutine that gets rid
of a token list when it is no longer needed.
@p procedure@?token_recycle; forward;@t\2@>@;@/
procedure flush_token_list(@!p:pointer);
var @!q:pointer; {the node being recycled}
begin while p<>null do
begin q:=p; p:=link(p);
if q>=hi_mem_min then free_avail(q)
else begin case type(q) of
vacuous,boolean_type,known:do_nothing;
string_type:delete_str_ref(value(q));
unknown_types,pen_type,path_type,picture_type,pair_type,color_type,
transform_type,dependent,proto_dependent,independent:
begin g_pointer:=q; token_recycle;
end;
othercases confusion("token")
@:this can't happen token}{\quad token@>
endcases;@/
free_node(q,token_node_size);
end;
end;
end;
@ The procedure |show_token_list|, which prints a symbolic form of
the token list that starts at a given node |p|, illustrates these
conventions. The token list being displayed should not begin with a reference
count. However, the procedure is intended to be fairly robust, so that if the
memory links are awry or if |p| is not really a pointer to a token list,
almost nothing catastrophic can happen.
An additional parameter |q| is also given; this parameter is either null
or it points to a node in the token list where a certain magic computation
takes place that will be explained later. (Basically, |q| is non-null when
we are printing the two-line context information at the time of an error
message; |q| marks the place corresponding to where the second line
should begin.)
The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
of printing exceeds a given limit~|l|; the length of printing upon entry is
assumed to be a given amount called |null_tally|. (Note that
|show_token_list| sometimes uses itself recursively to print
variable names within a capsule.)
@^recursion@>
Unusual entries are printed in the form of all-caps tokens
preceded by a space, e.g., `\.{\char`\ BAD}'.
@<Declare the procedure called |show_token_list|@>=
procedure@?print_capsule; forward; @t\2@>@;@/
procedure show_token_list(@!p,@!q:integer;@!l,@!null_tally:integer);
label exit;
var @!class,@!c:small_number; {the |char_class| of previous and new tokens}
@!r,@!v:integer; {temporary registers}
begin class:=percent_class;
tally:=null_tally;
while (p<>null) and (tally<l) do
begin if p=q then @<Do magic computation@>;
@<Display token |p| and set |c| to its class;
but |return| if there are problems@>;
class:=c; p:=link(p);
end;
if p<>null then print(" ETC.");
@.ETC@>
exit:
end;
@ @<Display token |p| and set |c| to its class...@>=
c:=letter_class; {the default}
if (p<mem_min)or(p>mem_end) then
begin print(" CLOBBERED"); return;
@.CLOBBERED@>
end;
if p<hi_mem_min then @<Display two-word token@>
else begin r:=info(p);
if r>=expr_base then @<Display a parameter token@>
else if r<1 then
if r=0 then @<Display a collective subscript@>
else print(" IMPOSSIBLE")
@.IMPOSSIBLE@>
else begin r:=text(r);
if (r<0)or(r>max_str_ptr) then print(" NONEXISTENT")
@.NONEXISTENT@>
else @<Print string |r| as a symbolic token
and set |c| to its class@>;
end;
end
@ @<Display two-word token@>=
if name_type(p)=token then
if type(p)=known then @<Display a numeric token@>
else if type(p)<>string_type then print(" BAD")
@.BAD@>
else begin print_char(""""); print(value(p)); print_char("""");
c:=string_class;
end
else if (name_type(p)<>capsule)or(type(p)<vacuous)or(type(p)>independent) then
print(" BAD")
else begin g_pointer:=p; print_capsule; c:=right_paren_class;
end
@ @<Display a numeric token@>=
begin if class=digit_class then print_char(" ");
v:=value(p);
if v<0 then
begin if class=left_bracket_class then print_char(" ");
print_char("["); print_scaled(v); print_char("]");
c:=right_bracket_class;
end
else begin print_scaled(v); c:=digit_class;
end;
end
@ Strictly speaking, a genuine token will never have |info(p)=0|.
But we will see later (in the |print_variable_name| routine) that
it is convenient to let |info(p)=0| stand for `\.{[]}'.
@<Display a collective subscript@>=
begin if class=left_bracket_class then print_char(" ");
print("[]"); c:=right_bracket_class;
end
@ @<Display a parameter token@>=
begin if r<suffix_base then
begin print("(EXPR"); r:=r-(expr_base);
@.EXPR@>
end
else if r<text_base then
begin print("(SUFFIX"); r:=r-(suffix_base);
@.SUFFIX@>
end
else begin print("(TEXT"); r:=r-(text_base);
@.TEXT@>
end;
print_int(r); print_char(")"); c:=right_paren_class;
end
@ @<Print string |r| as a symbolic token...@>=
begin c:=char_class[so(str_pool[str_start[r]])];
if c=class then
case c of
letter_class:print_char(".");
isolated_classes:do_nothing;
othercases print_char(" ")
endcases;
print(r);
end
@ The following procedures have been declared |forward| with no parameters,
because the author dislikes \PASCAL's convention about |forward| procedures
with parameters. It was necessary to do something, because |show_token_list|
is recursive (although the recursion is limited to one level), and because
|flush_token_list| is syntactically (but not semantically) recursive.
@^recursion@>
@<Declare miscellaneous procedures that were declared |forward|@>=
procedure print_capsule;
begin print_char("("); print_exp(g_pointer,0); print_char(")");
end;
@#
procedure token_recycle;
begin recycle_value(g_pointer);
end;
@ @<Glob...@>=
@!g_pointer:pointer; {(global) parameter to the |forward| procedures}
@ Macro definitions are kept in \MP's memory in the form of token lists
that have a few extra one-word nodes at the beginning.
The first node contains a reference count that is used to tell when the
list is no longer needed. To emphasize the fact that a reference count is
present, we shall refer to the |info| field of this special node as the
|ref_count| field.
@^reference counts@>
The next node or nodes after the reference count serve to describe the
formal parameters. They either contain a code word that specifies all
of the parameters, or they contain zero or more parameter tokens followed
by the code `|general_macro|'.
@d ref_count==info
{reference count preceding a macro definition or picture header}
@d add_mac_ref(#)==incr(ref_count(#)) {make a new reference to a macro list}
@d general_macro=0 {preface to a macro defined with a parameter list}
@d primary_macro=1 {preface to a macro with a \&{primary} parameter}
@d secondary_macro=2 {preface to a macro with a \&{secondary} parameter}
@d tertiary_macro=3 {preface to a macro with a \&{tertiary} parameter}
@d expr_macro=4 {preface to a macro with an undelimited \&{expr} parameter}
@d of_macro=5 {preface to a macro with
undelimited `\&{expr} |x| \&{of}~|y|' parameters}
@d suffix_macro=6 {preface to a macro with an undelimited \&{suffix} parameter}
@d text_macro=7 {preface to a macro with an undelimited \&{text} parameter}
@p procedure delete_mac_ref(@!p:pointer);
{|p| points to the reference count of a macro list that is
losing one reference}
begin if ref_count(p)=null then flush_token_list(p)
else decr(ref_count(p));
end;
@ The following subroutine displays a macro, given a pointer to its
reference count.
@p @t\4@>@<Declare the procedure called |print_cmd_mod|@>@;
procedure show_macro(@!p:pointer;@!q,@!l:integer);
label exit;
var @!r:pointer; {temporary storage}
begin p:=link(p); {bypass the reference count}
while info(p)>text_macro do
begin r:=link(p); link(p):=null;
show_token_list(p,null,l,0); link(p):=r; p:=r;
if l>0 then l:=l-tally@+else return;
end; {control printing of `\.{ETC.}'}
@.ETC@>
tally:=0;
case info(p) of
general_macro:print("->");
@.->@>
primary_macro,secondary_macro,tertiary_macro:begin print_char("<");
print_cmd_mod(param_type,info(p)); print(">->");
end;
expr_macro:print("<expr>->");
of_macro:print("<expr>of<primary>->");
suffix_macro:print("<suffix>->");
text_macro:print("<text>->");
end; {there are no other cases}
show_token_list(link(p),q,l-tally,0);
exit:end;
@* \[15] Data structures for variables.
The variables of \MP\ programs can be simple, like `\.x', or they can
combine the structural properties of arrays and records, like `\.{x20a.b}'.
A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
things are represented inside of the computer.
Each variable value occupies two consecutive words, either in a two-word
node called a value node, or as a two-word subfield of a larger node. One
of those two words is called the |value| field; it is an integer,
containing either a |scaled| numeric value or the representation of some
other type of quantity. (It might also be subdivided into halfwords, in
which case it is referred to by other names instead of |value|.) The other
word is broken into subfields called |type|, |name_type|, and |link|. The
|type| field is a quarterword that specifies the variable's type, and
|name_type| is a quarterword from which \MP\ can reconstruct the
variable's name (sometimes by using the |link| field as well). Thus, only
1.25 words are actually devoted to the value itself; the other
three-quarters of a word are overhead, but they aren't wasted because they
allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
In this section we shall be concerned only with the structural aspects of
variables, not their values. Later parts of the program will change the
|type| and |value| fields, but we shall treat those fields as black boxes
whose contents should not be touched.
However, if the |type| field is |structured|, there is no |value| field,
and the second word is broken into two pointer fields called |attr_head|
and |subscr_head|. Those fields point to additional nodes that
contain structural information, as we shall see.
@d subscr_head_loc(#) == #+1 {where |value|, |subscr_head| and |attr_head| are}
@d attr_head(#) == info(subscr_head_loc(#)) {pointer to attribute info}
@d subscr_head(#) == link(subscr_head_loc(#)) {pointer to subscript info}
@d value_node_size=2 {the number of words in a value node}
@ An attribute node is three words long. Two of these words contain |type|
and |value| fields as described above, and the third word contains
additional information: There is an |attr_loc| field, which contains the
hash address of the token that names this attribute; and there's also a
|parent| field, which points to the value node of |structured| type at the
next higher level (i.e., at the level to which this attribute is
subsidiary). The |name_type| in an attribute node is `|attr|'. The
|link| field points to the next attribute with the same parent; these are
arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
final attribute node links to the constant |end_attr|, whose |attr_loc|
field is greater than any legal hash address. The |attr_head| in the
parent points to a node whose |name_type| is |structured_root|; this
node represents the null attribute, i.e., the variable that is relevant
when no attributes are attached to the parent. The |attr_head| node is either
a value node, a subscript node, or an attribute node, depending on what
the parent would be if it were not structured; but the subscript and
attribute fields are ignored, so it effectively contains only the data of
a value node. The |link| field in this special node points to an attribute
node whose |attr_loc| field is zero; the latter node represents a collective
subscript `\.{[]}' attached to the parent, and its |link| field points to
the first non-special attribute node (or to |end_attr| if there are none).
A subscript node likewise occupies three words, with |type| and |value| fields
plus extra information; its |name_type| is |subscr|. In this case the
third word is called the |subscript| field, which is a |scaled| integer.
The |link| field points to the subscript node with the next larger
subscript, if any; otherwise the |link| points to the attribute node
for collective subscripts at this level. We have seen that the latter node
contains an upward pointer, so that the parent can be deduced.
The |name_type| in a parent-less value node is |root|, and the |link|
is the hash address of the token that names this value.
In other words, variables have a hierarchical structure that includes
enough threads running around so that the program is able to move easily
between siblings, parents, and children. An example should be helpful:
(The reader is advised to draw a picture while reading the following
description, since that will help to firm up the ideas.)
Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
and `\.{x20b}' have been mentioned in a user's program, where
\.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
|eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=structured|,
|attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
node and |r| to a subscript node. (Are you still following this? Use
a pencil to draw a diagram.) The lone variable `\.x' is represented by
|type(q)| and |value(q)|; furthermore
|name_type(q)=structured_root| and |link(q)=q1|, where |q1| points
to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
|attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
|type(q1)=structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
|qq| is a value node with |type(qq)=numeric_type| (assuming that \.{x5} is
numeric, because |qq| represents `\.{x[]}' with no further attributes),
|name_type(qq)=structured_root|, and
|link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
an attribute node representing `\.{x[][]}', which has never yet
occurred; its |type| field is |undefined|, and its |value| field is
undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
|parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
`\.{x[]b}', |type(qq2)=unknown_boolean|; also |attr_loc(qq2)=h(b)|,
|parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
(Maybe colored lines will help untangle your picture.)
Node |r| is a subscript node with |type| and |value|
representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
and |link(r)=r1| is another subscript node. To complete the picture,
see if you can guess what |link(r1)| is; give up? It's~|q1|.
Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
|type(r1)=structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
and we finish things off with three more nodes
|qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
with a larger sheet of paper.) The value of variable \.{x20b}
appears in node~|qqq2|, as you can well imagine.
If the example in the previous paragraph doesn't make things crystal
clear, a glance at some of the simpler subroutines below will reveal how
things work out in practice.
The only really unusual thing about these conventions is the use of
collective subscript attributes. The idea is to avoid repeating a lot of
type information when many elements of an array are identical macros
(for which distinct values need not be stored) or when they don't have
all of the possible attributes. Branches of the structure below collective
subscript attributes do not carry actual values except for macro identifiers;
branches of the structure below subscript nodes do not carry significant
information in their collective subscript attributes.
@d attr_loc_loc(#)==#+2 {where the |attr_loc| and |parent| fields are}
@d attr_loc(#)==info(attr_loc_loc(#)) {hash address of this attribute}
@d parent(#)==link(attr_loc_loc(#)) {pointer to |structured| variable}
@d subscript_loc(#)==#+2 {where the |subscript| field lives}
@d subscript(#)==mem[subscript_loc(#)].sc {subscript of this variable}
@d attr_node_size=3 {the number of words in an attribute node}
@d subscr_node_size=3 {the number of words in a subscript node}
@d collective_subscript=0 {code for the attribute `\.{[]}'}
@<Initialize table...@>=
attr_loc(end_attr):=hash_end+1; parent(end_attr):=null;
@ Variables of type \&{pair} will have values that point to four-word
nodes containing two numeric values. The first of these values has
|name_type=x_part_sector| and the second has |name_type=y_part_sector|;
the |link| in the first points back to the node whose |value| points
to this four-word node.
Variables of type \&{transform} are similar, but in this case their
|value| points to a 12-word node containing six values, identified by
|x_part_sector|, |y_part_sector|, |xx_part_sector|, |xy_part_sector|,
|yx_part_sector|, and |yy_part_sector|.
Finally, variables of type \&{color} have three values in six words
identified by |red_part_sector|, |green_part_sector|, and |blue_part_sector|.
When an entire structured variable is saved, the |root| indication
is temporarily replaced by |saved_root|.
Some variables have no name; they just are used for temporary storage
while expressions are being evaluated. We call them {\sl capsules}.
@d x_part_loc(#)==# {where the \&{xpart} is found in a pair or transform node}
@d y_part_loc(#)==#+2 {where the \&{ypart} is found in a pair or transform node}
@d xx_part_loc(#)==#+4 {where the \&{xxpart} is found in a transform node}
@d xy_part_loc(#)==#+6 {where the \&{xypart} is found in a transform node}
@d yx_part_loc(#)==#+8 {where the \&{yxpart} is found in a transform node}
@d yy_part_loc(#)==#+10 {where the \&{yypart} is found in a transform node}
@d red_part_loc(#)==# {where the \&{redpart} is found in a color node}
@d green_part_loc(#)==#+2 {where the \&{greenpart} is found in a color node}
@d blue_part_loc(#)==#+4 {where the \&{bluepart} is found in a color node}
@#
@d pair_node_size=4 {the number of words in a pair node}
@d transform_node_size=12 {the number of words in a transform node}
@d color_node_size=6 {the number of words in a color node}
@<Glob...@>=
@!big_node_size:array[transform_type..pair_type] of small_number;
@!sector0:array[transform_type..pair_type] of small_number;
@!sector_offset:array[x_part_sector..blue_part_sector] of small_number;
@ The |sector0| array gives for each big node type, |name_type| values
for its first subfield; the |sector_offset| array gives for each
|name_type| value, the offset from the first subfield in words;
and the |big_node_size| array gives the size in words for each type of
big node.
@<Set init...@>=
big_node_size[transform_type]:=transform_node_size;
big_node_size[pair_type]:=pair_node_size;
big_node_size[color_type]:=color_node_size;
sector0[transform_type]:=x_part_sector;
sector0[pair_type]:=x_part_sector;
sector0[color_type]:=red_part_sector;
for k:=x_part_sector to yy_part_sector do
sector_offset[k]:=2*(k-x_part_sector);
for k:=red_part_sector to blue_part_sector do
sector_offset[k]:=2*(k-red_part_sector);
@ If |type(p)=pair_type| or |transform_type| and if |value(p)=null|, the
procedure call |init_big_node(p)| will allocate a pair or transform node
for~|p|. The individual parts of such nodes are initially of type
|independent|.
@p procedure init_big_node(@!p:pointer);
var @!q:pointer; {the new node}
@!s:small_number; {its size}
begin s:=big_node_size[type(p)]; q:=get_node(s);
repeat s:=s-2; @<Make variable |q+s| newly independent@>;
name_type(q+s):=halfp(s)+sector0[type(p)]; link(q+s):=null;
until s=0;
link(q):=p; value(p):=q;
end;
@ The |id_transform| function creates a capsule for the
identity transformation.
@p function id_transform:pointer;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin p:=get_node(value_node_size); type(p):=transform_type;
name_type(p):=capsule; value(p):=null; init_big_node(p); q:=value(p);
r:=q+transform_node_size;
repeat r:=r-2;
type(r):=known; value(r):=0;
until r=q;
value(xx_part_loc(q)):=unity; value(yy_part_loc(q)):=unity;
id_transform:=p;
end;
@ Tokens are of type |tag_token| when they first appear, but they point
to |null| until they are first used as the root of a variable.
The following subroutine establishes the root node on such grand occasions.
@p procedure new_root(@!x:pointer);
var @!p:pointer; {the new node}
begin p:=get_node(value_node_size); type(p):=undefined; name_type(p):=root;
link(p):=x; equiv(x):=p;
end;
@ These conventions for variable representation are illustrated by the
|print_variable_name| routine, which displays the full name of a
variable given only a pointer to its two-word value packet.
@p procedure print_variable_name(@!p:pointer);
label found,exit;
var @!q:pointer; {a token list that will name the variable's suffix}
@!r:pointer; {temporary for token list creation}
begin while name_type(p)>=x_part_sector do
@<Preface the output with a part specifier; |return| in the
case of a capsule@>;
q:=null;
while name_type(p)>saved_root do
@<Ascend one level, pushing a token onto list |q|
and replacing |p| by its parent@>;
r:=get_avail; info(r):=link(p); link(r):=q;
if name_type(p)=saved_root then print("(SAVED)");
@.SAVED@>
show_token_list(r,null,el_gordo,tally); flush_token_list(r);
exit:end;
@ @<Ascend one level, pushing a token onto list |q|...@>=
begin if name_type(p)=subscr then
begin r:=new_num_tok(subscript(p));
repeat p:=link(p);
until name_type(p)=attr;
end
else if name_type(p)=structured_root then
begin p:=link(p); goto found;
end
else begin if name_type(p)<>attr then confusion("var");
@:this can't happen var}{\quad var@>
r:=get_avail; info(r):=attr_loc(p);
end;
link(r):=q; q:=r;
found: p:=parent(p);
end
@ @<Preface the output with a part specifier...@>=
begin case name_type(p) of
x_part_sector: print_char("x");
y_part_sector: print_char("y");
xx_part_sector: print("xx");
xy_part_sector: print("xy");
yx_part_sector: print("yx");
yy_part_sector: print("yy");
red_part_sector: print("red");
green_part_sector: print("green");
blue_part_sector: print("blue");
capsule: begin print("%CAPSULE"); print_int(p-null); return;
@.CAPSULE@>
end;
end; {there are no other cases}
print("part "); p:=link(p-sector_offset[name_type(p)]);
end
@ The |interesting| function returns |true| if a given variable is not
in a capsule, or if the user wants to trace capsules.
@p function interesting(@!p:pointer):boolean;
var @!t:small_number; {a |name_type|}
begin if internal[tracing_capsules]>0 then interesting:=true
else begin t:=name_type(p);
if t>=x_part_sector then if t<>capsule then
t:=name_type(link(p-sector_offset[t]));
interesting:=(t<>capsule);
end;
end;
@ Now here is a subroutine that converts an unstructured type into an
equivalent structured type, by inserting a |structured| node that is
capable of growing. This operation is done only when |name_type(p)=root|,
|subscr|, or |attr|.
The procedure returns a pointer to the new node that has taken node~|p|'s
place in the structure. Node~|p| itself does not move, nor are its
|value| or |type| fields changed in any way.
@p function new_structure(@!p:pointer):pointer;
var @!q,@!r:pointer; {list manipulation registers}
begin case name_type(p) of
root: begin q:=link(p); r:=get_node(value_node_size); equiv(q):=r;
end;
subscr: @<Link a new subscript node |r| in place of node |p|@>;
attr: @<Link a new attribute node |r| in place of node |p|@>;
othercases confusion("struct")
@:this can't happen struct}{\quad struct@>
endcases;@/
link(r):=link(p); type(r):=structured; name_type(r):=name_type(p);
attr_head(r):=p; name_type(p):=structured_root;@/
q:=get_node(attr_node_size); link(p):=q; subscr_head(r):=q;
parent(q):=r; type(q):=undefined; name_type(q):=attr; link(q):=end_attr;
attr_loc(q):=collective_subscript; new_structure:=r;
end;
@ @<Link a new subscript node |r| in place of node |p|@>=
begin q:=p;
repeat q:=link(q);
until name_type(q)=attr;
q:=parent(q); r:=subscr_head_loc(q); {|link(r)=subscr_head(q)|}
repeat q:=r; r:=link(r);
until r=p;
r:=get_node(subscr_node_size);
link(q):=r; subscript(r):=subscript(p);
end
@ If the attribute is |collective_subscript|, there are two pointers to
node~|p|, so we must change both of them.
@<Link a new attribute node |r| in place of node |p|@>=
begin q:=parent(p); r:=attr_head(q);
repeat q:=r; r:=link(r);
until r=p;
r:=get_node(attr_node_size); link(q):=r;@/
mem[attr_loc_loc(r)]:=mem[attr_loc_loc(p)]; {copy |attr_loc| and |parent|}
if attr_loc(p)=collective_subscript then
begin q:=subscr_head_loc(parent(p));
while link(q)<>p do q:=link(q);
link(q):=r;
end;
end
@ The |find_variable| routine is given a pointer~|t| to a nonempty token
list of suffixes; it returns a pointer to the corresponding two-word
value. For example, if |t| points to token \.x followed by a numeric
token containing the value~7, |find_variable| finds where the value of
\.{x7} is stored in memory. This may seem a simple task, and it
usually is, except when \.{x7} has never been referenced before.
Indeed, \.x may never have even been subscripted before; complexities
arise with respect to updating the collective subscript information.
If a macro type is detected anywhere along path~|t|, or if the first
item on |t| isn't a |tag_token|, the value |null| is returned.
Otherwise |p| will be a non-null pointer to a node such that
|undefined<type(p)<structured|.
@d abort_find==begin find_variable:=null; return;@+end
@p function find_variable(@!t:pointer):pointer;
label exit;
var @!p,@!q,@!r,@!s:pointer; {nodes in the ``value'' line}
@!pp,@!qq,@!rr,@!ss:pointer; {nodes in the ``collective'' line}
@!n:integer; {subscript or attribute}
@!save_word:memory_word; {temporary storage for a word of |mem|}
@^inner loop@>
begin p:=info(t); t:=link(t);
if eq_type(p) mod outer_tag<>tag_token then abort_find;
if equiv(p)=null then new_root(p);
p:=equiv(p); pp:=p;
while t<>null do
begin @<Make sure that both nodes |p| and |pp| are of |structured| type@>;
if t<hi_mem_min then
@<Descend one level for the subscript |value(t)|@>
else @<Descend one level for the attribute |info(t)|@>;
t:=link(t);
end;
if type(pp)>=structured then
if type(pp)=structured then pp:=attr_head(pp)@+else abort_find;
if type(p)=structured then p:=attr_head(p);
if type(p)=undefined then
begin if type(pp)=undefined then
begin type(pp):=numeric_type; value(pp):=null;
end;
type(p):=type(pp); value(p):=null;
end;
find_variable:=p;
exit:end;
@ Although |pp| and |p| begin together, they diverge when a subscript occurs;
|pp|~stays in the collective line while |p|~goes through actual subscript
values.
@<Make sure that both nodes |p| and |pp|...@>=
if type(pp)<>structured then
begin if type(pp)>structured then abort_find;
ss:=new_structure(pp);
if p=pp then p:=ss;
pp:=ss;
end; {now |type(pp)=structured|}
if type(p)<>structured then {it cannot be |>structured|}
p:=new_structure(p) {now |type(p)=structured|}
@ We want this part of the program to be reasonably fast, in case there are
@^inner loop@>
lots of subscripts at the same level of the data structure. Therefore
we store an ``infinite'' value in the word that appears at the end of the
subscript list, even though that word isn't part of a subscript node.
@<Descend one level for the subscript |value(t)|@>=
begin n:=value(t);
pp:=link(attr_head(pp)); {now |attr_loc(pp)=collective_subscript|}
q:=link(attr_head(p)); save_word:=mem[subscript_loc(q)];
subscript(q):=el_gordo; s:=subscr_head_loc(p); {|link(s)=subscr_head(p)|}
repeat r:=s; s:=link(s);
until n<=subscript(s);
if n=subscript(s) then p:=s
else begin p:=get_node(subscr_node_size); link(r):=p; link(p):=s;
subscript(p):=n; name_type(p):=subscr; type(p):=undefined;
end;
mem[subscript_loc(q)]:=save_word;
end
@ @<Descend one level for the attribute |info(t)|@>=
begin n:=info(t);
ss:=attr_head(pp);
repeat rr:=ss; ss:=link(ss);
until n<=attr_loc(ss);
if n<attr_loc(ss) then
begin qq:=get_node(attr_node_size); link(rr):=qq; link(qq):=ss;
attr_loc(qq):=n; name_type(qq):=attr; type(qq):=undefined;
parent(qq):=pp; ss:=qq;
end;
if p=pp then
begin p:=ss; pp:=ss;
end
else begin pp:=ss; s:=attr_head(p);
repeat r:=s; s:=link(s);
until n<=attr_loc(s);
if n=attr_loc(s) then p:=s
else begin q:=get_node(attr_node_size); link(r):=q; link(q):=s;
attr_loc(q):=n; name_type(q):=attr; type(q):=undefined;
parent(q):=p; p:=q;
end;
end;
end
@ Variables lose their former values when they appear in a type declaration,
or when they are defined to be macros or \&{let} equal to something else.
A subroutine will be defined later that recycles the storage associated
with any particular |type| or |value|; our goal now is to study a higher
level process called |flush_variable|, which selectively frees parts of a
variable structure.
This routine has some complexity because of examples such as
`\hbox{\tt numeric x[]a[]b}'
which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
`\hbox{\tt vardef x[]a[]=...}'
discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
suffix, except for the collective node \.{x[]a[]} itself. The obvious way
to handle such examples is to use recursion; so that's what we~do.
@^recursion@>
Parameter |p| points to the root information of the variable;
parameter |t| points to a list of one-word nodes that represent
suffixes, with |info=collective_subscript| for subscripts.
@p @t\4@>@<Declare subroutines for printing expressions@>@;@/
@t\4@>@<Declare basic dependency-list subroutines@>@;
@t\4@>@<Declare the recycling subroutines@>@;
@t\4@>@<Declare the procedure called |flush_cur_exp|@>@;
@t\4@>@<Declare the procedure called |flush_below_variable|@>@;
procedure flush_variable(@!p,@!t:pointer;@!discard_suffixes:boolean);
label exit;
var @!q,@!r:pointer; {list manipulation}
@!n:halfword; {attribute to match}
begin while t<>null do
begin if type(p)<>structured then return;
n:=info(t); t:=link(t);
if n=collective_subscript then
begin r:=subscr_head_loc(p); q:=link(r); {|q=subscr_head(p)|}
while name_type(q)=subscr do
begin flush_variable(q,t,discard_suffixes);
if t=null then
if type(q)=structured then r:=q
else begin link(r):=link(q); free_node(q,subscr_node_size);
end
else r:=q;
q:=link(r);
end;
end;
p:=attr_head(p);
repeat r:=p; p:=link(p);
until attr_loc(p)>=n;
if attr_loc(p)<>n then return;
end;
if discard_suffixes then flush_below_variable(p)
else begin if type(p)=structured then p:=attr_head(p);
recycle_value(p);
end;
exit:end;
@ The next procedure is simpler; it wipes out everything but |p| itself,
which becomes undefined.
@<Declare the procedure called |flush_below_variable|@>=
procedure flush_below_variable(@!p:pointer);
var @!q,@!r:pointer; {list manipulation registers}
begin if type(p)<>structured then
recycle_value(p) {this sets |type(p)=undefined|}
else begin q:=subscr_head(p);
while name_type(q)=subscr do
begin flush_below_variable(q); r:=q; q:=link(q);
free_node(r,subscr_node_size);
end;
r:=attr_head(p); q:=link(r); recycle_value(r);
if name_type(p)<=saved_root then free_node(r,value_node_size)
else free_node(r,subscr_node_size);
{we assume that |subscr_node_size=attr_node_size|}
repeat flush_below_variable(q); r:=q; q:=link(q); free_node(r,attr_node_size);
until q=end_attr;
type(p):=undefined;
end;
end;
@ Just before assigning a new value to a variable, we will recycle the
old value and make the old value undefined. The |und_type| routine
determines what type of undefined value should be given, based on
the current type before recycling.
@p function und_type(@!p:pointer):small_number;
begin case type(p) of
undefined,vacuous:und_type:=undefined;
boolean_type,unknown_boolean:und_type:=unknown_boolean;
string_type,unknown_string:und_type:=unknown_string;
pen_type,unknown_pen:und_type:=unknown_pen;
path_type,unknown_path:und_type:=unknown_path;
picture_type,unknown_picture:und_type:=unknown_picture;
transform_type,color_type,pair_type,numeric_type:und_type:=type(p);
known,dependent,proto_dependent,independent:und_type:=numeric_type;
end; {there are no other cases}
end;
@ The |clear_symbol| routine is used when we want to redefine the equivalent
of a symbolic token. It must remove any variable structure or macro
definition that is currently attached to that symbol. If the |saving|
parameter is true, a subsidiary structure is saved instead of destroyed.
@p procedure clear_symbol(@!p:pointer;@!saving:boolean);
var @!q:pointer; {|equiv(p)|}
begin q:=equiv(p);
case eq_type(p) mod outer_tag of
defined_macro,secondary_primary_macro,tertiary_secondary_macro,
expression_tertiary_macro: if not saving then delete_mac_ref(q);
tag_token:if q<>null then
if saving then name_type(q):=saved_root
else begin flush_below_variable(q); free_node(q,value_node_size);
end;
othercases do_nothing
endcases;@/
eqtb[p]:=eqtb[frozen_undefined];
end;
@* \[16] Saving and restoring equivalents.
The nested structure given by \&{begingroup} and \&{endgroup}
allows |eqtb| entries to be saved and restored, so that temporary changes
can be made without difficulty. When the user requests a current value to
be saved, \MP\ puts that value into its ``save stack.'' An appearance of
\&{endgroup} ultimately causes the old values to be removed from the save
stack and put back in their former places.
The save stack is a linked list containing three kinds of entries,
distinguished by their |info| fields. If |p| points to a saved item,
then
\smallskip\hang
|info(p)=0| stands for a group boundary; each \&{begingroup} contributes
such an item to the save stack and each \&{endgroup} cuts back the stack
until the most recent such entry has been removed.
\smallskip\hang
|info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
commands or suitable \&{interim} commands.
\smallskip\hang
|info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
integer to be restored to internal parameter number~|q|. Such entries
are generated by \&{interim} commands.
\smallskip\noindent
The global variable |save_ptr| points to the top item on the save stack.
@d save_node_size=2 {number of words per non-boundary save-stack node}
@d saved_equiv(#)==mem[#+1].hh {where an |eqtb| entry gets saved}
@d save_boundary_item(#)==begin #:=get_avail; info(#):=0;
link(#):=save_ptr; save_ptr:=#;
end
@<Glob...@>=@!save_ptr:pointer; {the most recently saved item}
@ @<Set init...@>=save_ptr:=null;
@ The |save_variable| routine is given a hash address |q|; it salts this
address in the save stack, together with its current equivalent,
then makes token~|q| behave as though it were brand new.
Nothing is stacked when |save_ptr=null|, however; there's no way to remove
things from the stack when the program is not inside a group, so there's
no point in wasting the space.
@p procedure save_variable(@!q:pointer);
var @!p:pointer; {temporary register}
begin if save_ptr<>null then
begin p:=get_node(save_node_size); info(p):=q; link(p):=save_ptr;
saved_equiv(p):=eqtb[q]; save_ptr:=p;
end;
clear_symbol(q,(save_ptr<>null));
end;
@ Similarly, |save_internal| is given the location |q| of an internal
quantity like |tracing_pens|. It creates a save stack entry of the
third kind.
@p procedure save_internal(@!q:halfword);
var @!p:pointer; {new item for the save stack}
begin if save_ptr<>null then
begin p:=get_node(save_node_size); info(p):=hash_end+q;
link(p):=save_ptr; value(p):=internal[q]; save_ptr:=p;
end;
end;
@ At the end of a group, the |unsave| routine restores all of the saved
equivalents in reverse order. This routine will be called only when there
is at least one boundary item on the save stack.
@p procedure unsave;
var @!q:pointer; {index to saved item}
@!p:pointer; {temporary register}
begin while info(save_ptr)<>0 do
begin q:=info(save_ptr);
if q>hash_end then
begin if internal[tracing_restores]>0 then
begin begin_diagnostic; print_nl("{restoring ");
print(int_name[q-(hash_end)]); print_char("=");
print_scaled(value(save_ptr)); print_char("}");
end_diagnostic(false);
end;
internal[q-(hash_end)]:=value(save_ptr);
end
else begin if internal[tracing_restores]>0 then
begin begin_diagnostic; print_nl("{restoring ");
print(text(q)); print_char("}");
end_diagnostic(false);
end;
clear_symbol(q,false);
eqtb[q]:=saved_equiv(save_ptr);
if eq_type(q) mod outer_tag=tag_token then
begin p:=equiv(q);
if p<>null then name_type(p):=root;
end;
end;
p:=link(save_ptr); free_node(save_ptr,save_node_size); save_ptr:=p;
end;
p:=link(save_ptr); free_avail(save_ptr); save_ptr:=p;
end;
@* \[17] Data structures for paths.
When a \MP\ user specifies a path, \MP\ will create a list of knots
and control points for the associated cubic spline curves. If the
knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
$z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
$z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
@:Bezier}{B\'ezier, Pierre Etienne@>
$$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
&=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
for |0<=t<=1|.
There is a 7-word node for each knot $z_k$, containing one word of
control information and six words for the |x| and |y| coordinates
of $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears
in the |left_type| and |right_type| fields, which each occupy
a quarter of the first word in the node; they specify properties
of the curve as it enters and leaves the knot. There's also a
halfword |link| field, which points to the following knot.
If the path is a closed contour, knots 0 and |n| are identical;
i.e., the |link| in knot |n-1| points to knot~0. But if the path
is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
are equal to |endpoint|. In the latter case the |link| in knot~|n| points
to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
@d left_type(#) == mem[#].hh.b0 {characterizes the path entering this knot}
@d right_type(#) == mem[#].hh.b1 {characterizes the path leaving this knot}
@d endpoint=0 {|left_type| at path beginning and |right_type| at path end}
@d x_coord(#) == mem[#+1].sc {the |x| coordinate of this knot}
@d y_coord(#) == mem[#+2].sc {the |y| coordinate of this knot}
@d left_x(#) == mem[#+3].sc {the |x| coordinate of previous control point}
@d left_y(#) == mem[#+4].sc {the |y| coordinate of previous control point}
@d right_x(#) == mem[#+5].sc {the |x| coordinate of next control point}
@d right_y(#) == mem[#+6].sc {the |y| coordinate of next control point}
@d x_loc(#) == #+1 {where the |x| coordinate is stored in a knot}
@d y_loc(#) == #+2 {where the |y| coordinate is stored in a knot}
@d knot_coord(#) == mem[#].sc {|x| or |y| coordinate given |x_loc| or |y_loc|}
@d left_coord(#) == mem[#+2].sc
{coordinate of previous control point given |x_loc| or |y_loc|}
@d right_coord(#) == mem[#+4].sc
{coordinate of next control point given |x_loc| or |y_loc|}
@d knot_node_size=7 {number of words in a knot node}
@ Before the B\'ezier control points have been calculated, the memory
space they will ultimately occupy is taken up by information that can be
used to compute them. There are four cases:
\yskip
\textindent{$\bullet$} If |right_type=open|, the curve should leave
the knot in the same direction it entered; \MP\ will figure out a
suitable direction.
\yskip
\textindent{$\bullet$} If |right_type=curl|, the curve should leave the
knot in a direction depending on the angle at which it enters the next
knot and on the curl parameter stored in |right_curl|.
\yskip
\textindent{$\bullet$} If |right_type=given|, the curve should leave the
knot in a nonzero direction stored as an |angle| in |right_given|.
\yskip
\textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
point for leaving this knot has already been computed; it is in the
|right_x| and |right_y| fields.
\yskip\noindent
The rules for |left_type| are similar, but they refer to the curve entering
the knot, and to \\{left} fields instead of \\{right} fields.
Non-|explicit| control points will be chosen based on ``tension'' parameters
in the |left_tension| and |right_tension| fields. The
`\&{atleast}' option is represented by negative tension values.
@!@:at_least_}{\&{atleast} primitive@>
For example, the \MP\ path specification
$$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
3 and 4..p},$$
where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
by the six knots
\def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
$$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
|left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
\noalign{\yskip}
|endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
|open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
|curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
|given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
|open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
|explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
Of course, this example is more complicated than anything a normal user
would ever write.
These types must satisfy certain restrictions because of the form of \MP's
path syntax:
(i)~|open| type never appears in the same node together with |endpoint|,
|given|, or |curl|.
(ii)~The |right_type| of a node is |explicit| if and only if the
|left_type| of the following node is |explicit|.
(iii)~|endpoint| types occur only at the ends, as mentioned above.
@d left_curl==left_x {curl information when entering this knot}
@d left_given==left_x {given direction when entering this knot}
@d left_tension==left_y {tension information when entering this knot}
@d right_curl==right_x {curl information when leaving this knot}
@d right_given==right_x {given direction when leaving this knot}
@d right_tension==right_y {tension information when leaving this knot}
@d explicit=1 {|left_type| or |right_type| when control points are known}
@d given=2 {|left_type| or |right_type| when a direction is given}
@d curl=3 {|left_type| or |right_type| when a curl is desired}
@d open=4 {|left_type| or |right_type| when \MP\ should choose the direction}
@ Here is a routine that prints a given knot list
in symbolic form. It illustrates the conventions discussed above,
and checks for anomalies that might arise while \MP\ is being debugged.
@<Declare subroutines for printing expressions@>=
procedure pr_path(@!h:pointer);
label done,done1;
var @!p,@!q:pointer; {for list traversal}
begin p:=h;
repeat q:=link(p);
if (p=null)or(q=null) then
begin print_nl("???"); goto done; {this won't happen}
@.???@>
end;
@<Print information for adjacent knots |p| and |q|@>;
p:=q;
if (p<>h)or(left_type(h)<>endpoint) then
@<Print two dots, followed by |given| or |curl| if present@>;
until p=h;
if left_type(h)<>endpoint then print("cycle");
done:end;
@ @<Print information for adjacent knots...@>=
print_two(x_coord(p),y_coord(p));
case right_type(p) of
endpoint: begin if left_type(p)=open then print("{open?}"); {can't happen}
@.open?@>
if (left_type(q)<>endpoint)or(q<>h) then q:=null; {force an error}
goto done1;
end;
explicit: @<Print control points between |p| and |q|, then |goto done1|@>;
open: @<Print information for a curve that begins |open|@>;
curl,given: @<Print information for a curve that begins |curl| or |given|@>;
othercases print("???") {can't happen}
@.???@>
endcases;@/
if left_type(q)<=explicit then print("..control?") {can't happen}
@.control?@>
else if (right_tension(p)<>unity)or(left_tension(q)<>unity) then
@<Print tension between |p| and |q|@>;
done1:
@ Since |n_sin_cos| produces |fraction| results, which we will print as if they
were |scaled|, the magnitude of a |given| direction vector will be~4096.
@<Print two dots...@>=
begin print_nl(" ..");
if left_type(p)=given then
begin n_sin_cos(left_given(p)); print_char("{");
print_scaled(n_cos); print_char(",");
print_scaled(n_sin); print_char("}");
end
else if left_type(p)=curl then
begin print("{curl "); print_scaled(left_curl(p)); print_char("}");
end;
end
@ @<Print tension between |p| and |q|@>=
begin print("..tension ");
if right_tension(p)<0 then print("atleast");
print_scaled(abs(right_tension(p)));
if right_tension(p)<>left_tension(q) then
begin print(" and ");
if left_tension(q)<0 then print("atleast");
print_scaled(abs(left_tension(q)));
end;
end
@ @<Print control points between |p| and |q|, then |goto done1|@>=
begin print("..controls "); print_two(right_x(p),right_y(p)); print(" and ");
if left_type(q)<>explicit then print("??") {can't happen}
@.??@>
else print_two(left_x(q),left_y(q));
goto done1;
end
@ @<Print information for a curve that begins |open|@>=
if (left_type(p)<>explicit)and(left_type(p)<>open) then
print("{open?}") {can't happen}
@.open?@>
@ A curl of 1 is shown explicitly, so that the user sees clearly that
\MP's default curl is present.
The code here uses the fact that |left_curl==left_given| and
|right_curl==right_given|.
@<Print information for a curve that begins |curl|...@>=
begin if left_type(p)=open then print("??"); {can't happen}
@.??@>
if right_type(p)=curl then
begin print("{curl "); print_scaled(right_curl(p));
end
else begin n_sin_cos(right_given(p)); print_char("{");
print_scaled(n_cos); print_char(","); print_scaled(n_sin);
end;
print_char("}");
end
@ It is convenient to have another version of |pr_path| that prints the path
as a diagnostic message.
@<Declare subroutines for printing expressions@>=
procedure print_path(@!h:pointer;@!s:str_number;@!nuline:boolean);
begin print_diagnostic("Path",s,nuline); print_ln;
@.Path at line...@>
pr_path(h);
end_diagnostic(true);
end;
@ If we want to duplicate a knot node, we can say |copy_knot|:
@p function copy_knot(@!p:pointer):pointer;
var @!q:pointer; {the copy}
@!k:0..knot_node_size-1; {runs through the words of a knot node}
begin q:=get_node(knot_node_size);
for k:=0 to knot_node_size-1 do mem[q+k]:=mem[p+k];
copy_knot:=q;
end;
@ The |copy_path| routine makes a clone of a given path.
@p function copy_path(@!p:pointer):pointer;
var @!q,@!pp,@!qq:pointer; {for list manipulation}
begin q:=copy_knot(p);
qq:=q; pp:=link(p);
while pp<>p do
begin link(qq):=copy_knot(pp);@/
qq:=link(qq);
pp:=link(pp);
end;
link(qq):=q;
copy_path:=q;
end;
@ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
returns a pointer to the first node of the copy, if the path is a cycle,
but to the final node of a non-cyclic copy. The global
variable |path_tail| will point to the final node of the original path;
this trick makes it easier to implement `\&{doublepath}'.
All node types are assumed to be |endpoint| or |explicit| only.
@p function htap_ypoc(@!p:pointer):pointer;
label exit;
var @!q,@!pp,@!qq,@!rr:pointer; {for list manipulation}
begin q:=get_node(knot_node_size); {this will correspond to |p|}
qq:=q; pp:=p;
loop@+ begin right_type(qq):=left_type(pp); left_type(qq):=right_type(pp);@/
x_coord(qq):=x_coord(pp); y_coord(qq):=y_coord(pp);@/
right_x(qq):=left_x(pp); right_y(qq):=left_y(pp);@/
left_x(qq):=right_x(pp); left_y(qq):=right_y(pp);@/
if link(pp)=p then
begin link(q):=qq; path_tail:=pp; htap_ypoc:=q; return;
end;
rr:=get_node(knot_node_size); link(rr):=qq; qq:=rr; pp:=link(pp);
end;
exit:end;
@ @<Glob...@>=
@!path_tail:pointer; {the node that links to the beginning of a path}
@ When a cyclic list of knot nodes is no longer needed, it can be recycled by
calling the following subroutine.
@<Declare the recycling subroutines@>=
procedure toss_knot_list(@!p:pointer);
var @!q:pointer; {the node being freed}
@!r:pointer; {the next node}
begin q:=p;
repeat r:=link(q); free_node(q,knot_node_size); q:=r;
until q=p;
end;
@* \[18] Choosing control points.
Now we must actually delve into one of \MP's more difficult routines,
the |make_choices| procedure that chooses angles and control points for
the splines of a curve when the user has not specified them explicitly.
The parameter to |make_choices| points to a list of knots and
path information, as described above.
A path decomposes into independent segments at ``breakpoint'' knots,
which are knots whose left and right angles are both prespecified in
some way (i.e., their |left_type| and |right_type| aren't both open).
@p @t\4@>@<Declare the procedure called |solve_choices|@>@;
procedure make_choices(@!knots:pointer);
label done;
var @!h:pointer; {the first breakpoint}
@!p,@!q:pointer; {consecutive breakpoints being processed}
@<Other local variables for |make_choices|@>@;
begin check_arith; {make sure that |arith_error=false|}
if internal[tracing_choices]>0 then
print_path(knots,", before choices",true);
@<If consecutive knots are equal, join them explicitly@>;
@<Find the first breakpoint, |h|, on the path;
insert an artificial breakpoint if the path is an unbroken cycle@>;
p:=h;
repeat @<Fill in the control points between |p| and the next breakpoint,
then advance |p| to that breakpoint@>;
until p=h;
if internal[tracing_choices]>0 then
print_path(knots,", after choices",true);
if arith_error then @<Report an unexpected problem during the choice-making@>;
end;
@ @<Report an unexpected problem during the choice...@>=
begin print_err("Some number got too big");
@.Some number got too big@>
help2("The path that I just computed is out of range.")@/
("So it will probably look funny. Proceed, for a laugh.");
put_get_error; arith_error:=false;
end
@ Two knots in a row with the same coordinates will always be joined
by an explicit ``curve'' whose control points are identical with the
knots.
@<If consecutive knots are equal, join them explicitly@>=
p:=knots;
repeat q:=link(p);
if x_coord(p)=x_coord(q) then if y_coord(p)=y_coord(q) then
if right_type(p)>explicit then
begin right_type(p):=explicit;
if left_type(p)=open then
begin left_type(p):=curl; left_curl(p):=unity;
end;
left_type(q):=explicit;
if right_type(q)=open then
begin right_type(q):=curl; right_curl(q):=unity;
end;
right_x(p):=x_coord(p); left_x(q):=x_coord(p);@/
right_y(p):=y_coord(p); left_y(q):=y_coord(p);
end;
p:=q;
until p=knots
@ If there are no breakpoints, it is necessary to compute the direction
angles around an entire cycle. In this case the |left_type| of the first
node is temporarily changed to |end_cycle|.
@d end_cycle=open+1
@<Find the first breakpoint, |h|, on the path...@>=
h:=knots;
loop@+ begin if left_type(h)<>open then goto done;
if right_type(h)<>open then goto done;
h:=link(h);
if h=knots then
begin left_type(h):=end_cycle; goto done;
end;
end;
done:
@ If |right_type(p)<given| and |q=link(p)|, we must have
|right_type(p)=left_type(q)=explicit| or |endpoint|.
@<Fill in the control points between |p| and the next breakpoint...@>=
q:=link(p);
if right_type(p)>=given then
begin while (left_type(q)=open)and(right_type(q)=open) do q:=link(q);
@<Fill in the control information between
consecutive breakpoints |p| and |q|@>;
end
else if right_type(p)=endpoint then
@<Give reasonable values for the unused control points between |p| and~|q|@>;
p:=q
@ This step makes it possible to transform an explicitly computed path without
checking the |left_type| and |right_type| fields.
@<Give reasonable values for the unused control points between |p| and~|q|@>=
begin right_x(p):=x_coord(p); right_y(p):=y_coord(p);@/
left_x(q):=x_coord(q); left_y(q):=y_coord(q);
end
@ Before we can go further into the way choices are made, we need to
consider the underlying theory. The basic ideas implemented in |make_choices|
are due to John Hobby, who introduced the notion of ``mock curvature''
@^Hobby, John Douglas@>
at a knot. Angles are chosen so that they preserve mock curvature when
a knot is passed, and this has been found to produce excellent results.
It is convenient to introduce some notations that simplify the necessary
formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
between knots |k| and |k+1|; and let
$${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
The control points for the spline from $z_k$ to $z\k$ will be denoted by
$$\eqalign{z_k^+&=z_k+
\textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
z\k^-&=z\k-
\textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
corresponding ``offset angles.'' These angles satisfy the condition
$$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
whenever the curve leaves an intermediate knot~|k| in the direction that
it enters.
@ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
the curve at its beginning and ending points. This means that
$\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
where $f(\theta,\phi)$ is \MP's standard velocity function defined in
the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
z\k^-,z\k^{\phantom+};t)$
has curvature
@^curvature@>
$${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
\qquad{\rm and}\qquad
{2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
at |t=0| and |t=1|, respectively. The mock curvature is the linear
@^mock curvature@>
approximation to this true curvature that arises in the limit for
small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
The standard velocity function satisfies
$$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
hence the mock curvatures are respectively
$${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
\qquad{\rm and}\qquad
{2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
@ The turning angles $\psi_k$ are given, and equation $(*)$ above
determines $\phi_k$ when $\theta_k$ is known, so the task of
angle selection is essentially to choose appropriate values for each
$\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
from $(**)$, we obtain a system of linear equations of the form
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
where
$$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
\qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
\qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
\qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
$C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
hence they have a unique solution. Moreover, in most cases the tensions
are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
solution numerically stable, and there is an exponential damping
effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
a factor of~$O(2^{-j})$.
@ However, we still must consider the angles at the starting and ending
knots of a non-cyclic path. These angles might be given explicitly, or
they might be specified implicitly in terms of an amount of ``curl.''
Let's assume that angles need to be determined for a non-cyclic path
starting at $z_0$ and ending at~$z_n$. Then equations of the form
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
have been given for $0<k<n$, and it will be convenient to introduce
equations of the same form for $k=0$ and $k=n$, where
$$A_0=B_0=C_n=D_n=0.$$
If $\theta_0$ is supposed to have a given value $E_0$, we simply
define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
parameter, $\gamma_0$, has been specified at~$z_0$; this means
that the mock curvature at $z_0$ should be $\gamma_0$ times the
mock curvature at $z_1$; i.e.,
$${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
=\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
This equation simplifies to
$$(\alpha_0\chi_0+3-\beta_1)\theta_0+
\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
-\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
\chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
hence the linear equations remain nonsingular.
Similar considerations apply at the right end, when the final angle $\phi_n$
may or may not need to be determined. It is convenient to let $\psi_n=0$,
hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
or we have
$$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
(\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
\chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
When |make_choices| chooses angles, it must compute the coefficients of
these linear equations, then solve the equations. To compute the coefficients,
it is necessary to compute arctangents of the given turning angles~$\psi_k$.
When the equations are solved, the chosen directions $\theta_k$ are put
back into the form of control points by essentially computing sines and
cosines.
@ OK, we are ready to make the hard choices of |make_choices|.
Most of the work is relegated to an auxiliary procedure
called |solve_choices|, which has been introduced to keep
|make_choices| from being extremely long.
@<Fill in the control information between...@>=
@<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
set $n$ to the length of the path@>;
@<Remove |open| types at the breakpoints@>;
solve_choices(p,q,n)
@ It's convenient to precompute quantities that will be needed several
times later. The values of |delta_x[k]| and |delta_y[k]| will be the
coordinates of $z\k-z_k$, and the magnitude of this vector will be
|delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
and $z\k-z_k$ will be stored in |psi[k]|.
@<Glob...@>=
@!delta_x,@!delta_y,@!delta:array[0..path_size] of scaled; {knot differences}
@!psi:array[1..path_size] of angle; {turning angles}
@ @<Other local variables for |make_choices|@>=
@!k,@!n:0..path_size; {current and final knot numbers}
@!s,@!t:pointer; {registers for list traversal}
@!delx,@!dely:scaled; {directions where |open| meets |explicit|}
@!sine,@!cosine:fraction; {trig functions of various angles}
@ @<Calculate the turning angles...@>=
k:=0; s:=p; n:=path_size;
repeat t:=link(s);
delta_x[k]:=x_coord(t)-x_coord(s);
delta_y[k]:=y_coord(t)-y_coord(s);
delta[k]:=pyth_add(delta_x[k],delta_y[k]);
if k>0 then
begin sine:=make_fraction(delta_y[k-1],delta[k-1]);
cosine:=make_fraction(delta_x[k-1],delta[k-1]);
psi[k]:=n_arg(take_fraction(delta_x[k],cosine)+
take_fraction(delta_y[k],sine),
take_fraction(delta_y[k],cosine)-
take_fraction(delta_x[k],sine));
end;
@:MetaPost capacity exceeded path size}{\quad path size@>
incr(k); s:=t;
if k=path_size then overflow("path size",path_size);
if s=q then n:=k;
until (k>=n)and(left_type(s)<>end_cycle);
if k=n then psi[n]:=0@+else psi[k]:=psi[1]
@ When we get to this point of the code, |right_type(p)| is either
|given| or |curl| or |open|. If it is |open|, we must have
|left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
case, the |open| type is converted to |given|; however, if the
velocity coming into this knot is zero, the |open| type is
converted to a |curl|, since we don't know the incoming direction.
Similarly, |left_type(q)| is either |given| or |curl| or |open| or
|end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
@<Remove |open| types at the breakpoints@>=
if left_type(q)=open then
begin delx:=right_x(q)-x_coord(q); dely:=right_y(q)-y_coord(q);
if (delx=0)and(dely=0) then
begin left_type(q):=curl; left_curl(q):=unity;
end
else begin left_type(q):=given; left_given(q):=n_arg(delx,dely);
end;
end;
if (right_type(p)=open)and(left_type(p)=explicit) then
begin delx:=x_coord(p)-left_x(p); dely:=y_coord(p)-left_y(p);
if (delx=0)and(dely=0) then
begin right_type(p):=curl; right_curl(p):=unity;
end
else begin right_type(p):=given; right_given(p):=n_arg(delx,dely);
end;
end
@ Linear equations need to be solved whenever |n>1|; and also when |n=1|
and exactly one of the breakpoints involves a curl. The simplest case occurs
when |n=1| and there is a curl at both breakpoints; then we simply draw
a straight line.
But before coding up the simple cases, we might as well face the general case,
since we must deal with it sooner or later, and since the general case
is likely to give some insight into the way simple cases can be handled best.
When there is no cycle, the linear equations to be solved form a tridiagonal
system, and we can apply the standard technique of Gaussian elimination
to convert that system to a sequence of equations of the form
$$\theta_0+u_0\theta_1=v_0,\quad
\theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
\theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
\theta_n=v_n.$$
It is possible to do this diagonalization while generating the equations.
Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
$\theta_1$, $\theta_0$; thus, the equations will be solved.
The procedure is slightly more complex when there is a cycle, but the
basic idea will be nearly the same. In the cyclic case the right-hand
sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
$\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
ending routine will take account of the fact that $\theta_n=\theta_0$ and
eliminate the $w$'s from the system, after which the solution can be
obtained as before.
When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
@<Glob...@>=
@!theta:array[0..path_size] of angle; {values of $\theta_k$}
@!uu:array[0..path_size] of fraction; {values of $u_k$}
@!vv:array[0..path_size] of angle; {values of $v_k$}
@!ww:array[0..path_size] of fraction; {values of $w_k$}
@ Our immediate problem is to get the ball rolling by setting up the
first equation or by realizing that no equations are needed, and to fit
this initialization into a framework suitable for the overall computation.
@<Declare the procedure called |solve_choices|@>=
@t\4@>@<Declare subroutines needed by |solve_choices|@>@;
procedure solve_choices(@!p,@!q:pointer;@!n:halfword);
label found,exit;
var @!k:0..path_size; {current knot number}
@!r,@!s,@!t:pointer; {registers for list traversal}
@<Other local variables for |solve_choices|@>@;
begin k:=0; s:=p;
loop@+ begin t:=link(s);
if k=0 then @<Get the linear equations started; or |return|
with the control points in place, if linear equations
needn't be solved@>
else case left_type(s) of
end_cycle,open:@<Set up equation to match mock curvatures
at $z_k$; then |goto found| with $\theta_n$
adjusted to equal $\theta_0$, if a cycle has ended@>;
curl:@<Set up equation for a curl at $\theta_n$
and |goto found|@>;
given:@<Calculate the given value of $\theta_n$
and |goto found|@>;
end; {there are no other cases}
r:=s; s:=t; incr(k);
end;
found:@<Finish choosing angles and assigning control points@>;
exit:end;
@ On the first time through the loop, we have |k=0| and |r| is not yet
defined. The first linear equation, if any, will have $A_0=B_0=0$.
@<Get the linear equations started...@>=
case right_type(s) of
given: if left_type(t)=given then @<Reduce to simple case of two givens
and |return|@>
else @<Set up the equation for a given value of $\theta_0$@>;
curl: if left_type(t)=curl then @<Reduce to simple case of straight line
and |return|@>
else @<Set up the equation for a curl at $\theta_0$@>;
open: begin uu[0]:=0; vv[0]:=0; ww[0]:=fraction_one;
end; {this begins a cycle}
end {there are no other cases}
@ The general equation that specifies equality of mock curvature at $z_k$ is
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
as derived above. We want to combine this with the already-derived equation
$\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
a new equation
$\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
equation
$$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
-A_kw_{k-1}\theta_0$$
by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
fixed-point arithmetic, avoiding the chance of overflow while retaining
suitable precision.
The calculations will be performed in several registers that
provide temporary storage for intermediate quantities.
@<Other local variables for |solve_choices|@>=
@!aa,@!bb,@!cc,@!ff,@!acc:fraction; {temporary registers}
@!dd,@!ee:scaled; {likewise, but |scaled|}
@!lt,@!rt:scaled; {tension values}
@ @<Set up equation to match mock curvatures...@>=
begin @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
$\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
uu[k]:=take_fraction(ff,bb);
@<Calculate the values of $v_k$ and $w_k$@>;
if left_type(s)=end_cycle then
@<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
end
@ Since tension values are never less than 3/4, the values |aa| and
|bb| computed here are never more than 4/5.
@<Calculate the values $\\{aa}=...@>=
if abs(right_tension(r))=unity then
begin aa:=fraction_half; dd:=2*delta[k];
end
else begin aa:=make_fraction(unity,3*abs(right_tension(r))-unity);
dd:=take_fraction(delta[k],
fraction_three-make_fraction(unity,abs(right_tension(r))));
end;
if abs(left_tension(t))=unity then
begin bb:=fraction_half; ee:=2*delta[k-1];
end
else begin bb:=make_fraction(unity,3*abs(left_tension(t))-unity);
ee:=take_fraction(delta[k-1],
fraction_three-make_fraction(unity,abs(left_tension(t))));
end;
cc:=fraction_one-take_fraction(uu[k-1],aa)
@ The ratio to be calculated in this step can be written in the form
$$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
\\{cc}\cdot\\{dd},$$
because of the quantities just calculated. The values of |dd| and |ee|
will not be needed after this step has been performed.
@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
dd:=take_fraction(dd,cc); lt:=abs(left_tension(s)); rt:=abs(right_tension(s));
if lt<>rt then {$\beta_k^{-1}\ne\alpha_k^{-1}$}
if lt<rt then
begin ff:=make_fraction(lt,rt);
ff:=take_fraction(ff,ff); {$\alpha_k^2/\beta_k^2$}
dd:=take_fraction(dd,ff);
end
else begin ff:=make_fraction(rt,lt);
ff:=take_fraction(ff,ff); {$\beta_k^2/\alpha_k^2$}
ee:=take_fraction(ee,ff);
end;
ff:=make_fraction(ee,ee+dd)
@ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
equation was specified by a curl. In that case we must use a special
method of computation to prevent overflow.
Fortunately, the calculations turn out to be even simpler in this ``hard''
case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
$-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
@<Calculate the values of $v_k$ and $w_k$@>=
acc:=-take_fraction(psi[k+1],uu[k]);
if right_type(r)=curl then
begin ww[k]:=0;
vv[k]:=acc-take_fraction(psi[1],fraction_one-ff);
end
else begin ff:=make_fraction(fraction_one-ff,cc); {this is
$B_k/(C_k+B_k-u_{k-1}A_k)<5$}
acc:=acc-take_fraction(psi[k],ff);
ff:=take_fraction(ff,aa); {this is $A_k/(C_k+B_k-u_{k-1}A_k)$}
vv[k]:=acc-take_fraction(vv[k-1],ff);
if ww[k-1]=0 then ww[k]:=0
else ww[k]:=-take_fraction(ww[k-1],ff);
end
@ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
$\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
for |0<=k<n|, so that the cyclic case can be finished up just as if there
were no cycle.
The idea in the following code is to observe that
$$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
&=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
-u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
so we can solve for $\theta_n=\theta_0$.
@<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
begin aa:=0; bb:=fraction_one; {we have |k=n|}
repeat decr(k);
if k=0 then k:=n;
aa:=vv[k]-take_fraction(aa,uu[k]);
bb:=ww[k]-take_fraction(bb,uu[k]);
until k=n; {now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$}
aa:=make_fraction(aa,fraction_one-bb);
theta[n]:=aa; vv[0]:=aa;
for k:=1 to n-1 do vv[k]:=vv[k]+take_fraction(aa,ww[k]);
goto found;
end
@ @d reduce_angle(#)==if abs(#)>one_eighty_deg then
if #>0 then #:=#-three_sixty_deg@+else #:=#+three_sixty_deg
@<Calculate the given value of $\theta_n$...@>=
begin theta[n]:=left_given(s)-n_arg(delta_x[n-1],delta_y[n-1]);
reduce_angle(theta[n]);
goto found;
end
@ @<Set up the equation for a given value of $\theta_0$@>=
begin vv[0]:=right_given(s)-n_arg(delta_x[0],delta_y[0]);
reduce_angle(vv[0]);
uu[0]:=0; ww[0]:=0;
end
@ @<Set up the equation for a curl at $\theta_0$@>=
begin cc:=right_curl(s); lt:=abs(left_tension(t)); rt:=abs(right_tension(s));
if (rt=unity)and(lt=unity) then
uu[0]:=make_fraction(cc+cc+unity,cc+two)
else uu[0]:=curl_ratio(cc,rt,lt);
vv[0]:=-take_fraction(psi[1],uu[0]); ww[0]:=0;
end
@ @<Set up equation for a curl at $\theta_n$...@>=
begin cc:=left_curl(s); lt:=abs(left_tension(s)); rt:=abs(right_tension(r));
if (rt=unity)and(lt=unity) then
ff:=make_fraction(cc+cc+unity,cc+two)
else ff:=curl_ratio(cc,lt,rt);
theta[n]:=-make_fraction(take_fraction(vv[n-1],ff),
fraction_one-take_fraction(ff,uu[n-1]));
goto found;
end
@ The |curl_ratio| subroutine has three arguments, which our previous notation
encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
a somewhat tedious program to calculate
$${(3-\alpha)\alpha^2\gamma+\beta^3\over
\alpha^3\gamma+(3-\beta)\beta^2},$$
with the result reduced to 4 if it exceeds 4. (This reduction of curl
is necessary only if the curl and tension are both large.)
The values of $\alpha$ and $\beta$ will be at most~4/3.
@<Declare subroutines needed by |solve_choices|@>=
function curl_ratio(@!gamma,@!a_tension,@!b_tension:scaled):fraction;
var @!alpha,@!beta,@!num,@!denom,@!ff:fraction; {registers}
begin alpha:=make_fraction(unity,a_tension);
beta:=make_fraction(unity,b_tension);@/
if alpha<=beta then
begin ff:=make_fraction(alpha,beta); ff:=take_fraction(ff,ff);
gamma:=take_fraction(gamma,ff);@/
beta:=beta div @'10000; {convert |fraction| to |scaled|}
denom:=take_fraction(gamma,alpha)+three-beta;
num:=take_fraction(gamma,fraction_three-alpha)+beta;
end
else begin ff:=make_fraction(beta,alpha); ff:=take_fraction(ff,ff);
beta:=take_fraction(beta,ff) div @'10000; {convert |fraction| to |scaled|}
denom:=take_fraction(gamma,alpha)+(ff div 1365)-beta;
{$1365\approx 2^{12}/3$}
num:=take_fraction(gamma,fraction_three-alpha)+beta;
end;
if num>=denom+denom+denom+denom then curl_ratio:=fraction_four
else curl_ratio:=make_fraction(num,denom);
end;
@ We're in the home stretch now.
@<Finish choosing angles and assigning control points@>=
for k:=n-1 downto 0 do theta[k]:=vv[k]-take_fraction(theta[k+1],uu[k]);
s:=p; k:=0;
repeat t:=link(s);@/
n_sin_cos(theta[k]); st:=n_sin; ct:=n_cos;@/
n_sin_cos(-psi[k+1]-theta[k+1]); sf:=n_sin; cf:=n_cos;@/
set_controls(s,t,k);@/
incr(k); s:=t;
until k=n
@ The |set_controls| routine actually puts the control points into
a pair of consecutive nodes |p| and~|q|. Global variables are used to
record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
$\cos\phi$ needed in this calculation.
@<Glob...@>=
@!st,@!ct,@!sf,@!cf:fraction; {sines and cosines}
@ @<Declare subroutines needed by |solve_choices|@>=
procedure set_controls(@!p,@!q:pointer;@!k:integer);
var @!rr,@!ss:fraction; {velocities, divided by thrice the tension}
@!lt,@!rt:scaled; {tensions}
@!sine:fraction; {$\sin(\theta+\phi)$}
begin lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
rr:=velocity(st,ct,sf,cf,rt);
ss:=velocity(sf,cf,st,ct,lt);
if (right_tension(p)<0)or(left_tension(q)<0) then @<Decrease the velocities,
if necessary, to stay inside the bounding triangle@>;
right_x(p):=x_coord(p)+take_fraction(
take_fraction(delta_x[k],ct)-take_fraction(delta_y[k],st),rr);
right_y(p):=y_coord(p)+take_fraction(
take_fraction(delta_y[k],ct)+take_fraction(delta_x[k],st),rr);
left_x(q):=x_coord(q)-take_fraction(
take_fraction(delta_x[k],cf)+take_fraction(delta_y[k],sf),ss);
left_y(q):=y_coord(q)-take_fraction(
take_fraction(delta_y[k],cf)-take_fraction(delta_x[k],sf),ss);
right_type(p):=explicit; left_type(q):=explicit;
end;
@ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
$\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
$\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
there is no ``bounding triangle.''
@!@:at_least_}{\&{atleast} primitive@>
@<Decrease the velocities, if necessary...@>=
if((st>=0)and(sf>=0))or((st<=0)and(sf<=0)) then
begin sine:=take_fraction(abs(st),cf)+take_fraction(abs(sf),ct);
if sine>0 then
begin sine:=take_fraction(sine,fraction_one+unity); {safety factor}
if right_tension(p)<0 then
if ab_vs_cd(abs(sf),fraction_one,rr,sine)<0 then
rr:=make_fraction(abs(sf),sine);
if left_tension(q)<0 then
if ab_vs_cd(abs(st),fraction_one,ss,sine)<0 then
ss:=make_fraction(abs(st),sine);
end;
end
@ Only the simple cases remain to be handled.
@<Reduce to simple case of two givens and |return|@>=
begin aa:=n_arg(delta_x[0],delta_y[0]);@/
n_sin_cos(right_given(p)-aa); ct:=n_cos; st:=n_sin;@/
n_sin_cos(left_given(q)-aa); cf:=n_cos; sf:=-n_sin;@/
set_controls(p,q,0); return;
end
@ @<Reduce to simple case of straight line and |return|@>=
begin right_type(p):=explicit; left_type(q):=explicit;
lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
if rt=unity then
begin if delta_x[0]>=0 then right_x(p):=x_coord(p)+((delta_x[0]+1) div 3)
else right_x(p):=x_coord(p)+((delta_x[0]-1) div 3);
if delta_y[0]>=0 then right_y(p):=y_coord(p)+((delta_y[0]+1) div 3)
else right_y(p):=y_coord(p)+((delta_y[0]-1) div 3);
end
else begin ff:=make_fraction(unity,3*rt); {$\alpha/3$}
right_x(p):=x_coord(p)+take_fraction(delta_x[0],ff);
right_y(p):=y_coord(p)+take_fraction(delta_y[0],ff);
end;
if lt=unity then
begin if delta_x[0]>=0 then left_x(q):=x_coord(q)-((delta_x[0]+1) div 3)
else left_x(q):=x_coord(q)-((delta_x[0]-1) div 3);
if delta_y[0]>=0 then left_y(q):=y_coord(q)-((delta_y[0]+1) div 3)
else left_y(q):=y_coord(q)-((delta_y[0]-1) div 3);
end
else begin ff:=make_fraction(unity,3*lt); {$\beta/3$}
left_x(q):=x_coord(q)-take_fraction(delta_x[0],ff);
left_y(q):=y_coord(q)-take_fraction(delta_y[0],ff);
end;
return;
end
@* \[19] Measuring paths.
\MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
allow the user to measure the bounding box of anything that can go into a
picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
by just finding the bounding box of the knots and the control points. We
need a more accurate version of the bounding box, but we can still use the
easy estimate to save time by focusing on the interesting parts of the path.
@ Computing an accurate bounding box involves a theme that will come up again
and again. Given a Bernshte{\u\i}n polynomial
@^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
$$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
we can conveniently bisect its range as follows:
\smallskip
\textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
\smallskip
\textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
|0<=k<n-j|, for |0<=j<n|.
\smallskip\noindent
Then
$$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
=B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
This formula gives us the coefficients of polynomials to use over the ranges
$0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
@ Now here's a subroutine that's handy for all sorts of path computations:
Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
returns the unique |fraction| value |t| between 0 and~1 at which
$B(a,b,c;t)$ changes from positive to negative, or returns
|t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
is already negative at |t=0|), |crossing_point| returns the value zero.
@d no_crossing==begin crossing_point:=fraction_one+1; return;
end
@d one_crossing==begin crossing_point:=fraction_one; return;
end
@d zero_crossing==begin crossing_point:=0; return;
end
@p function crossing_point(@!a,@!b,@!c:integer):fraction;
label exit;
var @!d:integer; {recursive counter}
@!x,@!xx,@!x0,@!x1,@!x2:integer; {temporary registers for bisection}
begin if a<0 then zero_crossing;
if c>=0 then
begin if b>=0 then
if c>0 then no_crossing
else if (a=0)and(b=0) then no_crossing
else one_crossing;
if a=0 then zero_crossing;
end
else if a=0 then if b<=0 then zero_crossing;
@<Use bisection to find the crossing point, if one exists@>;
exit:end;
@ The general bisection method is quite simple when $n=2$, hence
|crossing_point| does not take much time. At each stage in the
recursion we have a subinterval defined by |l| and~|j| such that
$B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
It is convenient for purposes of calculation to combine the values
of |l| and~|j| in a single variable $d=2^l+j$, because the operation
of bisection then corresponds simply to doubling $d$ and possibly
adding~1. Furthermore it proves to be convenient to modify
our previous conventions for bisection slightly, maintaining the
variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
The following code maintains the invariant relations
$0\L|x0|<\max(|x1|,|x1|+|x2|)$,
$\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
it has been constructed in such a way that no arithmetic overflow
will occur if the inputs satisfy
$a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
@<Use bisection to find the crossing point...@>=
d:=1; x0:=a; x1:=a-b; x2:=b-c;
repeat x:=half(x1+x2);
if x1-x0>x0 then
begin x2:=x; double(x0); double(d);
end
else begin xx:=x1+x-x0;
if xx>x0 then
begin x2:=x; double(x0); double(d);
end
else begin x0:=x0-xx;
if x<=x0 then if x+x2<=x0 then no_crossing;
x1:=x; d:=d+d+1;
end;
end;
until d>=fraction_one;
crossing_point:=d-fraction_one
@ Here is a routine that computes the $x$ or $y$ coordinate of the point on
a cubic corresponding to the |fraction| value~|t|.
It is convenient to define a \.{WEB} macro |t_of_the_way| such that
|t_of_the_way(a)(b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
@d t_of_the_way_end(#)==#,t@=)@>
@d t_of_the_way(#)==#-take_fraction@=(@>#-t_of_the_way_end
@p function eval_cubic(@!p,@!q:pointer;t:fraction):scaled;
var @!x1,@!x2,@!x3:scaled; {intermediate values}
begin x1:=t_of_the_way(knot_coord(p))(right_coord(p));
x2:=t_of_the_way(right_coord(p))(left_coord(q));
x3:=t_of_the_way(left_coord(q))(knot_coord(q));@/
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
eval_cubic:=t_of_the_way(x1)(x2);
end;
@ The actual bounding box information is stored in global variables.
Since it is convenient to address the $x$ and $y$ information
separately, we define arrays indexed by |x_code..y_code| and use
macros to give them more convenient names.
@d x_code=0 {index for |minx| and |maxx|}
@d y_code=1 {index for |miny| and |maxy|}
@d minx==bbmin[x_code]
@d maxx==bbmax[x_code]
@d miny==bbmin[y_code]
@d maxy==bbmax[y_code]
@<Glob...@>=
@!bbmin,@!bbmax:array[x_code..y_code] of scaled;
{the result of procedures that compute bounding box information}
@ Now we're ready for the key part of the bounding box computation.
The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
$$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
\hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
$$
for $0<t\le1$. In other words, the procedure adjusts the bounds to
accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
The |c| parameter is |x_code| or |y_code|.
@p procedure bound_cubic(@!p,@!q:pointer;c:small_number);
var @!wavy:boolean; {whether we need to look for extremes}
@!del1,@!del2,@!del3,@!del,@!dmax:scaled; {proportional to the control
points of a quadratic derived from a cubic}
@!t,@!tt:fraction; {where a quadratic crosses zero}
@!x:scaled; {a value that |bbmin[c]| and |bbmax[c]| must accommodate}
begin x:=knot_coord(q);
@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
@<Check the control points against the bounding box and set |wavy:=true|
if any of them lie outside@>;
if wavy then
begin del1:=right_coord(p)-knot_coord(p);
del2:=left_coord(q)-right_coord(p);
del3:=knot_coord(q)-left_coord(q);
@<Scale up |del1|, |del2|, and |del3| for greater accuracy;
also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
if del<0 then
begin negate(del1); negate(del2); negate(del3);
end;
t:=crossing_point(del1,del2,del3);
if t<fraction_one then
@<Test the extremes of the cubic against the bounding box@>;
end;
end;
@ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
if x<bbmin[c] then bbmin[c]:=x;
if x>bbmax[c] then bbmax[c]:=x
@ @<Check the control points against the bounding box and set...@>=
wavy:=true;
if bbmin[c]<=right_coord(p) then
if right_coord(p)<=bbmax[c] then
if bbmin[c]<=left_coord(q) then
if left_coord(q)<=bbmax[c] then
wavy:=false
@ If |del1=del2=del3=0|, it's impossible to obey the title of this
section. We just set |del=0| in that case.
@<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
if del1<>0 then del:=del1
else if del2<>0 then del:=del2
else del:=del3;
if del<>0 then
begin dmax:=abs(del1);
if abs(del2)>dmax then dmax:=abs(del2);
if abs(del3)>dmax then dmax:=abs(del3);
while dmax<fraction_half do
begin double(dmax); double(del1); double(del2); double(del3);
end;
end
@ Since |crossing_point| has tried to choose |t| so that
$B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
slope, the value of |del2| computed below should not be positive.
But rounding error could make it slightly positive in which case we
must cut it to zero to avoid confusion.
@<Test the extremes of the cubic against the bounding box@>=
begin x:=eval_cubic(p,q,t);
@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
del2:=t_of_the_way(del2)(del3);
{now |0,del2,del3| represent the derivative on the remaining interval}
if del2>0 then del2:=0;
tt:=crossing_point(0,-del2,-del3);
if tt<fraction_one then
@<Test the second extreme against the bounding box@>;
end
@ @<Test the second extreme against the bounding box@>=
begin x:=eval_cubic(p,q,t_of_the_way(tt)(fraction_one));
@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
end
@ Finding the bounding box of a path is basically a matter of applying
|bound_cubic| twice for each pair of adjacent knots.
@p procedure path_bbox(@!h:pointer);
label exit;
var @!p,@!q:pointer; {a pair of adjacent knots}
begin minx:=x_coord(h); miny:=y_coord(h);
maxx:=minx; maxy:=miny;@/
p:=h;
repeat if right_type(p)=endpoint then return;
q:=link(p);@/
bound_cubic(x_loc(p),x_loc(q),x_code);
bound_cubic(y_loc(p),y_loc(q),y_code);
p:=q;
until p=h;
exit:end;
@ Another important way to measure a path is to find its arc length. This
is best done by using the general bisection algorithm to subdivide the path
until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
by simple means.
Since the arc length is the integral with respect to time of the magnitude of
the velocity, it is natural to use Simpson's rule for the approximation.
@^Simpson's rule@>
If $\dot B(t)$ is the spline velocity, Simpson's rule gives
$$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
for the arc length of a path of length~1. For a cubic spline
$B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
$3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
approximation is
$$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
where
$$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
is the result of the bisection algorithm.
@ The remaining problem is how to decide when a subpath is ``well behaved.''
This could be done via the theoretical error bound for Simpson's rule,
@^Simpson's rule@>
but this is impractical because it requires an estimate of the fourth
derivative of the quantity being integrated. It is much easier to just perform
a bisection step and see how much the arc length estimate changes. Since the
error for Simpson's rule is proportional to the fourth power of the sample
spacing, the remaining error is typically about $1\over16$ of the amount of
the change. We say ``typically'' because the error has a pseudo-random behavior
that could cause the two estimates to agree when each contain large errors.
To protect against disasters such as undetected cusps, the bisection process
should always continue until all the $dz_i$ vectors belong to a single
$90^\circ$ sector. This ensures that no point on the spline can have velocity
less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
If such a spline happens to produce an erroneous arc length estimate that
is little changed by bisection, the amount of the error is likely to be fairly
small. We will try to arrange things so that freak accidents of this type do
not destroy the inverse relationship between the \&{arclength} and
\&{arctime} operations.
@:arclength_}{\&{arclength} primitive@>
@:arctime_}{\&{arctime} primitive@>
@ The \&{arclength} and \&{arctime} operations are both based on a recursive
@^recursion@>
function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
$dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
returns the time when the arc length reaches |a_goal| if there is such a time.
Thus the return value is either an arc length less than |a_goal| or, if the
arc length would be at least |a_goal|, it returns a time value decreased by
|two|. This allows the caller to use the sign of the result to distinguish
between arc lengths and time values. On certain types of overflow, it is
possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
Otherwise, the result is always less than |a_goal|.
Rather than halving the control point coordinates on each recursive call to
|arc_test|, it is better to keep them proportional to velocity on the original
curve and halve the results instead. This means that recursive calls can
potentially use larger error tolerances in their arc length estimates. How
much larger depends on to what extent the errors behave as though they are
independent of each other. To save computing time, we use optimistic assumptions
and increase the tolerance by a factor of about $\sqrt2$ for each recursive
call.
In addition to the tolerance parameter, |arc_test| should also have parameters
for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
and they are needed in different instances of |arc_test|.
@p @t\4@>@<Declare subroutines needed by |arc_test|@>@;
function arc_test(@!dx0, @!dy0, @!dx1, @!dy1, @!dx2, @!dy2,
@!v0, @!v02, @!v2, @!a_goal, @!tol:scaled): scaled;
label exit;
var simple: boolean; {are the control points confined to a $90^\circ$ sector?}
@!dx01, @!dy01, @!dx12, @!dy12, @!dx02, @!dy02: scaled; {bisection results}
@!v002, @!v022: scaled;
{twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$}
@!arc: scaled; {best arc length estimate before recursion}
@<Other local variables in |arc_test|@>@;
begin @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
|dx2|, |dy2|@>;
@<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
set |arc_test| and |return|@>;
@<Test if the control points are confined to one quadrant or rotating them
$45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
if simple and (abs(arc-v02-halfp(v0+v2)) <= tol) then
if arc < a_goal then @+arc_test := arc
else @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
that time minus |two|@>
else @<Use one or two recursive calls to compute the |arc_test| function@>;
exit:end;
@ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
calls, but $1.5$ is an adequate approximation. It is best to avoid using
|make_fraction| in this inner loop.
@^inner loop@>
@<Use one or two recursive calls to compute the |arc_test| function@>=
begin @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
large as possible@>;
tol := tol + halfp(tol);
a := arc_test(dx0,dy0, dx01,dy01, dx02,dy02, v0, v002, halfp(v02), a_new, tol);
if a<0 then @+arc_test := -halfp(two-a)
else begin @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
b := arc_test(dx02,dy02, dx12,dy12, dx2,dy2,
halfp(v02), v022, v2, a_new, tol);
if b<0 then @+arc_test := -halfp(-b) - half_unit
else arc_test := a + half(b-a);
end;
end
@ @<Other local variables in |arc_test|@>=
@!a, @!b: scaled; {results of recursive calls}
@!a_new, @!a_aux: scaled; {the sum of these gives the |a_goal|}
@ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
a_aux := el_gordo - a_goal;
if a_goal > a_aux then
begin a_aux := a_goal - a_aux;
a_new := el_gordo;
end
else begin a_new := a_goal + a_goal;
a_aux := 0;
end
@ There is no need to maintain |a_aux| at this point so we use it as a temporary
to force the additions and subtractions to be done in an order that avoids
overflow.
@<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
if a > a_aux then
begin a_aux := a_aux - a;
a_new := a_new + a_aux;
end
@ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
|fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
this bound. Note that recursive calls will maintain this invariant.
@<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
dx01 := half(dx0 + dx1);
dx12 := half(dx1 + dx2);
dx02 := half(dx01 + dx12);@/
dy01 := half(dy0 + dy1);
dy12 := half(dy1 + dy2);
dy02 := half(dy01 + dy12)
@ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
|a_goal=el_gordo| is guaranteed to yield the arc length.
@<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
v002 := pyth_add(dx01+half(dx0+dx02), dy01+half(dy0+dy02));
v022 := pyth_add(dx12+half(dx02+dx2), dy12+half(dy02+dy2));
tmp := halfp(v02+2);
arc1 := v002 + half(halfp(v0+tmp) - v002);
arc := v022 + half(halfp(v2+tmp) - v022);
if (arc < el_gordo-arc1) then @+arc := arc+arc1
else begin arith_error := true;
if a_goal=el_gordo then @+arc_test := el_gordo
else arc_test := -two;
return;
end
@ @<Other local variables in |arc_test|@>=
tmp, tmp2: scaled; {all purpose temporary registers}
arc1: scaled; {arc length estimate for the first half}
@ @<Test if the control points are confined to one quadrant or rotating...@>=
simple := (dx0>=0) and (dx1>=0) and (dx2>=0) or@|
(dx0<=0) and (dx1<=0) and (dx2<=0);
if simple then
simple := (dy0>=0) and (dy1>=0) and (dy2>=0) or@|
(dy0<=0) and (dy1<=0) and (dy2<=0);
if not simple then
begin simple := (dx0>=dy0) and (dx1>=dy1) and (dx2>=dy2) or@|
(dx0<=dy0) and (dx1<=dy1) and (dx2<=dy2);
if simple then
simple := (-dx0>=dy0) and (-dx1>=dy1) and (-dx2>=dy2) or@|
(-dx0<=dy0) and (-dx1<=dy1) and (-dx2<=dy2);
end
@ Since Simpson's rule is based on approximating the integrand by a parabola,
@^Simpson's rule@>
it is appropriate to use the same approximation to decide when the integral
reaches the intermediate value |a_goal|. At this point
$$\eqalign{
{\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
{\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
{\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
{\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
{\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
}
$$
and
$$ {\vb\dot B(t)\vb\over 3} \approx
\cases{B\left(\hbox{|v0|},
\hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
{1\over 2}\hbox{|v02|}; 2t \right)&
if $t\le{1\over 2}$\cr
B\left({1\over 2}\hbox{|v02|},
\hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
\hbox{|v2|}; 2t-1 \right)&
if $t\ge{1\over 2}$.\cr}
\eqno (*)
$$
We can integrate $\vb\dot B(t)\vb$ by using
$$\int 3B(a,b,c;\tau)\,dt =
{B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
$$
This construction allows us to find the time when the arc length reaches
|a_goal| by solving a cubic equation of the form
$$ B(0,a,a+b,a+b+c;\tau) = x, $$
where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
@^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
$d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
$\tau$ given $a$, $b$, $c$, and $x$.
@<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
begin tmp := (v02 + 2) div 4;
if a_goal<=arc1 then
begin tmp2 := halfp(v0);
arc_test := halfp(solve_rising_cubic(tmp2, arc1-tmp2-tmp, tmp, a_goal))
- two;
end
else begin tmp2 := halfp(v2);
arc_test := (half_unit - two) +@|
halfp(solve_rising_cubic(tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1));
end;
end
@ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
$$ B(0, a, a+b, a+b+c; t) = x. $$
This routine is based on |crossing_point| but is simplified by the
assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
If rounding error causes this condition to be violated slightly, we just ignore
it and proceed with binary search. This finds a time when the function value
reaches |x| and the slope is positive.
@<Declare subroutines needed by |arc_test|@>=
function solve_rising_cubic(@!a, @!b, @!c, @!x: scaled): scaled;
var @!ab, @!bc, @!ac: scaled; {bisection results}
@!t: integer; {$2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$}
@!xx: integer; {temporary for updating |x|}
begin if (a<0) or (c<0) then confusion("rising?");
@:this can't happen rising?}{\quad rising?@>
if x<=0 then solve_rising_cubic := 0
else if x >= a+b+c then solve_rising_cubic := unity
else begin t := 1;
@<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
|el_gordo div 3|@>;
repeat double(t);
@<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
xx := x - a - ab - ac;
if xx < -x then
begin double(x);
b:=ab; c:=ac;
end
else begin x := x + xx;
a:=ac; b:=bc;
t := t+1;
end;
until t >= unity;
solve_rising_cubic := t - unity;
end;
end;
@ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
ab := half(a+b);
bc := half(b+c);
ac := half(ab + bc)
@ @d one_third_el_gordo==@'5252525252 {upper bound on |a|, |b|, and |c|}
@<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
while (a>one_third_el_gordo) or@| (b>one_third_el_gordo)
or@| (c>one_third_el_gordo) do
begin a := halfp(a);
b := half(b);
c := halfp(c);
x := halfp(x);
end
@ It is convenient to have a simpler interface to |arc_test| that requires no
unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
length less than |fraction_four|.
@d arc_tol = 16 {quit when change in arc length estimate reaches this}
@p function do_arc_test(@!dx0, @!dy0, @!dx1, @!dy1, @!dx2, @!dy2,
@!a_goal: scaled): scaled;
var @!v0, @!v1, @!v2: scaled; {length of each $({\it dx},{\it dy})$ pair}
@!v02: scaled; {twice the norm of the quadratic at $t={1\over2}$}
begin v0 := pyth_add(dx0,dy0);
v1 := pyth_add(dx1,dy1);
v2 := pyth_add(dx2,dy2);
if (v0>=fraction_four) or (v1>=fraction_four) or (v2>=fraction_four) then
begin arith_error := true;
if a_goal=el_gordo then @+do_arc_test := el_gordo
else do_arc_test := -two;
end
else begin v02 := pyth_add(dx1+half(dx0+dx2), dy1+half(dy0+dy2));@/
do_arc_test := arc_test(dx0,dy0, dx1,dy1, dx2,dy2,@|
v0, v02, v2, a_goal, arc_tol);
end;
end;
@ Now it is easy to find the arc length of an entire path.
@p function get_arc_length(@!h: pointer): scaled;
label done;
var @!p, @!q: pointer; {for traversing the path}
@!a, @!a_tot: scaled; {current and total arc lengths}
begin a_tot := 0;
p := h;
while right_type(p)<>endpoint do
begin q := link(p);
a := do_arc_test(right_x(p)-x_coord(p), right_y(p)-y_coord(p),@|
left_x(q)-right_x(p), left_y(q)-right_y(p),@|
x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
a_tot := slow_add(a, a_tot);
if q=h then goto done @+else p:=q;
end;
done:check_arith;
get_arc_length := a_tot;
end;
@ The inverse operation of finding the time on a path~|h| when the arc length
reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
is required to handle very large times or negative times on cyclic paths. For
non-cyclic paths, |arc0| values that are negative or too large cause
|get_arc_time| to return 0 or the length of path~|h|.
If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
time value greater than the length of the path. Since it could be much greater,
we must be prepared to compute the arc length of path~|h| and divide this into
|arc0| to find how many multiples of the length of path~|h| to add.
@p function get_arc_time(@!h: pointer; @!arc0:scaled): scaled;
label done;
var @!p, @!q: pointer; {for traversing the path}
@!t_tot: scaled; {accumulator for the result}
@!t: scaled; {the result of |do_arc_test|}
@!arc:scaled; {portion of |arc0| not used up so far}
@!n: integer; {number of extra times to go around the cycle}
begin if arc0<0 then @<Deal with a negative |arc0| value and |goto done|@>;
if arc0=el_gordo then decr(arc0);
t_tot := 0;
arc := arc0;
p := h;
while (right_type(p)<>endpoint) and (arc>0) do
begin q := link(p);
t := do_arc_test(right_x(p)-x_coord(p), right_y(p)-y_coord(p),@|
left_x(q)-right_x(p), left_y(q)-right_y(p),@|
x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
@<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
if q=h then @<Update |t_tot| and |arc| to avoid going around the cyclic
path too many times but set |arith_error:=true| and |goto done| on
overflow@>;
p := q;
end;
done: check_arith;
get_arc_time := t_tot;
end;
@ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
if t<0 then
begin t_tot := t_tot + t + two;
arc := 0;
end
else begin t_tot := t_tot + unity;
arc := arc - t;
end
@ @<Deal with a negative |arc0| value and |goto done|@>=
begin if left_type(h)=endpoint then t_tot:=0
else begin p := htap_ypoc(h);
t_tot := -get_arc_time(p, -arc0);
toss_knot_list(p);
end;
goto done;
end
@ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
if arc>0 then
begin n := arc div (arc0 - arc);
arc := arc - n*(arc0 - arc);
if t_tot > el_gordo div (n+1) then
begin arith_error := true;
t_tot := el_gordo;
goto done;
end;
t_tot := (n + 1)*t_tot;
end
@* \[20] Data structures for pens.
A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
@:stroke}{\&{stroke} command@>
converted into an area fill as described in the next part of this program.
The mathematics behind this process is based on simple aspects of the theory
of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
[``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
Foundations of Computer Science {\bf 24} (1983), 100--111].
Polygonal pens are created from paths via \MP's \&{makepen} primitive.
@:makepen_}{\&{makepen} primitive@>
This path representation is almost sufficient for our purposes except that
a pen path should always be a convex polygon with the vertices in
counter-clockwise order.
Since we will need to scan pen polygons both forward and backward, a pen
should be represented as a doubly linked ring of knot nodes. There is
room for the extra back pointer because we do not need the
|left_type| or |right_type| fields. In fact, we don't need the |left_x|,
|left_y|, |right_x|, or |right_y| fields either but we leave these alone
so that certain procedures can operate on both pens and paths. In particular,
pens can be copied using |copy_path| and recycled using |toss_knot_list|.
@d knil==info
{this replaces the |left_type| and |right_type| fields in a pen knot}
@ The |make_pen| procedure turns a path into a pen by initializing
the |knil| pointers and making sure the knots form a convex polygon.
Thus each cubic in the given path becomes a straight line and the control
points are ignored. If the path is not cyclic, the ends are connected by a
straight line.
@d copy_pen(#)==make_pen(copy_path(#),false)
@p @<Declare a function called |convex_hull|@>@;
function make_pen(h:pointer;@!need_hull:boolean):pointer;
var @!p,@!q:pointer; {two consecutive knots}
begin q:=h;
repeat p:=q; q:=link(q);
knil(q):=p;
until q=h;
if need_hull then
begin h:=convex_hull(h);
@<Make sure |h| isn't confused with an elliptical pen@>;
end;
make_pen:=h;
end;
@ The only information required about an elliptical pen is the overall
transformation that has been applied to the original \&{pencircle}.
@:pencircle_}{\&{pencircle} primitive@>
Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
and $(0,1)$ are transformed, an elliptical pen can be stored in a single
knot node and transformed as if it were a path.
@d pen_is_elliptical(#)==(#=link(#))
@p function get_pen_circle(@!diam:scaled):pointer;
var @!h:pointer; {the knot node to return}
begin h:=get_node(knot_node_size);
link(h):=h; knil(h):=h;@/
x_coord(h):=0; y_coord(h):=0;@/
left_x(h):=diam; left_y(h):=0;@/
right_x(h):=0; right_y(h):=diam;@/
get_pen_circle:=h;
end;
@ If the polygon being returned by |make_pen| has only one vertex, it will
be interpreted as an elliptical pen. This is no problem since a degenerate
polygon can equally well be thought of as a degenerate ellipse. We need only
initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
@<Make sure |h| isn't confused with an elliptical pen@>=
if pen_is_elliptical(h) then
begin left_x(h):=x_coord(h); left_y(h):=y_coord(h);@/
right_x(h):=x_coord(h); right_y(h):=y_coord(h);
end
@ We have to cheat a little here but most operations on pens only use
the first three words in each knot node.
@^data structure assumptions@>
@<Initialize a pen at |test_pen| so that it fits in nine words@>=
x_coord(test_pen):=-half_unit;
y_coord(test_pen):=0;@/
x_coord(test_pen+3):=half_unit;
y_coord(test_pen+3):=0;@/
x_coord(test_pen+6):=0;
y_coord(test_pen+6):=unity;@/
link(test_pen):=test_pen+3;
link(test_pen+3):=test_pen+6;
link(test_pen+6):=test_pen;
knil(test_pen):=test_pen+6;
knil(test_pen+3):=test_pen;
knil(test_pen+6):=test_pen+3
@ Printing a polygonal pen is very much like printing a path
@<Declare subroutines for printing expressions@>=
procedure pr_pen(@!h:pointer);
label done;
var @!p,@!q:pointer; {for list traversal}
begin if pen_is_elliptical(h) then
@<Print the elliptical pen |h|@>
else begin p:=h;
repeat print_two(x_coord(p),y_coord(p));
print_nl(" .. ");
@<Advance |p| making sure the links are OK and |return| if there is
a problem@>;
until p=h;
print("cycle");
end;
done:end;
@ @<Advance |p| making sure the links are OK and |return| if there is...@>=
q:=link(p);
if (q=null) or (knil(q)<>p) then
begin print_nl("???"); goto done; {this won't happen}
@.???@>
end;
p:=q
@ @<Print the elliptical pen |h|@>=
begin print("pencircle transformed (");
print_scaled(x_coord(h));
print_char(",");
print_scaled(y_coord(h));@/
print_char(",");
print_scaled(left_x(h)-x_coord(h));
print_char(",");
print_scaled(right_x(h)-x_coord(h));
print_char(",");
print_scaled(left_y(h)-y_coord(h));@/
print_char(",");
print_scaled(right_y(h)-y_coord(h));@/
print_char(")");
end
@ Here us another version of |pr_pen| that prints the pen as a diagnostic
message.
@<Declare subroutines for printing expressions@>=
procedure print_pen(@!h:pointer;@!s:str_number;@!nuline:boolean);
begin print_diagnostic("Pen",s,nuline); print_ln;
@.Pen at line...@>
pr_pen(h);
end_diagnostic(true);
end;
@ Making a polygonal pen into a path involves restoring the |left_type| and
|right_type| fields and setting the control points so as to make a polygonal
path.
@p procedure make_path(@!h:pointer);
var @!p:pointer; {for traversing the knot list}
@!k:small_number; {a loop counter}
@<Other local variables in |make_path|@>@;
begin if pen_is_elliptical(h) then
@<Make the elliptical pen |h| into a path@>
else begin p:=h;
repeat left_type(p):=explicit;
right_type(p):=explicit;@/
@<copy the coordinates of knot |p| into its control points@>;@/
p:=link(p);
until p=h;
end;
end;
@ @<copy the coordinates of knot |p| into its control points@>=
left_x(p):=x_coord(p);
left_y(p):=y_coord(p);@/
right_x(p):=x_coord(p);
right_y(p):=y_coord(p)
@ We need an eight knot path to get a good approximation to an ellipse.
@<Make the elliptical pen |h| into a path@>=
begin @<Extract the transformation parameters from the elliptical pen~|h|@>;
p:=h;
for k:=0 to 7 do
begin @<Initialize |p| as the |k|th knot of a circle of unit diameter,
transforming it appropriately@>;
if k=7 then link(p):=h @+else link(p):=get_node(knot_node_size);
p:=link(p);
end;
end
@ @<Extract the transformation parameters from the elliptical pen~|h|@>=
center_x:=x_coord(h);
center_y:=y_coord(h);@/
width_x:=left_x(h)-center_x;
width_y:=left_y(h)-center_y;@/
height_x:=right_x(h)-center_x;
height_y:=right_y(h)-center_y
@ @<Other local variables in |make_path|@>=
@!center_x,@!center_y:scaled; {translation parameters for an elliptical pen}
@!width_x,@!width_y:scaled; {the effect of a unit change in $x$}
@!height_x,@!height_y:scaled; {the effect of a unit change in $y$}
@!dx,@!dy:scaled; {the vector from knot |p| to its right control point}
@!kk:integer;
{|k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$)}
@ The only tricky thing here are the tables |half_cos| and |d_cos| used to
find the point $k/8$ of the way around the circle and the direction vector
to use there.
@<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
kk:=(k+6)mod 8;@/
x_coord(p):=center_x+take_fraction(half_cos[k],width_x)
+take_fraction(half_cos[kk],height_x);
y_coord(p):=center_y+take_fraction(half_cos[k],width_y)
+take_fraction(half_cos[kk],height_y);
dx:=-take_fraction(d_cos[kk],width_x)+take_fraction(d_cos[k],height_x);
dy:=-take_fraction(d_cos[kk],width_y)+take_fraction(d_cos[k],height_y);
right_x(p):=x_coord(p)+dx;
right_y(p):=y_coord(p)+dy;@/
left_x(p):=x_coord(p)-dx;
left_y(p):=y_coord(p)-dy;@/
left_type(p):=explicit;
right_type(p):=explicit
@ @<Glob...@>=
half_cos:array[0..7] of fraction; {${1\over2}\cos(45k)$}
d_cos:array[0..7] of fraction; {a magic constant times $\cos(45k)$}
@ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
$({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
function for $\theta=\phi=22.5^\circ$. This comes out to be
$$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
\approx 0.132608244919772.
$$
@<Set init...@>=
half_cos[0]:=fraction_half;
half_cos[1]:=94906266; {$2^{26}\sqrt2\approx94906265.62$}
half_cos[2]:=0;@/
d_cos[0]:=35596755; {$2^{28}d\approx35596754.69$}
d_cos[1]:=25170707; {$2^{27}\sqrt2\,d\approx25170706.63$}
d_cos[2]:=0;
for k:=3 to 4 do
begin half_cos[k]:=-half_cos[4-k];
d_cos[k]:=-d_cos[4-k];
end;
for k:=5 to 7 do
begin half_cos[k]:=half_cos[8-k];
d_cos[k]:=d_cos[8-k];
end;
@ The |convex_hull| function forces a pen polygon to be convex when it is
returned by |make_pen| and after any subsequent transformation where rounding
error might allow the convexity to be lost.
The convex hull algorithm used here is described by F.~P. Preparata and
M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
@<Declare a function called |convex_hull|@>=
@<Declare a procedure called |move_knot|@>@;
function convex_hull(@!h:pointer):pointer; {Make a polygonal pen convex}
label done1,done2,done3;
var @!l,@!r:pointer; {the leftmost and rightmost knots}
@!p,@!q:pointer; {knots being scanned}
@!s:pointer; {the starting point for an upcoming scan}
@!dx,@!dy:scaled; {a temporary pointer}
begin if pen_is_elliptical(h) then convex_hull:=h
else begin @<Set |l| to the leftmost knot in polygon~|h|@>;
@<Set |r| to the rightmost knot in polygon~|h|@>;
if l<>r then
begin s:=link(r);
@<Find any knots on the path from |l| to |r| above the |l|-|r| line and
move them past~|r|@>;
@<Find any knots on the path from |s| to |l| below the |l|-|r| line and
move them past~|l|@>;
@<Sort the path from |l| to |r| by increasing $x$@>;
@<Sort the path from |r| to |l| by decreasing $x$@>;
end;
if l<>link(l) then @<Do a Gramm scan and remove vertices where there
is no left turn@>;
convex_hull:=l;
end;
end;
@ All comparisons are done primarily on $x$ and secondarily on $y$.
@<Set |l| to the leftmost knot in polygon~|h|@>=
l:=h;
p:=link(h);
while p<>h do
begin if x_coord(p)<=x_coord(l) then
if (x_coord(p)<x_coord(l)) or (y_coord(p)<y_coord(l)) then
l:=p;
p:=link(p);
end
@ @<Set |r| to the rightmost knot in polygon~|h|@>=
r:=h;
p:=link(h);
while p<>h do
begin if x_coord(p)>=x_coord(r) then
if (x_coord(p)>x_coord(r)) or (y_coord(p)>y_coord(r)) then
r:=p;
p:=link(p);
end
@ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
dx:=x_coord(r)-x_coord(l);
dy:=y_coord(r)-y_coord(l);
p:=link(l);
while p<>r do
begin q:=link(p);
if ab_vs_cd(dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 then
move_knot(p,r);
p:=q;
end
@ The |move_knot| procedure removes |p| from a doubly linked list and inserts
it after |q|.
@ @<Declare a procedure called |move_knot|@>=
procedure move_knot(@!p,@!q:pointer);
begin link(knil(p)):=link(p);
knil(link(p)):=knil(p);@/
knil(p):=q;
link(p):=link(q);
link(q):=p;
knil(link(p)):=p;
end;
@ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
p:=s;
while p<>l do
begin q:=link(p);
if ab_vs_cd(dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 then
move_knot(p,l);
p:=q;
end
@ The list is likely to be in order already so we just do linear insertions.
Secondary comparisons on $y$ ensure that the sort is consistent with the
choice of |l| and |r|.
@<Sort the path from |l| to |r| by increasing $x$@>=
p:=link(l);
while p<>r do
begin q:=knil(p);
while x_coord(q)>x_coord(p) do q:=knil(q);
while x_coord(q)=x_coord(p) do
if y_coord(q)>y_coord(p) then q:=knil(q) else goto done1;
done1:
if q=knil(p) then p:=link(p)
else begin p:=link(p); move_knot(knil(p),q);
end;
end
@ @<Sort the path from |r| to |l| by decreasing $x$@>=
p:=link(r);
while p<>l do
begin q:=knil(p);
while x_coord(q)<x_coord(p) do q:=knil(q);
while x_coord(q)=x_coord(p) do
if y_coord(q)<y_coord(p) then q:=knil(q) else goto done2;
done2:
if q=knil(p) then p:=link(p)
else begin p:=link(p); move_knot(knil(p),q);
end;
end
@ The condition involving |ab_vs_cd| tests if there is not a left turn
at knot |q|. There usually will be a left turn so we streamline the case
where the |then| clause is not executed.
@<Do a Gramm scan and remove vertices where there...@>=
begin p:=l; q:=link(l);
loop @+begin dx:=x_coord(q)-x_coord(p);
dy:=y_coord(q)-y_coord(p);
p:=q; q:=link(q);
if p=l then goto done3;
if p<>r then
if ab_vs_cd(dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 then
@<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
end;
done3: do_nothing;
end
@ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
begin s:=knil(p);
free_node(p,knot_node_size);
link(s):=q; knil(q):=s;
if s=l then p:=s
else begin p:=knil(s); q:=s;
end;
end
@ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
offset associated with the given direction |(x,y)|. If two different offsets
apply, it chooses one of them.
@p procedure find_offset(@!x,@!y:scaled;@!h:pointer);
var @!p,@!q:pointer; {consecutive knots}
@!wx,@!wy,@!hx,@!hy:scaled;
{the transformation matrix for an elliptical pen}
@!xx,@!yy:fraction; {untransformed offset for an elliptical pen}
@!d:fraction; {a temporary register}
begin if pen_is_elliptical(h) then
@<Find the offset for |(x,y)| on the elliptical pen~|h|@>
else begin q:=h;
repeat p:=q; q:=link(q);
until ab_vs_cd(x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0;
repeat p:=q; q:=link(q);
until ab_vs_cd(x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0;
cur_x:=x_coord(p);
cur_y:=y_coord(p);
end;
end;
@ @<Glob...@>=
@!cur_x,@!cur_y:scaled; {all-purpose return value registers}
@ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
if (x=0) and (y=0) then
begin cur_x:=x_coord(h); cur_y:=y_coord(h); @+end
else begin @<Find the non-constant part of the transformation for |h|@>;
while (abs(x)<fraction_half) and (abs(y)<fraction_half) do
begin double(x); double(y); @+end;
@<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
untransformed version of |(x,y)|@>;
cur_x:=x_coord(h)+take_fraction(xx,wx)+take_fraction(yy,hx);
cur_y:=y_coord(h)+take_fraction(xx,wy)+take_fraction(yy,hy);
end
@ @<Find the non-constant part of the transformation for |h|@>=
wx:=left_x(h)-x_coord(h);
wy:=left_y(h)-y_coord(h);
hx:=right_x(h)-x_coord(h);
hy:=right_y(h)-y_coord(h)
@ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
yy:=-(take_fraction(x,hy)+take_fraction(y,-hx));@/
xx:=take_fraction(x,-wy)+take_fraction(y,wx);@/
d:=pyth_add(xx,yy);@/
if d>0 then
begin xx:=half(make_fraction(xx,d));
yy:=half(make_fraction(yy,d));
end
@ Finding the bounding box of a pen is easy except if the pen is elliptical.
But we can handle that case by just calling |find_offset| twice. The answer
is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
@p procedure pen_bbox(@!h:pointer);
var @!p:pointer; {for scanning the knot list}
begin if pen_is_elliptical(h) then
@<Find the bounding box of an elliptical pen@>
else begin minx:=x_coord(h); maxx:=minx;
miny:=y_coord(h); maxy:=miny;@/
p:=link(h);
while p<>h do
begin if x_coord(p)<minx then minx:=x_coord(p);
if y_coord(p)<miny then miny:=y_coord(p);
if x_coord(p)>maxx then maxx:=x_coord(p);
if y_coord(p)>maxy then maxy:=y_coord(p);
p:=link(p);
end;
end;
end;
@ @<Find the bounding box of an elliptical pen@>=
begin find_offset(0,fraction_one,h);
maxx:=cur_x;
minx:=2*x_coord(h)-cur_x;@/
find_offset(-fraction_one,0,h);
maxy:=cur_y;
miny:=2*y_coord(h)-cur_y;
end
@* \[21] Edge structures.
Now we come to \MP's internal scheme for representing pictures.
The representation is very different from \MF's edge structures
because \MP\ pictures contain \ps\ graphics objects instead of pixel
images. However, the basic idea is somewhat similar in that shapes
are represented via their boundaries.
The main purpose of edge structures is to keep track of graphical objects
until it is time to translate them into \ps. Since \MP\ does not need to
know anything about an edge structure other than how to translate it into
\ps\ and how to find its bounding box, edge structures can be just linked
lists of graphical objects. \MP\ has no easy way to determine whether
two such objects overlap, but it suffices to draw the first one first and
let the second one overwrite it if necessary.
@ Let's consider the types of graphical objects one at a time.
First of all, a filled contour is represented by a six-word node. The first
word contains |type| and |link| fields, and the next four words contain a
pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
give the relevant information.
@d path_p(#)==link(#+1)
{a pointer to the path that needs filling}
@d pen_p(#)==info(#+1)
{a pointer to the pen to fill or stroke with}
@d obj_red_loc(#)==#+2 {the first of three locations for the color}
@d red_val(#)==mem[#+2].sc
{the red component of the color in the range $0\ldots1$}
@d green_val(#)==mem[#+3].sc
{the green component of the color in the range $0\ldots1$}
@d blue_val(#)==mem[#+4].sc
{the blue component of the color in the range $0\ldots1$}
@d ljoin_val(#)==name_type(#) {the value of \&{linejoin}}
@:linejoin_}{\&{linejoin} primitive@>
@d miterlim_val(#)==mem[#+5].sc {the value of \&{miterlimit}}
@:miterlimit_}{\&{miterlimit} primitive@>
@d obj_color_part(#)==mem[#+2-red_part].sc
{interpret an object pointer that has been offset by |red_part..blue_part|}
@d fill_node_size=6
@d fill_code=1
@p function new_fill_node(@!p: pointer): pointer;
{make a fill node for cyclic path |p| and color black}
var @!t:pointer; {the new node}
begin t:=get_node(fill_node_size);
type(t):=fill_code;
path_p(t):=p;
pen_p(t):=null; {|null| means don't use a pen}
red_val(t):=0;
green_val(t):=0;
blue_val(t):=0;
@<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
new_fill_node:=t;
end;
@ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
if internal[linejoin]>unity then ljoin_val(t):=2
else if internal[linejoin]>0 then ljoin_val(t):=1
else ljoin_val(t):=0;
if internal[miterlimit]<unity then
miterlim_val(t):=unity
else miterlim_val(t):=internal[miterlimit]
@ A stroked path is represented by an eight-word node that is like a filled
contour node except that it contains the current \&{linecap} value, a scale
factor for the dash pattern, and a pointer that is non-null if the stroke
is to be dashed. The purpose of the scale factor is to allow a picture to
be transformed without touching the picture that |dash_p| points to.
@d dash_p(#)==link(#+6)
{a pointer to the edge structure that gives the dash pattern}
@d lcap_val(#)==type(#+6)
{the value of \&{linecap}}
@:linecap_}{\&{linecap} primitive@>
@d dash_scale(#)==mem[#+7].sc {dash lengths are scaled by this factor}
@d stroked_node_size=8
@d stroked_code=2
@p function new_stroked_node(@!p:pointer): pointer;
{make a stroked node for path |p| with |pen_p(p)| temporarily |null|}
var @!t:pointer; {the new node}
begin t:=get_node(stroked_node_size);
type(t):=stroked_code;
path_p(t):=p; pen_p(t):=null;
dash_p(t):=null;
dash_scale(t):=unity;
red_val(t):=0;
green_val(t):=0;
blue_val(t):=0;
@<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
if internal[linecap]>unity then lcap_val(t):=2
else if internal[linecap]>0 then lcap_val(t):=1
else lcap_val(t):=0;
new_stroked_node:=t;
end;
@ When a dashed line is computed in a transformed coordinate system, the dash
lengths get scaled like the pen shape and we need to compensate for this. Since
there is no unique scale factor for an arbitrary transformation, we use the
the square root of the determinant. The properties of the determinant make it
easier to maintain the |dash_scale|. The computation is fairly straight-forward
except for the initialization of the scale factor |s|. The factor of 64 is
needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
to counteract the effect of |take_fraction|.
@<Declare subroutines needed by |print_edges|@>=
function sqrt_det(a,b,c,d:scaled):scaled;
var @!maxabs:scaled; {$max(|a|,|b|,|c|,|d|)$}
@!s:integer; {amount by which the result of |square_rt| needs to be scaled}
begin @<Initialize |maxabs|@>;
s:=64;
while (maxabs<fraction_one) and (s>1) do
begin double(a); double(b); double(c); double(d);@/
double(maxabs); s:=halfp(s);
end;
sqrt_det:=s*square_rt(abs(take_fraction(a,d)-take_fraction(b,c)));
end;
@#
function get_pen_scale(p:pointer):scaled;
begin get_pen_scale:=sqrt_det(
left_x(p)-x_coord(p), right_x(p)-x_coord(p),@/
left_y(p)-y_coord(p), right_y(p)-y_coord(p));
end;
@ @<Initialize |maxabs|@>=
maxabs:=abs(a);
if abs(b)>maxabs then maxabs:=abs(b);
if abs(c)>maxabs then maxabs:=abs(c);
if abs(d)>maxabs then maxabs:=abs(d)
@ When a picture contains text, this is represented by a fourteen-word node
where the color information and |type| and |link| fields are augmented by
additional fields that describe the text and how it is transformed.
The |path_p| and |pen_p| pointers are replaced by a number that identifies
the font and a string number that gives the text to be displayed.
The |width|, |height|, and |depth| fields
give the dimensions of the text at its design size, and the remaining six
words give a transformation to be applied to the text. The |new_text_node|
function initializes everything to default values so that the text comes out
black with its reference point at the origin.
@d text_p(#)==link(#+1) {a string pointer for the text to display}
@d font_n(#)==info(#+1) {the font number}
@d width_val(#)==mem[#+5].sc {unscaled width of the text}
@d height_val(#)==mem[#+6].sc {unscaled height of the text}
@d depth_val(#)==mem[#+7].sc {unscaled depth of the text}
@d text_tx_loc(#)==#+8
{the first of six locations for transformation parameters}
@d tx_val(#)==mem[#+8].sc {$x$ shift amount}
@d ty_val(#)==mem[#+9].sc {$y$ shift amount}
@d txx_val(#)==mem[#+10].sc {|txx| transformation parameter}
@d txy_val(#)==mem[#+11].sc {|txy| transformation parameter}
@d tyx_val(#)==mem[#+12].sc {|tyx| transformation parameter}
@d tyy_val(#)==mem[#+13].sc {|tyy| transformation parameter}
@d text_trans_part(#)==mem[#+8-x_part].sc
{interpret a text node ponter that has been offset by |x_part..yy_part|}
@d text_node_size=14
@d text_code=3
@p @<Declare text measuring subroutines@>@;
function new_text_node(f,s:str_number):pointer;
{make a text node for font |f| and text string |s|}
var @!t:pointer; {the new node}
begin t:=get_node(text_node_size);
type(t):=text_code;
text_p(t):=s;
font_n(t):=find_font(f); {this identifies the font}
red_val(t):=0;
green_val(t):=0;
blue_val(t):=0;
tx_val(t):=0; ty_val(t):=0;
txx_val(t):=unity; txy_val(t):=0;
tyx_val(t):=0; tyy_val(t):=unity;
set_text_box(t); {this finds the bounding box}
new_text_node:=t;
end;
@ The last two types of graphical objects that can occur in an edge structure
are clipping paths and \&{setbounds} paths. These are slightly more difficult
@:set_bounds_}{\&{setbounds} primitive@>
to implement because we must keep track of exactly what is being clipped or
bounded when pictures get merged together. For this reason, each clipping or
\&{setbounds} operation is represented by a pair of nodes: first comes a
two-word node whose |path_p| gives the relevant path, then there is the list
of objects to clip or bound followed by a two-word node whose second word is
unused.
Using at least two words for each graphical object node allows them all to be
allocated and deallocated similarly with a global array |gr_object_size| to
give the size in words for each object type.
@d start_clip_size=2
@d start_clip_code=4 {|type| of a node that starts clipping}
@d start_bounds_size=2
@d start_bounds_code=5 {|type| of a node that gives a \&{setbounds} path}
@d stop_clip_size=2 {the second word is not used here}
@d stop_clip_code=6 {|type| of a node that stops clipping}
@d stop_bounds_size=2 {the second word is not used here}
@d stop_bounds_code=7 {|type| of a node that stops \&{setbounds}}
@#
@d stop_type(#)==(#+2)
{matching |type| for |start_clip_code| or |start_bounds_code|}
@d has_color(#)==(type(#)<start_clip_code)
{does a graphical object have color fields?}
@d has_pen(#)==(type(#)<text_code)
{does a graphical object have a |pen_p| field?}
@d is_start_or_stop(#)==(type(#)>=start_clip_code)
@d is_stop(#)==(type(#)>=stop_clip_code)
@p function new_bounds_node(@!p:pointer; c:small_number):pointer;
{make a node of type |c| where |p| is the clipping or \&{setbounds} path}
var @!t:pointer; {the new node}
begin t:=get_node(gr_object_size[c]);
type(t):=c;
path_p(t):=p;
new_bounds_node:=t;
end;
@ We need an array to keep track of the sizes of graphical objects.
@<Glob...@>=
gr_object_size: array[fill_code..stop_bounds_code] of small_number;
@ @<Set init...@>=
gr_object_size[fill_code]:=fill_node_size;
gr_object_size[stroked_code]:=stroked_node_size;
gr_object_size[text_code]:=text_node_size;
gr_object_size[start_clip_code]:=start_clip_size;
gr_object_size[stop_clip_code]:=stop_clip_size;
gr_object_size[start_bounds_code]:=start_bounds_size;
gr_object_size[stop_bounds_code]:=stop_bounds_size;
@ All the essential information in an edge structure is encoded as a linked list
of graphical objects as we have just seen, but it is helpful to add some
redundant information. A single edge structure might be used as a dash pattern
many times, and it would be nice to avoid scanning the same structure
repeatedly. Thus, an edge structure known to be a suitable dash pattern
has a header that gives a list of dashes in a sorted order designed for rapid
translation into \ps.
Each dash is represented by a three-word node containing the initial and final
$x$~coordinates as well as the usual |link| field. The |link| fields points to
the dash node with the next higher $x$-coordinates and the final link points
to a special location called |null_dash|. (There should be no overlap between
dashes). Since the $y$~coordinate of the dash pattern is needed to determine
the period of repetition, this needs to be stored in the edge header along
with a pointer to the list of dash nodes.
@d start_x(#)==mem[#+1].sc {the starting $x$~coordinate in a dash node}
@d stop_x(#)==mem[#+2].sc {the ending $x$~coordinate in a dash node}
@d dash_node_size=3
@d dash_list==link
{in an edge header this points to the first dash node}
@d dash_y(#)==mem[#+1].sc {$y$ value for the dash list in an edge header}
@ It is also convenient for an edge header to contain the bounding
box information needed by the \&{llcorner} and \&{urcorner} operators
so that this does not have to be recomputed unnecessarily. This is done by
adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
how far the bounding box computation has gotten. Thus if the user asks for
the bounding box and then adds some more text to the picture before asking
for more bounding box information, the second computation need only look at
the additional text.
When the bounding box has not been computed, the |bblast| pointer points
to a dummy link at the head of the graphical object list while the |minx_val|
and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
fields contain |-el_gordo|.
Since the bounding box of pictures containing objects of type
|start_bounds_code| depends on the value of \&{truecorners}, the bounding box
@:true_corners_}{\&{truecorners} primitive@>
data might not be valid for all values of this parameter. Hence, the |bbtype|
field is needed to keep track of this.
@d minx_val(#)==mem[#+2].sc
@d miny_val(#)==mem[#+3].sc
@d maxx_val(#)==mem[#+4].sc
@d maxy_val(#)==mem[#+5].sc
@d bblast(#)==link(#+6) {last item considered in bounding box computation}
@d bbtype(#)==info(#+6) {tells how bounding box data depends on \&{truecorners}}
@d dummy_loc(#)==#+7 {where the object list begins in an edge header}
@d no_bounds=0
{|bbtype| value when bounding box data is valid for all \&{truecorners} values}
@d bounds_set=1
{|bbtype| value when bounding box data is for \&{truecorners}${}\le 0$}
@d bounds_unset=2
{|bbtype| value when bounding box data is for \&{truecorners}${}>0$}
@p procedure init_bbox(@!h:pointer);
{Initialize the bounding box information in edge structure |h|}
begin bblast(h):=dummy_loc(h);
bbtype(h):=no_bounds;
minx_val(h):=el_gordo;
miny_val(h):=el_gordo;
maxx_val(h):=-el_gordo;
maxy_val(h):=-el_gordo;
end;
@ The only other entries in an edge header are a reference count in the first
word and a pointer to the tail of the object list in the last word.
@d obj_tail(#)==info(#+7) {points to the last entry in the object list}
@d edge_header_size=8
@p procedure init_edges(@!h:pointer);
{initialize an edge header to null values}
begin dash_list(h):=null_dash;
obj_tail(h):=dummy_loc(h);
link(dummy_loc(h)):=null;
ref_count(h):=null;
init_bbox(h);
end;
@ Here is how edge structures are deleted. The process can be recursive because
of the need to dereference edge structures that are used as dash patterns.
@^recursion@>
@d add_edge_ref(#)==incr(ref_count(#))
@d delete_edge_ref(#)==if ref_count(#)=null then toss_edges(#)
else decr(ref_count(#))
@<Declare the recycling subroutines@>=
@<Declare subroutines needed by |toss_edges|@>@;
procedure toss_edges(@!h:pointer);
var @!p,@!q:pointer; {pointers that scan the list being recycled}
@!r:pointer; {an edge structure that object |p| refers to}
begin flush_dash_list(h);
q:=link(dummy_loc(h));
while (q<>null) do
begin p:=q; q:=link(q);
r:=toss_gr_object(p);
if r<>null then delete_edge_ref(r);
end;
free_node(h,edge_header_size);
end;
@ @<Declare subroutines needed by |toss_edges|@>=
procedure flush_dash_list(h:pointer);
var @!p,@!q:pointer; {pointers that scan the list being recycled}
begin q:=dash_list(h);
while q<>null_dash do
begin p:=q; q:=link(q);
free_node(p,dash_node_size);
end;
dash_list(h):=null_dash;
end;
@ @<Declare subroutines needed by |toss_edges|@>=
function toss_gr_object(@!p:pointer):pointer;
{returns an edge structure that needs to be dereferenced}
var @!e:pointer; {the edge structure to return}
begin e:=null;
@<Prepare to recycle graphical object |p|@>;
free_node(p,gr_object_size[type(p)]);@/
toss_gr_object:=e;
end;
@ @<Prepare to recycle graphical object |p|@>=
case type(p) of
fill_code: begin toss_knot_list(path_p(p));
if pen_p(p)<>null then toss_knot_list(pen_p(p));
end;
stroked_code: begin toss_knot_list(path_p(p));
if pen_p(p)<>null then toss_knot_list(pen_p(p));
e:=dash_p(p);
end;
text_code: delete_str_ref(text_p(p));
start_clip_code,start_bounds_code: toss_knot_list(path_p(p));
stop_clip_code,stop_bounds_code: do_nothing;
end; {there are no other cases}
@ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
to be done before making a significant change to an edge structure. Much of
the work is done in a separate routine |copy_objects| that copies a list of
graphical objects into a new edge header.
@p @<Declare a function called |copy_objects|@>@;
function private_edges(h:pointer):pointer;
{make a private copy of the edge structure headed by |h|}
var @!hh:pointer; {the edge header for the new copy}
@!p,@!pp: pointer; {pointers for copying the dash list}
begin if ref_count(h)=null then private_edges:=h
else begin decr(ref_count(h));
hh:=copy_objects(link(dummy_loc(h)),null);
@<Copy the dash list from |h| to |hh|@>;
@<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
point into the new object list@>;
private_edges:=hh;
end;
end;
@ Here we use the fact that |dash_list(hh)=link(hh)|.
@^data structure assumptions@>
@<Copy the dash list from |h| to |hh|@>=
pp:=hh; p:=dash_list(h);
while (p<>null_dash) do
begin link(pp):=get_node(dash_node_size);
pp:=link(pp);@/
start_x(pp):=start_x(p);
stop_x(pp):=stop_x(p);
p:=link(p);
end;
link(pp):=null_dash;
dash_y(hh):=dash_y(h)
@ @<Copy the bounding box information from |h| to |hh|...@>=
minx_val(hh):=minx_val(h);
miny_val(hh):=miny_val(h);
maxx_val(hh):=maxx_val(h);
maxy_val(hh):=maxy_val(h);@/
bbtype(hh):=bbtype(h);
p:=dummy_loc(h); pp:=dummy_loc(hh);
while(p<>bblast(h)) do
begin if p=null then confusion("bblast");
@:this can't happen bblast}{\quad bblast@>
p:=link(p); pp:=link(pp);
end;
bblast(hh):=pp
@ Here is the promised routine for copying graphical objects into a new edge
structure. It starts copying at object~|p| and stops just before object~|q|.
If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
structure requires further initialization by |init_bbox|.
@<Declare a function called |copy_objects|@>=
function copy_objects(p, q:pointer):pointer;
var @!hh: pointer; {the new edge header}
@!pp:pointer; {the last newly copied object}
@!k:small_number; {temporary register}
begin hh:=get_node(edge_header_size);
dash_list(hh):=null_dash;
ref_count(hh):=null;@/
pp:=dummy_loc(hh);
while (p<>q) do
@<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
obj_tail(hh):=pp;
link(pp):=null;
copy_objects:=hh;
end;
@ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
begin k:=gr_object_size[type(p)];@/
link(pp):=get_node(k);
pp:=link(pp);
while (k>0) do
begin decr(k); mem[pp+k]:=mem[p+k]; @+end;
@<Fix anything in graphical object |pp| that should differ from the
corresponding field in |p|@>;
p:=link(p);
end
@ @<Fix anything in graphical object |pp| that should differ from the...@>=
case type(p) of
start_clip_code,start_bounds_code: path_p(pp):=copy_path(path_p(p));
fill_code: begin path_p(pp):=copy_path(path_p(p));
if pen_p(p)<>null then pen_p(pp):=copy_pen(pen_p(p));
end;
stroked_code: begin path_p(pp):=copy_path(path_p(p));
pen_p(pp):=copy_pen(pen_p(p));
if dash_p(p)<>null then add_edge_ref(dash_p(pp));
end;
text_code: add_str_ref(text_p(pp));
stop_clip_code,stop_bounds_code: do_nothing;
end {there are no other cases}
@ Here is one way to find an acceptable value for the second argument to
|copy_objects|. Given a non-null graphical object list, |skip_1component|
skips past one picture component, where a ``picture component'' is a single
graphical object, or a start bounds or start clip object and everything up
through the matching stop bounds or stop clip object. The macro version avoids
procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
unless |p| points to a stop bounds or stop clip node, in which case it executes
|e| instead.
@d skip_component(#)==if not is_start_or_stop(#) then #:=link(#)
else if not is_stop(#) then #:=skip_1component(#)
else skipc_end
@d skipc_end(#)==#
@p function skip_1component(p:pointer):pointer;
var @!lev:integer; {current nesting level}
begin lev:=0;
repeat if is_start_or_stop(p) then
if is_stop(p) then decr(lev) @+else incr(lev);
p:=link(p);
until lev=0;
skip_1component:=p;
end;
@ Here is a diagnostic routine for printing an edge structure in symbolic form.
@<Declare subroutines for printing expressions@>=
@<Declare subroutines needed by |print_edges|@>@;
procedure print_edges(@!h:pointer;@!s:str_number;@!nuline:boolean);
var @!p:pointer; {a graphical object to be printed}
@!hh,@!pp:pointer; {temporary pointers}
@!scf:scaled; {a scale factor for the dash pattern}
@!ok_to_dash:boolean; {|false| for polygonal pen strokes}
begin print_diagnostic("Edge structure",s,nuline);
p:=dummy_loc(h);
while link(p)<>null do
begin p:=link(p);
print_ln;
case type(p) of
@<Cases for printing graphical object node |p|@>@;
othercases begin print("[unknown object type!]");
end
endcases;@/
end;
print_nl("End edges");
if p<>obj_tail(h) then print("?");
@.End edges?@>
end_diagnostic(true);
end;
@ @<Cases for printing graphical object node |p|@>=
fill_code: begin print("Filled contour ");
print_obj_color(p);
print_char(":"); print_ln;
pr_path(path_p(p)); print_ln;
if (pen_p(p)<>null) then
begin @<Print join type for graphical object |p|@>;
print(" with pen"); print_ln;
pr_pen(pen_p(p));
end;
end;
@ @<Print join type for graphical object |p|@>=
case ljoin_val(p) of
0:begin print("mitered joins limited ");
print_scaled(miterlim_val(p));
end;
1:print("round joins");
2:print("beveled joins");
othercases print("?? joins");
@.??@>
endcases
@ For stroked nodes, we need to print |lcap_val(p)| as well.
@<Print join and cap types for stroked node |p|@>=
case lcap_val(p) of
0:print("butt");
1:print("round");
2:print("square");
othercases print("??")
@.??@>
endcases;
print(" ends, ");
@<Print join type for graphical object |p|@>
@ Here is a routine that prints the color of a graphical object if it isn't
black (the default color).
@<Declare subroutines needed by |print_edges|@>=
@<Declare a procedure called |print_compact_node|@>@;
procedure print_obj_color(@!p:pointer);
begin if (red_val(p)>0) or (green_val(p)>0) or (blue_val(p)>0) then
begin print("colored ");
print_compact_node(obj_red_loc(p),3);
end;
end;
@ We also need a procedure for printing consecutive scaled values as if they
were a known big node.
@<Declare a procedure called |print_compact_node|@>=
procedure print_compact_node(@!p:pointer;k:small_number);
var @!q:pointer; {last location to print}
begin q:=p+k-1;
print_char("(");
while p<=q do
begin print_scaled(mem[p].sc);
if p<q then print_char(",");
incr(p);
end;
print_char(")");
end;
@ @<Cases for printing graphical object node |p|@>=
stroked_code: begin print("Filled pen stroke ");
print_obj_color(p);
print_char(":"); print_ln;
pr_path(path_p(p));
if dash_p(p)<>null then
begin print_nl("dashed (");
@<Finish printing the dash pattern that |p| refers to@>;
end;
print_ln;
@<Print join and cap types for stroked node |p|@>;
print(" with pen"); print_ln;
if pen_p(p)=null then print("???") {shouldn't happen}
@.???@>
else pr_pen(pen_p(p));
end;
@ Normally, the |dash_list| field in an edge header is set to |null_dash|
when it is not known to define a suitable dash pattern. This is disallowed
here because the |dash_p| field should never point to such an edge header.
Note that memory is allocated for |start_x(null_dash)| and we are free to
give it any convenient value.
@<Finish printing the dash pattern that |p| refers to@>=
ok_to_dash:=pen_is_elliptical(pen_p(p));
if not ok_to_dash then scf:=unity
else scf:=dash_scale(p);
hh:=dash_p(p);
pp:=dash_list(hh);
if (pp=null_dash) or (dash_y(hh)<0) then print(" ??")
else begin start_x(null_dash):=start_x(pp)+dash_y(hh);
while pp<>null_dash do
begin print("on ");
print_scaled(take_scaled(stop_x(pp)-start_x(pp),scf));
print(" off ");
print_scaled(take_scaled(start_x(link(pp))-stop_x(pp),scf));
pp := link(pp);
if pp<>null_dash then print_char(" ");
end;
print(") shifted ");
print_scaled(-take_scaled(dash_offset(hh),scf));
if not ok_to_dash or (dash_y(hh)=0) then print(" (this will be ignored)");
end
@ @<Declare subroutines needed by |print_edges|@>=
function dash_offset(h:pointer):scaled;
var @!x:scaled; {the answer}
begin if (dash_list(h)=null_dash) or (dash_y(h)<0) then confusion("dash0");
@:this can't happen dash0}{\quad dash0@>
if dash_y(h)=0 then x:=0
else begin x:=-(start_x(dash_list(h)) mod dash_y(h));
if x<0 then x:=x+dash_y(h);
end;
dash_offset:=x;
end;
@ @<Cases for printing graphical object node |p|@>=
text_code: begin print_char(""""); print(text_p(p));
print(""" infont """); print(font_name[font_n(p)]);
print_char(""""); print_ln;
print_obj_color(p);
print("transformed ");
print_compact_node(text_tx_loc(p),6);
end;
@ @<Cases for printing graphical object node |p|@>=
start_clip_code: begin print("clipping path:");
print_ln;
pr_path(path_p(p));
end;
stop_clip_code: print("stop clipping");
@ @<Cases for printing graphical object node |p|@>=
start_bounds_code: begin print("setbounds path:");
print_ln;
pr_path(path_p(p));
end;
stop_bounds_code: print("end of setbounds");
@ To initialize the |dash_list| field in an edge header~|h|, we need a
subroutine that scans an edge structure and tries to interpret it as a dash
pattern. This can only be done when there are no filled regions or clipping
paths and all the pen strokes have the same color. The first step is to let
$y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
project all the pen stroke paths onto the line $y=y_0$ and require that there
be no retracing. If the resulting paths cover a range of $x$~coordinates of
length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
@p @<Declare a procedure called |x_retrace_error|@>@;
function make_dashes(h:pointer):pointer; {returns |h| or |null|}
label exit, found, not_found;
var @!p:pointer; {this scans the stroked nodes in the object list}
@!y0:scaled; {the initial $y$ coordinate}
@!p0:pointer; {if not |null| this points to the first stroked node}
@!pp,@!qq,@!rr:pointer; {pointers into |path_p(p)|}
@!d,@!dd:pointer; {pointers used to create the dash list}
@<Other local variables in |make_dashes|@>@;
begin if dash_list(h)<>null_dash then goto found;
p0:=null;
p:=link(dummy_loc(h));
while p<>null do
begin if type(p)<>stroked_code then
@<Compain that the edge structure contains a node of the wrong type
and |goto not_found|@>;
pp:=path_p(p);
if p0=null then
begin p0:=p; y0:=y_coord(pp); @+end;
@<Make |d| point to a new dash node created from stroke |p| and path |pp|
or |goto not_found| if there is an error@>;
@<Insert |d| into the dash list and |goto not_found| if there is an error@>;
p:=link(p);
end;
if dash_list(h)=null_dash then goto not_found; {No error message}
@<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
@<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
found:make_dashes:=h; return;
not_found: @<Flush the dash list, recycle |h| and return |null|@>;
exit:end;
@ @<Compain that the edge structure contains a node of the wrong type...@>=
begin print_err("Picture is too complicated to use as a dash pattern");
help3("When you say `dashed p', picture p should not contain any")@/
("text, filled regions, or clipping paths. This time it did")@/
("so I'll just make it a solid line instead.");@/
put_get_error;
goto not_found;
end
@ A similar error occurs when monotonicity fails.
@<Declare a procedure called |x_retrace_error|@>=
procedure x_retrace_error;
begin print_err("Picture is too complicated to use as a dash pattern");
help3("When you say `dashed p', every path in p should be monotone")@/
("in x and there must be no overlapping. This failed")@/
("so I'll just make it a solid line instead.");
put_get_error;
end;
@ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
handle the case where the pen stroke |p| is itself dashed.
@<Make |d| point to a new dash node created from stroke |p| and path...@>=
@<Make sure |p| and |p0| are the same color and |goto not_found| if there is
an error@>;
rr:=pp;
if link(pp)<>pp then
repeat qq:=rr; rr:=link(rr);
@<Check for retracing between knots |qq| and |rr| and |goto not_found|
if there is a problem@>;
until right_type(rr)=endpoint;
d:=get_node(dash_node_size);
if dash_p(p)=0 then info(d):=0 @+else info(d):=p;
if x_coord(pp)<x_coord(rr) then
begin start_x(d):=x_coord(pp);
stop_x(d):=x_coord(rr);
end
else begin start_x(d):=x_coord(rr);
stop_x(d):=x_coord(pp);
end;
@ We also need to check for the case where the segment from |qq| to |rr| is
monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
@<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
x0:=x_coord(qq);
x1:=right_x(qq);
x2:=left_x(rr);
x3:=x_coord(rr);
if (x0>x1) or (x1>x2) or (x2>x3) then
if (x0<x1) or (x1<x2) or (x2<x3) then
if ab_vs_cd(x2-x1,x2-x1,x1-x0,x3-x2)>0 then
begin x_retrace_error; goto not_found;
end;
if (x_coord(pp)>x0) or (x0>x3) then
if (x_coord(pp)<x0) or (x0<x3) then
begin x_retrace_error; goto not_found;
end
@ @<Other local variables in |make_dashes|@>=
@!x0,@!x1,@!x2,@!x3:scaled; {$x$ coordinates of the segment from |qq| to |rr|}
@ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
if (red_val(p)<>red_val(p0)) or@|
(green_val(p)<>green_val(p0)) or (blue_val(p)<>blue_val(p0)) then
begin print_err("Picture is too complicated to use as a dash pattern");
help3("When you say `dashed p', everything in picture p should")@/
("be the same color. I can't handle your color changes")@/
("so I'll just make it a solid line instead.");@/
put_get_error;
goto not_found;
end
@ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
start_x(null_dash):=stop_x(d);
dd:=h; {this makes |link(dd)=dash_list(h)|}
while start_x(link(dd))<stop_x(d) do
dd:=link(dd);
if dd<>h then
if (stop_x(dd)>start_x(d)) then
begin x_retrace_error; goto not_found; @+end;
link(d):=link(dd);
link(dd):=d
@ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
d:=dash_list(h);
while (link(d)<>null_dash) do
d:=link(d);
dd:=dash_list(h);
dash_y(h):=stop_x(d)-start_x(dd);
if abs(y0)>dash_y(h) then
dash_y(h):=abs(y0)
else if d<>dd then
begin dash_list(h):=link(dd);
stop_x(d):=stop_x(dd)+dash_y(h);
free_node(dd,dash_node_size);
end
@ We get here when the argument is a null picture or when there is an error.
Recovering from an error involves making |dash_list(h)| empty to indicate
that |h| is not known to be a valid dash pattern. We also dereference |h|
since it is not being used for the return value.
@<Flush the dash list, recycle |h| and return |null|@>=
flush_dash_list(h);
delete_edge_ref(h);
make_dashes:=null
@ Having carefully saved the dashed stroked nodes in the
corresponding dash nodes, we must be prepared to break up these dashes into
smaller dashes.
@<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
d:=h; {now |link(d)=dash_list(h)|}
while link(d)<>null_dash do
begin ds:=info(link(d));
if ds=null then d:=link(d)
else begin
hh:=dash_p(ds);
hsf:=dash_scale(ds);
if (hh=null) then confusion("dash1");
@:this can't happen dash0}{\quad dash1@>
if dash_y(hh)=0 then d:=link(d)
else begin if dash_list(hh)=null then confusion("dash1");
@:this can't happen dash0}{\quad dash1@>
@<Replace |link(d)| by a dashed version as determined by edge header
|hh| and scale factor |ds|@>;
end;
end;
end
@ @<Other local variables in |make_dashes|@>=
@!dln:pointer; {|link(d)|}
@!hh:pointer; {an edge header that tells how to break up |dln|}
@!hsf:scaled; {the dash pattern from |hh| gets scaled by this}
@!ds:pointer; {the stroked node from which |hh| and |hsf| are derived}
@!xoff:scaled; {added to $x$ values in |dash_list(hh)| to match |dln|}
@ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
dln:=link(d);
dd:=dash_list(hh);
xoff:=start_x(dln)-take_scaled(hsf,start_x(dd))-
take_scaled(hsf,dash_offset(hh));
start_x(null_dash):=take_scaled(hsf,start_x(dd))+take_scaled(hsf,dash_y(hh));
stop_x(null_dash):=start_x(null_dash);
@<Advance |dd| until finding the first dash that overlaps |dln| when
offset by |xoff|@>;
while start_x(dln)<=stop_x(dln) do
begin @<If |dd| has `fallen off the end', back up to the beginning and fix
|xoff|@>;
@<Insert a dash between |d| and |dln| for the overlap with the offset version
of |dd|@>;
dd:=link(dd);
start_x(dln):=xoff+take_scaled(hsf,start_x(dd));
end;
link(d):=link(dln);
free_node(dln,dash_node_size)
@ The name of this module is a bit of a lie because we actually just find the
first |dd| where |take_scaled(hsf,stop_x(dd))| is large enough to make an
overlap possible. It could be that the unoffset version of dash |dln| falls
in the gap between |dd| and its predecessor.
@<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
while xoff+take_scaled(hsf,stop_x(dd))<start_x(dln) do
dd:=link(dd)
@ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
if dd=null_dash then
begin dd:=dash_list(hh);
xoff:=xoff+take_scaled(hsf,dash_y(hh));
end
@ At this point we already know that
|start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
@<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
if xoff+take_scaled(hsf,start_x(dd))<=stop_x(dln) then
begin link(d):=get_node(dash_node_size);
d:=link(d);
link(d):=dln;
if start_x(dln)>xoff+take_scaled(hsf,start_x(dd))
then start_x(d):=start_x(dln)
else start_x(d):=xoff+take_scaled(hsf,start_x(dd));
if stop_x(dln)<xoff+take_scaled(hsf,stop_x(dd)) then stop_x(d):=stop_x(dln)
else stop_x(d):=xoff+take_scaled(hsf,stop_x(dd));
end
@ The next major task is to update the bounding box information in an edge
header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
header's bounding box to accommodate the box computed by |path_bbox| or
|pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
|maxy|.)
@p procedure adjust_bbox(h:pointer);
begin if minx<minx_val(h) then minx_val(h):=minx;
if miny<miny_val(h) then miny_val(h):=miny;
if maxx>maxx_val(h) then maxx_val(h):=maxx;
if maxy>maxy_val(h) then maxy_val(h):=maxy;
end;
@ Here is a special routine for updating the bounding box information in
edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
that is to be stroked with the pen~|pp|.
@p procedure box_ends(@!p, @!pp, @!h:pointer);
label exit;
var @!q:pointer; {a knot node adjacent to knot |p|}
@!dx,@!dy:fraction; {a unit vector in the direction out of the path at~|p|}
@!d:scaled; {a factor for adjusting the length of |(dx,dy)|}
@!z:scaled; {a coordinate being tested against the bounding box}
@!xx,@!yy:scaled; {the extreme pen vertex in the |(dx,dy)| direction}
@!i:integer; {a loop counter}
begin if right_type(p)<>endpoint then
begin q:=link(p);
loop @+begin @<Make |(dx,dy)| the final direction for the path segment from
|q| to~|p|; set~|d|@>;
d:=pyth_add(dx,dy);
if d>0 then
begin @<Normalize the direction |(dx,dy)| and find the pen offset
|(xx,yy)|@>;
for i:=1 to 2 do
begin @<Use |(dx,dy)| to generate a vertex of the square end cap and
update the bounding box to accommodate it@>;@/
dx:=-dx; dy:=-dy;
end;
end;
if right_type(p)=endpoint then return
else @<Advance |p| to the end of the path and make |q| the previous knot@>;
end;
end;
exit: ;
end;
@ @<Make |(dx,dy)| the final direction for the path segment from...@>=
if q=link(p) then
begin dx:=x_coord(p)-right_x(p);
dy:=y_coord(p)-right_y(p);
if (dx=0)and(dy=0) then
begin dx:=x_coord(p)-left_x(q);
dy:=y_coord(p)-left_y(q);
end;
end
else begin dx:=x_coord(p)-left_x(p);
dy:=y_coord(p)-left_y(p);
if (dx=0)and(dy=0) then
begin dx:=x_coord(p)-right_x(q);
dy:=y_coord(p)-right_y(q);
end;
end;
dx:=x_coord(p)-x_coord(q);
dy:=y_coord(p)-y_coord(q)
@ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
dx:=make_fraction(dx,d);
dy:=make_fraction(dy,d);@/
find_offset(-dy,dx,pp);
xx:=cur_x; yy:=cur_y
@ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
find_offset(dx,dy,pp);
d:=take_fraction(xx-cur_x,dx)+take_fraction(yy-cur_y,dy);
if (d<0)and(i=1) or (d>0)and(i=2) then confusion("box_ends");
@:this can't happen box ends}{\quad\\{box_ends}@>
z:=x_coord(p)+cur_x+take_fraction(d,dx);
if z<minx_val(h) then minx_val(h):=z;
if z>maxx_val(h) then maxx_val(h):=z;
z:=y_coord(p)+cur_y+take_fraction(d,dy);
if z<miny_val(h) then miny_val(h):=z;
if z>maxy_val(h) then maxy_val(h):=z
@ @<Advance |p| to the end of the path and make |q| the previous knot@>=
repeat q:=p;
p:=link(p);
until right_type(p)=endpoint
@ The major difficulty in finding the bounding box of an edge structure is the
effect of clipping paths. We treat them conservatively by only clipping to the
clipping path's bounding box, but this still
requires recursive calls to |set_bbox| in order to find the bounding box of
@^recursion@>
the objects to be clipped. Such calls are distinguished by the fact that the
boolean parameter |top_level| is false.
@p procedure set_bbox(@!h:pointer;top_level:boolean);
label exit;
var @!p:pointer; {a graphical object being considered}
@!sminx,@!sminy,@!smaxx,@!smaxy:scaled;
{for saving the bounding box during recursive calls}
@!x0,@!x1,@!y0,@!y1:scaled; {temporary registers}
@!lev:integer; {nesting level for |start_bounds_code| nodes}
begin @<Wipe out any existing bounding box information if |bbtype(h)| is
incompatible with |internal[true_corners]|@>;
while link(bblast(h))<>null do
begin p:=link(bblast(h));
bblast(h):=p;
case type(p) of
stop_clip_code: if top_level then confusion("bbox") @+else return;
@:this can't happen bbox}{\quad bbox@>
@<Other cases for updating the bounding box based on the type of object |p|@>@;
end; {all cases are enumerated above}
end;
if not top_level then confusion("bbox");
exit:end;
@ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
case bbtype(h) of
no_bounds: do_nothing;
bounds_set: if internal[true_corners]>0 then init_bbox(h);
bounds_unset: if internal[true_corners]<=0 then init_bbox(h);
end {there are no other cases}
@ @<Other cases for updating the bounding box...@>=
fill_code: begin path_bbox(path_p(p));
adjust_bbox(h);
end;
@ @<Other cases for updating the bounding box...@>=
start_bounds_code: if internal[true_corners]>0 then bbtype(h):=bounds_unset
else begin bbtype(h):=bounds_set;
path_bbox(path_p(p));
adjust_bbox(h);
@<Scan to the matching |stop_bounds_code| node and update |p| and
|bblast(h)|@>;
end;
stop_bounds_code: if internal[true_corners]<=0 then confusion("bbox2");
@:this can't happen bbox2}{\quad bbox2@>
@ @<Scan to the matching |stop_bounds_code| node and update |p| and...@>=
lev:=1;
while lev<>0 do
begin if link(p)=null then confusion("bbox2");
@:this can't happen bbox2}{\quad bbox2@>
p:=link(p);
if type(p)=start_bounds_code then incr(lev)
else if type(p)=stop_bounds_code then decr(lev);
end;
bblast(h):=p
@ It saves a lot of grief here to be slightly conservative and not account for
omitted parts of dashed lines. We also don't worry about the material omitted
when using butt end caps. The basic computation is for round end caps and
|box_ends| augments it for square end caps.
@<Other cases for updating the bounding box...@>=
stroked_code: begin path_bbox(path_p(p));
x0:=minx; y0:=miny;
x1:=maxx; y1:=maxy;
pen_bbox(pen_p(p));
minx:=minx+x0;
miny:=miny+y0;
maxx:=maxx+x1;
maxy:=maxy+y1;
adjust_bbox(h);
if (left_type(path_p(p))=endpoint)and(lcap_val(p)=2) then
box_ends(path_p(p), pen_p(p), h);
end;
@ The height width and depth information stored in a text node determines a
rectangle that needs to be transformed according to the transformation
parameters stored in the text node.
@<Other cases for updating the bounding box...@>=
text_code: begin x1:=take_scaled(txx_val(p),width_val(p));
y0:=take_scaled(txy_val(p),-depth_val(p));
y1:=take_scaled(txy_val(p),height_val(p));
minx:=tx_val(p);
maxx:=minx;
if y0<y1 then
begin minx:=minx+y0; maxx:=maxx+y1; @+end
else begin minx:=minx+y1; maxx:=maxx+y0; @+end;
if x1<0 then minx:=minx+x1 @+else maxx:=maxx+x1;
x1:=take_scaled(tyx_val(p),width_val(p));
y0:=take_scaled(tyy_val(p),-depth_val(p));
y1:=take_scaled(tyy_val(p),height_val(p));
miny:=ty_val(p);
maxy:=miny;
if y0<y1 then
begin miny:=miny+y0; maxy:=maxy+y1; @+end
else begin miny:=miny+y1; maxy:=maxy+y0; @+end;
if x1<0 then miny:=miny+x1 @+else maxy:=maxy+x1;
adjust_bbox(h);
end;
@ This case involves a recursive call that advances |bblast(h)| to the node of
type |stop_clip_code| that matches |p|.
@<Other cases for updating the bounding box...@>=
start_clip_code: begin path_bbox(path_p(p));@/
x0:=minx; y0:=miny;
x1:=maxx; y1:=maxy;@/
sminx:=minx_val(h); sminy:=miny_val(h);
smaxx:=maxx_val(h); smaxy:=maxy_val(h);@/
@<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
starting at |link(p)|@>;
@<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
|y0|, |y1|@>;
minx:=sminx; miny:=sminy;
maxx:=smaxx; maxy:=smaxy;
adjust_bbox(h);
end;
@ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
minx_val(h):=el_gordo;
miny_val(h):=el_gordo;
maxx_val(h):=-el_gordo;
maxy_val(h):=-el_gordo;@/
set_bbox(h,false)
@ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
if minx_val(h)<x0 then minx_val(h):=x0;
if miny_val(h)<y0 then miny_val(h):=y0;
if maxx_val(h)>x1 then maxx_val(h):=x1;
if maxy_val(h)>y1 then maxy_val(h):=y1
@* \[22] Finding an envelope.
When \MP\ has a path and a polygonal pen, it needs to express the desired
shape in terms of things \ps\ can understand. The present task is to compute
a new path that describes the region to be filled. It is convenient to
define this as a two step process where the first step is determining what
offset to use for each segment of the path.
@ Given a pointer |c| to a cyclic path,
and a pointer~|h| to the first knot of a pen polygon,
the |offset_prep| routine changes the path into cubics that are
associated with particular pen offsets. Thus if the cubic between |p|
and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
to because |l-k| could be negative.)
After overwriting the type information with offset differences, we no longer
have a true path so we refer to the knot list returned by |offset_prep| as an
``envelope spec.''
@!@^envelope spec@>
Since an envelope spec only determines relative changes in pen offsets,
|offset_prep| sets a global variable |spec_offset| to the relative change from
|h| to the first offset.
@d zero_off=16384 {added to offset changes to make them positive}
@<Glob...@>=
spec_offset:integer; {number of pen edges between |h| and the initial offset}
@ @p @t\4@>@<Declare subroutines needed by |offset_prep|@>@;
function offset_prep(@!c,@!h:pointer):pointer;
label not_found;
var @!n:halfword; {the number of vertices in the pen polygon}
@!p,@!q,@!r,@!w,@!ww:pointer; {for list manipulation}
@!k_needed:integer; {amount to be added to |info(p)| when it is computed}
@!w0:pointer; {a pointer to pen offset to use just before |p|}
@!dxin,@!dyin:scaled; {the direction into knot |p|}
@!turn_amt:integer; {change in pen offsets for the current cubic}
@<Other local variables for |offset_prep|@>@;
begin @<Initialize the pen size~|n|@>;
@<Initialize the incoming direction and pen offset at |c|@>;
p:=c; k_needed:=0;
repeat q:=link(p);
@<Split the cubic between |p| and |q|, if necessary, into cubics
associated with single offsets, after which |q| should
point to the end of the final such cubic@>;
@<Advance |p| to node |q|, removing any ``dead'' cubics that
might have been introduced by the splitting process@>;
until q=c;
@<Fix the offset change in |info(c)| and set the return value of
|offset_prep|@>;
end;
@ We shall want to keep track of where certain knots on the cyclic path
wind up in the envelope spec. It doesn't suffice just to keep pointers to
knot nodes because some nodes are deleted while removing dead cubics. Thus
|offset_prep| updates the following pointers
@<Glob...@>=
@!spec_p1,@!spec_p2:pointer; {pointers to distinguished knots}
@ @<Set init...@>=
spec_p1:=null; spec_p2:=null;
@ @<Initialize the pen size~|n|@>=
n:=0; p:=h;
repeat incr(n);
p:=link(p);
until p=h
@ Since the true incoming direction isn't known yet, we just pick a direction
consistent with the pen offset~|h|. If this is wrong, it can be corrected
later.
@<Initialize the incoming direction and pen offset at |c|@>=
dxin:=x_coord(link(h))-x_coord(knil(h));
dyin:=y_coord(link(h))-y_coord(knil(h));
if (dxin=0)and(dyin=0) then
begin dxin:=y_coord(knil(h))-y_coord(h);
dyin:=x_coord(h)-x_coord(knil(h));
end;
w0:=h
@ We must be careful not to remove the only cubic in a cycle.
@<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
repeat r:=link(p);
if x_coord(p)=right_x(p) then if y_coord(p)=right_y(p) then
if x_coord(p)=left_x(r) then if y_coord(p)=left_y(r) then
if x_coord(p)=x_coord(r) then if y_coord(p)=y_coord(r) then
if r<>p then
@<Remove the cubic following |p| and update the data structures
to merge |r| into |p|@>;
p:=r;
until p=q
@ @<Remove the cubic following |p| and update the data structures...@>=
begin k_needed:=info(p)-zero_off;
if r=q then q:=p
else begin info(p):=k_needed+info(r);
k_needed:=0;
end;
if r=c then
begin info(p):=info(c); c:=p;
end;
if r=spec_p1 then spec_p1:=p;
if r=spec_p2 then spec_p2:=p;
r:=p; remove_cubic(p);
end
@ Not setting the |info| field of the newly created knot allows the splitting
routine to work for paths.
@<Declare subroutines needed by |offset_prep|@>=
procedure split_cubic(@!p:pointer;@!t:fraction); {splits the cubic after |p|}
var @!v:scaled; {an intermediate value}
@!q,@!r:pointer; {for list manipulation}
begin q:=link(p); r:=get_node(knot_node_size); link(p):=r; link(r):=q;@/
left_type(r):=explicit; right_type(r):=explicit;@#
v:=t_of_the_way(right_x(p))(left_x(q));
right_x(p):=t_of_the_way(x_coord(p))(right_x(p));
left_x(q):=t_of_the_way(left_x(q))(x_coord(q));
left_x(r):=t_of_the_way(right_x(p))(v);
right_x(r):=t_of_the_way(v)(left_x(q));
x_coord(r):=t_of_the_way(left_x(r))(right_x(r));@#
v:=t_of_the_way(right_y(p))(left_y(q));
right_y(p):=t_of_the_way(y_coord(p))(right_y(p));
left_y(q):=t_of_the_way(left_y(q))(y_coord(q));
left_y(r):=t_of_the_way(right_y(p))(v);
right_y(r):=t_of_the_way(v)(left_y(q));
y_coord(r):=t_of_the_way(left_y(r))(right_y(r));
end;
@ This does not set |info(p)| or |right_type(p)|.
@<Declare subroutines needed by |offset_prep|@>=
procedure remove_cubic(@!p:pointer); {removes the dead cubic following~|p|}
var @!q:pointer; {the node that disappears}
begin q:=link(p); link(p):=link(q);@/
right_x(p):=right_x(q); right_y(p):=right_y(q);@/
free_node(q,knot_node_size);
end;
@ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
$k$th pen offset, the $k$th pen edge direction is defined by the formula
$$d_k=(u\k-u_k,\,v\k-v_k).$$
When listed by increasing $k$, these directions occur in counter-clockwise
order so that $d_k\preceq d\k$ for all~$k$.
The goal of |offset_prep| is to find an offset index~|k| to associate with
each cubic, such that the direction $d(t)$ of the cubic satisfies
$$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
We may have to split a cubic into many pieces before each
piece corresponds to a unique offset.
@<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
info(p):=zero_off+k_needed;
k_needed:=0;@/
@<Prepare for derivative computations;
|goto not_found| if the current cubic is dead@>;
@<Find the initial direction |(dx,dy)|@>;
@<Update |info(p)| and find the offset $w_k$ such that
$d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
the direction change at |p|@>;
@<Find the final direction |(dxin,dyin)|@>;
@<Decide on the net change in pen offsets and set |turn_amt|@>;
@<Complete the offset splitting process@>;@/
w0:=pen_walk(w0,turn_amt);
not_found: do_nothing
@ @<Declare subroutines needed by |offset_prep|@>=
function pen_walk(@!w:pointer;@!k:integer):pointer;
{walk |k| steps around a pen from |w|}
begin while k>0 do begin w:=link(w); decr(k); @+end;
while k<0 do begin w:=knil(w); incr(k); @+end;
pen_walk:=w;
end;
@ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
calculated from the quadratic polynomials
${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
Since we may be calculating directions from several cubics
split from the current one, it is desirable to do these calculations
without losing too much precision. ``Scaled up'' values of the
derivatives, which will be less tainted by accumulated errors than
derivatives found from the cubics themselves, are maintained in
local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
$X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
@<Other local variables for |offset_prep|@>=
@!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer; {representatives of derivatives}
@!t0,@!t1,@!t2:integer; {coefficients of polynomial for slope testing}
@!du,@!dv,@!dx,@!dy:integer; {for directions of the pen and the curve}
@!dx0,@!dy0:integer; {initial direction for the first cubic in the curve}
@!max_coef:integer; {used while scaling}
@!x0a,@!x1a,@!x2a,@!y0a,@!y1a,@!y2a:integer; {intermediate values}
@!t:fraction; {where the derivative passes through zero}
@!s:fraction; {a temporary value}
@ @<Prepare for derivative computations...@>=
x0:=right_x(p)-x_coord(p);
x2:=x_coord(q)-left_x(q);
x1:=left_x(q)-right_x(p);
y0:=right_y(p)-y_coord(p); y2:=y_coord(q)-left_y(q);
y1:=left_y(q)-right_y(p);
max_coef:=abs(x0);
if abs(x1)>max_coef then max_coef:=abs(x1);
if abs(x2)>max_coef then max_coef:=abs(x2);
if abs(y0)>max_coef then max_coef:=abs(y0);
if abs(y1)>max_coef then max_coef:=abs(y1);
if abs(y2)>max_coef then max_coef:=abs(y2);
if max_coef=0 then goto not_found;
while max_coef<fraction_half do
begin double(max_coef);
double(x0); double(x1); double(x2);
double(y0); double(y1); double(y2);
end
@ Let us first solve a special case of the problem: Suppose we
know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
$d(0)\succ d_{k-1}$.
Then, in a sense, we're halfway done, since one of the two relations
in $(*)$ is satisfied, and the other couldn't be satisfied for
any other value of~|k|.
Actually, the conditions can be relaxed somewhat since a relation such as
$d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
counterclockwise direction.
The |fin_offset_prep| subroutine solves the stated subproblem.
It has a parameter called |rise| that is |1| in
case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
the derivative of the cubic following |p|.
The |w| parameter should point to offset~$w_k$ and |info(p)| should already
be set properly. The |turn_amt| parameter gives the absolute value of the
overall net change in pen offsets.
@<Declare subroutines needed by |offset_prep|@>=
procedure fin_offset_prep(@!p:pointer;@!w:pointer;
@!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer;@!rise,@!turn_amt:integer);
label exit;
var @!ww:pointer; {for list manipulation}
@!du,@!dv:scaled; {for slope calculation}
@!t0,@!t1,@!t2:integer; {test coefficients}
@!t:fraction; {place where the derivative passes a critical slope}
@!s:fraction; {slope or reciprocal slope}
@!v:integer; {intermediate value for updating |x0..y2|}
@!q:pointer; {original |link(p)|}
begin q:=link(p);
loop @+begin if rise>0 then ww:=link(w) {a pointer to $w\k$}
else ww:=knil(w); {a pointer to $w_{k-1}$}
@<Compute test coefficients |(t0,t1,t2)|
for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
t:=crossing_point(t0,t1,t2);
if t>=fraction_one then
if turn_amt>0 then t:=fraction_one @+else return;
@<Split the cubic at $t$,
and split off another cubic if the derivative crosses back@>;
w:=ww;
end;
exit:end;
@ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
$-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
begins to fail.
@<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
du:=x_coord(ww)-x_coord(w); dv:=y_coord(ww)-y_coord(w);
if abs(du)>=abs(dv) then
begin s:=make_fraction(dv,du);
t0:=take_fraction(x0,s)-y0;
t1:=take_fraction(x1,s)-y1;
t2:=take_fraction(x2,s)-y2;
if du<0 then begin negate(t0); negate(t1); negate(t2); @+end
end
else begin s:=make_fraction(du,dv);
t0:=x0-take_fraction(y0,s);
t1:=x1-take_fraction(y1,s);
t2:=x2-take_fraction(y2,s);
if dv<0 then begin negate(t0); negate(t1); negate(t2); @+end
end;
if t0<0 then t0:=0 {should be positive without rounding error}
@ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
$(*)$, and it might cross again, yielding another solution of $(*)$.
@<Split the cubic at $t$, and split off another...@>=
begin split_cubic(p,t); p:=link(p); info(p):=zero_off+rise;
decr(turn_amt);@/
v:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
x0:=t_of_the_way(v)(x1);@/
v:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
y0:=t_of_the_way(v)(y1);@/
if turn_amt<0 then
begin t1:=t_of_the_way(t1)(t2);
if t1>0 then t1:=0; {without rounding error, |t1| would be |<=0|}
t:=crossing_point(0,-t1,-t2);
if t>fraction_one then t:=fraction_one;
incr(turn_amt);
if (t=fraction_one)and(link(p)<>q) then
info(link(p)):=info(link(p))-rise
else begin split_cubic(p,t); info(link(p)):=zero_off-rise;@/
v:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
x2:=t_of_the_way(x1)(v);@/
v:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
y2:=t_of_the_way(y1)(v);@/
end;
end;
end
@ Now we must consider the general problem of |offset_prep|, when
nothing is known about a given cubic. We start by finding its
direction in the vicinity of |t=0|.
If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
has not yet introduced any more numerical errors. Thus we can compute
the true initial direction for the given cubic, even if it is almost
degenerate.
@<Find the initial direction |(dx,dy)|@>=
dx:=x0; dy:=y0;
if dx=0 then if dy=0 then
begin dx:=x1; dy:=y1;
if dx=0 then if dy=0 then
begin dx:=x2; dy:=y2;
end;
end;
if p=c then begin dx0:=dx; dy0:=dy; @+end
@ @<Find the final direction |(dxin,dyin)|@>=
dxin:=x2; dyin:=y2;
if dxin=0 then if dyin=0 then
begin dxin:=x1; dyin:=y1;
if dxin=0 then if dyin=0 then
begin dxin:=x0; dyin:=y0;
end;
end
@ The next step is to bracket the initial direction between consecutive
edges of the pen polygon. We must be careful to turn clockwise only if
this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
counter-clockwise in order to make \&{doublepath} envelopes come out
@:double_path_}{\&{doublepath} primitive@>
right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
@<Update |info(p)| and find the offset $w_k$ such that...@>=
turn_amt:=get_turn_amt(w0, dx, dy, ab_vs_cd(dy,dxin,dx,dyin)>=0);
w:=pen_walk(w0, turn_amt);
w0:=w;
info(p):=info(p)+turn_amt
@ Decide how many pen offsets to go away from |w| in order to find the offset
for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
|w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
in the sense determined by |ccw| is less than or equal to $180^\circ$.
If the pen polygon has only two edges, they could both be parallel
to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
such edge in order to avoid an infinite loop.
@<Declare subroutines needed by |offset_prep|@>=
function get_turn_amt(@!w:pointer; @!dx,@!dy:scaled; ccw:boolean):integer;
label done;
var @!ww:pointer; {a neighbor of knot~|w|}
@!s:integer; {turn amount so far}
@!t:integer; {|ab_vs_cd| result}
begin s:=0;
if ccw then
begin ww:=link(w);
repeat t:=ab_vs_cd(dy,x_coord(ww)-x_coord(w),@| dx,y_coord(ww)-y_coord(w));
if t<0 then goto done;
incr(s);
w:=ww; ww:=link(ww);
until t<=0;
done: end
else begin ww:=knil(w);
while ab_vs_cd(dy,x_coord(w)-x_coord(ww),@|
dx,y_coord(w)-y_coord(ww))<0 do
begin decr(s);
w:=ww; ww:=knil(ww);
end;
end;
get_turn_amt:=s;
end;
@ When we're all done, the final offset is |w0| and the final curve direction
is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
can correct |info(c)| which was erroneously based on an incoming offset
of~|h|.
@d fix_by(#)==info(c):=info(c)+#
@<Fix the offset change in |info(c)| and set the return value of...@>=
spec_offset:=info(c)-zero_off;
if link(c)=c then info(c):=zero_off+n
else begin fix_by(k_needed);
while w0<>h do
begin fix_by(1); w0:=link(w0); @+end;
while info(c)<=zero_off-n do fix_by(n);
while info(c)>zero_off do fix_by(-n);
if (info(c)<>zero_off)and(ab_vs_cd(dy0,dxin,dx0,dyin)>=0) then fix_by(n);
end;
offset_prep:=c
@ Finally we want to reduce the general problem to situations that
|fin_offset_prep| can handle. We split the cubic into at most three parts
with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
@<Complete the offset splitting process@>=
ww:=knil(w);
@<Compute test coeff...@>;
@<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
|t:=fraction_one+1|@>;
if t>fraction_one then
fin_offset_prep(p,w,x0,x1,x2,y0,y1,y2,1,turn_amt)
else begin split_cubic(p,t); r:=link(p);@/
x1a:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
x2a:=t_of_the_way(x1a)(x1);@/
y1a:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
y2a:=t_of_the_way(y1a)(y1);@/
fin_offset_prep(p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0:=x2a; y0:=y2a;
info(r):=zero_off-1;
if turn_amt>=0 then
begin t1:=t_of_the_way(t1)(t2);
if t1>0 then t1:=0;
t:=crossing_point(0,-t1,-t2);
if t>fraction_one then t:=fraction_one;
@<Split off another rising cubic for |fin_offset_prep|@>;
fin_offset_prep(r,ww,x0,x1,x2,y0,y1,y2,-1,0);
end
else fin_offset_prep(r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
end
@ @<Split off another rising cubic for |fin_offset_prep|@>=
split_cubic(r,t); info(link(r)):=zero_off+1;@/
x1a:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
x0a:=t_of_the_way(x1)(x1a);@/
y1a:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
y0a:=t_of_the_way(y1)(y1a);@/
fin_offset_prep(link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
x2:=x0a; y2:=y0a
@ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
need to decide whether the directions are parallel or antiparallel. We
can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
should be avoided when the value of |turn_amt| already determines the
answer. If |t2<0|, there is one crossing and it is antiparallel only if
|turn_amt>=0|. If |turn_amt<0|, there should always be at least one
crossing and the first crossing cannot be antiparallel.
@<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
t:=crossing_point(t0,t1,t2);
if turn_amt>=0 then
if t2<0 then t:=fraction_one+1
else begin u0:=t_of_the_way(x0)(x1);
u1:=t_of_the_way(x1)(x2);
ss:=take_fraction(-du,t_of_the_way(u0)(u1));@/
v0:=t_of_the_way(y0)(y1);
v1:=t_of_the_way(y1)(y2);
ss:=ss+take_fraction(-dv,t_of_the_way(v0)(v1));@/
if ss<0 then t:=fraction_one+1;
end
else if t>fraction_one then t:=fraction_one;
@ @<Other local variables for |offset_prep|@>=
@!u0,@!u1,@!v0,@!v1:integer; {intermediate values for $d(t)$ calculation}
@!ss:integer; {the part of the dot product computed so far}
@!d_sign:-1..1; {sign of overall change in direction for this cubic}
@ If the cubic almost has a cusp, it is a numerically ill-conditioned
problem to decide which way it loops around but that's OK as long we're
consistent. To make \&{doublepath} envelopes work properly, reversing
the path should always change the sign of |turn_amt|.
@<Decide on the net change in pen offsets and set |turn_amt|@>=
d_sign:=ab_vs_cd(dx,dyin, dxin,dy);
if d_sign=0 then
if dx=0 then
if dy>0 then d_sign:=1 @+else d_sign:=-1
else if dx>0 then d_sign:=1 @+else d_sign:=-1;
@<Make |ss| negative if and only if the total change in direction is
more than $180^\circ$@>;
turn_amt:=get_turn_amt(w, dxin, dyin, d_sign>0);
if ss<0 then turn_amt:=turn_amt-d_sign*n
@ In order to be invariant under path reversal, the result of this computation
should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
then swapped with |(x2,y2)|. We make use of the identities
|take_fraction(-a,-b)=take_fraction(a,b)| and
|t_of_the_way(-a)(-b)=-(t_of_the_way(a)(b))|.
@<Make |ss| negative if and only if the total change in direction is...@>=
t0:=half(take_fraction(x0,y2))-half(take_fraction(x2,y0));@/
t1:=half(take_fraction(x1,y0+y2))-half(take_fraction(y1,x0+x2));@/
if t0=0 then t0:=d_sign; {path reversal always negates |d_sign|}
if t0>0 then
begin t:=crossing_point(t0,t1,-t0);
u0:=t_of_the_way(x0)(x1);
u1:=t_of_the_way(x1)(x2);@/
v0:=t_of_the_way(y0)(y1);
v1:=t_of_the_way(y1)(y2);
end
else begin t:=crossing_point(-t0,t1,t0);
u0:=t_of_the_way(x2)(x1);
u1:=t_of_the_way(x1)(x0);@/
v0:=t_of_the_way(y2)(y1);
v1:=t_of_the_way(y1)(y0);
end;
ss:=take_fraction(x0+x2,t_of_the_way(u0)(u1))+@|
take_fraction(y0+y2,t_of_the_way(v0)(v1))
@ Here's a routine that prints an envelope spec in symbolic form. It assumes
that the |cur_pen| has not been walked around to the first offset.
@p procedure print_spec(@!cur_spec,@!cur_pen:pointer;@!s:str_number);
var @!p,@!q:pointer; {list traversal}
@!w:pointer; {the current pen offset}
begin print_diagnostic("Envelope spec",s,true);
p:=cur_spec; w:=pen_walk(cur_pen,spec_offset);
print_ln;@/
print_two(x_coord(cur_spec),y_coord(cur_spec));
print(" % beginning with offset ");
print_two(x_coord(w),y_coord(w));
repeat
repeat q:=link(p);
@<Print the cubic between |p| and |q|@>;
p:=q;
until (p=cur_spec) or (info(p)<>zero_off);
if info(p)<>zero_off then
@<Update |w| as indicated by |info(p)| and print an explanation@>;
until p=cur_spec;
print_nl(" & cycle");
end_diagnostic(true);
end;
@ @<Update |w| as indicated by |info(p)| and print an explanation@>=
begin w:=pen_walk(w,info(p)-zero_off);
print(" % ");
if info(p)>zero_off then print("counter");
print("clockwise to offset ");
print_two(x_coord(w),y_coord(w));
end
@ @<Print the cubic between |p| and |q|@>=
begin print_nl(" ..controls ");
print_two(right_x(p),right_y(p));
print(" and ");
print_two(left_x(q),left_y(q));
print_nl(" ..");
print_two(x_coord(q),y_coord(q));
end
@ Once we have an envelope spec, the remaining task to construct the actual
envelope by offsetting each cubic as determined by the |info| fields in
the knots. First we use |offset_prep| to convert the |c| into an envelope
spec. Then we add the offsets so that |c| becomes a cyclic path that represents
the envelope.
The |ljoin| and |miterlim| parameters control the treatment of points where the
pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
The endpoints are easily located because |c| is given in undoubled form
and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
track of the endpoints and treat them like very sharp corners.
Butt end caps are treated like beveled joins; round end caps are treated like
round joins; and square end caps are achieved by setting |join_type:=3|.
None of these parameters apply to inside joins where the convolution tracing
has retrograde lines. In such cases we use a simple connect-the-endpoints
approach that is achieved by setting |join_type:=2|.
@p @t\4@>@<Declare a function called |insert_knot|@>@;
function make_envelope(@!c,@!h:pointer;@!ljoin,@!lcap:small_number;
@!miterlim:scaled):pointer;
label done;
var @!p,@!q,@!r,@!q0:pointer; {for manipulating the path}
@!join_type:0..3; {codes |0..3| for mitered, round, beveled, or square}
@!w,@!w0:pointer; {the pen knot for the current offset}
@!qx,@!qy:scaled; {unshifted coordinates of |q|}
@!k,@!k0:halfword; {controls pen edge insertion}
@<Other local variables for |make_envelope|@>@;
begin spec_p1:=null; spec_p2:=null;
if left_type(c)=endpoint then
@<Double the path |c|, and set |spec_p1| and |spec_p2|@>;
@<Use |offset_prep| to compute the envelope spec then walk |h| around to
the initial offset@>;
w:=h;
p:=c;
repeat q:=link(p); q0:=q;
qx:=x_coord(q); qy:=y_coord(q);
k:=info(q);@/
k0:=k; w0:=w;
if k<>zero_off then
@<Set |join_type| to indicate how to handle offset changes at~|q|@>;
@<Add offset |w| to the cubic from |p| to |q|@>;
while k<>zero_off do
begin @<Step |w| and move |k| one step closer to |zero_off|@>;
if (join_type=1)or(k=zero_off) then
q:=insert_knot(q,qx+x_coord(w),qy+y_coord(w));
end;
if q<>link(p) then @<Set |p=link(p)| and add knots between |p| and |q| as
requred by |join_type|@>;
p:=q;
until q0=c;
make_envelope:=c;
end;
@ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
c:=offset_prep(c,h);
if internal[tracing_specs]>0 then print_spec(c,h,"");
h:=pen_walk(h,spec_offset)
@ Mitered and squared-off joins depend on path directions that are difficult to
compute for degenerate cubics. The envelope spec computed by |offset_prep| can
have degenerate cubics only if the entire cycle collapses to a single
degenerate cubic. Setting |join_type:=2| in this case makes the computed
envelope degenerate as well.
@<Set |join_type| to indicate how to handle offset changes at~|q|@>=
if k<zero_off then join_type:=2
else begin if (q<>spec_p1)and(q<>spec_p2) then join_type:=ljoin
else if lcap=2 then join_type:=3
else join_type:=2-lcap;
if (join_type=0)or(join_type=3) then
begin @<Set the incoming and outgoing directions at |q|; in case of
degeneracy set |join_type:=2|@>;
if join_type=0 then
@<If |miterlim| is less than the secant of half the angle at |q|
then set |join_type:=2|@>;
end;
end
@ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
begin tmp:=take_fraction(miterlim,fraction_half+@|
half(take_fraction(dxin,dxout)+take_fraction(dyin,dyout)));
if tmp<unity then
if take_scaled(miterlim,tmp)<unity then join_type:=2;
end
@ @<Other local variables for |make_envelope|@>=
@!dxin,@!dyin,@!dxout,@!dyout:fraction;
{directions at |q| when square or mitered}
@!tmp:scaled; {a temporary value}
@ The coordinates of |p| have already been shifted unless |p| is the first
knot in which case they get shifted at the very end.
@<Add offset |w| to the cubic from |p| to |q|@>=
right_x(p):=right_x(p)+x_coord(w);
right_y(p):=right_y(p)+y_coord(w);@/
left_x(q):=left_x(q)+x_coord(w);
left_y(q):=left_y(q)+y_coord(w);@/
x_coord(q):=x_coord(q)+x_coord(w);
y_coord(q):=y_coord(q)+y_coord(w);@/
left_type(q):=explicit;
right_type(q):=explicit
@ @<Step |w| and move |k| one step closer to |zero_off|@>=
if k>zero_off then
begin w:=link(w); decr(k); @+end
else begin w:=knil(w); incr(k); @+end
@ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
case the cubic containing these control points is ``yet to be examined.''
@<Declare a function called |insert_knot|@>=
function insert_knot(@!q:pointer;@!x,@!y:scaled):pointer;
{returns the inserted knot}
var @!r:pointer; {the new knot}
begin r:=get_node(knot_node_size);
link(r):=link(q); link(q):=r;@/
right_x(r):=right_x(q);
right_y(r):=right_y(q);@/
x_coord(r):=x;
y_coord(r):=y;@/
right_x(q):=x_coord(q);
right_y(q):=y_coord(q);@/
left_x(r):=x_coord(r);
left_y(r):=y_coord(r);@/
left_type(r):=explicit;
right_type(r):=explicit;
insert_knot:=r;
end;
@ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
@<Set |p=link(p)| and add knots between |p| and |q| as...@>=
begin p:=link(p);
if (join_type=0)or(join_type=3) then
begin if join_type=0 then
@<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
else @<Make |r| the last of two knots inserted between |p| and |q| to form a
squared join@>;
if r<>null then
begin right_x(r):=x_coord(r);
right_y(r):=y_coord(r);
end;
end;
end
@ For very small angles, adding a knot is unnecessary and would cause numerical
problems, so we just set |r:=null| in that case.
@<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
begin det:=take_fraction(dyout,dxin)-take_fraction(dxout,dyin);
if abs(det)<26844 then r:=null {sine $<10^{-4}$}
else begin tmp:=take_fraction(x_coord(q)-x_coord(p),dyout)-@|
take_fraction(y_coord(q)-y_coord(p),dxout);
tmp:=make_fraction(tmp,det);
r:=insert_knot(p,x_coord(p)+take_fraction(tmp,dxin),@|
y_coord(p)+take_fraction(tmp,dyin));
end;
end
@ @<Other local variables for |make_envelope|@>=
@!det:fraction; {a determinant used for mitered join calculations}
@ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
begin ht_x:=y_coord(w)-y_coord(w0);
ht_y:=x_coord(w0)-x_coord(w);
while (abs(ht_x)<fraction_half)and(abs(ht_y)<fraction_half) do
begin double(ht_x); double(ht_y);
end;
@<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
product with |(ht_x,ht_y)|@>;
tmp:=make_fraction(max_ht,take_fraction(dxin,ht_x)+take_fraction(dyin,ht_y));
r:=insert_knot(p,x_coord(p)+take_fraction(tmp,dxin),@|
y_coord(p)+take_fraction(tmp,dyin));
tmp:=make_fraction(max_ht,take_fraction(dxout,ht_x)+take_fraction(dyout,ht_y));
r:=insert_knot(r,x_coord(q)+take_fraction(tmp,dxout),@|
y_coord(q)+take_fraction(tmp,dyout));
end
@ @<Other local variables for |make_envelope|@>=
@!ht_x,@!ht_y:fraction; {perpendicular to the segment from |p| to |q|}
@!max_ht:scaled; {maximum height of the pen polygon above the |w0|-|w| line}
@!kk:halfword; {keeps track of the pen vertices being scanned}
@!ww:pointer; {the pen vertex being tested}
@ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
from zero to |max_ht|.
@<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
max_ht:=0;
kk:=zero_off;
ww:=w;
loop @+begin @<Step |ww| and move |kk| one step closer to |k0|@>;
if kk=k0 then goto done;
tmp:=take_fraction(x_coord(ww)-x_coord(w0),ht_x)+@|
take_fraction(y_coord(ww)-y_coord(w0),ht_y);
if tmp>max_ht then max_ht:=tmp;
end;
done:do_nothing
@ @<Step |ww| and move |kk| one step closer to |k0|@>=
if kk>k0 then
begin ww:=link(ww); decr(kk); @+end
else begin ww:=knil(ww); incr(kk); @+end
@ @<Double the path |c|, and set |spec_p1| and |spec_p2|@>=
begin spec_p1:=htap_ypoc(c);
spec_p2:=path_tail;
link(spec_p2):=link(spec_p1);
link(spec_p1):=c;@/
remove_cubic(spec_p1);
c:=spec_p1;
if c<>link(c) then remove_cubic(spec_p2)
else @<Make |c| look like a cycle of length one@>;
end
@ @<Make |c| look like a cycle of length one@>=
begin left_type(c):=explicit; right_type(c):=explicit;
left_x(c):=x_coord(c); left_y(c):=y_coord(c);
right_x(c):=x_coord(c); right_y(c):=y_coord(c);
end;
@ In degenerate situations we might have to look at the knot preceding~|q|.
That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
@<Set the incoming and outgoing directions at |q|; in case of...@>=
dxin:=x_coord(q)-left_x(q);
dyin:=y_coord(q)-left_y(q);
if (dxin=0)and(dyin=0) then
begin dxin:=x_coord(q)-right_x(p);
dyin:=y_coord(q)-right_y(p);
if (dxin=0)and(dyin=0) then
begin dxin:=x_coord(q)-x_coord(p);
dyin:=y_coord(q)-y_coord(p);
if p<>c then {the coordinates of |p| have been offset by |w|}
begin dxin:=dxin+x_coord(w);
dyin:=dyin+y_coord(w);
end;
end;
end;
tmp:=pyth_add(dxin,dyin);
if tmp=0 then join_type:=2
else begin dxin:=make_fraction(dxin,tmp);
dyin:=make_fraction(dyin,tmp);
@<Set the outgoing direction at |q|@>;
end
@ If |q=c| then the coordinates of |r| and the control points between |q|
and~|r| have already been offset by |h|.
@<Set the outgoing direction at |q|@>=
dxout:=right_x(q)-x_coord(q);
dyout:=right_y(q)-y_coord(q);
if (dxout=0)and(dyout=0) then
begin r:=link(q);
dxout:=left_x(r)-x_coord(q);
dyout:=left_y(r)-y_coord(q);
if (dxout=0)and(dyout=0) then
begin dxout:=x_coord(r)-x_coord(q);
dyout:=y_coord(r)-y_coord(q);
end;
end;
if q=c then
begin dxout:=dxout-x_coord(h);
dyout:=dyout-y_coord(h);
end;
tmp:=pyth_add(dxout,dyout);
if tmp=0 then confusion("degenerate spec");
@:this can't happen degerate spec}{\quad degenerate spec@>
dxout:=make_fraction(dxout,tmp);
dyout:=make_fraction(dyout,tmp)
@* \[23] Direction and intersection times.
A path of length $n$ is defined parametrically by functions $x(t)$ and
$y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
we shall consider operations that determine special times associated with
given paths: the first time that a path travels in a given direction, and
a pair of times at which two paths cross each other.
@ Let's start with the easier task. The function |find_direction_time| is
given a direction |(x,y)| and a path starting at~|h|. If the path never
travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
it will be nonnegative.
Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
direction is undefined, the direction time will be~0. If $\bigl(x'(t),
y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
assumed to match any given direction at time~|t|.
The routine solves this problem in nondegenerate cases by rotating the path
and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
to find when a given path first travels ``due east.''
@p function find_direction_time(@!x,@!y:scaled;@!h:pointer):scaled;
label exit,found,not_found,done;
var @!max:scaled; {$\max\bigl(\vert x\vert,\vert y\vert\bigr)$}
@!p,@!q:pointer; {for list traversal}
@!n:scaled; {the direction time at knot |p|}
@!tt:scaled; {the direction time within a cubic}
@<Other local variables for |find_direction_time|@>@;
begin @<Normalize the given direction for better accuracy;
but |return| with zero result if it's zero@>;
n:=0; p:=h;
loop@+ begin if right_type(p)=endpoint then goto not_found;
q:=link(p);
@<Rotate the cubic between |p| and |q|; then
|goto found| if the rotated cubic travels due east at some time |tt|;
but |goto not_found| if an entire cyclic path has been traversed@>;
p:=q; n:=n+unity;
end;
not_found: find_direction_time:=-unity; return;
found: find_direction_time:=n+tt;
exit:end;
@ @<Normalize the given direction for better accuracy...@>=
if abs(x)<abs(y) then
begin x:=make_fraction(x,abs(y));
if y>0 then y:=fraction_one@+else y:=-fraction_one;
end
else if x=0 then
begin find_direction_time:=0; return;
end
else begin y:=make_fraction(y,abs(x));
if x>0 then x:=fraction_one@+else x:=-fraction_one;
end
@ Since we're interested in the tangent directions, we work with the
derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
$B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
in order to achieve better accuracy.
The given path may turn abruptly at a knot, and it might pass the critical
tangent direction at such a time. Therefore we remember the direction |phi|
in which the previous rotated cubic was traveling. (The value of |phi| will be
undefined on the first cubic, i.e., when |n=0|.)
@<Rotate the cubic between |p| and |q|; then...@>=
tt:=0;
@<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
points of the rotated derivatives@>;
if y1=0 then if x1>=0 then goto found;
if n>0 then
begin @<Exit to |found| if an eastward direction occurs at knot |p|@>;
if p=h then goto not_found;
end;
if (x3<>0)or(y3<>0) then phi:=n_arg(x3,y3);
@<Exit to |found| if the curve whose derivatives are specified by
|x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
@ @<Other local variables for |find_direction_time|@>=
@!x1,@!x2,@!x3,@!y1,@!y2,@!y3:scaled; {multiples of rotated derivatives}
@!theta,@!phi:angle; {angles of exit and entry at a knot}
@!t:fraction; {temp storage}
@ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
x1:=right_x(p)-x_coord(p); x2:=left_x(q)-right_x(p);
x3:=x_coord(q)-left_x(q);@/
y1:=right_y(p)-y_coord(p); y2:=left_y(q)-right_y(p);
y3:=y_coord(q)-left_y(q);@/
max:=abs(x1);
if abs(x2)>max then max:=abs(x2);
if abs(x3)>max then max:=abs(x3);
if abs(y1)>max then max:=abs(y1);
if abs(y2)>max then max:=abs(y2);
if abs(y3)>max then max:=abs(y3);
if max=0 then goto found;
while max<fraction_half do
begin double(max); double(x1); double(x2); double(x3);
double(y1); double(y2); double(y3);
end;
t:=x1; x1:=take_fraction(x1,x)+take_fraction(y1,y);
y1:=take_fraction(y1,x)-take_fraction(t,y);@/
t:=x2; x2:=take_fraction(x2,x)+take_fraction(y2,y);
y2:=take_fraction(y2,x)-take_fraction(t,y);@/
t:=x3; x3:=take_fraction(x3,x)+take_fraction(y3,y);
y3:=take_fraction(y3,x)-take_fraction(t,y)
@ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
theta:=n_arg(x1,y1);
if theta>=0 then if phi<=0 then if phi>=theta-one_eighty_deg then goto found;
if theta<=0 then if phi>=0 then if phi<=theta+one_eighty_deg then goto found
@ In this step we want to use the |crossing_point| routine to find the
roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
Several complications arise: If the quadratic equation has a double root,
the curve never crosses zero, and |crossing_point| will find nothing;
this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
equation has simple roots, or only one root, we may have to negate it
so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
identically zero.
@ @<Exit to |found| if the curve whose derivatives are specified by...@>=
if x1<0 then if x2<0 then if x3<0 then goto done;
if ab_vs_cd(y1,y3,y2,y2)=0 then
@<Handle the test for eastward directions when $y_1y_3=y_2^2$;
either |goto found| or |goto done|@>;
if y1<=0 then
if y1<0 then
begin y1:=-y1; y2:=-y2; y3:=-y3;
end
else if y2>0 then
begin y2:=-y2; y3:=-y3;
end;
@<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
$B(x_1,x_2,x_3;t)\ge0$@>;
done:
@ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
two roots, because we know that it isn't identically zero.
It must be admitted that the |crossing_point| routine is not perfectly accurate;
rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
subject to rounding errors. Yet this code optimistically tries to
do the right thing.
@d we_found_it==begin tt:=(t+@'4000) div @'10000; goto found;
end
@<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
t:=crossing_point(y1,y2,y3);
if t>fraction_one then goto done;
y2:=t_of_the_way(y2)(y3);
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
x1:=t_of_the_way(x1)(x2);
if x1>=0 then we_found_it;
if y2>0 then y2:=0;
tt:=t; t:=crossing_point(0,-y2,-y3);
if t>fraction_one then goto done;
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
if t_of_the_way(x1)(x2)>=0 then
begin t:=t_of_the_way(tt)(fraction_one); we_found_it;
end
@ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
either |goto found| or |goto done|@>=
begin if ab_vs_cd(y1,y2,0,0)<0 then
begin t:=make_fraction(y1,y1-y2);
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
if t_of_the_way(x1)(x2)>=0 then we_found_it;
end
else if y3=0 then
if y1=0 then
@<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>
else if x3>=0 then
begin tt:=unity; goto found;
end;
goto done;
end
@ At this point we know that the derivative of |y(t)| is identically zero,
and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
traveling east.
@<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
begin t:=crossing_point(-x1,-x2,-x3);
if t<=fraction_one then we_found_it;
if ab_vs_cd(x1,x3,x2,x2)<=0 then
begin t:=make_fraction(x1,x1-x2); we_found_it;
end;
end
@ The intersection of two cubics can be found by an interesting variant
of the general bisection scheme described in the introduction to
|crossing_point|.\
Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
if an intersection exists. First we find the smallest rectangle that
encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
the smallest rectangle that encloses
$\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
But if the rectangles do overlap, we bisect the intervals, getting
new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
levels of bisection we will have determined the intersection times $t_1$
and~$t_2$ to $l$~bits of accuracy.
\def\submin{_{\rm min}} \def\submax{_{\rm max}}
As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
to determine when the enclosing rectangles overlap. Here's why:
The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
\min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
overlap if and only if $u\submin\L x\submax$ and
$x\submin\L u\submax$. Letting
$$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
reduces to
$$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
because of the overlap condition; i.e., we know that $X\submin$,
$X\submax$, and their relatives are bounded, hence $X\submax-
U\submin$ and $X\submin-U\submax$ are bounded.
@ Incidentally, if the given cubics intersect more than once, the process
just sketched will not necessarily find the lexicographically smallest pair
$(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
$t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
$a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
$a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
Shuffled order agrees with lexicographic order if all pairs of solutions
$(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
$t_2<t_2'$; but in general, lexicographic order can be quite different,
and the bisection algorithm would be substantially less efficient if it were
constrained by lexicographic order.
For example, suppose that an overlap has been found for $l=3$ and
$(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
Then there is probably an intersection in one of the subintervals
$(.1011,.011x)$; but lexicographic order would require us to explore
$(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
want to store all of the subdivision data for the second path, so the
subdivisions would have to be regenerated many times. Such inefficiencies
would be associated with every `1' in the binary representation of~$t_1$.
@ The subdivision process introduces rounding errors, hence we need to
make a more liberal test for overlap. It is not hard to show that the
computed values of $U_i$ differ from the truth by at most~$l$, on
level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
If $\beta$ is an upper bound on the absolute error in the computed
components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
the test `$X\submin-U\submax\L|delx|$' by the more liberal test
`$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
More accuracy is obtained if we try the algorithm first with |tol=0|;
the more liberal tolerance is used only if an exact approach fails.
It is convenient to do this double-take by letting `3' in the preceding
paragraph be a parameter, which is first 0, then 3.
@<Glob...@>=
@!tol_step:0..6; {either 0 or 3, usually}
@ We shall use an explicit stack to implement the recursive bisection
method described above. The |bisect_stack| array will contain numerous 5-word
packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
The following macros define the allocation of stack positions to
the quantities needed for bisection-intersection.
@d stack_1(#)==bisect_stack[#] {$U_1$, $V_1$, $X_1$, or $Y_1$}
@d stack_2(#)==bisect_stack[#+1] {$U_2$, $V_2$, $X_2$, or $Y_2$}
@d stack_3(#)==bisect_stack[#+2] {$U_3$, $V_3$, $X_3$, or $Y_3$}
@d stack_min(#)==bisect_stack[#+3]
{$U\submin$, $V\submin$, $X\submin$, or $Y\submin$}
@d stack_max(#)==bisect_stack[#+4]
{$U\submax$, $V\submax$, $X\submax$, or $Y\submax$}
@d int_packets=20 {number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$}
@#
@d u_packet(#)==#-5
@d v_packet(#)==#-10
@d x_packet(#)==#-15
@d y_packet(#)==#-20
@d l_packets==bisect_ptr-int_packets
@d r_packets==bisect_ptr
@d ul_packet==u_packet(l_packets) {base of $U'_k$ variables}
@d vl_packet==v_packet(l_packets) {base of $V'_k$ variables}
@d xl_packet==x_packet(l_packets) {base of $X'_k$ variables}
@d yl_packet==y_packet(l_packets) {base of $Y'_k$ variables}
@d ur_packet==u_packet(r_packets) {base of $U''_k$ variables}
@d vr_packet==v_packet(r_packets) {base of $V''_k$ variables}
@d xr_packet==x_packet(r_packets) {base of $X''_k$ variables}
@d yr_packet==y_packet(r_packets) {base of $Y''_k$ variables}
@#
@d u1l==stack_1(ul_packet) {$U'_1$}
@d u2l==stack_2(ul_packet) {$U'_2$}
@d u3l==stack_3(ul_packet) {$U'_3$}
@d v1l==stack_1(vl_packet) {$V'_1$}
@d v2l==stack_2(vl_packet) {$V'_2$}
@d v3l==stack_3(vl_packet) {$V'_3$}
@d x1l==stack_1(xl_packet) {$X'_1$}
@d x2l==stack_2(xl_packet) {$X'_2$}
@d x3l==stack_3(xl_packet) {$X'_3$}
@d y1l==stack_1(yl_packet) {$Y'_1$}
@d y2l==stack_2(yl_packet) {$Y'_2$}
@d y3l==stack_3(yl_packet) {$Y'_3$}
@d u1r==stack_1(ur_packet) {$U''_1$}
@d u2r==stack_2(ur_packet) {$U''_2$}
@d u3r==stack_3(ur_packet) {$U''_3$}
@d v1r==stack_1(vr_packet) {$V''_1$}
@d v2r==stack_2(vr_packet) {$V''_2$}
@d v3r==stack_3(vr_packet) {$V''_3$}
@d x1r==stack_1(xr_packet) {$X''_1$}
@d x2r==stack_2(xr_packet) {$X''_2$}
@d x3r==stack_3(xr_packet) {$X''_3$}
@d y1r==stack_1(yr_packet) {$Y''_1$}
@d y2r==stack_2(yr_packet) {$Y''_2$}
@d y3r==stack_3(yr_packet) {$Y''_3$}
@#
@d stack_dx==bisect_stack[bisect_ptr] {stacked value of |delx|}
@d stack_dy==bisect_stack[bisect_ptr+1] {stacked value of |dely|}
@d stack_tol==bisect_stack[bisect_ptr+2] {stacked value of |tol|}
@d stack_uv==bisect_stack[bisect_ptr+3] {stacked value of |uv|}
@d stack_xy==bisect_stack[bisect_ptr+4] {stacked value of |xy|}
@d int_increment=int_packets+int_packets+5 {number of stack words per level}
@<Glob...@>=
bisect_stack:array[0..bistack_size] of integer;
bisect_ptr:0..bistack_size;
@ @<Check the ``constant''...@>=
if int_packets+17*int_increment>bistack_size then bad:=19;
@ Computation of the min and max is a tedious but fairly fast sequence of
instructions; exactly four comparisons are made in each branch.
@d set_min_max(#)==
if stack_1(#)<0 then
if stack_3(#)>=0 then
begin if stack_2(#)<0 then stack_min(#):=stack_1(#)+stack_2(#)
else stack_min(#):=stack_1(#);
stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_max(#)<0 then stack_max(#):=0;
end
else begin stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_min(#)>stack_1(#) then stack_min(#):=stack_1(#);
stack_max(#):=stack_1(#)+stack_2(#);
if stack_max(#)<0 then stack_max(#):=0;
end
else if stack_3(#)<=0 then
begin if stack_2(#)>0 then stack_max(#):=stack_1(#)+stack_2(#)
else stack_max(#):=stack_1(#);
stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_min(#)>0 then stack_min(#):=0;
end
else begin stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_max(#)<stack_1(#) then stack_max(#):=stack_1(#);
stack_min(#):=stack_1(#)+stack_2(#);
if stack_min(#)>0 then stack_min(#):=0;
end
@ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
routine uses global variables |cur_t| and |cur_tt| for this purpose;
after successful completion, |cur_t| and |cur_tt| will contain |unity|
plus the |scaled| values of $t_1$ and~$t_2$.
The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
finds no intersection. The routine gives up and gives an approximate answer
if it has backtracked
more than 5000 times (otherwise there are cases where several minutes
of fruitless computation would be possible).
@d max_patience=5000
@<Glob...@>=
@!cur_t,@!cur_tt:integer; {controls and results of |cubic_intersection|}
@!time_to_go:integer; {this many backtracks before giving up}
@!max_t:integer; {maximum of $2^{l+1}$ so far achieved}
@ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
$B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
and |(pp,link(pp))|, respectively.
@p procedure cubic_intersection(@!p,@!pp:pointer);
label continue, not_found, exit;
var @!q,@!qq:pointer; {|link(p)|, |link(pp)|}
begin time_to_go:=max_patience; max_t:=2;
@<Initialize for intersections at level zero@>;
loop@+ begin continue:
if delx-tol<=stack_max(x_packet(xy))-stack_min(u_packet(uv)) then
if delx+tol>=stack_min(x_packet(xy))-stack_max(u_packet(uv)) then
if dely-tol<=stack_max(y_packet(xy))-stack_min(v_packet(uv)) then
if dely+tol>=stack_min(y_packet(xy))-stack_max(v_packet(uv)) then
begin if cur_t>=max_t then
begin if max_t=two then {we've done 17 bisections}
begin cur_t:=halfp(cur_t+1); cur_tt:=halfp(cur_tt+1); return;
end;
double(max_t); appr_t:=cur_t; appr_tt:=cur_tt;
end;
@<Subdivide for a new level of intersection@>;
goto continue;
end;
if time_to_go>0 then decr(time_to_go)
else begin while appr_t<unity do
begin double(appr_t); double(appr_tt);
end;
cur_t:=appr_t; cur_tt:=appr_tt; return;
end;
@<Advance to the next pair |(cur_t,cur_tt)|@>;
end;
exit:end;
@ The following variables are global, although they are used only by
|cubic_intersection|, because it is necessary on some machines to
split |cubic_intersection| up into two procedures.
@<Glob...@>=
@!delx,@!dely:integer; {the components of $\Delta=2^l(w_0-z_0)$}
@!tol:integer; {bound on the uncertainly in the overlap test}
@!uv,@!xy:0..bistack_size; {pointers to the current packets of interest}
@!three_l:integer; {|tol_step| times the bisection level}
@!appr_t,@!appr_tt:integer; {best approximations known to the answers}
@ We shall assume that the coordinates are sufficiently non-extreme that
integer overflow will not occur.
@<Initialize for intersections at level zero@>=
q:=link(p); qq:=link(pp); bisect_ptr:=int_packets;@/
u1r:=right_x(p)-x_coord(p); u2r:=left_x(q)-right_x(p);
u3r:=x_coord(q)-left_x(q); set_min_max(ur_packet);@/
v1r:=right_y(p)-y_coord(p); v2r:=left_y(q)-right_y(p);
v3r:=y_coord(q)-left_y(q); set_min_max(vr_packet);@/
x1r:=right_x(pp)-x_coord(pp); x2r:=left_x(qq)-right_x(pp);
x3r:=x_coord(qq)-left_x(qq); set_min_max(xr_packet);@/
y1r:=right_y(pp)-y_coord(pp); y2r:=left_y(qq)-right_y(pp);
y3r:=y_coord(qq)-left_y(qq); set_min_max(yr_packet);@/
delx:=x_coord(p)-x_coord(pp); dely:=y_coord(p)-y_coord(pp);@/
tol:=0; uv:=r_packets; xy:=r_packets; three_l:=0; cur_t:=1; cur_tt:=1
@ @<Subdivide for a new level of intersection@>=
stack_dx:=delx; stack_dy:=dely; stack_tol:=tol; stack_uv:=uv; stack_xy:=xy;
bisect_ptr:=bisect_ptr+int_increment;@/
double(cur_t); double(cur_tt);@/
u1l:=stack_1(u_packet(uv)); u3r:=stack_3(u_packet(uv));
u2l:=half(u1l+stack_2(u_packet(uv)));
u2r:=half(u3r+stack_2(u_packet(uv)));
u3l:=half(u2l+u2r); u1r:=u3l;
set_min_max(ul_packet); set_min_max(ur_packet);@/
v1l:=stack_1(v_packet(uv)); v3r:=stack_3(v_packet(uv));
v2l:=half(v1l+stack_2(v_packet(uv)));
v2r:=half(v3r+stack_2(v_packet(uv)));
v3l:=half(v2l+v2r); v1r:=v3l;
set_min_max(vl_packet); set_min_max(vr_packet);@/
x1l:=stack_1(x_packet(xy)); x3r:=stack_3(x_packet(xy));
x2l:=half(x1l+stack_2(x_packet(xy)));
x2r:=half(x3r+stack_2(x_packet(xy)));
x3l:=half(x2l+x2r); x1r:=x3l;
set_min_max(xl_packet); set_min_max(xr_packet);@/
y1l:=stack_1(y_packet(xy)); y3r:=stack_3(y_packet(xy));
y2l:=half(y1l+stack_2(y_packet(xy)));
y2r:=half(y3r+stack_2(y_packet(xy)));
y3l:=half(y2l+y2r); y1r:=y3l;
set_min_max(yl_packet); set_min_max(yr_packet);@/
uv:=l_packets; xy:=l_packets;
double(delx); double(dely);@/
tol:=tol-three_l+tol_step; double(tol); three_l:=three_l+tol_step
@ @<Advance to the next pair |(cur_t,cur_tt)|@>=
not_found: if odd(cur_tt) then
if odd(cur_t) then @<Descend to the previous level and |goto not_found|@>
else begin incr(cur_t);
delx:=delx+stack_1(u_packet(uv))+stack_2(u_packet(uv))
+stack_3(u_packet(uv));
dely:=dely+stack_1(v_packet(uv))+stack_2(v_packet(uv))
+stack_3(v_packet(uv));
uv:=uv+int_packets; {switch from |l_packet| to |r_packet|}
decr(cur_tt); xy:=xy-int_packets; {switch from |r_packet| to |l_packet|}
delx:=delx+stack_1(x_packet(xy))+stack_2(x_packet(xy))
+stack_3(x_packet(xy));
dely:=dely+stack_1(y_packet(xy))+stack_2(y_packet(xy))
+stack_3(y_packet(xy));
end
else begin incr(cur_tt); tol:=tol+three_l;
delx:=delx-stack_1(x_packet(xy))-stack_2(x_packet(xy))
-stack_3(x_packet(xy));
dely:=dely-stack_1(y_packet(xy))-stack_2(y_packet(xy))
-stack_3(y_packet(xy));
xy:=xy+int_packets; {switch from |l_packet| to |r_packet|}
end
@ @<Descend to the previous level...@>=
begin cur_t:=halfp(cur_t); cur_tt:=halfp(cur_tt);
if cur_t=0 then return;
bisect_ptr:=bisect_ptr-int_increment; three_l:=three_l-tol_step;
delx:=stack_dx; dely:=stack_dy; tol:=stack_tol; uv:=stack_uv; xy:=stack_xy;@/
goto not_found;
end
@ The |path_intersection| procedure is much simpler.
It invokes |cubic_intersection| in lexicographic order until finding a
pair of cubics that intersect. The final intersection times are placed in
|cur_t| and~|cur_tt|.
@p procedure path_intersection(@!h,@!hh:pointer);
label exit;
var @!p,@!pp:pointer; {link registers that traverse the given paths}
@!n,@!nn:integer; {integer parts of intersection times, minus |unity|}
begin @<Change one-point paths into dead cycles@>;
tol_step:=0;
repeat n:=-unity; p:=h;
repeat if right_type(p)<>endpoint then
begin nn:=-unity; pp:=hh;
repeat if right_type(pp)<>endpoint then
begin cubic_intersection(p,pp);
if cur_t>0 then
begin cur_t:=cur_t+n; cur_tt:=cur_tt+nn; return;
end;
end;
nn:=nn+unity; pp:=link(pp);
until pp=hh;
end;
n:=n+unity; p:=link(p);
until p=h;
tol_step:=tol_step+3;
until tol_step>3;
cur_t:=-unity; cur_tt:=-unity;
exit:end;
@ @<Change one-point paths...@>=
if right_type(h)=endpoint then
begin right_x(h):=x_coord(h); left_x(h):=x_coord(h);
right_y(h):=y_coord(h); left_y(h):=y_coord(h); right_type(h):=explicit;
end;
if right_type(hh)=endpoint then
begin right_x(hh):=x_coord(hh); left_x(hh):=x_coord(hh);
right_y(hh):=y_coord(hh); left_y(hh):=y_coord(hh); right_type(hh):=explicit;
end;
@* \[24] Dynamic linear equations.
\MP\ users define variables implicitly by stating equations that should be
satisfied; the computer is supposed to be smart enough to solve those equations.
And indeed, the computer tries valiantly to do so, by distinguishing five
different types of numeric values:
\smallskip\hang
|type(p)=known| is the nice case, when |value(p)| is the |scaled| value
of the variable whose address is~|p|.
\smallskip\hang
|type(p)=dependent| means that |value(p)| is not present, but |dep_list(p)|
points to a {\sl dependency list\/} that expresses the value of variable~|p|
as a |scaled| number plus a sum of independent variables with |fraction|
coefficients.
\smallskip\hang
|type(p)=independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
number'' reflecting the time this variable was first used in an equation;
also |0<=m<64|, and each dependent variable
that refers to this one is actually referring to the future value of
this variable times~$2^m$. (Usually |m=0|, but higher degrees of
scaling are sometimes needed to keep the coefficients in dependency lists
from getting too large. The value of~|m| will always be even.)
\smallskip\hang
|type(p)=numeric_type| means that variable |p| hasn't appeared in an
equation before, but it has been explicitly declared to be numeric.
\smallskip\hang
|type(p)=undefined| means that variable |p| hasn't appeared before.
\smallskip\noindent
We have actually discussed these five types in the reverse order of their
history during a computation: Once |known|, a variable never again
becomes |dependent|; once |dependent|, it almost never again becomes
|independent|; once |independent|, it never again becomes |numeric_type|;
and once |numeric_type|, it never again becomes |undefined| (except
of course when the user specifically decides to scrap the old value
and start again). A backward step may, however, take place: Sometimes
a |dependent| variable becomes |independent| again, when one of the
independent variables it depends on is reverting to |undefined|.
@d s_scale=64 {the serial numbers are multiplied by this factor}
@d new_indep(#)== {create a new independent variable}
begin type(#):=independent; serial_no:=serial_no+s_scale;
value(#):=serial_no;
end
@<Glob...@>=
@!serial_no:integer; {the most recent serial number, times |s_scale|}
@ @<Make variable |q+s| newly independent@>=new_indep(q+s)
@ But how are dependency lists represented? It's simple: The linear combination
$\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
|q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
@t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
of $\alpha_1$; and |link(p)| points to the dependency list
$\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
they appear in decreasing order of their |value| fields (i.e., of
their serial numbers). \ (It is convenient to use decreasing order,
since |value(null)=0|. If the independent variables were not sorted by
serial number but by some other criterion, such as their location in |mem|,
the equation-solving mechanism would be too system-dependent, because
the ordering can affect the computed results.)
The |link| field in the node that contains the constant term $\beta$ is
called the {\sl final link\/} of the dependency list. \MP\ maintains
a doubly-linked master list of all dependency lists, in terms of a permanently
allocated node
in |mem| called |dep_head|. If there are no dependencies, we have
|link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
and |prev_dep(p)=dep_head|. We have |type(p)=dependent|, and |dep_list(p)|
points to its dependency list. If the final link of that dependency list
occurs in location~|q|, then |link(q)| points to the next dependent
variable (say~|r|); and we have |prev_dep(r)=q|, etc.
@d dep_list(#)==link(value_loc(#))
{half of the |value| field in a |dependent| variable}
@d prev_dep(#)==info(value_loc(#))
{the other half; makes a doubly linked list}
@d dep_node_size=2 {the number of words per dependency node}
@<Initialize table entries...@>= serial_no:=0;
link(dep_head):=dep_head; prev_dep(dep_head):=dep_head;
info(dep_head):=null; dep_list(dep_head):=null;
@ Actually the description above contains a little white lie. There's
another kind of variable called |proto_dependent|, which is
just like a |dependent| one except that the $\alpha$ coefficients
in its dependency list are |scaled| instead of being fractions.
Proto-dependency lists are mixed with dependency lists in the
nodes reachable from |dep_head|.
@ Here is a procedure that prints a dependency list in symbolic form.
The second parameter should be either |dependent| or |proto_dependent|,
to indicate the scaling of the coefficients.
@<Declare subroutines for printing expressions@>=
procedure print_dependency(@!p:pointer;@!t:small_number);
label exit;
var @!v:integer; {a coefficient}
@!pp,@!q:pointer; {for list manipulation}
begin pp:=p;
loop@+ begin v:=abs(value(p)); q:=info(p);
if q=null then {the constant term}
begin if (v<>0)or(p=pp) then
begin if value(p)>0 then if p<>pp then print_char("+");
print_scaled(value(p));
end;
return;
end;
@<Print the coefficient, unless it's $\pm1.0$@>;
if type(q)<>independent then confusion("dep");
@:this can't happen dep}{\quad dep@>
print_variable_name(q); v:=value(q) mod s_scale;
while v>0 do
begin print("*4"); v:=v-2;
end;
p:=link(p);
end;
exit:end;
@ @<Print the coefficient, unless it's $\pm1.0$@>=
if value(p)<0 then print_char("-")
else if p<>pp then print_char("+");
if t=dependent then v:=round_fraction(v);
if v<>unity then print_scaled(v)
@ The maximum absolute value of a coefficient in a given dependency list
is returned by the following simple function.
@p function max_coef(@!p:pointer):fraction;
var @!x:fraction; {the maximum so far}
begin x:=0;
while info(p)<>null do
begin if abs(value(p))>x then x:=abs(value(p));
p:=link(p);
end;
max_coef:=x;
end;
@ One of the main operations needed on dependency lists is to add a multiple
of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
to dependency lists and |f| is a fraction.
If the coefficient of any independent variable becomes |coef_bound| or
more, in absolute value, this procedure changes the type of that variable
to `|independent_needing_fix|', and sets the global variable |fix_needed|
to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
$\mu^2+\mu<8$; this means that the numbers we deal with won't
get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
2.3723$, the safer value 7/3 is taken as the threshold.)
The changes mentioned in the preceding paragraph are actually done only if
the global variable |watch_coefs| is |true|. But it usually is; in fact,
it is |false| only when \MP\ is making a dependency list that will soon
be equated to zero.
Several procedures that act on dependency lists, including |p_plus_fq|,
set the global variable |dep_final| to the final (constant term) node of
the dependency list that they produce.
@d coef_bound==@'4525252525 {|fraction| approximation to 7/3}
@d independent_needing_fix=0
@<Glob...@>=
@!fix_needed:boolean; {does at least one |independent| variable need scaling?}
@!watch_coefs:boolean; {should we scale coefficients that exceed |coef_bound|?}
@!dep_final:pointer; {location of the constant term and final link}
@ @<Set init...@>=
fix_needed:=false; watch_coefs:=true;
@ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
set to |proto_dependent| if |p| is a proto-dependency list. In this
case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
should be |proto_dependent| if |q| is a proto-dependency list.
List |q| is unchanged by the operation; but list |p| is totally destroyed.
The final link of the dependency list or proto-dependency list returned
by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
constant term of the result will be located in the same |mem| location
as the original constant term of~|p|.
Coefficients of the result are assumed to be zero if they are less than
a certain threshold. This compensates for inevitable rounding errors,
and tends to make more variables `|known|'. The threshold is approximately
$10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
proto-dependencies.
@d fraction_threshold=2685 {a |fraction| coefficient less than this is zeroed}
@d half_fraction_threshold=1342 {half of |fraction_threshold|}
@d scaled_threshold=8 {a |scaled| coefficient less than this is zeroed}
@d half_scaled_threshold=4 {half of |scaled_threshold|}
@<Declare basic dependency-list subroutines@>=
function p_plus_fq(@!p:pointer;@!f:integer;@!q:pointer;
@!t,@!tt:small_number):pointer;
label done;
var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
@!r,@!s:pointer; {for list manipulation}
@!threshold:integer; {defines a neighborhood of zero}
@!v:integer; {temporary register}
begin if t=dependent then threshold:=fraction_threshold
else threshold:=scaled_threshold;
r:=temp_head; pp:=info(p); qq:=info(q);
loop@+ if pp=qq then
if pp=null then goto done
else @<Contribute a term from |p|, plus |f| times the
corresponding term from |q|@>
else if value(pp)<value(qq) then
@<Contribute a term from |q|, multiplied by~|f|@>
else begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
end;
done: if t=dependent then
value(p):=slow_add(value(p),take_fraction(value(q),f))
else value(p):=slow_add(value(p),take_scaled(value(q),f));
link(r):=p; dep_final:=p; p_plus_fq:=link(temp_head);
end;
@ @<Contribute a term from |p|, plus |f|...@>=
begin if tt=dependent then v:=value(p)+take_fraction(f,value(q))
else v:=value(p)+take_scaled(f,value(q));
value(p):=v; s:=p; p:=link(p);
if abs(v)<threshold then free_node(s,dep_node_size)
else begin if abs(v)>=coef_bound then if watch_coefs then
begin type(qq):=independent_needing_fix; fix_needed:=true;
end;
link(r):=s; r:=s;
end;
pp:=info(p); q:=link(q); qq:=info(q);
end
@ @<Contribute a term from |q|, multiplied by~|f|@>=
begin if tt=dependent then v:=take_fraction(f,value(q))
else v:=take_scaled(f,value(q));
if abs(v)>halfp(threshold) then
begin s:=get_node(dep_node_size); info(s):=qq; value(s):=v;
if abs(v)>=coef_bound then if watch_coefs then
begin type(qq):=independent_needing_fix; fix_needed:=true;
end;
link(r):=s; r:=s;
end;
q:=link(q); qq:=info(q);
end
@ It is convenient to have another subroutine for the special case
of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
both of the same type~|t| (either |dependent| or |proto_dependent|).
@p function p_plus_q(@!p:pointer;@!q:pointer;@!t:small_number):pointer;
label done;
var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
@!r,@!s:pointer; {for list manipulation}
@!threshold:integer; {defines a neighborhood of zero}
@!v:integer; {temporary register}
begin if t=dependent then threshold:=fraction_threshold
else threshold:=scaled_threshold;
r:=temp_head; pp:=info(p); qq:=info(q);
loop@+ if pp=qq then
if pp=null then goto done
else @<Contribute a term from |p|, plus the
corresponding term from |q|@>
else if value(pp)<value(qq) then
begin s:=get_node(dep_node_size); info(s):=qq; value(s):=value(q);
q:=link(q); qq:=info(q); link(r):=s; r:=s;
end
else begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
end;
done: value(p):=slow_add(value(p),value(q));
link(r):=p; dep_final:=p; p_plus_q:=link(temp_head);
end;
@ @<Contribute a term from |p|, plus the...@>=
begin v:=value(p)+value(q);
value(p):=v; s:=p; p:=link(p); pp:=info(p);
if abs(v)<threshold then free_node(s,dep_node_size)
else begin if abs(v)>=coef_bound then if watch_coefs then
begin type(qq):=independent_needing_fix; fix_needed:=true;
end;
link(r):=s; r:=s;
end;
q:=link(q); qq:=info(q);
end
@ A somewhat simpler routine will multiply a dependency list
by a given constant~|v|. The constant is either a |fraction| less than
|fraction_one|, or it is |scaled|. In the latter case we might be forced to
convert a dependency list to a proto-dependency list.
Parameters |t0| and |t1| are the list types before and after;
they should agree unless |t0=dependent| and |t1=proto_dependent|
and |v_is_scaled=true|.
@p function p_times_v(@!p:pointer;@!v:integer;
@!t0,@!t1:small_number;@!v_is_scaled:boolean):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!w:integer; {tentative coefficient}
@!threshold:integer;
@!scaling_down:boolean;
begin if t0<>t1 then scaling_down:=true@+else scaling_down:=not v_is_scaled;
if t1=dependent then threshold:=half_fraction_threshold
else threshold:=half_scaled_threshold;
r:=temp_head;
while info(p)<>null do
begin if scaling_down then w:=take_fraction(v,value(p))
else w:=take_scaled(v,value(p));
if abs(w)<=threshold then
begin s:=link(p); free_node(p,dep_node_size); p:=s;
end
else begin if abs(w)>=coef_bound then
begin fix_needed:=true; type(info(p)):=independent_needing_fix;
end;
link(r):=p; r:=p; value(p):=w; p:=link(p);
end;
end;
link(r):=p;
if v_is_scaled then value(p):=take_scaled(value(p),v)
else value(p):=take_fraction(value(p),v);
p_times_v:=link(temp_head);
end;
@ Similarly, we sometimes need to divide a dependency list
by a given |scaled| constant.
@<Declare basic dependency-list subroutines@>=
function p_over_v(@!p:pointer;@!v:scaled;
@!t0,@!t1:small_number):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!w:integer; {tentative coefficient}
@!threshold:integer;
@!scaling_down:boolean;
begin if t0<>t1 then scaling_down:=true@+else scaling_down:=false;
if t1=dependent then threshold:=half_fraction_threshold
else threshold:=half_scaled_threshold;
r:=temp_head;
while info(p)<>null do
begin if scaling_down then
if abs(v)<@'2000000 then w:=make_scaled(value(p),v*@'10000)
else w:=make_scaled(round_fraction(value(p)),v)
else w:=make_scaled(value(p),v);
if abs(w)<=threshold then
begin s:=link(p); free_node(p,dep_node_size); p:=s;
end
else begin if abs(w)>=coef_bound then
begin fix_needed:=true; type(info(p)):=independent_needing_fix;
end;
link(r):=p; r:=p; value(p):=w; p:=link(p);
end;
end;
link(r):=p; value(p):=make_scaled(value(p),v);
p_over_v:=link(temp_head);
end;
@ Here's another utility routine for dependency lists. When an independent
variable becomes dependent, we want to remove it from all existing
dependencies. The |p_with_x_becoming_q| function computes the
dependency list of~|p| after variable~|x| has been replaced by~|q|.
This procedure has basically the same calling conventions as |p_plus_fq|:
List~|q| is unchanged; list~|p| is destroyed; the constant node and the
final link are inherited from~|p|; and the fourth parameter tells whether
or not |p| is |proto_dependent|. However, the global variable |dep_final|
is not altered if |x| does not occur in list~|p|.
@p function p_with_x_becoming_q(@!p,@!x,@!q:pointer;@!t:small_number):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!v:integer; {coefficient of |x|}
@!sx:integer; {serial number of |x|}
begin s:=p; r:=temp_head; sx:=value(x);
while value(info(s))>sx do
begin r:=s; s:=link(s);
end;
if info(s)<>x then p_with_x_becoming_q:=p
else begin link(temp_head):=p; link(r):=link(s); v:=value(s);
free_node(s,dep_node_size);
p_with_x_becoming_q:=p_plus_fq(link(temp_head),v,q,t,dependent);
end;
end;
@ Here's a simple procedure that reports an error when a variable
has just received a known value that's out of the required range.
@<Declare basic dependency-list subroutines@>=
procedure val_too_big(@!x:scaled);
begin if internal[warning_check]>0 then
begin print_err("Value is too large ("); print_scaled(x); print_char(")");
@.Value is too large@>
help4("The equation I just processed has given some variable")@/
("a value of 4096 or more. Continue and I'll try to cope")@/
("with that big value; but it might be dangerous.")@/
("(Set warningcheck:=0 to suppress this message.)");
error;
end;
end;
@ When a dependent variable becomes known, the following routine
removes its dependency list. Here |p| points to the variable, and
|q| points to the dependency list (which is one node long).
@<Declare basic dependency-list subroutines@>=
procedure make_known(@!p,@!q:pointer);
var @!t:dependent..proto_dependent; {the previous type}
begin prev_dep(link(q)):=prev_dep(p);
link(prev_dep(p)):=link(q); t:=type(p);
type(p):=known; value(p):=value(q); free_node(q,dep_node_size);
if abs(value(p))>=fraction_one then val_too_big(value(p));
if internal[tracing_equations]>0 then if interesting(p) then
begin begin_diagnostic; print_nl("#### ");
@:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
print_variable_name(p); print_char("="); print_scaled(value(p));
end_diagnostic(false);
end;
if cur_exp=p then if cur_type=t then
begin cur_type:=known; cur_exp:=value(p);
free_node(p,value_node_size);
end;
end;
@ The |fix_dependencies| routine is called into action when |fix_needed|
has been triggered. The program keeps a list~|s| of independent variables
whose coefficients must be divided by~4.
In unusual cases, this fixup process might reduce one or more coefficients
to zero, so that a variable will become known more or less by default.
@<Declare basic dependency-list subroutines@>=
procedure fix_dependencies;
label done;
var @!p,@!q,@!r,@!s,@!t:pointer; {list manipulation registers}
@!x:pointer; {an independent variable}
begin r:=link(dep_head); s:=null;
while r<>dep_head do
begin t:=r;
@<Run through the dependency list for variable |t|, fixing
all nodes, and ending with final link~|q|@>;
r:=link(q);
if q=dep_list(t) then make_known(t,q);
end;
while s<>null do
begin p:=link(s); x:=info(s); free_avail(s); s:=p;
type(x):=independent; value(x):=value(x)+2;
end;
fix_needed:=false;
end;
@ @d independent_being_fixed=1 {this variable already appears in |s|}
@<Run through the dependency list for variable |t|...@>=
r:=value_loc(t); {|link(r)=dep_list(t)|}
loop@+ begin q:=link(r); x:=info(q);
if x=null then goto done;
if type(x)<=independent_being_fixed then
begin if type(x)<independent_being_fixed then
begin p:=get_avail; link(p):=s; s:=p;
info(s):=x; type(x):=independent_being_fixed;
end;
value(q):=value(q) div 4;
if value(q)=0 then
begin link(r):=link(q); free_node(q,dep_node_size); q:=r;
end;
end;
r:=q;
end;
done:
@ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
linking it into the list of all known dependencies. We assume that
|dep_final| points to the final node of list~|p|.
@p procedure new_dep(@!q,@!p:pointer);
var @!r:pointer; {what used to be the first dependency}
begin dep_list(q):=p; prev_dep(q):=dep_head;
r:=link(dep_head); link(dep_final):=r; prev_dep(r):=dep_final;
link(dep_head):=q;
end;
@ Here is one of the ways a dependency list gets started.
The |const_dependency| routine produces a list that has nothing but
a constant term.
@p function const_dependency(@!v:scaled):pointer;
begin dep_final:=get_node(dep_node_size);
value(dep_final):=v; info(dep_final):=null;
const_dependency:=dep_final;
end;
@ And here's a more interesting way to start a dependency list from scratch:
The parameter to |single_dependency| is the location of an
independent variable~|x|, and the result is the simple dependency list
`|x+0|'.
In the unlikely event that the given independent variable has been doubled so
often that we can't refer to it with a nonzero coefficient,
|single_dependency| returns the simple list `0'. This case can be
recognized by testing that the returned list pointer is equal to
|dep_final|.
@p function single_dependency(@!p:pointer):pointer;
var @!q:pointer; {the new dependency list}
@!m:integer; {the number of doublings}
begin m:=value(p) mod s_scale;
if m>28 then single_dependency:=const_dependency(0)
else begin q:=get_node(dep_node_size);
value(q):=two_to_the[28-m]; info(q):=p;@/
link(q):=const_dependency(0); single_dependency:=q;
end;
end;
@ We sometimes need to make an exact copy of a dependency list.
@p function copy_dep_list(@!p:pointer):pointer;
label done;
var @!q:pointer; {the new dependency list}
begin q:=get_node(dep_node_size); dep_final:=q;
loop@+ begin info(dep_final):=info(p); value(dep_final):=value(p);
if info(dep_final)=null then goto done;
link(dep_final):=get_node(dep_node_size);
dep_final:=link(dep_final); p:=link(p);
end;
done:copy_dep_list:=q;
end;
@ But how do variables normally become known? Ah, now we get to the heart of the
equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
or |proto_dependent| list,~|p|, in which at least one independent variable
appears. It equates this list to zero, by choosing an independent variable
with the largest coefficient and making it dependent on the others. The
newly dependent variable is eliminated from all current dependencies,
thereby possibly making other dependent variables known.
The given list |p| is, of course, totally destroyed by all this processing.
@p procedure linear_eq(@!p:pointer;@!t:small_number);
var @!q,@!r,@!s:pointer; {for link manipulation}
@!x:pointer; {the variable that loses its independence}
@!n:integer; {the number of times |x| had been halved}
@!v:integer; {the coefficient of |x| in list |p|}
@!prev_r:pointer; {lags one step behind |r|}
@!final_node:pointer; {the constant term of the new dependency list}
@!w:integer; {a tentative coefficient}
begin @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
x:=info(q); n:=value(x) mod s_scale;@/
@<Divide list |p| by |-v|, removing node |q|@>;
if internal[tracing_equations]>0 then @<Display the new dependency@>;
@<Simplify all existing dependencies by substituting for |x|@>;
@<Change variable |x| from |independent| to |dependent| or |known|@>;
if fix_needed then fix_dependencies;
end;
@ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
q:=p; r:=link(p); v:=value(q);
while info(r)<>null do
begin if abs(value(r))>abs(v) then
begin q:=r; v:=value(r);
end;
r:=link(r);
end
@ Here we want to change the coefficients from |scaled| to |fraction|,
except in the constant term. In the common case of a trivial equation
like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=dependent|.
@<Divide list |p| by |-v|, removing node |q|@>=
s:=temp_head; link(s):=p; r:=p;
repeat if r=q then
begin link(s):=link(r); free_node(r,dep_node_size);
end
else begin w:=make_fraction(value(r),v);
if abs(w)<=half_fraction_threshold then
begin link(s):=link(r); free_node(r,dep_node_size);
end
else begin value(r):=-w; s:=r;
end;
end;
r:=link(s);
until info(r)=null;
if t=proto_dependent then value(r):=-make_scaled(value(r),v)
else if v<>-fraction_one then value(r):=-make_fraction(value(r),v);
final_node:=r; p:=link(temp_head)
@ @<Display the new dependency@>=
if interesting(x) then
begin begin_diagnostic; print_nl("## "); print_variable_name(x);
@:]]]\#\#_}{\.{\#\#}@>
w:=n;
while w>0 do
begin print("*4"); w:=w-2;
end;
print_char("="); print_dependency(p,dependent); end_diagnostic(false);
end
@ @<Simplify all existing dependencies by substituting for |x|@>=
prev_r:=dep_head; r:=link(dep_head);
while r<>dep_head do
begin s:=dep_list(r); q:=p_with_x_becoming_q(s,x,p,type(r));
if info(q)=null then make_known(r,q)
else begin dep_list(r):=q;
repeat q:=link(q);
until info(q)=null;
prev_r:=q;
end;
r:=link(prev_r);
end
@ @<Change variable |x| from |independent| to |dependent| or |known|@>=
if n>0 then @<Divide list |p| by $2^n$@>;
if info(p)=null then
begin type(x):=known;
value(x):=value(p);
if abs(value(x))>=fraction_one then val_too_big(value(x));
free_node(p,dep_node_size);
if cur_exp=x then if cur_type=independent then
begin cur_exp:=value(x); cur_type:=known;
free_node(x,value_node_size);
end;
end
else begin type(x):=dependent; dep_final:=final_node; new_dep(x,p);
if cur_exp=x then if cur_type=independent then cur_type:=dependent;
end
@ @<Divide list |p| by $2^n$@>=
begin s:=temp_head; link(temp_head):=p; r:=p;
repeat if n>30 then w:=0
else w:=value(r) div two_to_the[n];
if (abs(w)<=half_fraction_threshold)and(info(r)<>null) then
begin link(s):=link(r);
free_node(r,dep_node_size);
end
else begin value(r):=w; s:=r;
end;
r:=link(s);
until info(s)=null;
p:=link(temp_head);
end
@ The |check_mem| procedure, which is used only when \MP\ is being
debugged, makes sure that the current dependency lists are well formed.
@<Check the list of linear dependencies@>=
q:=dep_head; p:=link(q);
while p<>dep_head do
begin if prev_dep(p)<>q then
begin print_nl("Bad PREVDEP at "); print_int(p);
@.Bad PREVDEP...@>
end;
p:=dep_list(p);
loop @+begin r:=info(p); q:=p; p:=link(q);
if r=null then goto done3;
if value(info(p))>=value(r) then
begin print_nl("Out of order at "); print_int(p);
@.Out of order...@>
end;
end;
done3: do_nothing;
end
@* \[25] Dynamic nonlinear equations.
Variables of numeric type are maintained by the general scheme of
independent, dependent, and known values that we have just studied;
and the components of pair and transform variables are handled in the
same way. But \MP\ also has five other types of values: \&{boolean},
\&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
Equations are allowed between nonlinear quantities, but only in a
simple form. Two variables that haven't yet been assigned values are
either equal to each other, or they're not.
Before a boolean variable has received a value, its type is |unknown_boolean|;
similarly, there are variables whose type is |unknown_string|, |unknown_pen|,
|unknown_path|, and |unknown_picture|. In such cases the value is either
|null| (which means that no other variables are equivalent to this one), or
it points to another variable of the same undefined type. The pointers in the
latter case form a cycle of nodes, which we shall call a ``ring.''
Rings of undefined variables may include capsules, which arise as
intermediate results within expressions or as \&{expr} parameters to macros.
When one member of a ring receives a value, the same value is given to
all the other members. In the case of paths and pictures, this implies
making separate copies of a potentially large data structure; users should
restrain their enthusiasm for such generality, unless they have lots and
lots of memory space.
@ The following procedure is called when a capsule node is being
added to a ring (e.g., when an unknown variable is mentioned in an expression).
@p function new_ring_entry(@!p:pointer):pointer;
var q:pointer; {the new capsule node}
begin q:=get_node(value_node_size); name_type(q):=capsule;
type(q):=type(p);
if value(p)=null then value(q):=p@+else value(q):=value(p);
value(p):=q;
new_ring_entry:=q;
end;
@ Conversely, we might delete a capsule or a variable before it becomes known.
The following procedure simply detaches a quantity from its ring,
without recycling the storage.
@<Declare the recycling subroutines@>=
procedure ring_delete(@!p:pointer);
var @!q:pointer;
begin q:=value(p);
if q<>null then if q<>p then
begin while value(q)<>p do q:=value(q);
value(q):=value(p);
end;
end;
@ Eventually there might be an equation that assigns values to all of the
variables in a ring. The |nonlinear_eq| subroutine does the necessary
propagation of values.
If the parameter |flush_p| is |true|, node |p| itself needn't receive a
value, it will soon be recycled.
@p procedure nonlinear_eq(@!v:integer;@!p:pointer;@!flush_p:boolean);
var @!t:small_number; {the type of ring |p|}
@!q,@!r:pointer; {link manipulation registers}
begin t:=type(p)-unknown_tag; q:=value(p);
if flush_p then type(p):=vacuous@+else p:=q;
repeat r:=value(q); type(q):=t;
case t of
boolean_type: value(q):=v;
string_type: begin value(q):=v; add_str_ref(v);
end;
pen_type: value(q):=copy_pen(v);
path_type: value(q):=copy_path(v);
picture_type: begin value(q):=v; add_edge_ref(v);
end;
end; {there ain't no more cases}
q:=r;
until q=p;
end;
@ If two members of rings are equated, and if they have the same type,
the |ring_merge| procedure is called on to make them equivalent.
@p procedure ring_merge(@!p,@!q:pointer);
label exit;
var @!r:pointer; {traverses one list}
begin r:=value(p);
while r<>p do
begin if r=q then
begin @<Exclaim about a redundant equation@>;
return;
end;
r:=value(r);
end;
r:=value(p); value(p):=value(q); value(q):=r;
exit:end;
@ @<Exclaim about a redundant equation@>=
begin print_err("Redundant equation");@/
@.Redundant equation@>
help2("I already knew that this equation was true.")@/
("But perhaps no harm has been done; let's continue.");@/
put_get_error;
end
@* \[26] Introduction to the syntactic routines.
Let's pause a moment now and try to look at the Big Picture.
The \MP\ program consists of three main parts: syntactic routines,
semantic routines, and output routines. The chief purpose of the
syntactic routines is to deliver the user's input to the semantic routines,
while parsing expressions and locating operators and operands. The
semantic routines act as an interpreter responding to these operators,
which may be regarded as commands. And the output routines are
periodically called on to produce compact font descriptions that can be
used for typesetting or for making interim proof drawings. We have
discussed the basic data structures and many of the details of semantic
operations, so we are good and ready to plunge into the part of \MP\ that
actually controls the activities.
Our current goal is to come to grips with the |get_next| procedure,
which is the keystone of \MP's input mechanism. Each call of |get_next|
sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
representing the next input token.
$$\vbox{\halign{#\hfil\cr
\hbox{|cur_cmd| denotes a command code from the long list of codes
given earlier;}\cr
\hbox{|cur_mod| denotes a modifier of the command code;}\cr
\hbox{|cur_sym| is the hash address of the symbolic token that was
just scanned,}\cr
\hbox{\qquad or zero in the case of a numeric or string
or capsule token.}\cr}}$$
Underlying this external behavior of |get_next| is all the machinery
necessary to convert from character files to tokens. At a given time we
may be only partially finished with the reading of several files (for
which \&{input} was specified), and partially finished with the expansion
of some user-defined macros and/or some macro parameters, and partially
finished reading some text that the user has inserted online,
and so on. When reading a character file, the characters must be
converted to tokens; comments and blank spaces must
be removed, numeric and string tokens must be evaluated.
To handle these situations, which might all be present simultaneously,
\MP\ uses various stacks that hold information about the incomplete
activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly
recursive process, but the |get_next| procedure is not recursive.
@<Glob...@>=
@!cur_cmd: eight_bits; {current command set by |get_next|}
@!cur_mod: integer; {operand of current command}
@!cur_sym: halfword; {hash address of current symbol}
@ The |print_cmd_mod| routine prints a symbolic interpretation of a
command code and its modifier.
It consists of a rather tedious sequence of print
commands, and most of it is essentially an inverse to the |primitive|
routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
all of this procedure appears elsewhere in the program, together with the
corresponding |primitive| calls.
@<Declare the procedure called |print_cmd_mod|@>=
procedure print_cmd_mod(@!c,@!m:integer);
begin case c of
@t\4@>@<Cases of |print_cmd_mod| for symbolic printing of primitives@>@/
othercases print("[unknown command code!]")
endcases;
end;
@ Here is a procedure that displays a given command in braces, in the
user's transcript file.
@d show_cur_cmd_mod==show_cmd_mod(cur_cmd,cur_mod)
@p procedure show_cmd_mod(@!c,@!m:integer);
begin begin_diagnostic; print_nl("{");
print_cmd_mod(c,m); print_char("}");
end_diagnostic(false);
end;
@* \[27] Input stacks and states.
The state of \MP's input mechanism appears in the input stack, whose
entries are records with five fields, called |index|, |start|, |loc|,
|limit|, and |name|. The top element of this stack is maintained in a
global variable for which no subscripting needs to be done; the other
elements of the stack appear in an array. Hence the stack is declared thus:
@<Types...@>=
@!in_state_record = record
@!index_field: quarterword;
@!start_field,@!loc_field, @!limit_field, @!name_field: halfword;
end;
@ @<Glob...@>=
@!input_stack : array[0..stack_size] of in_state_record;
@!input_ptr : 0..stack_size; {first unused location of |input_stack|}
@!max_in_stack: 0..stack_size; {largest value of |input_ptr| when pushing}
@!cur_input : in_state_record; {the ``top'' input state}
@ We've already defined the special variable |@!loc==cur_input.loc_field|
in our discussion of basic input-output routines. The other components of
|cur_input| are defined in the same way:
@d index==cur_input.index_field {reference for buffer information}
@d start==cur_input.start_field {starting position in |buffer|}
@d limit==cur_input.limit_field {end of current line in |buffer|}
@d name==cur_input.name_field {name of the current file}
@ Let's look more closely now at the five control variables
(|index|,~|start|,~|loc|,~|limit|,~|name|),
assuming that \MP\ is reading a line of characters that have been input
from some file or from the user's terminal. There is an array called
|buffer| that acts as a stack of all lines of characters that are
currently being read from files, including all lines on subsidiary
levels of the input stack that are not yet completed. \MP\ will return to
the other lines when it is finished with the present input file.
(Incidentally, on a machine with byte-oriented addressing, it would be
appropriate to combine |buffer| with the |str_pool| array,
letting the buffer entries grow downward from the top of the string pool
and checking that these two tables don't bump into each other.)
The line we are currently working on begins in position |start| of the
buffer; the next character we are about to read is |buffer[loc]|; and
|limit| is the location of the last character present. We always have
|loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
that the end of a line is easily sensed.
The |name| variable is a string number that designates the name of
the current file, if we are reading an ordinary text file. Special codes
|is_term..max_spec_src| indicate other sources of input text.
@d is_term=0 {|name| value when reading from the terminal for normal input}
@d is_read=1 {|name| value when executing a \&{readstring} or \&{readfrom}}
@d is_scantok=2 {|name| value when reading text generated by \&{scantokens}}
@d max_spec_src=is_scantok
@ Additional information about the current line is available via the
|index| variable, which counts how many lines of characters are present
in the buffer below the current level. We have |index=0| when reading
from the terminal and prompting the user for each line; then if the user types,
e.g., `\.{input figs}', we will have |index=1| while reading
the file \.{figs.mp}. However, it does not follow that |index| is the
same as the input stack pointer, since many of the levels on the input
stack may come from token lists and some |index| values may correspond
to \.{MPX} files that are not currently on the stack.
The global variable |in_open| is equal to the highest |index| value counting
\.{MPX} files but excluding token-list input levels. Thus, the number of
partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
when we are not reading a token list.
If we are not currently reading from the terminal,
we are reading from the file variable |input_file[index]|. We use
the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
and |cur_file| as an abbreviation for |input_file[index]|.
When \MP\ is not reading from the terminal, the global variable |line| contains
the line number in the current file, for use in error messages. More precisely,
|line| is a macro for |line_stack[index]| and the |line_stack| array gives
the line number for each file in the |input_file| array.
When an \.{MPX} file is opened the file name is stored in the |mpx_name|
array so that the name doesn't get lost when the file is temporarily removed
from the input stack.
Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
and it contains translated \TeX\ pictures for |input_file[k-1]|.
Since this is not an \.{MPX} file, we have
$$ \hbox{|mpx_name[k-1]<=absent|}. $$
This |name| field is set to |finished| when |input_file[k]| is completely
read.
If more information about the input state is needed, it can be
included in small arrays like those shown here. For example,
the current page or segment number in the input file might be put
into a variable |@!page|, that is really a macro for the current entry
in `\ignorespaces|@!page_stack:array[0..max_in_open] of integer|\unskip'
by analogy with |line_stack|.
@^system dependencies@>
@d terminal_input==(name=is_term) {are we reading from the terminal?}
@d cur_file==input_file[index] {the current |alpha_file| variable}
@d line==line_stack[index] {current line number in the current source file}
@d in_name==iname_stack[index] {a string used to construct \.{MPX} file names}
@d in_area==iarea_stack[index] {another string for naming \.{MPX} files}
@d absent=1 {|name_field| value for unused |mpx_in_stack| entries}
@d mpx_reading==(mpx_name[index]>absent)
{when reading a file, is it an \.{MPX} file?}
@d finished=0
{|name_field| value when the corresponding \.{MPX} file is finished}
@<Glob...@>=
@!in_open : 0..max_in_open; {the number of lines in the buffer, less one}
@!open_parens : 0..max_in_open; {the number of open text files}
@!input_file : array[1..max_in_open] of alpha_file;
@!line_stack : array[0..max_in_open] of integer; {the line number for each file}
@!iname_stack : array[0..max_in_open] of str_number;
{used for naming \.{MPX} files}
@!iarea_stack : array[0..max_in_open] of str_number;
{used for naming \.{MPX} files}
@!mpx_name : array[0..max_in_open] of halfword;
@ However, all this discussion about input state really applies only to the
case that we are inputting from a file. There is another important case,
namely when we are currently getting input from a token list. In this case
|index>max_in_open|, and the conventions about the other state variables
are different:
\yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
the node that will be read next. If |loc=null|, the token list has been
fully read.
\yskip\hang|start| points to the first node of the token list; this node
may or may not contain a reference count, depending on the type of token
list involved.
\yskip\hang|token_type|, which takes the place of |index| in the
discussion above, is a code number that explains what kind of token list
is being scanned.
\yskip\hang|name| points to the |eqtb| address of the control sequence
being expanded, if the current token list is a macro not defined by
\&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
can be deduced by looking at their first two parameters.
\yskip\hang|param_start|, which takes the place of |limit|, tells where
the parameters of the current macro or loop text begin in the |param_stack|.
\yskip\noindent The |token_type| can take several values, depending on
where the current token list came from:
\yskip
\indent|forever_text|, if the token list being scanned is the body of
a \&{forever} loop;
\indent|loop_text|, if the token list being scanned is the body of
a \&{for} or \&{forsuffixes} loop;
\indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
\indent|backed_up|, if the token list being scanned has been inserted as
`to be read again'.
\indent|inserted|, if the token list being scanned has been inserted as
part of error recovery;
\indent|macro|, if the expansion of a user-defined symbolic token is being
scanned.
\yskip\noindent
The token list begins with a reference count if and only if |token_type=
macro|.
@^reference counts@>
@d token_type==index {type of current token list}
@d token_state==(index>max_in_open) {are we scanning a token list?}
@d file_state==(index<=max_in_open) {are we scanning a file line?}
@d param_start==limit {base of macro parameters in |param_stack|}
@d forever_text=max_in_open+1 {|token_type| code for loop texts}
@d loop_text=max_in_open+2 {|token_type| code for loop texts}
@d parameter=max_in_open+3 {|token_type| code for parameter texts}
@d backed_up=max_in_open+4 {|token_type| code for texts to be reread}
@d inserted=max_in_open+5 {|token_type| code for inserted texts}
@d macro=max_in_open+6 {|token_type| code for macro replacement texts}
@ The |param_stack| is an auxiliary array used to hold pointers to the token
lists for parameters at the current level and subsidiary levels of input.
This stack grows at a different rate from the others.
@<Glob...@>=
@!param_stack:array [0..param_size] of pointer;
{token list pointers for parameters}
@!param_ptr:0..param_size; {first unused entry in |param_stack|}
@!max_param_stack:integer;
{largest value of |param_ptr|}
@ Notice that the |line| isn't valid when |token_state| is true because it
depends on |index|. If we really need to know the line number for the
topmost file in the index stack we use the following function. If a page
number or other information is needed, this routine should be modified to
compute it as well.
@^system dependencies@>
@<Declare a function called |true_line|@>=
function true_line: integer;
var @!k:0..stack_size; {an index into the input stack}
begin if file_state and (name>max_spec_src) then true_line:=line
else begin k:=input_ptr;
while (k>0)and(input_stack[k].index_field>max_in_open)or@|
(input_stack[k].name_field<=max_spec_src) do
decr(k);
true_line:=line_stack[k];
end;
end;
@ Thus, the ``current input state'' can be very complicated indeed; there
can be many levels and each level can arise in a variety of ways. The
|show_context| procedure, which is used by \MP's error-reporting routine to
print out the current input state on all levels down to the most recent
line of characters from an input file, illustrates most of these conventions.
The global variable |file_ptr| contains the lowest level that was
displayed by this procedure.
@<Glob...@>=
@!file_ptr:0..stack_size; {shallowest level shown by |show_context|}
@ The status at each level is indicated by printing two lines, where the first
line indicates what was read so far and the second line shows what remains
to be read. The context is cropped, if necessary, so that the first line
contains at most |half_error_line| characters, and the second contains
at most |error_line|. Non-current input levels whose |token_type| is
`|backed_up|' are shown only if they have not been fully read.
@p procedure show_context; {prints where the scanner is}
label done;
var @!old_setting:0..max_selector; {saved |selector| setting}
@<Local variables for formatting calculations@>@/
begin file_ptr:=input_ptr; input_stack[file_ptr]:=cur_input;
{store current state}
loop@+begin cur_input:=input_stack[file_ptr]; {enter into the context}
@<Display the current context@>;
if file_state then
if (name>max_spec_src) or (file_ptr=0) then goto done;
decr(file_ptr);
end;
done: cur_input:=input_stack[input_ptr]; {restore original state}
end;
@ @<Display the current context@>=
if (file_ptr=input_ptr) or file_state or
(token_type<>backed_up) or (loc<>null) then
{we omit backed-up token lists that have already been read}
begin tally:=0; {get ready to count characters}
old_setting:=selector;
if file_state then
begin @<Print location of current line@>;
@<Pseudoprint the line@>;
end
else begin @<Print type of token list@>;
@<Pseudoprint the token list@>;
end;
selector:=old_setting; {stop pseudoprinting}
@<Print two lines using the tricky pseudoprinted information@>;
end
@ This routine should be changed, if necessary, to give the best possible
indication of where the current line resides in the input file.
For example, on some systems it is best to print both a page and line number.
@^system dependencies@>
@<Print location of current line@>=
if name>max_spec_src then
begin print_nl("l."); print_int(true_line);
end
else if terminal_input then
if file_ptr=0 then print_nl("<*>") @+else print_nl("<insert>")
else if name=is_scantok then print_nl("<scantokens>")
else print_nl("<read>");
print_char(" ")
@ @<Print type of token list@>=
case token_type of
forever_text: print_nl("<forever> ");
loop_text: @<Print the current loop value@>;
parameter: print_nl("<argument> ");
backed_up: if loc=null then print_nl("<recently read> ")
else print_nl("<to be read again> ");
inserted: print_nl("<inserted text> ");
macro: begin print_ln;
if name<>null then print(text(name))
else @<Print the name of a \&{vardef}'d macro@>;
print("->");
end;
othercases print_nl("?") {this should never happen}
@.?\relax@>
endcases
@ The parameter that corresponds to a loop text is either a token list
(in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
We'll discuss capsules later; for now, all we need to know is that
the |link| field in a capsule parameter is |void| and that
|print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
@d void==null+1 {a null pointer different from |null|}
@<Print the current loop value@>=
begin print_nl("<for("); p:=param_stack[param_start];
if p<>null then
if link(p)=void then print_exp(p,0) {we're in a \&{for} loop}
else show_token_list(p,null,20,tally);
print(")> ");
end
@ The first two parameters of a macro defined by \&{vardef} will be token
lists representing the macro's prefix and ``at point.'' By putting these
together, we get the macro's full name.
@<Print the name of a \&{vardef}'d macro@>=
begin p:=param_stack[param_start];
if p=null then show_token_list(param_stack[param_start+1],null,20,tally)
else begin q:=p;
while link(q)<>null do q:=link(q);
link(q):=param_stack[param_start+1];
show_token_list(p,null,20,tally);
link(q):=null;
end;
end
@ Now it is necessary to explain a little trick. We don't want to store a long
string that corresponds to a token list, because that string might take up
lots of memory; and we are printing during a time when an error message is
being given, so we dare not do anything that might overflow one of \MP's
tables. So `pseudoprinting' is the answer: We enter a mode of printing
that stores characters into a buffer of length |error_line|, where character
$k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
|k<trick_count|, otherwise character |k| is dropped. Initially we set
|tally:=0| and |trick_count:=1000000|; then when we reach the
point where transition from line 1 to line 2 should occur, we
set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
tally+1+error_line-half_error_line)|. At the end of the
pseudoprinting, the values of |first_count|, |tally|, and
|trick_count| give us all the information we need to print the two lines,
and all of the necessary text is in |trick_buf|.
Namely, let |l| be the length of the descriptive information that appears
on the first line. The length of the context information gathered for that
line is |k=first_count|, and the length of the context information
gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
descriptive information on line~1, and set |n:=l+k|; here |n| is the
length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
and print `\.{...}' followed by
$$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
where subscripts of |trick_buf| are circular modulo |error_line|. The
second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
unless |n+m>error_line|; in the latter case, further cropping is done.
This is easier to program than to explain.
@<Local variables for formatting...@>=
@!i:0..buf_size; {index into |buffer|}
@!l:integer; {length of descriptive information on line 1}
@!m:integer; {context information gathered for line 2}
@!n:0..error_line; {length of line 1}
@!p: integer; {starting or ending place in |trick_buf|}
@!q: integer; {temporary index}
@ The following code tells the print routines to gather
the desired information.
@d begin_pseudoprint==
begin l:=tally; tally:=0; selector:=pseudo;
trick_count:=1000000;
end
@d set_trick_count==
begin first_count:=tally;
trick_count:=tally+1+error_line-half_error_line;
if trick_count<error_line then trick_count:=error_line;
end
@ And the following code uses the information after it has been gathered.
@<Print two lines using the tricky pseudoprinted information@>=
if trick_count=1000000 then set_trick_count;
{|set_trick_count| must be performed}
if tally<trick_count then m:=tally-first_count
else m:=trick_count-first_count; {context on line 2}
if l+first_count<=half_error_line then
begin p:=0; n:=l+first_count;
end
else begin print("..."); p:=l+first_count-half_error_line+3;
n:=half_error_line;
end;
for q:=p to first_count-1 do print_char(trick_buf[q mod error_line]);
print_ln;
for q:=1 to n do print_char(" "); {print |n| spaces to begin line~2}
if m+n<=error_line then p:=first_count+m else p:=first_count+(error_line-n-3);
for q:=first_count to p-1 do print_char(trick_buf[q mod error_line]);
if m+n>error_line then print("...")
@ But the trick is distracting us from our current goal, which is to
understand the input state. So let's concentrate on the data structures that
are being pseudoprinted as we finish up the |show_context| procedure.
@<Pseudoprint the line@>=
begin_pseudoprint;
if limit>0 then for i:=start to limit-1 do
begin if i=loc then set_trick_count;
print(buffer[i]);
end
@ @<Pseudoprint the token list@>=
begin_pseudoprint;
if token_type<>macro then show_token_list(start,loc,100000,0)
else show_macro(start,loc,100000)
@ Here is the missing piece of |show_token_list| that is activated when the
token beginning line~2 is about to be shown:
@<Do magic computation@>=set_trick_count
@* \[28] Maintaining the input stacks.
The following subroutines change the input status in commonly needed ways.
First comes |push_input|, which stores the current state and creates a
new level (having, initially, the same properties as the old).
@d push_input==@t@> {enter a new input level, save the old}
begin if input_ptr>max_in_stack then
begin max_in_stack:=input_ptr;
if input_ptr=stack_size then overflow("input stack size",stack_size);
@:MetaPost capacity exceeded input stack size}{\quad input stack size@>
end;
input_stack[input_ptr]:=cur_input; {stack the record}
incr(input_ptr);
end
@ And of course what goes up must come down.
@d pop_input==@t@> {leave an input level, re-enter the old}
begin decr(input_ptr); cur_input:=input_stack[input_ptr];
end
@ Here is a procedure that starts a new level of token-list input, given
a token list |p| and its type |t|. If |t=macro|, the calling routine should
set |name|, reset~|loc|, and increase the macro's reference count.
@d back_list(#)==begin_token_list(#,backed_up) {backs up a simple token list}
@p procedure begin_token_list(@!p:pointer;@!t:quarterword);
begin push_input; start:=p; token_type:=t;
param_start:=param_ptr; loc:=p;
end;
@ When a token list has been fully scanned, the following computations
should be done as we leave that level of input.
@^inner loop@>
@p procedure end_token_list; {leave a token-list input level}
label done;
var @!p:pointer; {temporary register}
begin if token_type>=backed_up then {token list to be deleted}
if token_type<=inserted then
begin flush_token_list(start); goto done;
end
else delete_mac_ref(start); {update reference count}
while param_ptr>param_start do {parameters must be flushed}
begin decr(param_ptr);
p:=param_stack[param_ptr];
if p<>null then
if link(p)=void then {it's an \&{expr} parameter}
begin recycle_value(p); free_node(p,value_node_size);
end
else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
end;
done: pop_input; check_interrupt;
end;
@ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
token by the |cur_tok| routine.
@^inner loop@>
@p @t\4@>@<Declare the procedure called |make_exp_copy|@>@;@/
function cur_tok:pointer;
var @!p:pointer; {a new token node}
@!save_type:small_number; {|cur_type| to be restored}
@!save_exp:integer; {|cur_exp| to be restored}
begin if cur_sym=0 then
if cur_cmd=capsule_token then
begin save_type:=cur_type; save_exp:=cur_exp;
make_exp_copy(cur_mod); p:=stash_cur_exp; link(p):=null;
cur_type:=save_type; cur_exp:=save_exp;
end
else begin p:=get_node(token_node_size);
value(p):=cur_mod; name_type(p):=token;
if cur_cmd=numeric_token then type(p):=known
else type(p):=string_type;
end
else begin fast_get_avail(p); info(p):=cur_sym;
end;
cur_tok:=p;
end;
@ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
seen. The |back_input| procedure takes care of this by putting the token
just scanned back into the input stream, ready to be read again.
If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
@p procedure back_input; {undoes one token of input}
var @!p:pointer; {a token list of length one}
begin p:=cur_tok;
while token_state and(loc=null) do end_token_list; {conserve stack space}
back_list(p);
end;
@ The |back_error| routine is used when we want to restore or replace an
offending token just before issuing an error message. We disable interrupts
during the call of |back_input| so that the help message won't be lost.
@p procedure back_error; {back up one token and call |error|}
begin OK_to_interrupt:=false; back_input; OK_to_interrupt:=true; error;
end;
@#
procedure ins_error; {back up one inserted token and call |error|}
begin OK_to_interrupt:=false; back_input; token_type:=inserted;
OK_to_interrupt:=true; error;
end;
@ The |begin_file_reading| procedure starts a new level of input for lines
of characters to be read from a file, or as an insertion from the
terminal. It does not take care of opening the file, nor does it set |loc|
or |limit| or |line|.
@^system dependencies@>
@p procedure begin_file_reading;
begin if in_open=max_in_open then overflow("text input levels",max_in_open);
@:MetaPost capacity exceeded text input levels}{\quad text input levels@>
if first=buf_size then overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
incr(in_open); push_input; index:=in_open;
mpx_name[index]:=absent;
start:=first;
name:=is_term; {|terminal_input| is now |true|}
end;
@ Conversely, the variables must be downdated when such a level of input
is finished. Any associated \.{MPX} file must also be closed and popped
off the file stack.
@p procedure end_file_reading;
begin if in_open>index then
if (mpx_name[in_open]=absent)or(name<=max_spec_src) then confusion("endinput")
@:this can't happen endinput}{\quad endinput@>
else begin a_close(input_file[in_open]); {close an \.{MPX} file}
delete_str_ref(mpx_name[in_open]);
decr(in_open);
end;
first:=start;
if index<>in_open then confusion("endinput");
if name>max_spec_src then
begin a_close(cur_file);
delete_str_ref(name);
delete_str_ref(in_name); delete_str_ref(in_area);
end;
pop_input; decr(in_open);
end;
@ Here is a function that tries to resume input from an \.{MPX} file already
associated with the current input file. It returns |false| if this doesn't
work.
@p function begin_mpx_reading:boolean;
begin if in_open<>index+1 then begin_mpx_reading:=false
else begin if mpx_name[in_open]<=absent then confusion("mpx");
@:this can't happen mpx}{\quad mpx@>
if first=buf_size then overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
push_input; index:=in_open;
start:=first;
name:=mpx_name[in_open]; add_str_ref(name);
@<Put an empty line in the input buffer@>;
begin_mpx_reading:=true;
end;
end;
@ This procedure temporarily stops reading an \.{MPX} file.
@p procedure end_mpx_reading;
begin if in_open<>index then confusion("mpx");
@:this can't happen mpx}{\quad mpx@>
if loc<limit then
@<Complain that we are not at the end of a line in the \.{MPX} file@>;
first:=start;
pop_input;
end;
@ Here we enforce a restriction that simplifies the input stacks considerably.
This should not inconvenience the user because \.{MPX} files are generated
by an auxiliary program called \.{DVItoMP}.
@ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
begin print_err("`mpxbreak' must be at the end of a line");
help4("This file contains picture expressions for btex...etex")@/
("blocks. Such files are normally generated automatically")@/
("but this one seems to be messed up. I'm going to ignore")@/
("the rest of this line.");@/
error;
end
@ In order to keep the stack from overflowing during a long sequence of
inserted `\.{show}' commands, the following routine removes completed
error-inserted lines from memory.
@p procedure clear_for_error_prompt;
begin while file_state and terminal_input and@|
(input_ptr>0)and(loc=limit) do end_file_reading;
print_ln; clear_terminal;
end;
@ To get \MP's whole input mechanism going, we perform the following
actions.
@<Initialize the input routines@>=
begin input_ptr:=0; max_in_stack:=0;
in_open:=0; open_parens:=0; max_buf_stack:=0;
param_ptr:=0; max_param_stack:=0;
first:=1;
start:=1; index:=0; line:=0; name:=is_term;
mpx_name[0]:=absent;
force_eof:=false;
if not init_terminal then goto final_end;
limit:=last; first:=last+1; {|init_terminal| has set |loc| and |last|}
end;
@* \[29] Getting the next token.
The heart of \MP's input mechanism is the |get_next| procedure, which
we shall develop in the next few sections of the program. Perhaps we
shouldn't actually call it the ``heart,'' however; it really acts as \MP's
eyes and mouth, reading the source files and gobbling them up. And it also
helps \MP\ to regurgitate stored token lists that are to be processed again.
The main duty of |get_next| is to input one token and to set |cur_cmd|
and |cur_mod| to that token's command code and modifier. Furthermore, if
the input token is a symbolic token, that token's |hash| address
is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
Underlying this simple description is a certain amount of complexity
because of all the cases that need to be handled.
However, the inner loop of |get_next| is reasonably short and fast.
@ Before getting into |get_next|, we need to consider a mechanism by which
\MP\ helps keep errors from propagating too far. Whenever the program goes
into a mode where it keeps calling |get_next| repeatedly until a certain
condition is met, it sets |scanner_status| to some value other than |normal|.
Then if an input file ends, or if an `\&{outer}' symbol appears,
an appropriate error recovery will be possible.
The global variable |warning_info| helps in this error recovery by providing
additional information. For example, |warning_info| might indicate the
name of a macro whose replacement text is being scanned.
@d normal=0 {|scanner_status| at ``quiet times''}
@d skipping=1 {|scanner_status| when false conditional text is being skipped}
@d flushing=2 {|scanner_status| when junk after a statement is being ignored}
@d absorbing=3 {|scanner_status| when a \&{text} parameter is being scanned}
@d var_defining=4 {|scanner_status| when a \&{vardef} is being scanned}
@d op_defining=5 {|scanner_status| when a macro \&{def} is being scanned}
@d loop_defining=6 {|scanner_status| when a \&{for} loop is being scanned}
@d tex_flushing=7 {|scanner_status| when skipping \TeX\ material}
@<Glob...@>=
@!scanner_status:normal..tex_flushing; {are we scanning at high speed?}
@!warning_info:integer; {if so, what else do we need to know,
in case an error occurs?}
@ @<Initialize the input routines@>=
scanner_status:=normal;
@ The following subroutine
is called when an `\&{outer}' symbolic token has been scanned or
when the end of a file has been reached. These two cases are distinguished
by |cur_sym|, which is zero at the end of a file.
@p function check_outer_validity:boolean;
var @!p:pointer; {points to inserted token list}
begin if scanner_status=normal then check_outer_validity:=true
else if scanner_status=tex_flushing then
@<Check if the file has ended while flushing \TeX\ material and set the
result value for |check_outer_validity|@>
else begin deletions_allowed:=false;
@<Back up an outer symbolic token so that it can be reread@>;
if scanner_status>skipping then
@<Tell the user what has run away and try to recover@>
else begin print_err("Incomplete if; all text was ignored after line ");
@.Incomplete if...@>
print_int(warning_info);@/
help3("A forbidden `outer' token occurred in skipped text.")@/
("This kind of error happens when you say `if...' and forget")@/
("the matching `fi'. I've inserted a `fi'; this might work.");
if cur_sym=0 then help_line[2]:=@|
"The file ended while I was skipping conditional text.";
cur_sym:=frozen_fi; ins_error;
end;
deletions_allowed:=true; check_outer_validity:=false;
end;
end;
@ @<Check if the file has ended while flushing \TeX\ material and set...@>=
if cur_sym<>0 then check_outer_validity:=true
else begin deletions_allowed:=false;
print_err("TeX mode didn't end; all text was ignored after line ");
print_int(warning_info);
help2("The file ended while I was looking for the `etex' to")@/
("finish this TeX material. I've inserted `etex' now.");@/
cur_sym := frozen_etex;
ins_error;@/
deletions_allowed:=true; check_outer_validity:=false;
end
@ @<Back up an outer symbolic token so that it can be reread@>=
if cur_sym<>0 then
begin p:=get_avail; info(p):=cur_sym;
back_list(p); {prepare to read the symbolic token again}
end
@ @<Tell the user what has run away...@>=
begin runaway; {print the definition-so-far}
if cur_sym=0 then print_err("File ended")
@.File ended while scanning...@>
else begin print_err("Forbidden token found");
@.Forbidden token found...@>
end;
print(" while scanning ");
help4("I suspect you have forgotten an `enddef',")@/
("causing me to read past where you wanted me to stop.")@/
("I'll try to recover; but if the error is serious,")@/
("you'd better type `E' or `X' now and fix your file.");@/
case scanner_status of
@t\4@>@<Complete the error message,
and set |cur_sym| to a token that might help recover from the error@>@;
end; {there are no other cases}
ins_error;
end
@ As we consider various kinds of errors, it is also appropriate to
change the first line of the help message just given; |help_line[3]|
points to the string that might be changed.
@<Complete the error message,...@>=
flushing: begin print("to the end of the statement");
help_line[3]:="A previous error seems to have propagated,";
cur_sym:=frozen_semicolon;
end;
absorbing: begin print("a text argument");
help_line[3]:="It seems that a right delimiter was left out,";
if warning_info=0 then cur_sym:=frozen_end_group
else begin cur_sym:=frozen_right_delimiter;
equiv(frozen_right_delimiter):=warning_info;
end;
end;
var_defining, op_defining: begin print("the definition of ");
if scanner_status=op_defining then print(text(warning_info))
else print_variable_name(warning_info);
cur_sym:=frozen_end_def;
end;
loop_defining: begin print("the text of a "); print(text(warning_info));
print(" loop");
help_line[3]:="I suspect you have forgotten an `endfor',";
cur_sym:=frozen_end_for;
end;
@ The |runaway| procedure displays the first part of the text that occurred
when \MP\ began its special |scanner_status|, if that text has been saved.
@<Declare the procedure called |runaway|@>=
procedure runaway;
begin if scanner_status>flushing then
begin print_nl("Runaway ");
case scanner_status of
absorbing: print("text?");
var_defining,op_defining: print("definition?");
loop_defining: print("loop?");
end; {there are no other cases}
print_ln; show_token_list(link(hold_head),null,error_line-10,0);
end;
end;
@ We need to mention a procedure that may be called by |get_next|.
@p procedure@?firm_up_the_line; forward;
@ And now we're ready to take the plunge into |get_next| itself.
Note that the behavior depends on the |scanner_status| because percent signs
and double quotes need to be passed over when skipping TeX material.
@d switch=25 {a label in |get_next|}
@d start_numeric_token=85 {another}
@d start_decimal_token=86 {and another}
@d fin_numeric_token=87
{and still another, although |goto| is considered harmful}
@p procedure get_next; {sets |cur_cmd|, |cur_mod|, |cur_sym| to next token}
@^inner loop@>
label restart, {go here to get the next input token}
exit, {go here when the next input token has been got}
common_ending, {go here to finish getting a symbolic token}
found, {go here when the end of a symbolic token has been found}
switch, {go here to branch on the class of an input character}
start_numeric_token,start_decimal_token,fin_numeric_token,done;
{go here at crucial stages when scanning a number}
var @!k:0..buf_size; {an index into |buffer|}
@!c:ASCII_code; {the current character in the buffer}
@!class:ASCII_code; {its class number}
@!n,@!f:integer; {registers for decimal-to-binary conversion}
begin restart: cur_sym:=0;
if file_state then
@<Input from external file; |goto restart| if no input found,
or |return| if a non-symbolic token is found@>
else @<Input from token list; |goto restart| if end of list or
if a parameter needs to be expanded,
or |return| if a non-symbolic token is found@>;
common_ending: @<Finish getting the symbolic token in |cur_sym|;
|goto restart| if it is illegal@>;
exit:end;
@ When a symbolic token is declared to be `\&{outer}', its command code
is increased by |outer_tag|.
@^inner loop@>
@<Finish getting the symbolic token in |cur_sym|...@>=
cur_cmd:=eq_type(cur_sym); cur_mod:=equiv(cur_sym);
if cur_cmd>=outer_tag then
if check_outer_validity then cur_cmd:=cur_cmd-outer_tag
else goto restart
@ A percent sign appears in |buffer[limit]|; this makes it unnecessary
to have a special test for end-of-line.
@^inner loop@>
@<Input from external file;...@>=
begin switch: c:=buffer[loc]; incr(loc); class:=char_class[c];
case class of
digit_class: goto start_numeric_token;
period_class: begin class:=char_class[buffer[loc]];
if class>period_class then goto switch
else if class<period_class then {|class=digit_class|}
begin n:=0; goto start_decimal_token;
end;
@:. }{\..\ token@>
end;
space_class: goto switch;
percent_class: begin if scanner_status=tex_flushing then
if loc<limit then goto switch;
@<Move to next line of file, or |goto restart| if there is no next line@>;
check_interrupt;
goto switch;
end;
string_class: if scanner_status=tex_flushing then goto switch
else @<Get a string token and |return|@>;
isolated_classes: begin k:=loc-1; goto found;
end;
invalid_class: if scanner_status=tex_flushing then goto switch
else @<Decry the invalid character and |goto restart|@>;
othercases do_nothing {letters, etc.}
endcases;@/
k:=loc-1;
while char_class[buffer[loc]]=class do incr(loc);
goto found;
start_numeric_token:@<Get the integer part |n| of a numeric token;
set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
start_decimal_token:@<Get the fraction part |f| of a numeric token@>;
fin_numeric_token:@<Pack the numeric and fraction parts of a numeric token
and |return|@>;
found: cur_sym:=id_lookup(k,loc-k);
end
@ We go to |restart| instead of to |switch|, because |state| might equal
|token_list| after the error has been dealt with
(cf.\ |clear_for_error_prompt|).
@<Decry the invalid...@>=
begin print_err("Text line contains an invalid character");
@.Text line contains...@>
help2("A funny symbol that I can't read has just been input.")@/
("Continue, and I'll forget that it ever happened.");@/
deletions_allowed:=false; error; deletions_allowed:=true;
goto restart;
end
@ @<Get a string token and |return|@>=
begin if buffer[loc]="""" then cur_mod:=""
else begin k:=loc; buffer[limit+1]:="""";
repeat incr(loc);
until buffer[loc]="""";
if loc>limit then @<Decry the missing string delimiter and |goto restart|@>;
if loc=k+1 then cur_mod:=buffer[k]
else begin str_room(loc-k);
repeat append_char(buffer[k]); incr(k);
until k=loc;
cur_mod:=make_string;
end;
end;
incr(loc); cur_cmd:=string_token; return;
end
@ We go to |restart| after this error message, not to |switch|,
because the |clear_for_error_prompt| routine might have reinstated
|token_state| after |error| has finished.
@<Decry the missing string delimiter and |goto restart|@>=
begin loc:=limit; {the next character to be read on this line will be |"%"|}
print_err("Incomplete string token has been flushed");
@.Incomplete string token...@>
help3("Strings should finish on the same line as they began.")@/
("I've deleted the partial string; you might want to")@/
("insert another by typing, e.g., `I""new string""'.");@/
deletions_allowed:=false; error; deletions_allowed:=true; goto restart;
end
@ @<Get the integer part |n| of a numeric token...@>=
n:=c-"0";
while char_class[buffer[loc]]=digit_class do
begin if n<32768 then n:=10*n+buffer[loc]-"0";
incr(loc);
end;
if buffer[loc]="." then if char_class[buffer[loc+1]]=digit_class then goto done;
f:=0; goto fin_numeric_token;
done: incr(loc)
@ @<Get the fraction part |f| of a numeric token@>=
k:=0;
repeat if k<17 then {digits for |k>=17| cannot affect the result}
begin dig[k]:=buffer[loc]-"0"; incr(k);
end;
incr(loc);
until char_class[buffer[loc]]<>digit_class;
f:=round_decimals(k);
if f=unity then
begin incr(n); f:=0;
end
@ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
if n<32768 then @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably
large@>
else if scanner_status<>tex_flushing then
begin print_err("Enormous number has been reduced");
@.Enormous number...@>
help2("I can't handle numbers bigger than 32767.99998;")@/
("so I've changed your constant to that maximum amount.");@/
deletions_allowed:=false; error; deletions_allowed:=true;
cur_mod:=el_gordo;
end;
cur_cmd:=numeric_token; return
@ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
begin cur_mod:=n*unity+f;
if cur_mod>=fraction_one then
if (internal[warning_check]>0) and (scanner_status<>tex_flushing) then
begin print_err("Number is too large (");
print_scaled(cur_mod);
print_char(")");
help3("It is at least 4096. Continue and I'll try to cope")@/
("with that big value; but it might be dangerous.")@/
("(Set warningcheck:=0 to suppress this message.)");
error;
end;
end
@ Let's consider now what happens when |get_next| is looking at a token list.
@^inner loop@>
@<Input from token list;...@>=
if loc>=hi_mem_min then {one-word token}
begin cur_sym:=info(loc); loc:=link(loc); {move to next}
if cur_sym>=expr_base then
if cur_sym>=suffix_base then
@<Insert a suffix or text parameter and |goto restart|@>
else begin cur_cmd:=capsule_token;
cur_mod:=param_stack[param_start+cur_sym-(expr_base)];
cur_sym:=0; return;
end;
end
else if loc>null then
@<Get a stored numeric or string or capsule token and |return|@>
else begin {we are done with this token list}
end_token_list; goto restart; {resume previous level}
end
@ @<Insert a suffix or text parameter...@>=
begin if cur_sym>=text_base then cur_sym:=cur_sym-param_size;
{|param_size=text_base-suffix_base|}
begin_token_list(param_stack[param_start+cur_sym-(suffix_base)],parameter);
goto restart;
end
@ @<Get a stored numeric or string or capsule token...@>=
begin if name_type(loc)=token then
begin cur_mod:=value(loc);
if type(loc)=known then cur_cmd:=numeric_token
else begin cur_cmd:=string_token; add_str_ref(cur_mod);
end;
end
else begin cur_mod:=loc; cur_cmd:=capsule_token;
end;
loc:=link(loc); return;
end
@ All of the easy branches of |get_next| have now been taken care of.
There is one more branch.
@<Move to next line of file, or |goto restart|...@>=
if name>max_spec_src then @<Read next line of file into |buffer|, or
|goto restart| if the file has ended@>
else begin if input_ptr>0 then
{text was inserted during error recovery or by \&{scantokens}}
begin end_file_reading; goto restart; {resume previous level}
end;
if selector<log_only then open_log_file;
if interaction>nonstop_mode then
begin if limit=start then {previous line was empty}
print_nl("(Please type a command or say `end')");
@.Please type...@>
print_ln; first:=start;
prompt_input("*"); {input on-line into |buffer|}
@.*\relax@>
limit:=last; buffer[limit]:="%";
first:=limit+1; loc:=start;
end
else fatal_error("*** (job aborted, no legal end found)");
@.job aborted@>
{nonstop mode, which is intended for overnight batch processing,
never waits for on-line input}
end
@ The global variable |force_eof| is normally |false|; it is set |true|
by an \&{endinput} command.
@<Glob...@>=
@!force_eof:boolean; {should the next \&{input} be aborted early?}
@ We must decrement |loc| in order to leave the buffer in a valid state
when an error condition causes us to |goto restart| without calling
|end_file_reading|.
@<Read next line of file into |buffer|, or
|goto restart| if the file has ended@>=
begin incr(line); first:=start;
if not force_eof then
begin if input_ln(cur_file,true) then {not end of file}
firm_up_the_line {this sets |limit|}
else force_eof:=true;
end;
if force_eof then
begin force_eof:=false;
decr(loc);
if mpx_reading then
@<Complain that the \.{MPX} file ended unexpectly; then set
|cur_sym:=frozen_mpx_break| and |goto comon_ending|@>
else begin print_char(")"); decr(open_parens);
update_terminal; {show user that file has been read}
end_file_reading; {resume previous level}
if check_outer_validity then goto restart @+else goto restart;
end
end;
buffer[limit]:="%"; first:=limit+1; loc:=start; {ready to read}
end
@ We should never actually come to the end of an \.{MPX} file because such
files should have an \&{mpxbreak} after the translation of the last
\&{btex}$\,\ldots\,$\&{etex} block.
@<Complain that the \.{MPX} file ended unexpectly; then set...@>=
begin mpx_name[index]:=finished;
print_err("mpx file ended unexpectedly");
help4("The file had too few picture expressions for btex...etex")@/
("blocks. Such files are normally generated automatically")@/
("but this one got messed up. You might want to insert a")@/
("picture expression now.");@/
deletions_allowed:=false; error; deletions_allowed:=true;
cur_sym:=frozen_mpx_break; goto common_ending;
end
@ Sometimes we want to make it look as though we have just read a blank line
without really doing so.
@<Put an empty line in the input buffer@>=
last:=first; limit:=last; {simulate |input_ln| and |firm_up_the_line|}
buffer[limit]:="%"; first:=limit+1; loc:=start
@ If the user has set the |pausing| parameter to some positive value,
and if nonstop mode has not been selected, each line of input is displayed
on the terminal and the transcript file, followed by `\.{=>}'.
\MP\ waits for a response. If the response is null (i.e., if nothing is
typed except perhaps a few blank spaces), the original
line is accepted as it stands; otherwise the line typed is
used instead of the line in the file.
@p procedure firm_up_the_line;
var @!k:0..buf_size; {an index into |buffer|}
begin limit:=last;
if internal[pausing]>0 then if interaction>nonstop_mode then
begin wake_up_terminal; print_ln;
if start<limit then for k:=start to limit-1 do print(buffer[k]);
first:=limit; prompt_input("=>"); {wait for user response}
@.=>@>
if last>first then
begin for k:=first to last-1 do {move line down in buffer}
buffer[k+start-first]:=buffer[k];
limit:=start+last-first;
end;
end;
end;
@* \[30] Dealing with \TeX\ material.
The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
features need to be implemented at a low level in the scanning process
so that \MP\ can stay in synch with the a preprocessor that treats
blocks of \TeX\ material as they occur in the input file without trying
to expand \MP\ macros. Thus we need a special version of |get_next|
that does not expand macros and such but does handle \&{btex},
\&{verbatimtex}, etc.
The special version of |get_next| is called |get_t_next|. It works by flushing
\&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
$\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
\&{btex}, and switching back when it sees \&{mpxbreak}.
@d btex_code=0
@d verbatim_code=1
@ @<Put each...@>=
primitive("btex",start_tex,btex_code);@/
@!@:btex_}{\&{btex} primitive@>
primitive("verbatimtex",start_tex,verbatim_code);
@!@:verbatimtex_}{\&{verbatimtex} primitive@>
primitive("etex",etex_marker,0); eqtb[frozen_etex]:=eqtb[cur_sym];@/
@!@:etex_}{\&{etex} primitive@>
primitive("mpxbreak",mpx_break,0); eqtb[frozen_mpx_break]:=eqtb[cur_sym];@/
@!@:mpx_break_}{\&{mpxbreak} primitive@>
@ @<Cases of |print_cmd...@>=
start_tex: if m=btex_code then print("btex")
else print("verbatimtex");
etex_marker: print("etex");
mpx_break: print("mpxbreak");
@ Actually, |get_t_next| is a macro that avoids procedure overhead except
in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
is encountered.
@d get_t_next==begin get_next;
if cur_cmd<=max_pre_command then t_next;
end
@d TeX_flush=65 {go here to flush to the next ``\&{etex}''}
@p procedure@?start_mpx_input; forward;@t\2@>
procedure t_next;
label TeX_flush, common_ending;
var @!old_status:normal..loop_defining; {saves the |scanner_status|}
@!old_info:integer; {saves the |warning_info|}
begin while cur_cmd<=max_pre_command do
begin if cur_cmd=mpx_break then
if not file_state or (mpx_name[index]=absent) then
@<Complain about a misplaced \&{mpxbreak}@>
else begin end_mpx_reading; goto TeX_flush;
end
else if cur_cmd=start_tex then
if token_state or (name<=max_spec_src) then
@<Complain that we are not reading a file@>
else if mpx_reading then
@<Complain that \.{MPX} files cannot contain \TeX\ material@>
else if (cur_mod<>verbatim_code)and(mpx_name[index]<>finished) then
begin if not begin_mpx_reading then start_mpx_input;
end
else goto TeX_flush
else @<Complain about a misplaced \&{etex}@>;
goto common_ending;
TeX_flush: @<Flush the \TeX\ material@>;
common_ending: get_next;
end;
end;
@ We could be in the middle of an operation such as skipping false conditional
text when \TeX\ material is encountered, so we must be careful to save the
|scanner_status|.
@<Flush the \TeX\ material@>=
old_status:=scanner_status;
old_info:=warning_info;
scanner_status:=tex_flushing;
warning_info:=line;
repeat get_next;
until cur_cmd=etex_marker;
scanner_status:=old_status;
warning_info:=old_info
@ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
begin print_err("An mpx file cannot contain btex or verbatimtex blocks");
help4("This file contains picture expressions for btex...etex")@/
("blocks. Such files are normally generated automatically")@/
("but this one seems to be messed up. I'll just keep going")@/
("and hope for the best.");@/
error;
end
@ @<Complain that we are not reading a file@>=
begin print_err("You can only use `btex' or `verbatimtex' in a file");
help3("I'll have to ignore this preprocessor command because it")@/
("only works when there is a file to preprocess. You might")@/
("want to delete everything up to the next `etex`.");@/
error;
end
@ @<Complain about a misplaced \&{mpxbreak}@>=
begin print_err("Misplaced mpxbreak");
help2("I'll ignore this preprocessor command because it")@/
("doesn't belong here");@/
error;
end
@ @<Complain about a misplaced \&{etex}@>=
begin print_err("Extra etex will be ignored");
help1("There is no btex or verbatimtex for this to match");@/
error;
end
@* \[31] Scanning macro definitions.
\MP\ has a variety of ways to tuck tokens away into token lists for later
use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
All such operations are handled by the routines in this part of the program.
The modifier part of each command code is zero for the ``ending delimiters''
like \&{enddef} and \&{endfor}.
@d start_def=1 {command modifier for \&{def}}
@d var_def=2 {command modifier for \&{vardef}}
@d end_def=0 {command modifier for \&{enddef}}
@d start_forever=1 {command modifier for \&{forever}}
@d end_for=0 {command modifier for \&{endfor}}
@<Put each...@>=
primitive("def",macro_def,start_def);@/
@!@:def_}{\&{def} primitive@>
primitive("vardef",macro_def,var_def);@/
@!@:var_def_}{\&{vardef} primitive@>
primitive("primarydef",macro_def,secondary_primary_macro);@/
@!@:primary_def_}{\&{primarydef} primitive@>
primitive("secondarydef",macro_def,tertiary_secondary_macro);@/
@!@:secondary_def_}{\&{secondarydef} primitive@>
primitive("tertiarydef",macro_def,expression_tertiary_macro);@/
@!@:tertiary_def_}{\&{tertiarydef} primitive@>
primitive("enddef",macro_def,end_def); eqtb[frozen_end_def]:=eqtb[cur_sym];@/
@!@:end_def_}{\&{enddef} primitive@>
@#
primitive("for",iteration,expr_base);@/
@!@:for_}{\&{for} primitive@>
primitive("forsuffixes",iteration,suffix_base);@/
@!@:for_suffixes_}{\&{forsuffixes} primitive@>
primitive("forever",iteration,start_forever);@/
@!@:forever_}{\&{forever} primitive@>
primitive("endfor",iteration,end_for); eqtb[frozen_end_for]:=eqtb[cur_sym];@/
@!@:end_for_}{\&{endfor} primitive@>
@ @<Cases of |print_cmd...@>=
macro_def:if m<=var_def then
if m=start_def then print("def")
else if m<start_def then print("enddef")
else print("vardef")
else if m=secondary_primary_macro then print("primarydef")
else if m=tertiary_secondary_macro then print("secondarydef")
else print("tertiarydef");
iteration: if m<=start_forever then
if m=start_forever then print("forever")@+else print("endfor")
else if m=expr_base then print("for")@+else print("forsuffixes");
@ Different macro-absorbing operations have different syntaxes, but they
also have a lot in common. There is a list of special symbols that are to
be replaced by parameter tokens; there is a special command code that
ends the definition; the quotation conventions are identical. Therefore
it makes sense to have most of the work done by a single subroutine. That
subroutine is called |scan_toks|.
The first parameter to |scan_toks| is the command code that will
terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
The second parameter, |subst_list|, points to a (possibly empty) list
of two-word nodes whose |info| and |value| fields specify symbol tokens
before and after replacement. The list will be returned to free storage
by |scan_toks|.
The third parameter is simply appended to the token list that is built.
And the final parameter tells how many of the special operations
\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
When such parameters are present, they are called \.{(SUFFIX0)},
\.{(SUFFIX1)}, and \.{(SUFFIX2)}.
@p function scan_toks(@!terminator:command_code;
@!subst_list,@!tail_end:pointer;@!suffix_count:small_number):pointer;
label done,found;
var @!p:pointer; {tail of the token list being built}
@!q:pointer; {temporary for link management}
@!balance:integer; {left delimiters minus right delimiters}
begin p:=hold_head; balance:=1; link(hold_head):=null;
loop@+ begin get_t_next;
if cur_sym>0 then
begin @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
if cur_cmd=terminator then
@<Adjust the balance; |goto done| if it's zero@>
else if cur_cmd=macro_special then
@<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
end;
link(p):=cur_tok; p:=link(p);
end;
done: link(p):=tail_end; flush_node_list(subst_list);
scan_toks:=link(hold_head);
end;
@ @<Substitute for |cur_sym|...@>=
begin q:=subst_list;
while q<>null do
begin if info(q)=cur_sym then
begin cur_sym:=value(q); cur_cmd:=relax; goto found;
end;
q:=link(q);
end;
found:end
@ @<Adjust the balance; |goto done| if it's zero@>=
if cur_mod>0 then incr(balance)
else begin decr(balance);
if balance=0 then goto done;
end
@ Four commands are intended to be used only within macro texts: \&{quote},
\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
code called |macro_special|.
@d quote=0 {|macro_special| modifier for \&{quote}}
@d macro_prefix=1 {|macro_special| modifier for \.{\#\AT!}}
@d macro_at=2 {|macro_special| modifier for \.{\AT!}}
@d macro_suffix=3 {|macro_special| modifier for \.{\AT!\#}}
@<Put each...@>=
primitive("quote",macro_special,quote);@/
@!@:quote_}{\&{quote} primitive@>
primitive("#@@",macro_special,macro_prefix);@/
@!@:]]]\#\AT!_}{\.{\#\AT!} primitive@>
primitive("@@",macro_special,macro_at);@/
@!@:]]]\AT!_}{\.{\AT!} primitive@>
primitive("@@#",macro_special,macro_suffix);@/
@!@:]]]\AT!\#_}{\.{\AT!\#} primitive@>
@ @<Cases of |print_cmd...@>=
macro_special: case m of
macro_prefix: print("#@@");
macro_at: print_char("@@");
macro_suffix: print("@@#");
othercases print("quote")
endcases;
@ @<Handle quoted...@>=
begin if cur_mod=quote then get_t_next
else if cur_mod<=suffix_count then cur_sym:=suffix_base-1+cur_mod;
end
@ Here is a routine that's used whenever a token will be redefined. If
the user's token is unredefinable, the `|frozen_inaccessible|' token is
substituted; the latter is redefinable but essentially impossible to use,
hence \MP's tables won't get fouled up.
@p procedure get_symbol; {sets |cur_sym| to a safe symbol}
label restart;
begin restart: get_t_next;
if (cur_sym=0)or(cur_sym>frozen_inaccessible) then
begin print_err("Missing symbolic token inserted");
@.Missing symbolic token...@>
help3("Sorry: You can't redefine a number, string, or expr.")@/
("I've inserted an inaccessible symbol so that your")@/
("definition will be completed without mixing me up too badly.");
if cur_sym>0 then
help_line[2]:="Sorry: You can't redefine my error-recovery tokens."
else if cur_cmd=string_token then delete_str_ref(cur_mod);
cur_sym:=frozen_inaccessible; ins_error; goto restart;
end;
end;
@ Before we actually redefine a symbolic token, we need to clear away its
former value, if it was a variable. The following stronger version of
|get_symbol| does that.
@p procedure get_clear_symbol;
begin get_symbol; clear_symbol(cur_sym,false);
end;
@ Here's another little subroutine; it checks that an equals sign
or assignment sign comes along at the proper place in a macro definition.
@p procedure check_equals;
begin if cur_cmd<>equals then if cur_cmd<>assignment then
begin missing_err("=");@/
@.Missing `='@>
help5("The next thing in this `def' should have been `=',")@/
("because I've already looked at the definition heading.")@/
("But don't worry; I'll pretend that an equals sign")@/
("was present. Everything from here to `enddef'")@/
("will be the replacement text of this macro.");
back_error;
end;
end;
@ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
handled now that we have |scan_toks|. In this case there are
two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
|expr_base| and |expr_base+1|).
@p procedure make_op_def;
var @!m:command_code; {the type of definition}
@!p,@!q,@!r:pointer; {for list manipulation}
begin m:=cur_mod;@/
get_symbol; q:=get_node(token_node_size);
info(q):=cur_sym; value(q):=expr_base;@/
get_clear_symbol; warning_info:=cur_sym;@/
get_symbol; p:=get_node(token_node_size);
info(p):=cur_sym; value(p):=expr_base+1; link(p):=q;@/
get_t_next; check_equals;@/
scanner_status:=op_defining; q:=get_avail; ref_count(q):=null;
r:=get_avail; link(q):=r; info(r):=general_macro;
link(r):=scan_toks(macro_def,p,null,0);
scanner_status:=normal; eq_type(warning_info):=m;
equiv(warning_info):=q; get_x_next;
end;
@ Parameters to macros are introduced by the keywords \&{expr},
\&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
@<Put each...@>=
primitive("expr",param_type,expr_base);@/
@!@:expr_}{\&{expr} primitive@>
primitive("suffix",param_type,suffix_base);@/
@!@:suffix_}{\&{suffix} primitive@>
primitive("text",param_type,text_base);@/
@!@:text_}{\&{text} primitive@>
primitive("primary",param_type,primary_macro);@/
@!@:primary_}{\&{primary} primitive@>
primitive("secondary",param_type,secondary_macro);@/
@!@:secondary_}{\&{secondary} primitive@>
primitive("tertiary",param_type,tertiary_macro);@/
@!@:tertiary_}{\&{tertiary} primitive@>
@ @<Cases of |print_cmd...@>=
param_type:if m>=expr_base then
if m=expr_base then print("expr")
else if m=suffix_base then print("suffix")
else print("text")
else if m<secondary_macro then print("primary")
else if m=secondary_macro then print("secondary")
else print("tertiary");
@ Let's turn next to the more complex processing associated with \&{def}
and \&{vardef}. When the following procedure is called, |cur_mod|
should be either |start_def| or |var_def|.
@p @t\4@>@<Declare the procedure called |check_delimiter|@>@;
@t\4@>@<Declare the function called |scan_declared_variable|@>@;
procedure scan_def;
var @!m:start_def..var_def; {the type of definition}
@!n:0..3; {the number of special suffix parameters}
@!k:0..param_size; {the total number of parameters}
@!c:general_macro..text_macro; {the kind of macro we're defining}
@!r:pointer; {parameter-substitution list}
@!q:pointer; {tail of the macro token list}
@!p:pointer; {temporary storage}
@!base:halfword; {|expr_base|, |suffix_base|, or |text_base|}
@!l_delim,@!r_delim:pointer; {matching delimiters}
begin m:=cur_mod; c:=general_macro; link(hold_head):=null;@/
q:=get_avail; ref_count(q):=null; r:=null;@/
@<Scan the token or variable to be defined;
set |n|, |scanner_status|, and |warning_info|@>;
k:=n;
if cur_cmd=left_delimiter then
@<Absorb delimited parameters, putting them into lists |q| and |r|@>;
if cur_cmd=param_type then
@<Absorb undelimited parameters, putting them into list |r|@>;
check_equals;
p:=get_avail; info(p):=c; link(q):=p;
@<Attach the replacement text to the tail of node |p|@>;
scanner_status:=normal; get_x_next;
end;
@ We don't put `|frozen_end_group|' into the replacement text of
a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
@<Attach the replacement text to the tail of node |p|@>=
if m=start_def then link(p):=scan_toks(macro_def,r,null,n)
else begin q:=get_avail; info(q):=bg_loc; link(p):=q;
p:=get_avail; info(p):=eg_loc;
link(q):=scan_toks(macro_def,r,p,n);
end;
if warning_info=bad_vardef then flush_token_list(value(bad_vardef))
@ @<Glob...@>=
@!bg_loc,@!eg_loc:1..hash_end;
{hash addresses of `\.{begingroup}' and `\.{endgroup}'}
@ @<Scan the token or variable to be defined;...@>=
if m=start_def then
begin get_clear_symbol; warning_info:=cur_sym; get_t_next;
scanner_status:=op_defining; n:=0;
eq_type(warning_info):=defined_macro; equiv(warning_info):=q;
end
else begin p:=scan_declared_variable;
flush_variable(equiv(info(p)),link(p),true);
warning_info:=find_variable(p); flush_list(p);
if warning_info=null then @<Change to `\.{a bad variable}'@>;
scanner_status:=var_defining; n:=2;
if cur_cmd=macro_special then if cur_mod=macro_suffix then {\.{\AT!\#}}
begin n:=3; get_t_next;
end;
type(warning_info):=unsuffixed_macro-2+n; value(warning_info):=q;
end {|suffixed_macro=unsuffixed_macro+1|}
@ @<Change to `\.{a bad variable}'@>=
begin print_err("This variable already starts with a macro");
@.This variable already...@>
help2("After `vardef a' you can't say `vardef a.b'.")@/
("So I'll have to discard this definition.");@/
error; warning_info:=bad_vardef;
end
@ @<Initialize table entries...@>=
name_type(bad_vardef):=root; link(bad_vardef):=frozen_bad_vardef;
equiv(frozen_bad_vardef):=bad_vardef; eq_type(frozen_bad_vardef):=tag_token;
@ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
repeat l_delim:=cur_sym; r_delim:=cur_mod; get_t_next;
if (cur_cmd=param_type)and(cur_mod>=expr_base) then base:=cur_mod
else begin print_err("Missing parameter type; `expr' will be assumed");
@.Missing parameter type@>
help1("You should've had `expr' or `suffix' or `text' here.");
back_error; base:=expr_base;
end;
@<Absorb parameter tokens for type |base|@>;
check_delimiter(l_delim,r_delim);
get_t_next;
until cur_cmd<>left_delimiter
@ @<Absorb parameter tokens for type |base|@>=
repeat link(q):=get_avail; q:=link(q); info(q):=base+k;@/
get_symbol; p:=get_node(token_node_size); value(p):=base+k; info(p):=cur_sym;
if k=param_size then overflow("parameter stack size",param_size);
@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
incr(k); link(p):=r; r:=p; get_t_next;
until cur_cmd<>comma
@ @<Absorb undelimited parameters, putting them into list |r|@>=
begin p:=get_node(token_node_size);
if cur_mod<expr_base then
begin c:=cur_mod; value(p):=expr_base+k;
end
else begin value(p):=cur_mod+k;
if cur_mod=expr_base then c:=expr_macro
else if cur_mod=suffix_base then c:=suffix_macro
else c:=text_macro;
end;
if k=param_size then overflow("parameter stack size",param_size);
incr(k); get_symbol; info(p):=cur_sym; link(p):=r; r:=p; get_t_next;
if c=expr_macro then if cur_cmd=of_token then
begin c:=of_macro; p:=get_node(token_node_size);
if k=param_size then overflow("parameter stack size",param_size);
value(p):=expr_base+k; get_symbol; info(p):=cur_sym;
link(p):=r; r:=p; get_t_next;
end;
end
@* \[32] Expanding the next token.
Only a few command codes |<min_command| can possibly be returned by
|get_t_next|; in increasing order, they are
|if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
|exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
\MP\ usually gets the next token of input by saying |get_x_next|. This is
like |get_t_next| except that it keeps getting more tokens until
finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
macros and removes conditionals or iterations or input instructions that
might be present.
It follows that |get_x_next| might invoke itself recursively. In fact,
there is massive recursion, since macro expansion can involve the
scanning of arbitrarily complex expressions, which in turn involve
macro expansion and conditionals, etc.
@^recursion@>
Therefore it's necessary to declare a whole bunch of |forward|
procedures at this point, and to insert some other procedures
that will be invoked by |get_x_next|.
@p procedure@?scan_primary; forward;@t\2@>
procedure@?scan_secondary; forward;@t\2@>
procedure@?scan_tertiary; forward;@t\2@>
procedure@?scan_expression; forward;@t\2@>
procedure@?scan_suffix; forward;@t\2@>@/
@t\4@>@<Declare the procedure called |macro_call|@>@;@/
procedure@?get_boolean; forward;@t\2@>
procedure@?pass_text; forward;@t\2@>
procedure@?conditional; forward;@t\2@>
procedure@?start_input; forward;@t\2@>
procedure@?begin_iteration; forward;@t\2@>
procedure@?resume_iteration; forward;@t\2@>
procedure@?stop_iteration; forward;@t\2@>
@ An auxiliary subroutine called |expand| is used by |get_x_next|
when it has to do exotic expansion commands.
@p procedure expand;
var @!p:pointer; {for list manipulation}
@!k:integer; {something that we hope is |<=buf_size|}
@!j:pool_pointer; {index into |str_pool|}
begin if internal[tracing_commands]>unity then if cur_cmd<>defined_macro then
show_cur_cmd_mod;
case cur_cmd of
if_test:conditional; {this procedure is discussed in Part 36 below}
fi_or_else:@<Terminate the current conditional and skip to \&{fi}@>;
input:@<Initiate or terminate input from a file@>;
iteration:if cur_mod=end_for then
@<Scold the user for having an extra \&{endfor}@>
else begin_iteration; {this procedure is discussed in Part 37 below}
repeat_loop: @<Repeat a loop@>;
exit_test: @<Exit a loop if the proper time has come@>;
relax: do_nothing;
expand_after: @<Expand the token after the next token@>;
scan_tokens: @<Put a string into the input buffer@>;
defined_macro:macro_call(cur_mod,null,cur_sym);
end; {there are no other cases}
end;
@ @<Scold the user...@>=
begin print_err("Extra `endfor'");
@.Extra `endfor'@>
help2("I'm not currently working on a for loop,")@/
("so I had better not try to end anything.");@/
error;
end
@ The processing of \&{input} involves the |start_input| subroutine,
which will be declared later; the processing of \&{endinput} is trivial.
@<Put each...@>=
primitive("input",input,0);@/
@!@:input_}{\&{input} primitive@>
primitive("endinput",input,1);@/
@!@:end_input_}{\&{endinput} primitive@>
@ @<Cases of |print_cmd_mod|...@>=
input: if m=0 then print("input")@+else print("endinput");
@ @<Initiate or terminate input...@>=
if cur_mod>0 then force_eof:=true
else start_input
@ We'll discuss the complicated parts of loop operations later. For now
it suffices to know that there's a global variable called |loop_ptr|
that will be |null| if no loop is in progress.
@<Repeat a loop@>=
begin while token_state and(loc=null) do end_token_list; {conserve stack space}
if loop_ptr=null then
begin print_err("Lost loop");
@.Lost loop@>
help2("I'm confused; after exiting from a loop, I still seem")@/
("to want to repeat it. I'll try to forget the problem.");@/
error;
end
else resume_iteration; {this procedure is in Part 37 below}
end
@ @<Exit a loop if the proper time has come@>=
begin get_boolean;
if internal[tracing_commands]>unity then show_cmd_mod(nullary,cur_exp);
if cur_exp=true_code then
if loop_ptr=null then
begin print_err("No loop is in progress");
@.No loop is in progress@>
help1("Why say `exitif' when there's nothing to exit from?");
if cur_cmd=semicolon then error@+else back_error;
end
else @<Exit prematurely from an iteration@>
else if cur_cmd<>semicolon then
begin missing_err(";");@/
@.Missing `;'@>
help2("After `exitif <boolean exp>' I expect to see a semicolon.")@/
("I shall pretend that one was there."); back_error;
end;
end
@ Here we use the fact that |forever_text| is the only |token_type| that
is less than |loop_text|.
@<Exit prematurely...@>=
begin p:=null;
repeat if file_state then end_file_reading
else begin if token_type<=loop_text then p:=start;
end_token_list;
end;
until p<>null;
if p<>info(loop_ptr) then fatal_error("*** (loop confusion)");
@.loop confusion@>
stop_iteration; {this procedure is in Part 34 below}
end
@ @<Expand the token after the next token@>=
begin get_t_next;
p:=cur_tok; get_t_next;
if cur_cmd<min_command then expand else back_input;
back_list(p);
end
@ @<Put a string into the input buffer@>=
begin get_x_next; scan_primary;
if cur_type<>string_type then
begin disp_err(null,"Not a string");
@.Not a string@>
help2("I'm going to flush this expression, since")@/
("scantokens should be followed by a known string.");
put_get_flush_error(0);
end
else begin back_input;
if length(cur_exp)>0 then @<Pretend we're reading a new one-line file@>;
end;
end
@ @<Pretend we're reading a new one-line file@>=
begin begin_file_reading; name:=is_scantok;
k:=first+length(cur_exp);
if k>=max_buf_stack then
begin if k>=buf_size then
begin max_buf_stack:=buf_size;
overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
end;
max_buf_stack:=k+1;
end;
j:=str_start[cur_exp]; limit:=k;
while first<limit do
begin buffer[first]:=so(str_pool[j]); incr(j); incr(first);
end;
buffer[limit]:="%"; first:=limit+1; loc:=start; flush_cur_exp(0);
end
@ Here finally is |get_x_next|.
The expression scanning routines to be considered later
communicate via the global quantities |cur_type| and |cur_exp|;
we must be very careful to save and restore these quantities while
macros are being expanded.
@^inner loop@>
@p procedure get_x_next;
var @!save_exp:pointer; {a capsule to save |cur_type| and |cur_exp|}
begin get_t_next;
if cur_cmd<min_command then
begin save_exp:=stash_cur_exp;
repeat if cur_cmd=defined_macro then macro_call(cur_mod,null,cur_sym)
else expand;
get_t_next;
until cur_cmd>=min_command;
unstash_cur_exp(save_exp); {that restores |cur_type| and |cur_exp|}
end;
end;
@ Now let's consider the |macro_call| procedure, which is used to start up
all user-defined macros. Since the arguments to a macro might be expressions,
|macro_call| is recursive.
@^recursion@>
The first parameter to |macro_call| points to the reference count of the
token list that defines the macro. The second parameter contains any
arguments that have already been parsed (see below). The third parameter
points to the symbolic token that names the macro. If the third parameter
is |null|, the macro was defined by \&{vardef}, so its name can be
reconstructed from the prefix and ``at'' arguments found within the
second parameter.
What is this second parameter? It's simply a linked list of one-word items,
whose |info| fields point to the arguments. In other words, if |arg_list=null|,
no arguments have been scanned yet; otherwise |info(arg_list)| points to
the first scanned argument, and |link(arg_list)| points to the list of
further arguments (if any).
Arguments of type \&{expr} are so-called capsules, which we will
discuss later when we concentrate on expressions; they can be
recognized easily because their |link| field is |void|. Arguments of type
\&{suffix} and \&{text} are token lists without reference counts.
@ After argument scanning is complete, the arguments are moved to the
|param_stack|. (They can't be put on that stack any sooner, because
the stack is growing and shrinking in unpredictable ways as more arguments
are being acquired.) Then the macro body is fed to the scanner; i.e.,
the replacement text of the macro is placed at the top of the \MP's
input stack, so that |get_t_next| will proceed to read it next.
@<Declare the procedure called |macro_call|@>=
@t\4@>@<Declare the procedure called |print_macro_name|@>@;
@t\4@>@<Declare the procedure called |print_arg|@>@;
@t\4@>@<Declare the procedure called |scan_text_arg|@>@;
procedure macro_call(@!def_ref,@!arg_list,@!macro_name:pointer);
{invokes a user-defined control sequence}
label found;
var @!r:pointer; {current node in the macro's token list}
@!p,@!q:pointer; {for list manipulation}
@!n:integer; {the number of arguments}
@!l_delim,@!r_delim:pointer; {a delimiter pair}
@!tail:pointer; {tail of the argument list}
begin r:=link(def_ref); add_mac_ref(def_ref);
if arg_list=null then n:=0
else @<Determine the number |n| of arguments already supplied,
and set |tail| to the tail of |arg_list|@>;
if internal[tracing_macros]>0 then
@<Show the text of the macro being expanded, and the existing arguments@>;
@<Scan the remaining arguments, if any; set |r| to the first token
of the replacement text@>;
@<Feed the arguments and replacement text to the scanner@>;
end;
@ @<Show the text of the macro...@>=
begin begin_diagnostic; print_ln; print_macro_name(arg_list,macro_name);
if n=3 then print("@@#"); {indicate a suffixed macro}
show_macro(def_ref,null,100000);
if arg_list<>null then
begin n:=0; p:=arg_list;
repeat q:=info(p);
print_arg(q,n,0);
incr(n); p:=link(p);
until p=null;
end;
end_diagnostic(false);
end
@ @<Declare the procedure called |print_macro_name|@>=
procedure print_macro_name(@!a,@!n:pointer);
var @!p,@!q:pointer; {they traverse the first part of |a|}
begin if n<>null then print(text(n))
else begin p:=info(a);
if p=null then print(text(info(info(link(a)))))
else begin q:=p;
while link(q)<>null do q:=link(q);
link(q):=info(link(a));
show_token_list(p,null,1000,0);
link(q):=null;
end;
end;
end;
@ @<Declare the procedure called |print_arg|@>=
procedure print_arg(@!q:pointer;@!n:integer;@!b:pointer);
begin if link(q)=void then print_nl("(EXPR")
else if (b<text_base)and(b<>text_macro) then print_nl("(SUFFIX")
else print_nl("(TEXT");
print_int(n); print(")<-");
if link(q)=void then print_exp(q,1)
else show_token_list(q,null,1000,0);
end;
@ @<Determine the number |n| of arguments already supplied...@>=
begin n:=1; tail:=arg_list;
while link(tail)<>null do
begin incr(n); tail:=link(tail);
end;
end
@ @<Scan the remaining arguments, if any; set |r|...@>=
cur_cmd:=comma+1; {anything |<>comma| will do}
while info(r)>=expr_base do
begin @<Scan the delimited argument represented by |info(r)|@>;
r:=link(r);
end;
if cur_cmd=comma then
begin print_err("Too many arguments to ");
@.Too many arguments...@>
print_macro_name(arg_list,macro_name); print_char(";");
print_nl(" Missing `"); print(text(r_delim));
@.Missing `)'...@>
print("' has been inserted");
help3("I'm going to assume that the comma I just read was a")@/
("right delimiter, and then I'll begin expanding the macro.")@/
("You might want to delete some tokens before continuing.");
error;
end;
if info(r)<>general_macro then @<Scan undelimited argument(s)@>;
r:=link(r)
@ At this point, the reader will find it advisable to review the explanation
of token list format that was presented earlier, paying special attention to
the conventions that apply only at the beginning of a macro's token list.
On the other hand, the reader will have to take the expression-parsing
aspects of the following program on faith; we will explain |cur_type|
and |cur_exp| later. (Several things in this program depend on each other,
and it's necessary to jump into the circle somewhere.)
@<Scan the delimited argument represented by |info(r)|@>=
if cur_cmd<>comma then
begin get_x_next;
if cur_cmd<>left_delimiter then
begin print_err("Missing argument to ");
@.Missing argument...@>
print_macro_name(arg_list,macro_name);
help3("That macro has more parameters than you thought.")@/
("I'll continue by pretending that each missing argument")@/
("is either zero or null.");
if info(r)>=suffix_base then
begin cur_exp:=null; cur_type:=token_list;
end
else begin cur_exp:=0; cur_type:=known;
end;
back_error; cur_cmd:=right_delimiter; goto found;
end;
l_delim:=cur_sym; r_delim:=cur_mod;
end;
@<Scan the argument represented by |info(r)|@>;
if cur_cmd<>comma then @<Check that the proper right delimiter was present@>;
found: @<Append the current expression to |arg_list|@>
@ @<Check that the proper right delim...@>=
if (cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
if info(link(r))>=expr_base then
begin missing_err(",");
@.Missing `,'@>
help3("I've finished reading a macro argument and am about to")@/
("read another; the arguments weren't delimited correctly.")@/
("You might want to delete some tokens before continuing.");
back_error; cur_cmd:=comma;
end
else begin missing_err(text(r_delim));
@.Missing `)'@>
help2("I've gotten to the end of the macro parameter list.")@/
("You might want to delete some tokens before continuing.");
back_error;
end
@ A \&{suffix} or \&{text} parameter will be have been scanned as
a token list pointed to by |cur_exp|, in which case we will have
|cur_type=token_list|.
@<Append the current expression to |arg_list|@>=
begin p:=get_avail;
if cur_type=token_list then info(p):=cur_exp
else info(p):=stash_cur_exp;
if internal[tracing_macros]>0 then
begin begin_diagnostic; print_arg(info(p),n,info(r)); end_diagnostic(false);
end;
if arg_list=null then arg_list:=p
else link(tail):=p;
tail:=p; incr(n);
end
@ @<Scan the argument represented by |info(r)|@>=
if info(r)>=text_base then scan_text_arg(l_delim,r_delim)
else begin get_x_next;
if info(r)>=suffix_base then scan_suffix
else scan_expression;
end
@ The parameters to |scan_text_arg| are either a pair of delimiters
or zero; the latter case is for undelimited text arguments, which
end with the first semicolon or \&{endgroup} or \&{end} that is not
contained in a group.
@<Declare the procedure called |scan_text_arg|@>=
procedure scan_text_arg(@!l_delim,@!r_delim:pointer);
label done;
var @!balance:integer; {excess of |l_delim| over |r_delim|}
@!p:pointer; {list tail}
begin warning_info:=l_delim; scanner_status:=absorbing;
p:=hold_head; balance:=1; link(hold_head):=null;
loop@+ begin get_t_next;
if l_delim=0 then @<Adjust the balance for an undelimited argument;
|goto done| if done@>
else @<Adjust the balance for a delimited argument;
|goto done| if done@>;
link(p):=cur_tok; p:=link(p);
end;
done: cur_exp:=link(hold_head); cur_type:=token_list;
scanner_status:=normal;
end;
@ @<Adjust the balance for a delimited argument...@>=
begin if cur_cmd=right_delimiter then
begin if cur_mod=l_delim then
begin decr(balance);
if balance=0 then goto done;
end;
end
else if cur_cmd=left_delimiter then if cur_mod=r_delim then incr(balance);
end
@ @<Adjust the balance for an undelimited...@>=
begin if end_of_statement then {|cur_cmd=semicolon|, |end_group|, or |stop|}
begin if balance=1 then goto done
else if cur_cmd=end_group then decr(balance);
end
else if cur_cmd=begin_group then incr(balance);
end
@ @<Scan undelimited argument(s)@>=
begin if info(r)<text_macro then
begin get_x_next;
if info(r)<>suffix_macro then
if (cur_cmd=equals)or(cur_cmd=assignment) then get_x_next;
end;
case info(r) of
primary_macro:scan_primary;
secondary_macro:scan_secondary;
tertiary_macro:scan_tertiary;
expr_macro:scan_expression;
of_macro:@<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
suffix_macro:@<Scan a suffix with optional delimiters@>;
text_macro:scan_text_arg(0,0);
end; {there are no other cases}
back_input; @<Append the current expression to |arg_list|@>;
end
@ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
begin scan_expression; p:=get_avail; info(p):=stash_cur_exp;
if internal[tracing_macros]>0 then
begin begin_diagnostic; print_arg(info(p),n,0); end_diagnostic(false);
end;
if arg_list=null then arg_list:=p@+else link(tail):=p;
tail:=p;incr(n);
if cur_cmd<>of_token then
begin missing_err("of"); print(" for ");
@.Missing `of'@>
print_macro_name(arg_list,macro_name);
help1("I've got the first argument; will look now for the other.");
back_error;
end;
get_x_next; scan_primary;
end
@ @<Scan a suffix with optional delimiters@>=
begin if cur_cmd<>left_delimiter then l_delim:=null
else begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next;
end;
scan_suffix;
if l_delim<>null then
begin if(cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
begin missing_err(text(r_delim));
@.Missing `)'@>
help2("I've gotten to the end of the macro parameter list.")@/
("You might want to delete some tokens before continuing.");
back_error;
end;
get_x_next;
end;
end
@ Before we put a new token list on the input stack, it is wise to clean off
all token lists that have recently been depleted. Then a user macro that ends
with a call to itself will not require unbounded stack space.
@<Feed the arguments and replacement text to the scanner@>=
while token_state and(loc=null) do end_token_list; {conserve stack space}
if param_ptr+n>max_param_stack then
begin max_param_stack:=param_ptr+n;
if max_param_stack>param_size then
overflow("parameter stack size",param_size);
@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
end;
begin_token_list(def_ref,macro); name:=macro_name; loc:=r;
if n>0 then
begin p:=arg_list;
repeat param_stack[param_ptr]:=info(p); incr(param_ptr); p:=link(p);
until p=null;
flush_list(arg_list);
end
@ It's sometimes necessary to put a single argument onto |param_stack|.
The |stack_argument| subroutine does this.
@p procedure stack_argument(@!p:pointer);
begin if param_ptr=max_param_stack then
begin incr(max_param_stack);
if max_param_stack>param_size then
overflow("parameter stack size",param_size);
@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
end;
param_stack[param_ptr]:=p; incr(param_ptr);
end;
@* \[33] Conditional processing.
Let's consider now the way \&{if} commands are handled.
Conditions can be inside conditions, and this nesting has a stack
that is independent of other stacks.
Four global variables represent the top of the condition stack:
|cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
we are processing \&{if} or \&{elseif}; |if_limit| specifies
the largest code of a |fi_or_else| command that is syntactically legal;
and |if_line| is the line number at which the current conditional began.
If no conditions are currently in progress, the condition stack has the
special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
|link| fields of the first word contain |if_limit|, |cur_if|, and
|cond_ptr| at the next level, and the second word contains the
corresponding |if_line|.
@d if_node_size=2 {number of words in stack entry for conditionals}
@d if_line_field(#)==mem[#+1].int
@d if_code=1 {code for \&{if} being evaluated}
@d fi_code=2 {code for \&{fi}}
@d else_code=3 {code for \&{else}}
@d else_if_code=4 {code for \&{elseif}}
@<Glob...@>=
@!cond_ptr:pointer; {top of the condition stack}
@!if_limit:normal..else_if_code; {upper bound on |fi_or_else| codes}
@!cur_if:small_number; {type of conditional being worked on}
@!if_line:integer; {line where that conditional began}
@ @<Set init...@>=
cond_ptr:=null; if_limit:=normal; cur_if:=0; if_line:=0;
@ @<Put each...@>=
primitive("if",if_test,if_code);@/
@!@:if_}{\&{if} primitive@>
primitive("fi",fi_or_else,fi_code); eqtb[frozen_fi]:=eqtb[cur_sym];@/
@!@:fi_}{\&{fi} primitive@>
primitive("else",fi_or_else,else_code);@/
@!@:else_}{\&{else} primitive@>
primitive("elseif",fi_or_else,else_if_code);@/
@!@:else_if_}{\&{elseif} primitive@>
@ @<Cases of |print_cmd_mod|...@>=
if_test,fi_or_else: case m of
if_code:print("if");
fi_code:print("fi");
else_code:print("else");
othercases print("elseif")
endcases;
@ Here is a procedure that ignores text until coming to an \&{elseif},
\&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
nesting. After it has acted, |cur_mod| will indicate the token that
was found.
\MP's smallest two command codes are |if_test| and |fi_or_else|; this
makes the skipping process a bit simpler.
@p procedure pass_text;
label done;
var l:integer;
begin scanner_status:=skipping; l:=0; warning_info:=true_line;
loop@+ begin get_t_next;
if cur_cmd<=fi_or_else then
if cur_cmd<fi_or_else then incr(l)
else begin if l=0 then goto done;
if cur_mod=fi_code then decr(l);
end
else @<Decrease the string reference count,
if the current token is a string@>;
end;
done: scanner_status:=normal;
end;
@ @<Decrease the string reference count...@>=
if cur_cmd=string_token then delete_str_ref(cur_mod)
@ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
condition has been evaluated, a colon will be inserted.
A construction like `\.{if fi}' would otherwise get \MP\ confused.
@<Push the condition stack@>=
begin p:=get_node(if_node_size); link(p):=cond_ptr; type(p):=if_limit;
name_type(p):=cur_if; if_line_field(p):=if_line;
cond_ptr:=p; if_limit:=if_code; if_line:=true_line; cur_if:=if_code;
end
@ @<Pop the condition stack@>=
begin p:=cond_ptr; if_line:=if_line_field(p);
cur_if:=name_type(p); if_limit:=type(p); cond_ptr:=link(p);
free_node(p,if_node_size);
end
@ Here's a procedure that changes the |if_limit| code corresponding to
a given value of |cond_ptr|.
@p procedure change_if_limit(@!l:small_number;@!p:pointer);
label exit;
var q:pointer;
begin if p=cond_ptr then if_limit:=l {that's the easy case}
else begin q:=cond_ptr;
loop@+ begin if q=null then confusion("if");
@:this can't happen if}{\quad if@>
if link(q)=p then
begin type(q):=l; return;
end;
q:=link(q);
end;
end;
exit:end;
@ The user is supposed to put colons into the proper parts of conditional
statements. Therefore, \MP\ has to check for their presence.
@p procedure check_colon;
begin if cur_cmd<>colon then
begin missing_err(":");@/
@.Missing `:'@>
help2("There should've been a colon after the condition.")@/
("I shall pretend that one was there.");@;
back_error;
end;
end;
@ A condition is started when the |get_x_next| procedure encounters
an |if_test| command; in that case |get_x_next| calls |conditional|,
which is a recursive procedure.
@^recursion@>
@p procedure conditional;
label exit,done,reswitch,found;
var @!save_cond_ptr:pointer; {|cond_ptr| corresponding to this conditional}
@!new_if_limit:fi_code..else_if_code; {future value of |if_limit|}
@!p:pointer; {temporary register}
begin @<Push the condition stack@>;@+save_cond_ptr:=cond_ptr;
reswitch: get_boolean; new_if_limit:=else_if_code;
if internal[tracing_commands]>unity then
@<Display the boolean value of |cur_exp|@>;
found: check_colon;
if cur_exp=true_code then
begin change_if_limit(new_if_limit,save_cond_ptr);
return; {wait for \&{elseif}, \&{else}, or \&{fi}}
end;
@<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
done: cur_if:=cur_mod; if_line:=true_line;
if cur_mod=fi_code then @<Pop the condition stack@>
else if cur_mod=else_if_code then goto reswitch
else begin cur_exp:=true_code; new_if_limit:=fi_code; get_x_next; goto found;
end;
exit:end;
@ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
\&{else}: \\{bar} \&{fi}', the first \&{else}
that we come to after learning that the \&{if} is false is not the
\&{else} we're looking for. Hence the following curious logic is needed.
@<Skip to \&{elseif}...@>=
loop@+ begin pass_text;
if cond_ptr=save_cond_ptr then goto done
else if cur_mod=fi_code then @<Pop the condition stack@>;
end
@ @<Display the boolean value...@>=
begin begin_diagnostic;
if cur_exp=true_code then print("{true}")@+else print("{false}");
end_diagnostic(false);
end
@ The processing of conditionals is complete except for the following
code, which is actually part of |get_x_next|. It comes into play when
\&{elseif}, \&{else}, or \&{fi} is scanned.
@<Terminate the current conditional and skip to \&{fi}@>=
if cur_mod>if_limit then
if if_limit=if_code then {condition not yet evaluated}
begin missing_err(":");
@.Missing `:'@>
back_input; cur_sym:=frozen_colon; ins_error;
end
else begin print_err("Extra "); print_cmd_mod(fi_or_else,cur_mod);
@.Extra else@>
@.Extra elseif@>
@.Extra fi@>
help1("I'm ignoring this; it doesn't match any if.");
error;
end
else begin while cur_mod<>fi_code do pass_text; {skip to \&{fi}}
@<Pop the condition stack@>;
end
@* \[34] Iterations.
To bring our treatment of |get_x_next| to a close, we need to consider what
\MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
There's a global variable |loop_ptr| that keeps track of the \&{for} loops
that are currently active. If |loop_ptr=null|, no loops are in progress;
otherwise |info(loop_ptr)| points to the iterative text of the current
(innermost) loop, and |link(loop_ptr)| points to the data for any other
loops that enclose the current one.
A loop-control node also has two other fields, called |loop_type| and
|loop_list|, whose contents depend on the type of loop:
\yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
points to a list of one-word nodes whose |info| fields point to the
remaining argument values of a suffix list and expression list.
\yskip\indent|loop_type(loop_ptr)=void| means that the current loop is
`\&{forever}'.
\yskip\indent|loop_type(loop_ptr)=progression_flag| means that
|p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
|step_size(p)|, and |final_value(p)| contain the data for an arithmetic
progression.
\yskip\indent|loop_type(loop_ptr)=p>void| means that |p| points to an edge
header and |loop_list(loop_ptr)| points into the graphical object list for
that edge header.
\yskip\noindent In the case of a progression node, the first word is not used
because the link field of words in the dynamic memory area cannot be arbitrary.
@d loop_list_loc(#)==#+1 {where the |loop_list| field resides}
@d loop_type(#)==info(loop_list_loc(#)) {the type of \&{for} loop}
@d loop_list(#)==link(loop_list_loc(#)) {the remaining list elements}
@d loop_node_size=2 {the number of words in a loop control node}
@d progression_node_size=4 {the number of words in a progression node}
@d step_size(#)==mem[#+2].sc {the step size in an arithmetic progression}
@d final_value(#)==mem[#+3].sc {the final value in an arithmetic progression}
@d progression_flag==null+2
{|loop_type| value when |loop_list| points to a progression node}
@<Glob...@>=
@!loop_ptr:pointer; {top of the loop-control-node stack}
@ @<Set init...@>=
loop_ptr:=null;
@ If the expressions that define an arithmetic progression in
a \&{for} loop don't have known numeric values, the |bad_for|
subroutine screams at the user.
@p procedure bad_for(@!s:str_number);
begin disp_err(null,"Improper "); {show the bad expression above the message}
@.Improper...replaced by 0@>
print(s); print(" has been replaced by 0");
help4("When you say `for x=a step b until c',")@/
("the initial value `a' and the step size `b'")@/
("and the final value `c' must have known numeric values.")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
put_get_flush_error(0);
end;
@ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
has just been scanned. (This code requires slight familiarity with
expression-parsing routines that we have not yet discussed; but it seems
to belong in the present part of the program, even though the original author
didn't write it until later. The reader may wish to come back to it.)
@p procedure begin_iteration;
label continue,done;
var @!m:halfword; {|expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes})}
@!n:halfword; {hash address of the current symbol}
@!s:pointer; {the new loop-control node}
@!p:pointer; {substitution list for |scan_toks|}
@!q:pointer; {link manipulation register}
@!pp:pointer; {a new progression node}
begin m:=cur_mod; n:=cur_sym; s:=get_node(loop_node_size);
if m=start_forever then
begin loop_type(s):=void; p:=null; get_x_next;
end
else begin get_symbol; p:=get_node(token_node_size);
info(p):=cur_sym; value(p):=m;@/
get_x_next;
if cur_cmd=within_token then @<Set up a picture iteration@>
else begin @<Check for the |"="| or |":="| in a loop header@>;
@<Scan the values to be used in the loop@>;
end;
end;
@<Check for the presence of a colon@>;
@<Scan the loop text and put it on the loop control stack@>;
resume_iteration;
end;
@ @<Check for the |"="| or |":="| in a loop header@>=
if (cur_cmd<>equals)and(cur_cmd<>assignment) then
begin missing_err("=");@/
@.Missing `='@>
help3("The next thing in this loop should have been `=' or `:='.")@/
("But don't worry; I'll pretend that an equals sign")@/
("was present, and I'll look for the values next.");@/
back_error;
end
@ @<Check for the presence of a colon@>=
if cur_cmd<>colon then
begin missing_err(":");@/
@.Missing `:'@>
help3("The next thing in this loop should have been a `:'.")@/
("So I'll pretend that a colon was present;")@/
("everything from here to `endfor' will be iterated.");
back_error;
end
@ We append a special |frozen_repeat_loop| token in place of the
`\&{endfor}' at the end of the loop. This will come through \MP's scanner
at the proper time to cause the loop to be repeated.
(If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
he will be foiled by the |get_symbol| routine, which keeps frozen
tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
token, so it won't be lost accidentally.)
@ @<Scan the loop text...@>=
q:=get_avail; info(q):=frozen_repeat_loop;
scanner_status:=loop_defining; warning_info:=n;
info(s):=scan_toks(iteration,p,q,0); scanner_status:=normal;@/
link(s):=loop_ptr; loop_ptr:=s
@ @<Initialize table...@>=
eq_type(frozen_repeat_loop):=repeat_loop+outer_tag;
text(frozen_repeat_loop):=" ENDFOR";
@ The loop text is inserted into \MP's scanning apparatus by the
|resume_iteration| routine.
@p procedure resume_iteration;
label not_found,exit;
var @!p,@!q:pointer; {link registers}
begin p:=loop_type(loop_ptr);
if p=progression_flag then
begin p:=loop_list(loop_ptr); {now |p| points to a progression node}
cur_exp:=value(p);
if @<The arithmetic progression has ended@> then goto not_found;
cur_type:=known; q:=stash_cur_exp; {make |q| an \&{expr} argument}
value(p):=cur_exp+step_size(p); {set |value(p)| for the next iteration}
end
else if p=null then
begin p:=loop_list(loop_ptr);
if p=null then goto not_found;
loop_list(loop_ptr):=link(p); q:=info(p); free_avail(p);
end
else if p=void then
begin begin_token_list(info(loop_ptr),forever_text); return;
end
else @<Make |q| a capsule containing the next picture component from
|loop_list(loop_ptr)| or |goto not_found|@>;
begin_token_list(info(loop_ptr),loop_text);
stack_argument(q);
if internal[tracing_commands]>unity then @<Trace the start of a loop@>;
return;
not_found:stop_iteration;
exit:end;
@ @<The arithmetic progression has ended@>=
((step_size(p)>0)and(cur_exp>final_value(p)))or@|
((step_size(p)<0)and(cur_exp<final_value(p)))
@ @<Trace the start of a loop@>=
begin begin_diagnostic; print_nl("{loop value=");
@.loop value=n@>
if (q<>null)and(link(q)=void) then print_exp(q,1)
else show_token_list(q,null,50,0);
print_char("}"); end_diagnostic(false);
end
@ @<Make |q| a capsule containing the next picture component from...@>=
begin q:=loop_list(loop_ptr);
if q=null then goto not_found;
skip_component(q)(goto not_found);
cur_exp:=copy_objects(loop_list(loop_ptr),q);
init_bbox(cur_exp);
cur_type:=picture_type;@/
loop_list(loop_ptr):=q;
q:=stash_cur_exp;
end
@ A level of loop control disappears when |resume_iteration| has decided
not to resume, or when an \&{exitif} construction has removed the loop text
from the input stack.
@p procedure stop_iteration;
var @!p,@!q:pointer; {the usual}
begin p:=loop_type(loop_ptr);
if p=progression_flag then free_node(loop_list(loop_ptr),progression_node_size)
else if p=null then
begin q:=loop_list(loop_ptr);
while q<>null do
begin p:=info(q);
if p<>null then
if link(p)=void then {it's an \&{expr} parameter}
begin recycle_value(p); free_node(p,value_node_size);
end
else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
p:=q; q:=link(q); free_avail(p);
end;
end
else if p>progression_flag then delete_edge_ref(p);
p:=loop_ptr; loop_ptr:=link(p); flush_token_list(info(p));
free_node(p,loop_node_size);
end;
@ Now that we know all about loop control, we can finish up
the missing portion of |begin_iteration| and we'll be done.
The following code is performed after the `\.=' has been scanned in
a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
(if |m=suffix_base|).
@<Scan the values to be used in the loop@>=
loop_type(s):=null; q:=loop_list_loc(s); link(q):=null; {|link(q)=loop_list(s)|}
repeat get_x_next;
if m<>expr_base then scan_suffix
else begin if cur_cmd>=colon then if cur_cmd<=comma then goto continue;
scan_expression;
if cur_cmd=step_token then if q=loop_list_loc(s) then
@<Prepare for step-until construction and |goto done|@>;
cur_exp:=stash_cur_exp;
end;
link(q):=get_avail; q:=link(q); info(q):=cur_exp; cur_type:=vacuous;
continue: until cur_cmd<>comma;
done:
@ @<Prepare for step-until construction and |goto done|@>=
begin if cur_type<>known then bad_for("initial value");
pp:=get_node(progression_node_size); value(pp):=cur_exp;@/
get_x_next; scan_expression;
if cur_type<>known then bad_for("step size");
step_size(pp):=cur_exp;
if cur_cmd<>until_token then
begin missing_err("until");@/
@.Missing `until'@>
help2("I assume you meant to say `until' after `step'.")@/
("So I'll look for the final value and colon next.");
back_error;
end;
get_x_next; scan_expression;
if cur_type<>known then bad_for("final value");
final_value(pp):=cur_exp; loop_list(s):=pp;
loop_type(s):=progression_flag; goto done;
end
@ The last case is when we have just seen ``\&{within}'', and we need to
parse a picture expression and prepare to iterate over it.
@<Set up a picture iteration@>=
begin get_x_next;
scan_expression;
@<Make sure the current expression is a known picture@>;
loop_type(s):=cur_exp; cur_type:=vacuous;@/
q:=link(dummy_loc(cur_exp));
if q<> null then
if is_start_or_stop(q) then
if skip_1component(q)=null then q:=link(q);
loop_list(s):=q;
end
@ @<Make sure the current expression is a known picture@>=
if cur_type<>picture_type then
begin
disp_err(null,"Improper iteration spec has been replaced by nullpicture");
help1("When you say `for x in p', p must be a known picture.");
put_get_flush_error(get_node(edge_header_size));
init_edges(cur_exp); cur_type:=picture_type;
end
@* \[35] File names.
It's time now to fret about file names. Besides the fact that different
operating systems treat files in different ways, we must cope with the
fact that completely different naming conventions are used by different
groups of people. The following programs show what is required for one
particular operating system; similar routines for other systems are not
difficult to devise.
@^system dependencies@>
\MP\ assumes that a file name has three parts: the name proper; its
``extension''; and a ``file area'' where it is found in an external file
system. The extension of an input file is assumed to be
`\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
transcript file that records each run of \MP; it is `\.{.tfm}' on the font
metric files that describe characters in any fonts created by \MP; it is
`\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
The file area can be arbitrary on input files, but files are usually
output to the user's current area. If an input file cannot be
found on the specified area, \MP\ will look for it on a special system
area; this special area is intended for commonly used input files.
Simple uses of \MP\ refer only to file names that have no explicit
extension or area. For example, a person usually says `\.{input} \.{cmr10}'
instead of `\.{input} \.{cmr10.new}'. Simple file
names are best, because they make the \MP\ source files portable;
whenever a file name consists entirely of letters and digits, it should be
treated in the same way by all implementations of \MP. However, users
need the ability to refer to other files in their environment, especially
when responding to error messages concerning unopenable files; therefore
we want to let them use the syntax that appears in their favorite
operating system.
@ \MP\ uses the same conventions that have proved to be satisfactory for
\TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
@^system dependencies@>
the system-independent parts of \MP\ are expressed in terms
of three system-dependent
procedures called |begin_name|, |more_name|, and |end_name|. In
essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
the system-independent driver program does the operations
$$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
\,|end_name|.$$
These three procedures communicate with each other via global variables.
Afterwards the file name will appear in the string pool as three strings
called |cur_name|\penalty10000\hskip-.05em,
|cur_area|, and |cur_ext|; the latter two are null (i.e.,
|""|), unless they were explicitly specified by the user.
Actually the situation is slightly more complicated, because \MP\ needs
to know when the file name ends. The |more_name| routine is a function
(with side effects) that returns |true| on the calls |more_name|$(c_1)$,
\dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
returns |false|; or, it returns |true| and $c_n$ is the last character
on the current input line. In other words,
|more_name| is supposed to return |true| unless it is sure that the
file name has been completely scanned; and |end_name| is supposed to be able
to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
whether $|more_name|(c_n)$ returned |true| or |false|.
@<Glob...@>=
@!cur_name:str_number; {name of file just scanned}
@!cur_area:str_number; {file area just scanned, or \.{""}}
@!cur_ext:str_number; {file extension just scanned, or \.{""}}
@ It is easier to maintain reference counts if we assign initial values.
@<Set init...@>=
cur_name:=""; cur_area:=""; cur_ext:="";
@ The file names we shall deal with for illustrative purposes have the
following structure: If the name contains `\.>' or `\.:', the file area
consists of all characters up to and including the final such character;
otherwise the file area is null. If the remaining file name contains
`\..', the file extension consists of all such characters from the first
remaining `\..' to the end, otherwise the file extension is null.
@^system dependencies@>
We can scan such file names easily by using two global variables that keep track
of the occurrences of area and extension delimiters. Note that these variables
cannot be of type |pool_pointer| because a string pool compaction could occur
while scanning a file name.
@<Glob...@>=
@!area_delimiter:integer;
{most recent `\.>' or `\.:' relative to |str_start[str_ptr]|}
@!ext_delimiter:integer; {the relevant `\..', if any}
@ Input files that can't be found in the user's area may appear in standard
system areas called |MP_area| and |MF_area|. (The latter is used when the file
extension is |".mf"|.) The standard system area for font metric files
to be read is |MP_font_area|.
This system area name will, of course, vary from place to place.
@^system dependencies@>
@d MP_area=="MPinputs:"
@.MPinputs@>
@d MF_area=="MFinputs:"
@.MFinputs@>
@d MP_font_area=="TeXfonts:"
@.TeXfonts@>
@ Here now is the first of the system-dependent routines for file name scanning.
@^system dependencies@>
@<Declare subroutines for parsing file names@>=
procedure begin_name;
begin delete_str_ref(cur_name); delete_str_ref(cur_area);
delete_str_ref(cur_ext);@/
area_delimiter:=-1; ext_delimiter:=-1;
end;
@ And here's the second.
@^system dependencies@>
@<Declare subroutines for parsing file names@>=
function more_name(@!c:ASCII_code):boolean;
begin if c=" " then more_name:=false
else begin if (c=">")or(c=":") then
begin area_delimiter:=pool_ptr-str_start[str_ptr]; ext_delimiter:=-1;
end
else if (c=".")and(ext_delimiter<0) then
ext_delimiter:=pool_ptr-str_start[str_ptr];
str_room(1); append_char(c); {contribute |c| to the current string}
more_name:=true;
end;
end;
@ The third.
@^system dependencies@>
@<Declare subroutines for parsing file names@>=
procedure end_name;
var a,@!n,@!e:pool_pointer; {length of area, name, and extension}
begin e:=pool_ptr-str_start[str_ptr]; {total length}
if ext_delimiter<0 then ext_delimiter:=e;
a:=area_delimiter+1; n:=ext_delimiter-a; e:=e-ext_delimiter;
if a=0 then cur_area:=""
else begin cur_area:=make_string;
chop_last_string(str_start[cur_area]+a);
end;
if n=0 then cur_name:=""
else begin cur_name:=make_string;
chop_last_string(str_start[cur_name]+n);
end;
if e=0 then cur_ext:="" @+ else cur_ext:=make_string;
end;
@ Conversely, here is a routine that takes three strings and prints a file
name that might have produced them. (The routine is system dependent, because
some operating systems put the file area last instead of first.)
@^system dependencies@>
@<Basic printing...@>=
procedure print_file_name(@!n,@!a,@!e:integer);
begin print(a); print(n); print(e);
end;
@ Another system-dependent routine is needed to convert three internal
\MP\ strings
to the |name_of_file| value that is used to open files. The present code
allows both lowercase and uppercase letters in the file name.
@^system dependencies@>
@d append_to_name(#)==begin c:=#; incr(k);
if k<=file_name_size then name_of_file[k]:=xchr[c];
end
@<Declare subroutines for parsing file names@>=
procedure pack_file_name(@!n,@!a,@!e:str_number);
var @!k:integer; {number of positions filled in |name_of_file|}
@!c: ASCII_code; {character being packed}
@!j:pool_pointer; {index into |str_pool|}
begin k:=0;
for j:=str_start[a] to str_stop(a)-1 do append_to_name(so(str_pool[j]));
for j:=str_start[n] to str_stop(n)-1 do append_to_name(so(str_pool[j]));
for j:=str_start[e] to str_stop(e)-1 do append_to_name(so(str_pool[j]));
if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
end;
@ A messier routine is also needed, since mem file names must be scanned
before \MP's string mechanism has been initialized. We shall use the
global variable |MP_mem_default| to supply the text for default system areas
and extensions related to mem files.
@^system dependencies@>
@d mem_default_length=15 {length of the |MP_mem_default| string}
@d mem_area_length=6 {length of its area part}
@d mem_ext_length=4 {length of its `\.{.mem}' part}
@d mem_extension=".mem" {the extension, as a \.{WEB} constant}
@<Glob...@>=
@!MP_mem_default:packed array[1..mem_default_length] of char;
@ @<Set init...@>=
MP_mem_default:='MPlib:plain.mem';
@.MPlib@>
@.plain@>
@^system dependencies@>
@ @<Check the ``constant'' values for consistency@>=
if mem_default_length>file_name_size then bad:=20;
@ Here is the messy routine that was just mentioned. It sets |name_of_file|
from the first |n| characters of |MP_mem_default|, followed by
|buffer[a..b]|, followed by the last |mem_ext_length| characters of
|MP_mem_default|.
We dare not give error messages here, since \MP\ calls this routine before
the |error| routine is ready to roll. Instead, we simply drop excess characters,
since the error will be detected in another way when a strange file name
isn't found.
@^system dependencies@>
@p procedure pack_buffered_name(@!n:small_number;@!a,@!b:integer);
var @!k:integer; {number of positions filled in |name_of_file|}
@!c: ASCII_code; {character being packed}
@!j:integer; {index into |buffer| or |MP_mem_default|}
begin if n+b-a+1+mem_ext_length>file_name_size then
b:=a+file_name_size-n-1-mem_ext_length;
k:=0;
for j:=1 to n do append_to_name(xord[MP_mem_default[j]]);
for j:=a to b do append_to_name(buffer[j]);
for j:=mem_default_length-mem_ext_length+1 to mem_default_length do
append_to_name(xord[MP_mem_default[j]]);
if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
end;
@ Here is the only place we use |pack_buffered_name|. This part of the program
becomes active when a ``virgin'' \MP\ is trying to get going, just after
the preliminary initialization, or when the user is substituting another
mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
contains the first line of input in |buffer[loc..(last-1)]|, where
|loc<last| and |buffer[loc]<>" "|.
@<Declare the function called |open_mem_file|@>=
function open_mem_file:boolean;
label found,exit;
var @!j:0..buf_size; {the first space after the file name}
begin j:=loc;
if buffer[loc]="&" then
begin incr(loc); j:=loc; buffer[last]:=" ";
while buffer[j]<>" " do incr(j);
pack_buffered_name(0,loc,j-1); {try first without the system file area}
if w_open_in(mem_file) then goto found;
pack_buffered_name(mem_area_length,loc,j-1);
{now try the system mem file area}
if w_open_in(mem_file) then goto found;
wake_up_terminal;
wterm_ln('Sorry, I can''t find that mem file;',' will try PLAIN.');
@.Sorry, I can't find...@>
update_terminal;
end;
{now pull out all the stops: try for the system \.{plain} file}
pack_buffered_name(mem_default_length-mem_ext_length,1,0);
if not w_open_in(mem_file) then
begin wake_up_terminal;
wterm_ln('I can''t find the PLAIN mem file!');
@.I can't find PLAIN...@>
@.plain@>
open_mem_file:=false; return;
end;
found:loc:=j; open_mem_file:=true;
exit:end;
@ Operating systems often make it possible to determine the exact name (and
possible version number) of a file that has been opened. The following routine,
which simply makes a \MP\ string from the value of |name_of_file|, should
ideally be changed to deduce the full name of file~|f|, which is the file
most recently opened, if it is possible to do this in a \PASCAL\ program.
@^system dependencies@>
This routine might be called after string memory has overflowed, hence
we check for this before calling `|str_room|'.
@p function make_name_string:str_number;
var @!k:1..file_name_size; {index into |name_of_file|}
begin if str_overflowed then
make_name_string:="?"
else begin str_room(name_length);
for k:=1 to name_length do append_char(xord[name_of_file[k]]);
make_name_string:=make_string;
end;
end;
function a_make_name_string(var @!f:alpha_file):str_number;
begin a_make_name_string:=make_name_string;
end;
function b_make_name_string(var @!f:byte_file):str_number;
begin b_make_name_string:=make_name_string;
end;
function w_make_name_string(var @!f:word_file):str_number;
begin w_make_name_string:=make_name_string;
end;
@ Now let's consider the ``driver''
routines by which \MP\ deals with file names
in a system-independent manner. First comes a procedure that looks for a
file name in the input by taking the information from the input buffer.
(We can't use |get_next|, because the conversion to tokens would
destroy necessary information.)
This procedure doesn't allow semicolons or percent signs to be part of
file names, because of other conventions of \MP.
{\sl The {\logos METAFONT\/}book} doesn't
use semicolons or percents immediately after file names, but some users
no doubt will find it natural to do so; therefore system-dependent
changes to allow such characters in file names should probably
be made with reluctance, and only when an entire file name that
includes special characters is ``quoted'' somehow.
@^system dependencies@>
@p procedure scan_file_name;
label done;
begin begin_name;
while buffer[loc]=" " do incr(loc);
loop@+begin if (buffer[loc]=";")or(buffer[loc]="%") then goto done;
if not more_name(buffer[loc]) then goto done;
incr(loc);
end;
done: end_name;
end;
@ Here is another version that takes its input from a string.
@<Declare subroutines for parsing file names@>=
procedure str_scan_file(@!s:str_number);
label done;
var @!p,@!q:pool_pointer; {current position and stopping point}
begin begin_name;
p:=str_start[s]; q:=str_stop(s);
while p<q do
begin if not more_name(so(str_pool[p])) then goto done;
incr(p);
end;
done: end_name;
end;
@ The global variable |job_name| contains the file name that was first
\&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
`\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
@<Glob...@>=
@!job_name:str_number; {principal file name}
@!log_opened:boolean; {has the transcript file been opened?}
@!log_name:str_number; {full name of the log file}
@ Initially |job_name=0|; it becomes nonzero as soon as the true name is known.
We have |job_name=0| if and only if the `\.{log}' file has not been opened,
except of course for a short time just after |job_name| has become nonzero.
@<Initialize the output...@>=job_name:=0; log_opened:=false;
@ Here is a routine that manufactures the output file names, assuming that
|job_name<>0|. It ignores and changes the current settings of |cur_area|
and |cur_ext|.
@d pack_cur_name==pack_file_name(cur_name,cur_area,cur_ext)
@p procedure pack_job_name(@!s:str_number);
{|s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn}}
begin add_str_ref(s);
delete_str_ref(cur_name); delete_str_ref(cur_area);
delete_str_ref(cur_ext);@/
cur_area:=""; cur_ext:=s;
cur_name:=job_name; pack_cur_name;
end;
@ If some trouble arises when \MP\ tries to open a file, the following
routine calls upon the user to supply another file name. Parameter~|s|
is used in the error message to identify the type of file; parameter~|e|
is the default extension if none is given. Upon exit from the routine,
variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
ready for another attempt at file opening.
@p procedure prompt_file_name(@!s,@!e:str_number);
label done;
var @!k:0..buf_size; {index into |buffer|}
begin if interaction=scroll_mode then wake_up_terminal;
if s="input file name" then print_err("I can't find file `")
@.I can't find file x@>
else print_err("I can't write on file `");
@.I can't write on file x@>
print_file_name(cur_name,cur_area,cur_ext); print("'.");
if e="" then show_context;
print_nl("Please type another "); print(s);
@.Please type...@>
if interaction<scroll_mode then
fatal_error("*** (job aborted, file error in nonstop mode)");
@.job aborted, file error...@>
clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
if cur_ext="" then cur_ext:=e;
pack_cur_name;
end;
@ @<Scan file name in the buffer@>=
begin begin_name; k:=first;
while (buffer[k]=" ")and(k<last) do incr(k);
loop@+ begin if k=last then goto done;
if not more_name(buffer[k]) then goto done;
incr(k);
end;
done:end_name;
end
@ The |open_log_file| routine is used to open the transcript file and to help
it catch up to what has previously been printed on the terminal.
@p procedure open_log_file;
var @!old_setting:0..max_selector; {previous |selector| setting}
@!k:0..buf_size; {index into |months| and |buffer|}
@!l:0..buf_size; {end of first input line}
@!m:integer; {the current month}
@!months:packed array [1..36] of char; {abbreviations of month names}
begin old_setting:=selector;
if job_name=0 then job_name:="mpout";
pack_job_name(".log");
while not a_open_out(log_file) do @<Try to get a different log file name@>;
log_name:=a_make_name_string(log_file);
selector:=log_only; log_opened:=true;
@<Print the banner line, including the date and time@>;
input_stack[input_ptr]:=cur_input; {make sure bottom level is in memory}
print_nl("**");
@.**@>
l:=input_stack[0].limit_field-1; {last position of first line}
for k:=1 to l do print(buffer[k]);
print_ln; {now the transcript file contains the first line of input}
selector:=old_setting+2; {|log_only| or |term_and_log|}
end;
@ Sometimes |open_log_file| is called at awkward moments when \MP\ is
unable to print error messages or even to |show_context|.
The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
routine will not be invoked because |log_opened| will be false.
The normal idea of |batch_mode| is that nothing at all should be written
on the terminal. However, in the unusual case that
no log file could be opened, we make an exception and allow
an explanatory message to be seen.
Incidentally, the program always refers to the log file as a `\.{transcript
file}', because some systems cannot use the extension `\.{.log}' for
this file.
@<Try to get a different log file name@>=
begin selector:=term_only;
prompt_file_name("transcript file name",".log");
end
@ @<Print the banner...@>=
begin wlog(banner);
print(mem_ident); print(" ");
print_int(round_unscaled(internal[day])); print_char(" ");
months:='JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC';
m:=round_unscaled(internal[month]);
for k:=3*m-2 to 3*m do wlog(months[k]);
print_char(" "); print_int(round_unscaled(internal[year])); print_char(" ");
m:=round_unscaled(internal[time]);
print_dd(m div 60); print_char(":"); print_dd(m mod 60);
end
@ The |try_extension| function tries to open an input file determined by
|cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
can't find the file in |cur_area| or the appropriate system area.
@p function try_extension(@!ext:str_number):boolean;
begin pack_file_name(cur_name,cur_area,ext);
in_name:=cur_name; in_area:=cur_area;
if a_open_in(cur_file) then try_extension:=true
else begin if str_vs_str(ext,".mf")=0 then in_area:=MF_area
else in_area:=MP_area;
pack_file_name(cur_name,in_area,ext);
try_extension:=a_open_in(cur_file);
end;
end;
@ After all calls to |try_extension|, we must make sure that we count references
for |in_name| and |in_area| if they match |cur_name| and/or |cur_area|.
@<Update the string reference counts for |in_name| and |in_area|@>=
if in_name=cur_name then add_str_ref(cur_name);
if in_area=cur_area then add_str_ref(cur_area)
@ Let's turn now to the procedure that is used to initiate file reading
when an `\.{input}' command is being processed.
@p procedure start_input; {\MP\ will \.{input} something}
label done;
begin @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
loop@+ begin begin_file_reading; {set up |cur_file| and new level of input}
if cur_ext="" then
if try_extension(".mp") then goto done
else if try_extension("") then goto done
else if try_extension(".mf") then goto done
else do_nothing
else if try_extension(cur_ext) then goto done;
end_file_reading; {remove the level that didn't work}
prompt_file_name("input file name","");
end;
done: name:=a_make_name_string(cur_file);
@<Update the string reference counts for |in_name| and |in_area|@>;
if job_name=0 then
begin job_name:=cur_name; str_ref[job_name]:=max_str_ref;
open_log_file;
end; {|open_log_file| doesn't |show_context|, so |limit|
and |loc| needn't be set to meaningful values yet}
if term_offset+length(name)>max_print_line-2 then print_ln
else if (term_offset>0)or(file_offset>0) then print_char(" ");
print_char("("); incr(open_parens); print(name); update_terminal;
@<Flush |name| and replace it with |cur_name| if it won't be needed@>;
@<Read the first line of the new file@>;
end;
@ This code should be omitted if |a_make_name_string| returns something other
than just a copy of its argument and the full file name is needed for opening
\.{MPX} files or implementing the switch-to-editor option.
@^system dependencies@>
@<Flush |name| and replace it with |cur_name| if it won't be needed@>=
flush_string(name); name:=cur_name; cur_name:=0
@ Here we have to remember to tell the |input_ln| routine not to
start with a |get|. If the file is empty, it is considered to
contain a single blank line.
@^system dependencies@>
@<Read the first line...@>=
begin line:=1;
if input_ln(cur_file,false) then do_nothing;
firm_up_the_line;
buffer[limit]:="%"; first:=limit+1; loc:=start;
end
@ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
while token_state and(loc=null) do end_token_list;
if token_state then
begin print_err("File names can't appear within macros");
@.File names can't...@>
help3("Sorry...I've converted what follows to tokens,")@/
("possibly garbaging the name you gave.")@/
("Please delete the tokens and insert the name again.");@/
error;
end;
if file_state then scan_file_name
else begin cur_name:=""; cur_ext:=""; cur_area:="";
end
@ Sometimes we need to deal with two file names at once. This procedure
copies the given string into a special array for an old file name.
@p procedure copy_old_name(s:str_number);
var @!k:integer; {number of positions filled in |old_file_name|}
@!j:pool_pointer; {index into |str_pool|}
begin k:=0;
for j:=str_start[s] to str_stop(s)-1 do
begin incr(k);
if k<=file_name_size then old_file_name[k]:=xchr[so(str_pool[j])];
end;
if k<=file_name_size then old_name_length:=k
else old_name_length:=file_name_size;
for k:=old_name_length+1 to file_name_size do @+old_file_name[k]:=' ';
end;
@ @<Glob...@>=
@!old_file_name : packed array[1..file_name_size] of char;
{analogous to |name_of_file|}
@!old_name_length : 0..file_name_size;
{this many relevant characters followed by blanks}
@ The following simple routine starts reading the \.{MPX} file associated
with the current input file.
@p procedure start_mpx_input;
label exit,not_found;
var k:1..file_name_size;
begin pack_file_name(in_name,in_area,".mpx");
@<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
|goto not_found| if there is a problem@>;
begin_file_reading;
if not a_open_in(cur_file) then
begin end_file_reading;
goto not_found;
end;
name:=a_make_name_string(cur_file);
mpx_name[index]:=name; add_str_ref(name);
@<Read the first line of the new file@>;
return;
not_found: @<Explain that the \.{MPX} file can't be read and |succumb|@>;
exit:end;
@ This should ideally be changed to do whatever is necessary to create the
\.{MPX} file given by |name_of_file| if it does not exist or if it is out
of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
completely different typesetting program if suitable postprocessor is
available to perform the function of \.{DVItoMP}.)
@^system dependencies@>
@<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
|goto not_found| if there is a problem@>=
copy_old_name(name)
{System-dependent code should be added here}
@ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
if interaction=error_stop_mode then wake_up_terminal;
print_nl(">> ");
for k:=1 to old_name_length do print(xord[old_file_name[k]]);
print_nl(">> ");
for k:=1 to name_length do print(xord[name_of_file[k]]);
print_nl("! Unable to make mpx file");
help4("The two files given above are one of your source files")@/
("and an auxiliary file I need to read to find out what your")@/
("btex..etex blocks mean. If you don't know why I had trouble,")@/
("try running it manually through MPtoTeX, TeX, and DVItoMP");
succumb;
@ The last file-opening commands are for files accessed via the \&{readfrom}
@:read_from_}{\&{readfrom} primitive@>
operator and the \&{write} command. Such files are stored in separate arrays.
@:write_}{\&{write} primitive@>
@<Types in the outer block@>=
readf_index = 0..max_read_files;
write_index = 0..max_write_files;
@ @<Glob...@>=
rd_file:array [readf_index] of alpha_file; {\&{readfrom} files}
rd_fname:array [readf_index] of str_number;
{corresponding file name or 0 if file not open}
read_files:readf_index; {number of valid entries in the above arrays}
wr_file:array [write_index] of alpha_file; {\&{write} files}
wr_fname:array [write_index] of str_number;
{corresponding file name or 0 if file not open}
write_files:write_index; {number of valid entries in the above arrays}
@ @<Set init...@>=
read_files:=0;
write_files:=0;
@ This routine starts reading the file named by string~|s| without setting
|loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
@p function start_read_input(s:str_number; n:readf_index):boolean;
label exit,not_found;
begin str_scan_file(s);
pack_cur_name;
begin_file_reading;
if not a_open_in(rd_file[n]) then goto not_found;
if not input_ln(rd_file[n],false) then
begin a_close(rd_file[n]); goto not_found; end;
rd_fname[n]:=s;
add_str_ref(s);
start_read_input:=true;
return;
not_found: end_file_reading;
start_read_input:=false;
exit:end;
@ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
@p procedure open_write_file(s:str_number; n:readf_index);
begin str_scan_file(s);
pack_cur_name;
while not a_open_out(wr_file[n]) do
prompt_file_name("file name for write output","");
wr_fname[n]:=s;
add_str_ref(s);
end;
@* \[36] Introduction to the parsing routines.
We come now to the central nervous system that sparks many of \MP's activities.
By evaluating expressions, from their primary constituents to ever larger
subexpressions, \MP\ builds the structures that ultimately define complete
pictures or fonts of type.
Four mutually recursive subroutines are involved in this process: We call them
$$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
and |scan_expression|.}$$
@^recursion@>
Each of them is parameterless and begins with the first token to be scanned
already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
the value of the primary or secondary or tertiary or expression that was
found will appear in the global variables |cur_type| and |cur_exp|. The
token following the expression will be represented in |cur_cmd|, |cur_mod|,
and |cur_sym|.
Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
backup mechanisms have been added in order to provide reasonable error
recovery.
@<Glob...@>=
@!cur_type:small_number; {the type of the expression just found}
@!cur_exp:integer; {the value of the expression just found}
@ @<Set init...@>=
cur_exp:=0;
@ Many different kinds of expressions are possible, so it is wise to have
precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
\smallskip\hang
|cur_type=vacuous| means that this expression didn't turn out to have a
value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
construction in which there was no expression before the \&{endgroup}.
In this case |cur_exp| has some irrelevant value.
\smallskip\hang
|cur_type=boolean_type| means that |cur_exp| is either |true_code|
or |false_code|.
\smallskip\hang
|cur_type=unknown_boolean| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined boolean variable.
\smallskip\hang
|cur_type=string_type| means that |cur_exp| is a string number (i.e., an
integer in the range |0<=cur_exp<str_ptr|). That string's reference count
includes this particular reference.
\smallskip\hang
|cur_type=unknown_string| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined string variable.
\smallskip\hang
|cur_type=pen_type| means that |cur_exp| points to a node in a pen. Nobody
else points to any of the nodes in this pen. The pen may be polygonal or
elliptical.
\smallskip\hang
|cur_type=unknown_pen| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined pen variable.
\smallskip\hang
|cur_type=path_type| means that |cur_exp| points to a the first node of
a path; nobody else points to this particular path. The control points of
the path will have been chosen.
\smallskip\hang
|cur_type=unknown_path| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined path variable.
\smallskip\hang
|cur_type=picture_type| means that |cur_exp| points to an edge header node.
There may be other pointers to this particular set of edges. The header node
contains a reference count that includes this particular reference.
\smallskip\hang
|cur_type=unknown_picture| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined picture variable.
\smallskip\hang
|cur_type=transform_type| means that |cur_exp| points to a |transform_type|
capsule node. The |value| part of this capsule
points to a transform node that contains six numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
\smallskip\hang
|cur_type=color_type| means that |cur_exp| points to a |color_type|
capsule node. The |value| part of this capsule
points to a color node that contains three numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
\smallskip\hang
|cur_type=pair_type| means that |cur_exp| points to a capsule
node whose type is |pair_type|. The |value| part of this capsule
points to a pair node that contains two numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
\smallskip\hang
|cur_type=known| means that |cur_exp| is a |scaled| value.
\smallskip\hang
|cur_type=dependent| means that |cur_exp| points to a capsule node whose type
is |dependent|. The |dep_list| field in this capsule points to the associated
dependency list.
\smallskip\hang
|cur_type=proto_dependent| means that |cur_exp| points to a |proto_dependent|
capsule node. The |dep_list| field in this capsule
points to the associated dependency list.
\smallskip\hang
|cur_type=independent| means that |cur_exp| points to a capsule node
whose type is |independent|. This somewhat unusual case can arise, for
example, in the expression
`$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
\smallskip\hang
|cur_type=token_list| means that |cur_exp| points to a linked list of
tokens. This case arises only on the left-hand side of an assignment
(`\.{:=}') operation, under very special circumstances.
\smallskip\noindent
The possible settings of |cur_type| have been listed here in increasing
numerical order. Notice that |cur_type| will never be |numeric_type| or
|suffixed_macro| or |unsuffixed_macro|, although variables of those types
are allowed. Conversely, \MP\ has no variables of type |vacuous| or
|token_list|.
@ Capsules are two-word nodes that have a similar meaning
to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
and |link<=void|; and their |type| field is one of the possibilities for
|cur_type| listed above.
The |value| field of a capsule is, in most cases, the value that
corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
However, when |cur_exp| would point to a capsule,
no extra layer of indirection is present; the |value|
field is what would have been called |value(cur_exp)| if it had not been
encapsulated. Furthermore, if the type is |dependent| or
|proto_dependent|, the |value| field of a capsule is replaced by
|dep_list| and |prev_dep| fields, since dependency lists in capsules are
always part of the general |dep_list| structure.
The |get_x_next| routine is careful not to change the values of |cur_type|
and |cur_exp| when it gets an expanded token. However, |get_x_next| might
call a macro, which might parse an expression, which might execute lots of
commands in a group; hence it's possible that |cur_type| might change
from, say, |unknown_boolean| to |boolean_type|, or from |dependent| to
|known| or |independent|, during the time |get_x_next| is called. The
programs below are careful to stash sensitive intermediate results in
capsules, so that \MP's generality doesn't cause trouble.
Here's a procedure that illustrates these conventions. It takes
the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
and stashes them away in a
capsule. It is not used when |cur_type=token_list|.
After the operation, |cur_type=vacuous|; hence there is no need to
copy path lists or to update reference counts, etc.
The special link |void| is put on the capsule returned by
|stash_cur_exp|, because this procedure is used to store macro parameters
that must be easily distinguishable from token lists.
@<Declare the stashing/unstashing routines@>=
function stash_cur_exp:pointer;
var @!p:pointer; {the capsule that will be returned}
begin case cur_type of
unknown_types,transform_type,color_type,pair_type,dependent,proto_dependent,
independent:p:=cur_exp;
othercases begin p:=get_node(value_node_size); name_type(p):=capsule;
type(p):=cur_type; value(p):=cur_exp;
end
endcases;@/
cur_type:=vacuous; link(p):=void; stash_cur_exp:=p;
end;
@ The inverse of |stash_cur_exp| is the following procedure, which
deletes an unnecessary capsule and puts its contents into |cur_type|
and |cur_exp|.
The program steps of \MP\ can be divided into two categories: those in
which |cur_type| and |cur_exp| are ``alive'' and those in which they are
``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
information or not. It's important not to ignore them when they're alive,
and it's important not to pay attention to them when they're dead.
There's also an intermediate category: If |cur_type=vacuous|, then
|cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
and |cur_exp| are alive or dead. In such cases we say that |cur_type|
and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
only when they are alive or dormant.
The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
are alive or dormant. The \\{unstash} procedure assumes that they are
dead or dormant; it resuscitates them.
@<Declare the stashing/unstashing...@>=
procedure unstash_cur_exp(@!p:pointer);
begin cur_type:=type(p);
case cur_type of
unknown_types,transform_type,color_type,pair_type,dependent,proto_dependent,
independent: cur_exp:=p;
othercases begin cur_exp:=value(p);
free_node(p,value_node_size);
end
endcases;@/
end;
@ The following procedure prints the values of expressions in an
abbreviated format. If its first parameter |p| is null, the value of
|(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
containing the desired value. The second parameter controls the amount of
output. If it is~0, dependency lists will be abbreviated to
`\.{linearform}' unless they consist of a single term. If it is greater
than~1, complicated structures (pens, pictures, and paths) will be displayed
in full.
@<Declare subroutines for printing expressions@>=
@t\4@>@<Declare the procedure called |print_dp|@>@;
@t\4@>@<Declare the stashing/unstashing routines@>@;
procedure print_exp(@!p:pointer;@!verbosity:small_number);
var @!restore_cur_exp:boolean; {should |cur_exp| be restored?}
@!t:small_number; {the type of the expression}
@!v:integer; {the value of the expression}
@!q:pointer; {a big node being displayed}
begin if p<>null then restore_cur_exp:=false
else begin p:=stash_cur_exp; restore_cur_exp:=true;
end;
t:=type(p);
if t<dependent then v:=value(p)@+else if t<independent then v:=dep_list(p);
@<Print an abbreviated value of |v| with format depending on |t|@>;
if restore_cur_exp then unstash_cur_exp(p);
end;
@ @<Print an abbreviated value of |v| with format depending on |t|@>=
case t of
vacuous:print("vacuous");
boolean_type:if v=true_code then print("true")@+else print("false");
unknown_types,numeric_type:@<Display a variable
that's been declared but not defined@>;
string_type:begin print_char(""""); print(v); print_char("""");
end;
pen_type,path_type,picture_type:@<Display a complex type@>;
transform_type,color_type,pair_type:if v=null then print_type(t)
else @<Display a big node@>;
known:print_scaled(v);
dependent,proto_dependent:print_dp(t,v,verbosity);
independent:print_variable_name(p);
othercases confusion("exp")
@:this can't happen exp}{\quad exp@>
endcases
@ @<Display a big node@>=
begin print_char("("); q:=v+big_node_size[t];
repeat if type(v)=known then print_scaled(value(v))
else if type(v)=independent then print_variable_name(v)
else print_dp(type(v),dep_list(v),verbosity);
v:=v+2;
if v<>q then print_char(",");
until v=q;
print_char(")");
end
@ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
in the log file only, unless the user has given a positive value to
\\{tracingonline}.
@<Display a complex type@>=
if verbosity<=1 then print_type(t)
else begin if selector=term_and_log then
if internal[tracing_online]<=0 then
begin selector:=term_only;
print_type(t); print(" (see the transcript file)");
selector:=term_and_log;
end;
case t of
pen_type:print_pen(v,"",false);
path_type:print_path(v,"",false);
picture_type:print_edges(v,"",false);
end; {there are no other cases}
end
@ @<Declare the procedure called |print_dp|@>=
procedure print_dp(@!t:small_number;@!p:pointer;@!verbosity:small_number);
var @!q:pointer; {the node following |p|}
begin q:=link(p);
if (info(q)=null) or (verbosity>0) then print_dependency(p,t)
else print("linearform");
end;
@ The displayed name of a variable in a ring will not be a capsule unless
the ring consists entirely of capsules.
@<Display a variable that's been declared but not defined@>=
begin print_type(t);
if v<>null then
begin print_char(" ");
while (name_type(v)=capsule) and (v<>p) do v:=value(v);
print_variable_name(v);
end;
end
@ When errors are detected during parsing, it is often helpful to
display an expression just above the error message, using |exp_err|
or |disp_err| instead of |print_err|.
@d exp_err(#)==disp_err(null,#) {displays the current expression}
@<Declare subroutines for printing expressions@>=
procedure disp_err(@!p:pointer;@!s:str_number);
begin if interaction=error_stop_mode then wake_up_terminal;
print_nl(">> ");
@.>>@>
print_exp(p,1); {``medium verbose'' printing of the expression}
if s<>"" then
begin print_nl("! "); print(s);
@.!\relax@>
end;
end;
@ If |cur_type| and |cur_exp| contain relevant information that should
be recycled, we will use the following procedure, which changes |cur_type|
to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
and |cur_exp| as either alive or dormant after this has been done,
because |cur_exp| will not contain a pointer value.
@<Declare the procedure called |flush_cur_exp|@>=
procedure flush_cur_exp(@!v:scaled);
begin case cur_type of
unknown_types,transform_type,color_type,pair_type,@|
dependent,proto_dependent,independent:
begin recycle_value(cur_exp); free_node(cur_exp,value_node_size);
end;
string_type:delete_str_ref(cur_exp);
pen_type,path_type: toss_knot_list(cur_exp);
picture_type:delete_edge_ref(cur_exp);
othercases do_nothing
endcases;@/
cur_type:=known; cur_exp:=v;
end;
@ There's a much more general procedure that is capable of releasing
the storage associated with any two-word value packet.
@<Declare the recycling subroutines@>=
procedure recycle_value(@!p:pointer);
label done;
var @!t:small_number; {a type code}
@!v:integer; {a value}
@!vv:integer; {another value}
@!q,@!r,@!s,@!pp:pointer; {link manipulation registers}
begin t:=type(p);
if t<dependent then v:=value(p);
case t of
undefined,vacuous,boolean_type,known,numeric_type:do_nothing;
unknown_types:ring_delete(p);
string_type:delete_str_ref(v);
path_type,pen_type:toss_knot_list(v);
picture_type:delete_edge_ref(v);
pair_type,color_type,transform_type:@<Recycle a big node@>;
dependent,proto_dependent:@<Recycle a dependency list@>;
independent:@<Recycle an independent variable@>;
token_list,structured:confusion("recycle");
@:this can't happen recycle}{\quad recycle@>
unsuffixed_macro,suffixed_macro:delete_mac_ref(value(p));
end; {there are no other cases}
type(p):=undefined;
end;
@ @<Recycle a big node@>=
if v<>null then
begin q:=v+big_node_size[t];
repeat q:=q-2; recycle_value(q);
until q=v;
free_node(v,big_node_size[t]);
end
@ @<Recycle a dependency list@>=
begin q:=dep_list(p);
while info(q)<>null do q:=link(q);
link(prev_dep(p)):=link(q);
prev_dep(link(q)):=prev_dep(p);
link(q):=null; flush_node_list(dep_list(p));
end
@ When an independent variable disappears, it simply fades away, unless
something depends on it. In the latter case, a dependent variable whose
coefficient of dependence is maximal will take its place.
The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
as part of his Ph.D. thesis (Stanford University, December 1982).
@^Zabala Salelles, Ignacio Andres@>
For example, suppose that variable $x$ is being recycled, and that the
only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
we will print `\.{\#\#\# -2x=-y+a}'.
There's a slight complication, however: An independent variable $x$
can occur both in dependency lists and in proto-dependency lists.
This makes it necessary to be careful when deciding which coefficient
is maximal.
Furthermore, this complication is not so slight when
a proto-dependent variable is chosen to become independent. For example,
suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
large coefficient `50'.
In order to deal with these complications without wasting too much time,
we shall link together the occurrences of~$x$ among all the linear
dependencies, maintaining separate lists for the dependent and
proto-dependent cases.
@<Recycle an independent variable@>=
begin max_c[dependent]:=0; max_c[proto_dependent]:=0;@/
max_link[dependent]:=null; max_link[proto_dependent]:=null;@/
q:=link(dep_head);
while q<>dep_head do
begin s:=value_loc(q); {now |link(s)=dep_list(q)|}
loop@+ begin r:=link(s);
if info(r)=null then goto done;
if info(r)<>p then s:=r
else begin t:=type(q); link(s):=link(r); info(r):=q;
if abs(value(r))>max_c[t] then
@<Record a new maximum coefficient of type |t|@>
else begin link(r):=max_link[t]; max_link[t]:=r;
end;
end;
end;
done: q:=link(r);
end;
if (max_c[dependent]>0)or(max_c[proto_dependent]>0) then
@<Choose a dependent variable to take the place of the disappearing
independent variable, and change all remaining dependencies
accordingly@>;
end
@ The code for independency removal makes use of three two-word arrays.
@<Glob...@>=
@!max_c:array[dependent..proto_dependent] of integer;
{max coefficient magnitude}
@!max_ptr:array[dependent..proto_dependent] of pointer;
{where |p| occurs with |max_c|}
@!max_link:array[dependent..proto_dependent] of pointer;
{other occurrences of |p|}
@ @<Record a new maximum coefficient...@>=
begin if max_c[t]>0 then
begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
end;
max_c[t]:=abs(value(r)); max_ptr[t]:=r;
end
@ @<Choose a dependent...@>=
begin if (max_c[dependent] div @'10000 >=
max_c[proto_dependent]) then
t:=dependent
else t:=proto_dependent;
@<Determine the dependency list |s| to substitute for the independent
variable~|p|@>;
t:=dependent+proto_dependent-t; {complement |t|}
if max_c[t]>0 then {we need to pick up an unchosen dependency}
begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
end;
if t<>dependent then @<Substitute new dependencies in place of |p|@>
else @<Substitute new proto-dependencies in place of |p|@>;
flush_node_list(s);
if fix_needed then fix_dependencies;
check_arith;
end
@ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
and |info(s)| points to the dependent variable~|pp| of type~|t| from
whose dependency list we have removed node~|s|. We must reinsert
node~|s| into the dependency list, with coefficient $-1.0$, and with
|pp| as the new independent variable. Since |pp| will have a larger serial
number than any other variable, we can put node |s| at the head of the
list.
@<Determine the dep...@>=
s:=max_ptr[t]; pp:=info(s); v:=value(s);
if t=dependent then value(s):=-fraction_one@+else value(s):=-unity;
r:=dep_list(pp); link(s):=r;
while info(r)<>null do r:=link(r);
q:=link(r); link(r):=null;
prev_dep(q):=prev_dep(pp); link(prev_dep(pp)):=q;
new_indep(pp);
if cur_exp=pp then if cur_type=t then cur_type:=independent;
if internal[tracing_equations]>0 then @<Show the transformed dependency@>
@ Now $(-v)$ times the formerly independent variable~|p| is being replaced
by the dependency list~|s|.
@<Show the transformed...@>=
if interesting(p) then
begin begin_diagnostic; print_nl("### ");
@:]]]\#\#\#_}{\.{\#\#\#}@>
if v>0 then print_char("-");
if t=dependent then vv:=round_fraction(max_c[dependent])
else vv:=max_c[proto_dependent];
if vv<>unity then print_scaled(vv);
print_variable_name(p);
while value(p) mod s_scale>0 do
begin print("*4"); value(p):=value(p)-2;
end;
if t=dependent then print_char("=")@+else print(" = ");
print_dependency(s,t);
end_diagnostic(false);
end
@ Finally, there are dependent and proto-dependent variables whose
dependency lists must be brought up to date.
@<Substitute new dependencies...@>=
for t:=dependent to proto_dependent do
begin r:=max_link[t];
while r<>null do
begin q:=info(r);
dep_list(q):=p_plus_fq(dep_list(q),@|
make_fraction(value(r),-v),s,t,dependent);
if dep_list(q)=dep_final then make_known(q,dep_final);
q:=r; r:=link(r); free_node(q,dep_node_size);
end;
end
@ @<Substitute new proto...@>=
for t:=dependent to proto_dependent do
begin r:=max_link[t];
while r<>null do
begin q:=info(r);
if t=dependent then {for safety's sake, we change |q| to |proto_dependent|}
begin if cur_exp=q then if cur_type=dependent then
cur_type:=proto_dependent;
dep_list(q):=p_over_v(dep_list(q),unity,dependent,proto_dependent);
type(q):=proto_dependent; value(r):=round_fraction(value(r));
end;
dep_list(q):=p_plus_fq(dep_list(q),@|
make_scaled(value(r),-v),s,proto_dependent,proto_dependent);
if dep_list(q)=dep_final then make_known(q,dep_final);
q:=r; r:=link(r); free_node(q,dep_node_size);
end;
end
@ Here are some routines that provide handy combinations of actions
that are often needed during error recovery. For example,
`|flush_error|' flushes the current expression, replaces it by
a given value, and calls |error|.
Errors often are detected after an extra token has already been scanned.
The `\\{put\_get}' routines put that token back before calling |error|;
then they get it back again. (Or perhaps they get another token, if
the user has changed things.)
@<Declare the procedure called |flush_cur_exp|@>=
procedure flush_error(@!v:scaled);@+begin error; flush_cur_exp(v);@+end;
@#
procedure@?back_error; forward;@t\2@>@/
procedure@?get_x_next; forward;@t\2@>@/
@#
procedure put_get_error;@+begin back_error; get_x_next;@+end;
@#
procedure put_get_flush_error(@!v:scaled);@+begin put_get_error;
flush_cur_exp(v);@+end;
@ A global variable |var_flag| is set to a special command code
just before \MP\ calls |scan_expression|, if the expression should be
treated as a variable when this command code immediately follows. For
example, |var_flag| is set to |assignment| at the beginning of a
statement, because we want to know the {\sl location\/} of a variable at
the left of `\.{:=}', not the {\sl value\/} of that variable.
The |scan_expression| subroutine calls |scan_tertiary|,
which calls |scan_secondary|, which calls |scan_primary|, which sets
|var_flag:=0|. In this way each of the scanning routines ``knows''
when it has been called with a special |var_flag|, but |var_flag| is
usually zero.
A variable preceding a command that equals |var_flag| is converted to a
token list rather than a value. Furthermore, an `\.{=}' sign following an
expression with |var_flag=assignment| is not considered to be a relation
that produces boolean expressions.
@<Glob...@>=
@!var_flag:0..max_command_code; {command that wants a variable}
@ @<Set init...@>=
var_flag:=0;
@* \[37] Parsing primary expressions.
The first parsing routine, |scan_primary|, is also the most complicated one,
since it involves so many different cases. But each case---with one
exception---is fairly simple by itself.
When |scan_primary| begins, the first token of the primary to be scanned
should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
of |cur_type| and |cur_exp| should be either dead or dormant, as explained
earlier. If |cur_cmd| is not between |min_primary_command| and
|max_primary_command|, inclusive, a syntax error will be signaled.
@<Declare the basic parsing subroutines@>=
procedure scan_primary;
label restart, done, done1, done2;
var @!p,@!q,@!r:pointer; {for list manipulation}
@!c:quarterword; {a primitive operation code}
@!my_var_flag:0..max_command_code; {initial value of |my_var_flag|}
@!l_delim,@!r_delim:pointer; {hash addresses of a delimiter pair}
@<Other local variables for |scan_primary|@>@;
begin my_var_flag:=var_flag; var_flag:=0;
restart:check_arith;
@<Supply diagnostic information, if requested@>;
case cur_cmd of
left_delimiter:@<Scan a delimited primary@>;
begin_group:@<Scan a grouped primary@>;
string_token:@<Scan a string constant@>;
numeric_token:@<Scan a primary that starts with a numeric token@>;
nullary:@<Scan a nullary operation@>;
unary,type_name,cycle,plus_or_minus:@<Scan a unary operation@>;
primary_binary:@<Scan a binary operation with `\&{of}' between its operands@>;
str_op:@<Convert a suffix to a string@>;
internal_quantity:@<Scan an internal numeric quantity@>;
capsule_token:make_exp_copy(cur_mod);
tag_token:@<Scan a variable primary;
|goto restart| if it turns out to be a macro@>;
othercases begin bad_exp("A primary"); goto restart;
@.A primary expression...@>
end
endcases;@/
get_x_next; {the routines |goto done| if they don't want this}
done: if cur_cmd=left_bracket then
if cur_type>=known then @<Scan a mediation construction@>;
end;
@ Errors at the beginning of expressions are flagged by |bad_exp|.
@p procedure bad_exp(@!s:str_number);
var save_flag:0..max_command_code;
begin print_err(s); print(" expression can't begin with `");
print_cmd_mod(cur_cmd,cur_mod); print_char("'");
help4("I'm afraid I need some sort of value in order to continue,")@/
("so I've tentatively inserted `0'. You may want to")@/
("delete this zero and insert something else;")@/
("see Chapter 27 of The METAFONTbook for an example.");
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_input; cur_sym:=0; cur_cmd:=numeric_token; cur_mod:=0; ins_error;@/
save_flag:=var_flag; var_flag:=0; get_x_next;
var_flag:=save_flag;
end;
@ @<Supply diagnostic information, if requested@>=
debug if panicking then check_mem(false);@+gubed@;@/
if interrupt<>0 then if OK_to_interrupt then
begin back_input; check_interrupt; get_x_next;
end
@ @<Scan a delimited primary@>=
begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next; scan_expression;
if (cur_cmd=comma) and (cur_type>=known) then
@<Scan the rest of a pair or triplet of numerics@>
else check_delimiter(l_delim,r_delim);
end
@ The |stash_in| subroutine puts the current (numeric) expression into a field
within a ``big node.''
@p procedure stash_in(@!p:pointer);
var @!q:pointer; {temporary register}
begin type(p):=cur_type;
if cur_type=known then value(p):=cur_exp
else begin if cur_type=independent then
@<Stash an independent |cur_exp| into a big node@>
else begin mem[value_loc(p)]:=mem[value_loc(cur_exp)];
{|dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)|}
link(prev_dep(p)):=p;
end;
free_node(cur_exp,value_node_size);
end;
cur_type:=vacuous;
end;
@ In rare cases the current expression can become |independent|. There
may be many dependency lists pointing to such an independent capsule,
so we can't simply move it into place within a big node. Instead,
we copy it, then recycle it.
@ @<Stash an independent |cur_exp|...@>=
begin q:=single_dependency(cur_exp);
if q=dep_final then
begin type(p):=known; value(p):=0; free_node(q,dep_node_size);
end
else begin type(p):=dependent; new_dep(p,q);
end;
recycle_value(cur_exp);
end
@ This code uses the fact that |red_part_loc| and |green_part_loc|
are synonymous with |x_part_loc| and |y_part_loc|.
@<Scan the rest of a pair or triplet of numerics@>=
begin p:=stash_cur_exp;
get_x_next; scan_expression;
@<Make sure the second part of a pair or color has a numeric type@>;
q:=get_node(value_node_size); name_type(q):=capsule;
if cur_cmd=comma then type(q):=color_type
else type(q):=pair_type;
init_big_node(q); r:=value(q);
stash_in(y_part_loc(r));
unstash_cur_exp(p);
stash_in(x_part_loc(r));
if cur_cmd=comma then @<Scan the last of a triplet of numerics@>;
check_delimiter(l_delim,r_delim);
cur_type:=type(q);
cur_exp:=q;
end
@ @<Make sure the second part of a pair or color has a numeric type@>=
if cur_type<known then
begin exp_err("Nonnumeric ypart has been replaced by 0");
@.Nonnumeric...replaced by 0@>
help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")@/
("but after finding a nice `a' I found a `b' that isn't")@/
("of numeric type. So I've changed that part to zero.")@/
("(The b that I didn't like appears above the error message.)");
put_get_flush_error(0);
end
@ @<Scan the last of a triplet of numerics@>=
begin get_x_next; scan_expression;
if cur_type<known then
begin exp_err("Nonnumeric bluepart has been replaced by 0");
@.Nonnumeric...replaced by 0@>
help3("I've just scanned a color `(r,g,b)'; but the `b' isn't")@/
("of numeric type. So I've changed that part to zero.")@/
("(The b that I didn't like appears above the error message.)");@/
put_get_flush_error(0);
end;
stash_in(blue_part_loc(r));
end
@ The local variable |group_line| keeps track of the line
where a \&{begingroup} command occurred; this will be useful
in an error message if the group doesn't actually end.
@<Other local variables for |scan_primary|@>=
@!group_line:integer; {where a group began}
@ @<Scan a grouped primary@>=
begin group_line:=true_line;
if internal[tracing_commands]>0 then show_cur_cmd_mod;
save_boundary_item(p);
repeat do_statement; {ends with |cur_cmd>=semicolon|}
until cur_cmd<>semicolon;
if cur_cmd<>end_group then
begin print_err("A group begun on line ");
@.A group...never ended@>
print_int(group_line);
print(" never ended");
help2("I saw a `begingroup' back there that hasn't been matched")@/
("by `endgroup'. So I've inserted `endgroup' now.");
back_error; cur_cmd:=end_group;
end;
unsave; {this might change |cur_type|, if independent variables are recycled}
if internal[tracing_commands]>0 then show_cur_cmd_mod;
end
@ @<Scan a string constant@>=
begin cur_type:=string_type; cur_exp:=cur_mod;
end
@ Later we'll come to procedures that perform actual operations like
addition, square root, and so on; our purpose now is to do the parsing.
But we might as well mention those future procedures now, so that the
suspense won't be too bad:
\smallskip
|do_nullary(c)| does primitive operations that have no operands (e.g.,
`\&{true}' or `\&{pencircle}');
\smallskip
|do_unary(c)| applies a primitive operation to the current expression;
\smallskip
|do_binary(p,c)| applies a primitive operation to the capsule~|p|
and the current expression.
@<Scan a nullary operation@>=do_nullary(cur_mod)
@ @<Scan a unary operation@>=
begin c:=cur_mod; get_x_next; scan_primary; do_unary(c); goto done;
end
@ A numeric token might be a primary by itself, or it might be the
numerator of a fraction composed solely of numeric tokens, or it might
multiply the primary that follows (provided that the primary doesn't begin
with a plus sign or a minus sign). The code here uses the facts that
|max_primary_command=plus_or_minus| and
|max_primary_command-1=numeric_token|. If a fraction is found that is less
than unity, we try to retain higher precision when we use it in scalar
multiplication.
@<Other local variables for |scan_primary|@>=
@!num,@!denom:scaled; {for primaries that are fractions, like `1/2'}
@ @<Scan a primary that starts with a numeric token@>=
begin cur_exp:=cur_mod; cur_type:=known; get_x_next;
if cur_cmd<>slash then
begin num:=0; denom:=0;
end
else begin get_x_next;
if cur_cmd<>numeric_token then
begin back_input;
cur_cmd:=slash; cur_mod:=over; cur_sym:=frozen_slash;
goto done;
end;
num:=cur_exp; denom:=cur_mod;
if denom=0 then @<Protest division by zero@>
else cur_exp:=make_scaled(num,denom);
check_arith; get_x_next;
end;
if cur_cmd>=min_primary_command then
if cur_cmd<numeric_token then {in particular, |cur_cmd<>plus_or_minus|}
begin p:=stash_cur_exp; scan_primary;
if (abs(num)>=abs(denom))or(cur_type<color_type) then do_binary(p,times)
else begin frac_mult(num,denom);
free_node(p,value_node_size);
end;
end;
goto done;
end
@ @<Protest division...@>=
begin print_err("Division by zero");
@.Division by zero@>
help1("I'll pretend that you meant to divide by 1."); error;
end
@ @<Scan a binary operation with `\&{of}' between its operands@>=
begin c:=cur_mod; get_x_next; scan_expression;
if cur_cmd<>of_token then
begin missing_err("of"); print(" for "); print_cmd_mod(primary_binary,c);
@.Missing `of'@>
help1("I've got the first argument; will look now for the other.");
back_error;
end;
p:=stash_cur_exp; get_x_next; scan_primary; do_binary(p,c); goto done;
end
@ @<Convert a suffix to a string@>=
begin get_x_next; scan_suffix; old_setting:=selector; selector:=new_string;
show_token_list(cur_exp,null,100000,0); flush_token_list(cur_exp);
cur_exp:=make_string; selector:=old_setting; cur_type:=string_type;
goto done;
end
@ If an internal quantity appears all by itself on the left of an
assignment, we return a token list of length one, containing the address
of the internal quantity plus |hash_end|. (This accords with the conventions
of the save stack, as described earlier.)
@<Scan an internal...@>=
begin q:=cur_mod;
if my_var_flag=assignment then
begin get_x_next;
if cur_cmd=assignment then
begin cur_exp:=get_avail;
info(cur_exp):=q+hash_end; cur_type:=token_list; goto done;
end;
back_input;
end;
cur_type:=known; cur_exp:=internal[q];
end
@ The most difficult part of |scan_primary| has been saved for last, since
it was necessary to build up some confidence first. We can now face the task
of scanning a variable.
As we scan a variable, we build a token list containing the relevant
names and subscript values, simultaneously following along in the
``collective'' structure to see if we are actually dealing with a macro
instead of a value.
The local variables |pre_head| and |post_head| will point to the beginning
of the prefix and suffix lists; |tail| will point to the end of the list
that is currently growing.
Another local variable, |tt|, contains partial information about the
declared type of the variable-so-far. If |tt>=unsuffixed_macro|, the
relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
doesn't bother to update its information about type. And if
|undefined<tt<unsuffixed_macro|, the precise value of |tt| isn't critical.
@ @<Other local variables for |scan_primary|@>=
@!pre_head,@!post_head,@!tail:pointer;
{prefix and suffix list variables}
@!tt:small_number; {approximation to the type of the variable-so-far}
@!t:pointer; {a token}
@!macro_ref:pointer; {reference count for a suffixed macro}
@ @<Scan a variable primary...@>=
begin fast_get_avail(pre_head); tail:=pre_head; post_head:=null; tt:=vacuous;
loop@+ begin t:=cur_tok; link(tail):=t;
if tt<>undefined then
begin @<Find the approximate type |tt| and corresponding~|q|@>;
if tt>=unsuffixed_macro then
@<Either begin an unsuffixed macro call or
prepare for a suffixed one@>;
end;
get_x_next; tail:=t;
if cur_cmd=left_bracket then
@<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
if cur_cmd>max_suffix_token then goto done1;
if cur_cmd<min_suffix_token then goto done1;
end; {now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token|}
done1:@<Handle unusual cases that masquerade as variables, and |goto restart|
or |goto done| if appropriate;
otherwise make a copy of the variable and |goto done|@>;
end
@ @<Either begin an unsuffixed macro call or...@>=
begin link(tail):=null;
if tt>unsuffixed_macro then {|tt=suffixed_macro|}
begin post_head:=get_avail; tail:=post_head; link(tail):=t;@/
tt:=undefined; macro_ref:=value(q); add_mac_ref(macro_ref);
end
else @<Set up unsuffixed macro call and |goto restart|@>;
end
@ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
begin get_x_next; scan_expression;
if cur_cmd<>right_bracket then
@<Put the left bracket and the expression back to be rescanned@>
else begin if cur_type<>known then bad_subscript;
cur_cmd:=numeric_token; cur_mod:=cur_exp; cur_sym:=0;
end;
end
@ The left bracket that we thought was introducing a subscript might have
actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
So we don't issue an error message at this point; but we do want to back up
so as to avoid any embarrassment about our incorrect assumption.
@<Put the left bracket and the expression back to be rescanned@>=
begin back_input; {that was the token following the current expression}
back_expr; cur_cmd:=left_bracket; cur_mod:=0; cur_sym:=frozen_left_bracket;
end
@ Here's a routine that puts the current expression back to be read again.
@p procedure back_expr;
var @!p:pointer; {capsule token}
begin p:=stash_cur_exp; link(p):=null; back_list(p);
end;
@ Unknown subscripts lead to the following error message.
@p procedure bad_subscript;
begin exp_err("Improper subscript has been replaced by zero");
@.Improper subscript...@>
help3("A bracketed subscript must have a known numeric value;")@/
("unfortunately, what I found was the value that appears just")@/
("above this error message. So I'll try a zero subscript.");
flush_error(0);
end;
@ Every time we call |get_x_next|, there's a chance that the variable we've
been looking at will disappear. Thus, we cannot safely keep |q| pointing
into the variable structure; we need to start searching from the root each time.
@<Find the approximate type |tt| and corresponding~|q|@>=
@^inner loop@>
begin p:=link(pre_head); q:=info(p); tt:=undefined;
if eq_type(q) mod outer_tag=tag_token then
begin q:=equiv(q);
if q=null then goto done2;
loop@+ begin p:=link(p);
if p=null then
begin tt:=type(q); goto done2;
end;
if type(q)<>structured then goto done2;
q:=link(attr_head(q)); {the |collective_subscript| attribute}
if p>=hi_mem_min then {it's not a subscript}
begin repeat q:=link(q);
until attr_loc(q)>=info(p);
if attr_loc(q)>info(p) then goto done2;
end;
end;
end;
done2:end
@ How do things stand now? Well, we have scanned an entire variable name,
including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
|cur_sym| represent the token that follows. If |post_head=null|, a
token list for this variable name starts at |link(pre_head)|, with all
subscripts evaluated. But if |post_head<>null|, the variable turned out
to be a suffixed macro; |pre_head| is the head of the prefix list, while
|post_head| is the head of a token list containing both `\.{\AT!}' and
the suffix.
Our immediate problem is to see if this variable still exists. (Variable
structures can change drastically whenever we call |get_x_next|; users
aren't supposed to do this, but the fact that it is possible means that
we must be cautious.)
The following procedure prints an error message when a variable
unexpectedly disappears. Its help message isn't quite right for
our present purposes, but we'll be able to fix that up.
@p procedure obliterated(@!q:pointer);
begin print_err("Variable "); show_token_list(q,null,1000,0);
print(" has been obliterated");
@.Variable...obliterated@>
help5("It seems you did a nasty thing---probably by accident,")@/
("but nevertheless you nearly hornswoggled me...")@/
("While I was evaluating the right-hand side of this")@/
("command, something happened, and the left-hand side")@/
("is no longer a variable! So I won't change anything.");
end;
@ If the variable does exist, we also need to check
for a few other special cases before deciding that a plain old ordinary
variable has, indeed, been scanned.
@<Handle unusual cases that masquerade as variables...@>=
if post_head<>null then @<Set up suffixed macro call and |goto restart|@>;
q:=link(pre_head); free_avail(pre_head);
if cur_cmd=my_var_flag then
begin cur_type:=token_list; cur_exp:=q; goto done;
end;
p:=find_variable(q);
if p<>null then make_exp_copy(p)
else begin obliterated(q);@/
help_line[2]:="While I was evaluating the suffix of this variable,";
help_line[1]:="something was redefined, and it's no longer a variable!";
help_line[0]:="In order to get back on my feet, I've inserted `0' instead.";
put_get_flush_error(0);
end;
flush_node_list(q); goto done
@ The only complication associated with macro calling is that the prefix
and ``at'' parameters must be packaged in an appropriate list of lists.
@<Set up unsuffixed macro call and |goto restart|@>=
begin p:=get_avail; info(pre_head):=link(pre_head); link(pre_head):=p;
info(p):=t; macro_call(value(q),pre_head,null); get_x_next; goto restart;
end
@ If the ``variable'' that turned out to be a suffixed macro no longer exists,
we don't care, because we have reserved a pointer (|macro_ref|) to its
token list.
@<Set up suffixed macro call and |goto restart|@>=
begin back_input; p:=get_avail; q:=link(post_head);
info(pre_head):=link(pre_head); link(pre_head):=post_head;
info(post_head):=q; link(post_head):=p; info(p):=link(q); link(q):=null;
macro_call(macro_ref,pre_head,null); decr(ref_count(macro_ref));
get_x_next; goto restart;
end
@ Our remaining job is simply to make a copy of the value that has been
found. Some cases are harder than others, but complexity arises solely
because of the multiplicity of possible cases.
@<Declare the procedure called |make_exp_copy|@>=
@t\4@>@<Declare subroutines needed by |make_exp_copy|@>@;
procedure make_exp_copy(@!p:pointer);
label restart;
var @!q,@!r,@!t:pointer; {registers for list manipulation}
begin restart: cur_type:=type(p);
case cur_type of
vacuous,boolean_type,known:cur_exp:=value(p);
unknown_types:cur_exp:=new_ring_entry(p);
string_type:begin cur_exp:=value(p); add_str_ref(cur_exp);
end;
picture_type:begin cur_exp:=value(p);add_edge_ref(cur_exp);
end;
pen_type:cur_exp:=copy_pen(value(p));
path_type:cur_exp:=copy_path(value(p));
transform_type,color_type,pair_type:@<Copy the big node |p|@>;
dependent,proto_dependent:encapsulate(copy_dep_list(dep_list(p)));
numeric_type:begin new_indep(p); goto restart;
end;
independent: begin q:=single_dependency(p);
if q=dep_final then
begin cur_type:=known; cur_exp:=0; free_node(q,value_node_size);
end
else begin cur_type:=dependent; encapsulate(q);
end;
end;
othercases confusion("copy")
@:this can't happen copy}{\quad copy@>
endcases;
end;
@ The |encapsulate| subroutine assumes that |dep_final| is the
tail of dependency list~|p|.
@<Declare subroutines needed by |make_exp_copy|@>=
procedure encapsulate(@!p:pointer);
begin cur_exp:=get_node(value_node_size); type(cur_exp):=cur_type;
name_type(cur_exp):=capsule; new_dep(cur_exp,p);
end;
@ The most tedious case arises when the user refers to a
\&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
each of which can be |independent|, |dependent|, |proto_dependent|,
or |known|.
@<Copy the big node |p|@>=
begin if value(p)=null then init_big_node(p);
t:=get_node(value_node_size); name_type(t):=capsule; type(t):=cur_type;
init_big_node(t);@/
q:=value(p)+big_node_size[cur_type]; r:=value(t)+big_node_size[cur_type];
repeat q:=q-2; r:=r-2; install(r,q);
until q=value(p);
cur_exp:=t;
end
@ The |install| procedure copies a numeric field~|q| into field~|r| of
a big node that will be part of a capsule.
@<Declare subroutines needed by |make_exp_copy|@>=
procedure install(@!r,@!q:pointer);
var p:pointer; {temporary register}
begin if type(q)=known then
begin value(r):=value(q); type(r):=known;
end
else if type(q)=independent then
begin p:=single_dependency(q);
if p=dep_final then
begin type(r):=known; value(r):=0; free_node(p,value_node_size);
end
else begin type(r):=dependent; new_dep(r,p);
end;
end
else begin type(r):=type(q); new_dep(r,copy_dep_list(dep_list(q)));
end;
end;
@ Expressions of the form `\.{a[b,c]}' are converted into
`\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
provided that \.a is numeric.
@<Scan a mediation...@>=
begin p:=stash_cur_exp; get_x_next; scan_expression;
if cur_cmd<>comma then
begin @<Put the left bracket and the expression back...@>;
unstash_cur_exp(p);
end
else begin q:=stash_cur_exp; get_x_next; scan_expression;
if cur_cmd<>right_bracket then
begin missing_err("]");@/
@.Missing `]'@>
help3("I've scanned an expression of the form `a[b,c',")@/
("so a right bracket should have come next.")@/
("I shall pretend that one was there.");@/
back_error;
end;
r:=stash_cur_exp; make_exp_copy(q);@/
do_binary(r,minus); do_binary(p,times); do_binary(q,plus); get_x_next;
end;
end
@ Here is a comparatively simple routine that is used to scan the
\&{suffix} parameters of a macro.
@<Declare the basic parsing subroutines@>=
procedure scan_suffix;
label done;
var @!h,@!t:pointer; {head and tail of the list being built}
@!p:pointer; {temporary register}
begin h:=get_avail; t:=h;
loop@+ begin if cur_cmd=left_bracket then
@<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
if cur_cmd=numeric_token then p:=new_num_tok(cur_mod)
else if (cur_cmd=tag_token)or(cur_cmd=internal_quantity) then
begin p:=get_avail; info(p):=cur_sym;
end
else goto done;
link(t):=p; t:=p; get_x_next;
end;
done: cur_exp:=link(h); free_avail(h); cur_type:=token_list;
end;
@ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
begin get_x_next; scan_expression;
if cur_type<>known then bad_subscript;
if cur_cmd<>right_bracket then
begin missing_err("]");@/
@.Missing `]'@>
help3("I've seen a `[' and a subscript value, in a suffix,")@/
("so a right bracket should have come next.")@/
("I shall pretend that one was there.");@/
back_error;
end;
cur_cmd:=numeric_token; cur_mod:=cur_exp;
end
@* \[38] Parsing secondary and higher expressions.
After the intricacies of |scan_primary|\kern-1pt,
the |scan_secondary| routine is
refreshingly simple. It's not trivial, but the operations are relatively
straightforward; the main difficulty is, again, that expressions and data
structures might change drastically every time we call |get_x_next|, so a
cautious approach is mandatory. For example, a macro defined by
\&{primarydef} might have disappeared by the time its second argument has
been scanned; we solve this by increasing the reference count of its token
list, so that the macro can be called even after it has been clobbered.
@<Declare the basic parsing subroutines@>=
procedure scan_secondary;
label restart,continue;
var @!p:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!mac_name:pointer; {token defined with \&{primarydef}}
begin restart:if(cur_cmd<min_primary_command)or@|
(cur_cmd>max_primary_command) then
bad_exp("A secondary");
@.A secondary expression...@>
scan_primary;
continue: if cur_cmd<=max_secondary_command then
if cur_cmd>=min_secondary_command then
begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
if d=secondary_primary_macro then
begin mac_name:=cur_sym; add_mac_ref(c);
end;
get_x_next; scan_primary;
if d<>secondary_primary_macro then do_binary(p,c)
else begin back_input; binary_mac(p,c,mac_name);
decr(ref_count(c)); get_x_next; goto restart;
end;
goto continue;
end;
end;
@ The following procedure calls a macro that has two parameters,
|p| and |cur_exp|.
@p procedure binary_mac(@!p,@!c,@!n:pointer);
var @!q,@!r:pointer; {nodes in the parameter list}
begin q:=get_avail; r:=get_avail; link(q):=r;@/
info(q):=p; info(r):=stash_cur_exp;@/
macro_call(c,q,n);
end;
@ The next procedure, |scan_tertiary|, is pretty much the same deal.
@<Declare the basic parsing subroutines@>=
procedure scan_tertiary;
label restart,continue;
var @!p:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!mac_name:pointer; {token defined with \&{secondarydef}}
begin restart:if(cur_cmd<min_primary_command)or@|
(cur_cmd>max_primary_command) then
bad_exp("A tertiary");
@.A tertiary expression...@>
scan_secondary;
continue: if cur_cmd<=max_tertiary_command then
if cur_cmd>=min_tertiary_command then
begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
if d=tertiary_secondary_macro then
begin mac_name:=cur_sym; add_mac_ref(c);
end;
get_x_next; scan_secondary;
if d<>tertiary_secondary_macro then do_binary(p,c)
else begin back_input; binary_mac(p,c,mac_name);
decr(ref_count(c)); get_x_next; goto restart;
end;
goto continue;
end;
end;
@ Finally we reach the deepest level in our quartet of parsing routines.
This one is much like the others; but it has an extra complication from
paths, which materialize here.
@d continue_path=25 {a label inside of |scan_expression|}
@d finish_path=26 {another}
@<Declare the basic parsing subroutines@>=
procedure scan_expression;
label restart,done,continue,continue_path,finish_path,exit;
var @!p,@!q,@!r,@!pp,@!qq:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!my_var_flag:0..max_command_code; {initial value of |var_flag|}
@!mac_name:pointer; {token defined with \&{tertiarydef}}
@!cycle_hit:boolean; {did a path expression just end with `\&{cycle}'?}
@!x,@!y:scaled; {explicit coordinates or tension at a path join}
@!t:endpoint..open; {knot type following a path join}
begin my_var_flag:=var_flag;
restart:if(cur_cmd<min_primary_command)or@|
(cur_cmd>max_primary_command) then
bad_exp("An");
@.An expression...@>
scan_tertiary;
continue: if cur_cmd<=max_expression_command then
if cur_cmd>=min_expression_command then
if (cur_cmd<>equals)or(my_var_flag<>assignment) then
begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
if d=expression_tertiary_macro then
begin mac_name:=cur_sym; add_mac_ref(c);
end;
if (d<ampersand)or((d=ampersand)and@|
((type(p)=pair_type)or(type(p)=path_type))) then
@<Scan a path construction operation;
but |return| if |p| has the wrong type@>
else begin get_x_next; scan_tertiary;
if d<>expression_tertiary_macro then do_binary(p,c)
else begin back_input; binary_mac(p,c,mac_name);
decr(ref_count(c)); get_x_next; goto restart;
end;
end;
goto continue;
end;
exit:end;
@ The reader should review the data structure conventions for paths before
hoping to understand the next part of this code.
@<Scan a path construction operation...@>=
begin cycle_hit:=false;
@<Convert the left operand, |p|, into a partial path ending at~|q|;
but |return| if |p| doesn't have a suitable type@>;
continue_path: @<Determine the path join parameters;
but |goto finish_path| if there's only a direction specifier@>;
if cur_cmd=cycle then @<Get ready to close a cycle@>
else begin scan_tertiary;
@<Convert the right operand, |cur_exp|,
into a partial path from |pp| to~|qq|@>;
end;
@<Join the partial paths and reset |p| and |q| to the head and tail
of the result@>;
if cur_cmd>=min_expression_command then
if cur_cmd<=ampersand then if not cycle_hit then goto continue_path;
finish_path:
@<Choose control points for the path and put the result into |cur_exp|@>;
end
@ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
begin unstash_cur_exp(p);
if cur_type=pair_type then p:=new_knot
else if cur_type=path_type then p:=cur_exp
else return;
q:=p;
while link(q)<>p do q:=link(q);
if left_type(p)<>endpoint then {open up a cycle}
begin r:=copy_knot(p); link(q):=r; q:=r;
end;
left_type(p):=open; right_type(q):=open;
end
@ A pair of numeric values is changed into a knot node for a one-point path
when \MP\ discovers that the pair is part of a path.
@p@t\4@>@<Declare the procedure called |known_pair|@>@;
function new_knot:pointer; {convert a pair to a knot with two endpoints}
var @!q:pointer; {the new node}
begin q:=get_node(knot_node_size); left_type(q):=endpoint;
right_type(q):=endpoint; link(q):=q;@/
known_pair; x_coord(q):=cur_x; y_coord(q):=cur_y;
new_knot:=q;
end;
@ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
of the current expression, assuming that the current expression is a
pair of known numerics. Unknown components are zeroed, and the
current expression is flushed.
@<Declare the procedure called |known_pair|@>=
procedure known_pair;
var @!p:pointer; {the pair node}
begin if cur_type<>pair_type then
begin exp_err("Undefined coordinates have been replaced by (0,0)");
@.Undefined coordinates...@>
help5("I need x and y numbers for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
("you might want to type `I ???' now.)");
put_get_flush_error(0); cur_x:=0; cur_y:=0;
end
else begin p:=value(cur_exp);
@<Make sure that both |x| and |y| parts of |p| are known;
copy them into |cur_x| and |cur_y|@>;
flush_cur_exp(0);
end;
end;
@ @<Make sure that both |x| and |y| parts of |p| are known...@>=
if type(x_part_loc(p))=known then cur_x:=value(x_part_loc(p))
else begin disp_err(x_part_loc(p),
"Undefined x coordinate has been replaced by 0");
@.Undefined coordinates...@>
help5("I need a `known' x value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
("you might want to type `I ???' now.)");
put_get_error; recycle_value(x_part_loc(p)); cur_x:=0;
end;
if type(y_part_loc(p))=known then cur_y:=value(y_part_loc(p))
else begin disp_err(y_part_loc(p),
"Undefined y coordinate has been replaced by 0");
help5("I need a `known' y value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
("you might want to type `I ???' now.)");
put_get_error; recycle_value(y_part_loc(p)); cur_y:=0;
end
@ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
@<Determine the path join parameters...@>=
if cur_cmd=left_brace then
@<Put the pre-join direction information into node |q|@>;
d:=cur_cmd;
if d=path_join then @<Determine the tension and/or control points@>
else if d<>ampersand then goto finish_path;
get_x_next;
if cur_cmd=left_brace then
@<Put the post-join direction information into |x| and |t|@>
else if right_type(q)<>explicit then
begin t:=open; x:=0;
end
@ The |scan_direction| subroutine looks at the directional information
that is enclosed in braces, and also scans ahead to the following character.
A type code is returned, either |open| (if the direction was $(0,0)$),
or |curl| (if the direction was a curl of known value |cur_exp|), or
|given| (if the direction is given by the |angle| value that now
appears in |cur_exp|).
There's nothing difficult about this subroutine, but the program is rather
lengthy because a variety of potential errors need to be nipped in the bud.
@p function scan_direction:small_number;
var @!t:given..open; {the type of information found}
@!x:scaled; {an |x| coordinate}
begin get_x_next;
if cur_cmd=curl_command then @<Scan a curl specification@>
else @<Scan a given direction@>;
if cur_cmd<>right_brace then
begin missing_err("}");@/
@.Missing `\char`\}'@>
help3("I've scanned a direction spec for part of a path,")@/
("so a right brace should have come next.")@/
("I shall pretend that one was there.");@/
back_error;
end;
get_x_next; scan_direction:=t;
end;
@ @<Scan a curl specification@>=
begin get_x_next; scan_expression;
if (cur_type<>known)or(cur_exp<0) then
begin exp_err("Improper curl has been replaced by 1");
@.Improper curl@>
help1("A curl must be a known, nonnegative number.");
put_get_flush_error(unity);
end;
t:=curl;
end
@ @<Scan a given direction@>=
begin scan_expression;
if cur_type>pair_type then @<Get given directions separated by commas@>
else known_pair;
if (cur_x=0)and(cur_y=0) then t:=open
else begin t:=given; cur_exp:=n_arg(cur_x,cur_y);
end;
end
@ @<Get given directions separated by commas@>=
begin if cur_type<>known then
begin exp_err("Undefined x coordinate has been replaced by 0");
@.Undefined coordinates...@>
help5("I need a `known' x value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
("you might want to type `I ???' now.)");
put_get_flush_error(0);
end;
x:=cur_exp;
if cur_cmd<>comma then
begin missing_err(",");@/
@.Missing `,'@>
help2("I've got the x coordinate of a path direction;")@/
("will look for the y coordinate next.");
back_error;
end;
get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Undefined y coordinate has been replaced by 0");
help5("I need a `known' y value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
("you might want to type `I ???' now.)");
put_get_flush_error(0);
end;
cur_y:=cur_exp; cur_x:=x;
end
@ At this point |right_type(q)| is usually |open|, but it may have been
set to some other value by a previous splicing operation. We must maintain
the value of |right_type(q)| in unusual cases such as
`\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
@<Put the pre-join...@>=
begin t:=scan_direction;
if t<>open then
begin right_type(q):=t; right_given(q):=cur_exp;
if left_type(q)=open then
begin left_type(q):=t; left_given(q):=cur_exp;
end; {note that |left_given(q)=left_curl(q)|}
end;
end
@ Since |left_tension| and |left_y| share the same position in knot nodes,
and since |left_given| is similarly equivalent to |left_x|, we use
|x| and |y| to hold the given direction and tension information when
there are no explicit control points.
@<Put the post-join...@>=
begin t:=scan_direction;
if right_type(q)<>explicit then x:=cur_exp
else t:=explicit; {the direction information is superfluous}
end
@ @<Determine the tension and/or...@>=
begin get_x_next;
if cur_cmd=tension then @<Set explicit tensions@>
else if cur_cmd=controls then @<Set explicit control points@>
else begin right_tension(q):=unity; y:=unity; back_input; {default tension}
goto done;
end;
if cur_cmd<>path_join then
begin missing_err("..");@/
@.Missing `..'@>
help1("A path join command should end with two dots.");
back_error;
end;
done:end
@ @<Set explicit tensions@>=
begin get_x_next; y:=cur_cmd;
if cur_cmd=at_least then get_x_next;
scan_primary;
@<Make sure that the current expression is a valid tension setting@>;
if y=at_least then negate(cur_exp);
right_tension(q):=cur_exp;
if cur_cmd=and_command then
begin get_x_next; y:=cur_cmd;
if cur_cmd=at_least then get_x_next;
scan_primary;
@<Make sure that the current expression is a valid tension setting@>;
if y=at_least then negate(cur_exp);
end;
y:=cur_exp;
end
@ @d min_tension==three_quarter_unit
@<Make sure that the current expression is a valid tension setting@>=
if (cur_type<>known)or(cur_exp<min_tension) then
begin exp_err("Improper tension has been set to 1");
@.Improper tension@>
help1("The expression above should have been a number >=3/4.");
put_get_flush_error(unity);
end
@ @<Set explicit control points@>=
begin right_type(q):=explicit; t:=explicit; get_x_next; scan_primary;@/
known_pair; right_x(q):=cur_x; right_y(q):=cur_y;
if cur_cmd<>and_command then
begin x:=right_x(q); y:=right_y(q);
end
else begin get_x_next; scan_primary;@/
known_pair; x:=cur_x; y:=cur_y;
end;
end
@ @<Convert the right operand, |cur_exp|, into a partial path...@>=
begin if cur_type<>path_type then pp:=new_knot
else pp:=cur_exp;
qq:=pp;
while link(qq)<>pp do qq:=link(qq);
if left_type(pp)<>endpoint then {open up a cycle}
begin r:=copy_knot(pp); link(qq):=r; qq:=r;
end;
left_type(pp):=open; right_type(qq):=open;
end
@ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
we silently change the specification to `\.{(x,y)..cycle}', since a cycle
shouldn't have length zero.
@<Get ready to close a cycle@>=
begin cycle_hit:=true; get_x_next; pp:=p; qq:=p;
if d=ampersand then if p=q then
begin d:=path_join; right_tension(q):=unity; y:=unity;
end;
end
@ @<Join the partial paths and reset |p| and |q|...@>=
begin if d=ampersand then
if (x_coord(q)<>x_coord(pp))or(y_coord(q)<>y_coord(pp)) then
begin print_err("Paths don't touch; `&' will be changed to `..'");
@.Paths don't touch@>
help3("When you join paths `p&q', the ending point of p")@/
("must be exactly equal to the starting point of q.")@/
("So I'm going to pretend that you said `p..q' instead.");
put_get_error; d:=path_join; right_tension(q):=unity; y:=unity;
end;
@<Plug an opening in |right_type(pp)|, if possible@>;
if d=ampersand then @<Splice independent paths together@>
else begin @<Plug an opening in |right_type(q)|, if possible@>;
link(q):=pp; left_y(pp):=y;
if t<>open then
begin left_x(pp):=x; left_type(pp):=t;
end;
end;
q:=qq;
end
@ @<Plug an opening in |right_type(q)|...@>=
if right_type(q)=open then
if (left_type(q)=curl)or(left_type(q)=given) then
begin right_type(q):=left_type(q); right_given(q):=left_given(q);
end
@ @<Plug an opening in |right_type(pp)|...@>=
if right_type(pp)=open then
if (t=curl)or(t=given) then
begin right_type(pp):=t; right_given(pp):=x;
end
@ @<Splice independent paths together@>=
begin if left_type(q)=open then if right_type(q)=open then
begin left_type(q):=curl; left_curl(q):=unity;
end;
if right_type(pp)=open then if t=open then
begin right_type(pp):=curl; right_curl(pp):=unity;
end;
right_type(q):=right_type(pp); link(q):=link(pp);@/
right_x(q):=right_x(pp); right_y(q):=right_y(pp);
free_node(pp,knot_node_size);
if qq=pp then qq:=q;
end
@ @<Choose control points for the path...@>=
if cycle_hit then
begin if d=ampersand then p:=q;
end
else begin left_type(p):=endpoint;
if right_type(p)=open then
begin right_type(p):=curl; right_curl(p):=unity;
end;
right_type(q):=endpoint;
if left_type(q)=open then
begin left_type(q):=curl; left_curl(q):=unity;
end;
link(q):=p;
end;
make_choices(p);
cur_type:=path_type; cur_exp:=p
@ Finally, we sometimes need to scan an expression whose value is
supposed to be either |true_code| or |false_code|.
@<Declare the basic parsing subroutines@>=
procedure get_boolean;
begin get_x_next; scan_expression;
if cur_type<>boolean_type then
begin exp_err("Undefined condition will be treated as `false'");
@.Undefined condition...@>
help2("The expression shown above should have had a definite")@/
("true-or-false value. I'm changing it to `false'.");@/
put_get_flush_error(false_code); cur_type:=boolean_type;
end;
end;
@* \[39] Doing the operations.
The purpose of parsing is primarily to permit people to avoid piles of
parentheses. But the real work is done after the structure of an expression
has been recognized; that's when new expressions are generated. We
turn now to the guts of \MP, which handles individual operators that
have come through the parsing mechanism.
We'll start with the easy ones that take no operands, then work our way
up to operators with one and ultimately two arguments. In other words,
we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
that are invoked periodically by the expression scanners.
First let's make sure that all of the primitive operators are in the
hash table. Although |scan_primary| and its relatives made use of the
\\{cmd} code for these operators, the \\{do} routines base everything
on the \\{mod} code. For example, |do_binary| doesn't care whether the
operation it performs is a |primary_binary| or |secondary_binary|, etc.
@<Put each...@>=
primitive("true",nullary,true_code);@/
@!@:true_}{\&{true} primitive@>
primitive("false",nullary,false_code);@/
@!@:false_}{\&{false} primitive@>
primitive("nullpicture",nullary,null_picture_code);@/
@!@:null_picture_}{\&{nullpicture} primitive@>
primitive("nullpen",nullary,null_pen_code);@/
@!@:null_pen_}{\&{nullpen} primitive@>
primitive("jobname",nullary,job_name_op);@/
@!@:job_name_}{\&{jobname} primitive@>
primitive("readstring",nullary,read_string_op);@/
@!@:read_string_}{\&{readstring} primitive@>
primitive("pencircle",nullary,pen_circle);@/
@!@:pen_circle_}{\&{pencircle} primitive@>
primitive("normaldeviate",nullary,normal_deviate);@/
@!@:normal_deviate_}{\&{normaldeviate} primitive@>
primitive("readfrom",unary,read_from_op);@/
@!@:read_from_}{\&{readfrom} primitive@>
primitive("closefrom",unary,close_from_op);@/
@!@:close_from_}{\&{closefrom} primitive@>
primitive("odd",unary,odd_op);@/
@!@:odd_}{\&{odd} primitive@>
primitive("known",unary,known_op);@/
@!@:known_}{\&{known} primitive@>
primitive("unknown",unary,unknown_op);@/
@!@:unknown_}{\&{unknown} primitive@>
primitive("not",unary,not_op);@/
@!@:not_}{\&{not} primitive@>
primitive("decimal",unary,decimal);@/
@!@:decimal_}{\&{decimal} primitive@>
primitive("reverse",unary,reverse);@/
@!@:reverse_}{\&{reverse} primitive@>
primitive("makepath",unary,make_path_op);@/
@!@:make_path_}{\&{makepath} primitive@>
primitive("makepen",unary,make_pen_op);@/
@!@:make_pen_}{\&{makepen} primitive@>
primitive("oct",unary,oct_op);@/
@!@:oct_}{\&{oct} primitive@>
primitive("hex",unary,hex_op);@/
@!@:hex_}{\&{hex} primitive@>
primitive("ASCII",unary,ASCII_op);@/
@!@:ASCII_}{\&{ASCII} primitive@>
primitive("char",unary,char_op);@/
@!@:char_}{\&{char} primitive@>
primitive("length",unary,length_op);@/
@!@:length_}{\&{length} primitive@>
primitive("turningnumber",unary,turning_op);@/
@!@:turning_number_}{\&{turningnumber} primitive@>
primitive("xpart",unary,x_part);@/
@!@:x_part_}{\&{xpart} primitive@>
primitive("ypart",unary,y_part);@/
@!@:y_part_}{\&{ypart} primitive@>
primitive("xxpart",unary,xx_part);@/
@!@:xx_part_}{\&{xxpart} primitive@>
primitive("xypart",unary,xy_part);@/
@!@:xy_part_}{\&{xypart} primitive@>
primitive("yxpart",unary,yx_part);@/
@!@:yx_part_}{\&{yxpart} primitive@>
primitive("yypart",unary,yy_part);@/
@!@:yy_part_}{\&{yypart} primitive@>
primitive("redpart",unary,red_part);@/
@!@:red_part_}{\&{redpart} primitive@>
primitive("greenpart",unary,green_part);@/
@!@:green_part_}{\&{greenpart} primitive@>
primitive("bluepart",unary,blue_part);@/
@!@:blue_part_}{\&{bluepart} primitive@>
primitive("fontpart",unary,font_part);@/
@!@:font_part_}{\&{fontpart} primitive@>
primitive("textpart",unary,text_part);@/
@!@:text_part_}{\&{textpart} primitive@>
primitive("pathpart",unary,path_part);@/
@!@:path_part_}{\&{pathpart} primitive@>
primitive("penpart",unary,pen_part);@/
@!@:pen_part_}{\&{penpart} primitive@>
primitive("dashpart",unary,dash_part);@/
@!@:dash_part_}{\&{dashpart} primitive@>
primitive("sqrt",unary,sqrt_op);@/
@!@:sqrt_}{\&{sqrt} primitive@>
primitive("mexp",unary,m_exp_op);@/
@!@:m_exp_}{\&{mexp} primitive@>
primitive("mlog",unary,m_log_op);@/
@!@:m_log_}{\&{mlog} primitive@>
primitive("sind",unary,sin_d_op);@/
@!@:sin_d_}{\&{sind} primitive@>
primitive("cosd",unary,cos_d_op);@/
@!@:cos_d_}{\&{cosd} primitive@>
primitive("floor",unary,floor_op);@/
@!@:floor_}{\&{floor} primitive@>
primitive("uniformdeviate",unary,uniform_deviate);@/
@!@:uniform_deviate_}{\&{uniformdeviate} primitive@>
primitive("charexists",unary,char_exists_op);@/
@!@:char_exists_}{\&{charexists} primitive@>
primitive("fontsize",unary,font_size);@/
@!@:font_size_}{\&{fontsize} primitive@>
primitive("llcorner",unary,ll_corner_op);@/
@!@:ll_corner_}{\&{llcorner} primitive@>
primitive("lrcorner",unary,lr_corner_op);@/
@!@:lr_corner_}{\&{lrcorner} primitive@>
primitive("ulcorner",unary,ul_corner_op);@/
@!@:ul_corner_}{\&{ulcorner} primitive@>
primitive("urcorner",unary,ur_corner_op);@/
@!@:ur_corner_}{\&{urcorner} primitive@>
primitive("arclength",unary,arc_length);@/
@!@:arc_length_}{\&{arclength} primitive@>
primitive("angle",unary,angle_op);@/
@!@:angle_}{\&{angle} primitive@>
primitive("cycle",cycle,cycle_op);@/
@!@:cycle_}{\&{cycle} primitive@>
primitive("stroked",unary,stroked_op);@/
@!@:stroked_}{\&{stroked} primitive@>
primitive("filled",unary,filled_op);@/
@!@:filled_}{\&{filled} primitive@>
primitive("textual",unary,textual_op);@/
@!@:textual_}{\&{textual} primitive@>
primitive("clipped",unary,clipped_op);@/
@!@:clipped_}{\&{clipped} primitive@>
primitive("bounded",unary,bounded_op);@/
@!@:bounded_}{\&{bounded} primitive@>
primitive("+",plus_or_minus,plus);@/
@!@:+ }{\.{+} primitive@>
primitive("-",plus_or_minus,minus);@/
@!@:- }{\.{-} primitive@>
primitive("*",secondary_binary,times);@/
@!@:* }{\.{*} primitive@>
primitive("/",slash,over); eqtb[frozen_slash]:=eqtb[cur_sym];@/
@!@:/ }{\.{/} primitive@>
primitive("++",tertiary_binary,pythag_add);@/
@!@:++_}{\.{++} primitive@>
primitive("+-+",tertiary_binary,pythag_sub);@/
@!@:+-+_}{\.{+-+} primitive@>
primitive("or",tertiary_binary,or_op);@/
@!@:or_}{\&{or} primitive@>
primitive("and",and_command,and_op);@/
@!@:and_}{\&{and} primitive@>
primitive("<",expression_binary,less_than);@/
@!@:< }{\.{<} primitive@>
primitive("<=",expression_binary,less_or_equal);@/
@!@:<=_}{\.{<=} primitive@>
primitive(">",expression_binary,greater_than);@/
@!@:> }{\.{>} primitive@>
primitive(">=",expression_binary,greater_or_equal);@/
@!@:>=_}{\.{>=} primitive@>
primitive("=",equals,equal_to);@/
@!@:= }{\.{=} primitive@>
primitive("<>",expression_binary,unequal_to);@/
@!@:<>_}{\.{<>} primitive@>
primitive("substring",primary_binary,substring_of);@/
@!@:substring_}{\&{substring} primitive@>
primitive("subpath",primary_binary,subpath_of);@/
@!@:subpath_}{\&{subpath} primitive@>
primitive("directiontime",primary_binary,direction_time_of);@/
@!@:direction_time_}{\&{directiontime} primitive@>
primitive("point",primary_binary,point_of);@/
@!@:point_}{\&{point} primitive@>
primitive("precontrol",primary_binary,precontrol_of);@/
@!@:precontrol_}{\&{precontrol} primitive@>
primitive("postcontrol",primary_binary,postcontrol_of);@/
@!@:postcontrol_}{\&{postcontrol} primitive@>
primitive("penoffset",primary_binary,pen_offset_of);@/
@!@:pen_offset_}{\&{penoffset} primitive@>
primitive("arctime",primary_binary,arc_time_of);@/
@!@:arc_time_of_}{\&{arctime} primitive@>
primitive("&",ampersand,concatenate);@/
@!@:!!!}{\.{\&} primitive@>
primitive("rotated",secondary_binary,rotated_by);@/
@!@:rotated_}{\&{rotated} primitive@>
primitive("slanted",secondary_binary,slanted_by);@/
@!@:slanted_}{\&{slanted} primitive@>
primitive("scaled",secondary_binary,scaled_by);@/
@!@:scaled_}{\&{scaled} primitive@>
primitive("shifted",secondary_binary,shifted_by);@/
@!@:shifted_}{\&{shifted} primitive@>
primitive("transformed",secondary_binary,transformed_by);@/
@!@:transformed_}{\&{transformed} primitive@>
primitive("xscaled",secondary_binary,x_scaled);@/
@!@:x_scaled_}{\&{xscaled} primitive@>
primitive("yscaled",secondary_binary,y_scaled);@/
@!@:y_scaled_}{\&{yscaled} primitive@>
primitive("zscaled",secondary_binary,z_scaled);@/
@!@:z_scaled_}{\&{zscaled} primitive@>
primitive("infont",secondary_binary,in_font);@/
@!@:in_font_}{\&{infont} primitive@>
primitive("intersectiontimes",tertiary_binary,intersect);@/
@!@:intersection_times_}{\&{intersectiontimes} primitive@>
@ @<Cases of |print_cmd...@>=
nullary,unary,primary_binary,secondary_binary,tertiary_binary,
expression_binary,cycle,plus_or_minus,slash,ampersand,equals,and_command:
print_op(m);
@ OK, let's look at the simplest \\{do} procedure first.
@p @t\4@>@<Declare nullary action procedure@>@;
procedure do_nullary(@!c:quarterword);
begin check_arith;
if internal[tracing_commands]>two then
show_cmd_mod(nullary,c);
case c of
true_code,false_code:begin cur_type:=boolean_type; cur_exp:=c;
end;
null_picture_code:begin cur_type:=picture_type;
cur_exp:=get_node(edge_header_size); init_edges(cur_exp);
end;
null_pen_code:begin cur_type:=pen_type; cur_exp:=get_pen_circle(0);
end;
normal_deviate:begin cur_type:=known; cur_exp:=norm_rand;
end;
pen_circle:begin cur_type:=pen_type; cur_exp:=get_pen_circle(unity);
end;
job_name_op: begin if job_name=0 then open_log_file;
cur_type:=string_type; cur_exp:=job_name;
end;
read_string_op:@<Read a string from the terminal@>;
end; {there are no other cases}
check_arith;
end;
@ @<Read a string...@>=
begin if interaction<=nonstop_mode then
fatal_error("*** (cannot readstring in nonstop modes)");
begin_file_reading; name:=is_read;
limit:=start; prompt_input("");
finish_read;
end
@ @<Declare nullary action procedure@>=
procedure finish_read; {copy |buffer| line to |cur_exp|}
var @!k:pool_pointer;
begin str_room(last-start);
for k:=start to last-1 do append_char(buffer[k]);
end_file_reading; cur_type:=string_type; cur_exp:=make_string;
end;
@ Things get a bit more interesting when there's an operand. The
operand to |do_unary| appears in |cur_type| and |cur_exp|.
@p @t\4@>@<Declare unary action procedures@>@;
procedure do_unary(@!c:quarterword);
var @!p,@!q,@!r:pointer; {for list manipulation}
@!x:integer; {a temporary register}
begin check_arith;
if internal[tracing_commands]>two then
@<Trace the current unary operation@>;
case c of
plus:if cur_type<color_type then bad_unary(plus);
minus:@<Negate the current expression@>;
@t\4@>@<Additional cases of unary operators@>@;
end; {there are no other cases}
check_arith;
end;
@ The |nice_pair| function returns |true| if both components of a pair
are known.
@<Declare unary action procedures@>=
function nice_pair(@!p:integer;@!t:quarterword):boolean;
label exit;
begin if t=pair_type then
begin p:=value(p);
if type(x_part_loc(p))=known then
if type(y_part_loc(p))=known then
begin nice_pair:=true; return;
end;
end;
nice_pair:=false;
exit:end;
@ The |nice_color_or_pair| function is analogous except that it also accepts
fully known colors.
@<Declare unary action procedures@>=
function nice_color_or_pair(@!p:integer;@!t:quarterword):boolean;
label exit;
var @!q,@!r:pointer; {for scanning the big node}
begin if (t<>pair_type)and(t<>color_type) then
nice_color_or_pair:=false
else begin q:=value(p);
r:=q+big_node_size[type(p)];
repeat r:=r-2;
if type(r)<>known then
begin nice_color_or_pair:=false; return;
end;
until r=q;
nice_color_or_pair:=true;
end;
exit:end;
@ @<Declare unary action...@>=
procedure print_known_or_unknown_type(@!t:small_number;@!v:integer);
begin print_char("(");
if t>known then print("unknown numeric")
else begin if (t=pair_type)or(t=color_type) then
if not nice_color_or_pair(v,t) then print("unknown ");
print_type(t);
end;
print_char(")");
end;
@ @<Declare unary action...@>=
procedure bad_unary(@!c:quarterword);
begin exp_err("Not implemented: "); print_op(c);
@.Not implemented...@>
print_known_or_unknown_type(cur_type,cur_exp);
help3("I'm afraid I don't know how to apply that operation to that")@/
("particular type. Continue, and I'll simply return the")@/
("argument (shown above) as the result of the operation.");
put_get_error;
end;
@ @<Trace the current unary operation@>=
begin begin_diagnostic; print_nl("{"); print_op(c); print_char("(");@/
print_exp(null,0); {show the operand, but not verbosely}
print(")}"); end_diagnostic(false);
end
@ Negation is easy except when the current expression
is of type |independent|, or when it is a pair with one or more
|independent| components.
It is tempting to argue that the negative of an independent variable
is an independent variable, hence we don't have to do anything when
negating it. The fallacy is that other dependent variables pointing
to the current expression must change the sign of their
coefficients if we make no change to the current expression.
Instead, we work around the problem by copying the current expression
and recycling it afterwards (cf.~the |stash_in| routine).
@<Negate the current expression@>=
case cur_type of
color_type,pair_type,independent: begin q:=cur_exp; make_exp_copy(q);
if cur_type=dependent then negate_dep_list(dep_list(cur_exp))
else if cur_type<=pair_type then {|color_type| or |pair_type|}
begin p:=value(cur_exp);
r:=p+big_node_size[cur_type];
repeat r:=r-2;
if type(r)=known then negate(value(r))
else negate_dep_list(dep_list(r));
until r=p;
end; {if |cur_type=known| then |cur_exp=0|}
recycle_value(q); free_node(q,value_node_size);
end;
dependent,proto_dependent:negate_dep_list(dep_list(cur_exp));
known:negate(cur_exp);
othercases bad_unary(minus)
endcases
@ @<Declare unary action...@>=
procedure negate_dep_list(@!p:pointer);
label exit;
begin loop@+begin negate(value(p));
if info(p)=null then return;
p:=link(p);
end;
exit:end;
@ @<Additional cases of unary operators@>=
not_op: if cur_type<>boolean_type then bad_unary(not_op)
else cur_exp:=true_code+false_code-cur_exp;
@ @d three_sixty_units==23592960 {that's |360*unity|}
@d boolean_reset(#)==if # then cur_exp:=true_code@+else cur_exp:=false_code
@<Additional cases of unary operators@>=
sqrt_op,m_exp_op,m_log_op,sin_d_op,cos_d_op,floor_op,
uniform_deviate,odd_op,char_exists_op:@t@>@;@/
if cur_type<>known then bad_unary(c)
else case c of
sqrt_op:cur_exp:=square_rt(cur_exp);
m_exp_op:cur_exp:=m_exp(cur_exp);
m_log_op:cur_exp:=m_log(cur_exp);
sin_d_op,cos_d_op:begin n_sin_cos((cur_exp mod three_sixty_units)*16);
if c=sin_d_op then cur_exp:=round_fraction(n_sin)
else cur_exp:=round_fraction(n_cos);
end;
floor_op:cur_exp:=floor_scaled(cur_exp);
uniform_deviate:cur_exp:=unif_rand(cur_exp);
odd_op: begin boolean_reset(odd(round_unscaled(cur_exp)));
cur_type:=boolean_type;
end;
char_exists_op:@<Determine if a character has been shipped out@>;
end; {there are no other cases}
@ @<Additional cases of unary operators@>=
angle_op:if nice_pair(cur_exp,cur_type) then
begin p:=value(cur_exp);
x:=n_arg(value(x_part_loc(p)),value(y_part_loc(p)));
if x>=0 then flush_cur_exp((x+8)div 16)
else flush_cur_exp(-((-x+8)div 16));
end
else bad_unary(angle_op);
@ If the current expression is a pair, but the context wants it to
be a path, we call |pair_to_path|.
@<Declare unary action...@>=
procedure pair_to_path;
begin cur_exp:=new_knot; cur_type:=path_type;
end;
@ @<Additional cases of unary operators@>=
x_part,y_part:if (cur_type=pair_type)or(cur_type=transform_type) then
take_part(c)
else if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
xx_part,xy_part,yx_part,yy_part: if cur_type=transform_type then take_part(c)
else if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
red_part,green_part,blue_part: if cur_type=color_type then take_part(c)
else if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
@ In the following procedure, |cur_exp| points to a capsule, which points to
a big node. We want to delete all but one part of the big node.
@<Declare unary action...@>=
procedure take_part(@!c:quarterword);
var @!p:pointer; {the big node}
begin p:=value(cur_exp); value(temp_val):=p; type(temp_val):=cur_type;
link(p):=temp_val; free_node(cur_exp,value_node_size);
make_exp_copy(p+sector_offset[c+x_part_sector-x_part]);
recycle_value(temp_val);
end;
@ @<Initialize table entries...@>=
name_type(temp_val):=capsule;
@ @<Additional cases of unary operators@>=
font_part,text_part,path_part,pen_part,dash_part:
if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
@ @<Declare unary action...@>=
procedure@?scale_edges; forward;@t\2@>@;@/
procedure take_pict_part(@!c:quarterword);
label exit, not_found;
var @!p:pointer; {first graphical object in |cur_exp|}
begin p:=link(dummy_loc(cur_exp));
if p<>null then
begin case c of
x_part,y_part,xx_part,xy_part,yx_part,yy_part:
if type(p)=text_code then flush_cur_exp(text_trans_part(p+c))
else goto not_found;
red_part,green_part,blue_part:
if has_color(p) then flush_cur_exp(obj_color_part(p+c))
else goto not_found;
@<Handle other cases in |take_pict_part| or |goto not_found|@>@;
end; {all cases have been enumerated}
return;
end;
not_found:@<Convert the current expression to a null value appropriate
for |c|@>;
exit:end;
@ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
text_part: if type(p)<>text_code then goto not_found
else begin flush_cur_exp(text_p(p));
add_str_ref(cur_exp);
cur_type:=string_type;
end;
font_part: if type(p)<>text_code then goto not_found
else begin flush_cur_exp(font_name[font_n(p)]);
add_str_ref(cur_exp);
cur_type:=string_type;
end;
path_part:if type(p)=text_code then goto not_found
else if is_stop(p) then confusion("pict")
@:this can't happen pict}{\quad pict@>
else begin flush_cur_exp(copy_path(path_p(p)));
cur_type:=path_type;
end;
pen_part: if not has_pen(p) then goto not_found
else if pen_p(p)=null then goto not_found
else begin flush_cur_exp(copy_pen(pen_p(p)));
cur_type:=pen_type;
end;
dash_part: if type(p)<>stroked_code then goto not_found
else if dash_p(p)=null then goto not_found
else begin add_edge_ref(dash_p(p));@/
se_sf:=dash_scale(p);
se_pic:=dash_p(p);
scale_edges;
flush_cur_exp(se_pic);
cur_type:=picture_type;
end;
@ Since |scale_edges| had to be declared |forward|, it had to be declared as a
parameterless procedure even though it really takes two arguments and updates
one of them. Hence the following globals are needed.
@<Global...@>=
@!se_pic:pointer; {edge header used and updated by |scale_edges|}
@!se_sf:scaled; {the scale factor argument to |scale_edges|}
@ @<Convert the current expression to a null value appropriate...@>=
case c of
text_part,font_part: begin flush_cur_exp("");
cur_type:=string_type;
end;
path_part: begin flush_cur_exp(get_node(knot_node_size));
left_type(cur_exp):=endpoint;
right_type(cur_exp):=endpoint;
link(cur_exp):=cur_exp;
x_coord(cur_exp):=0;
y_coord(cur_exp):=0;
cur_type:=path_type;
end;
pen_part: begin flush_cur_exp(get_pen_circle(0));
cur_type:=pen_type;
end;
dash_part: begin flush_cur_exp(get_node(edge_header_size));
init_edges(cur_exp);
cur_type:=picture_type;
end;
othercases flush_cur_exp(0)
endcases
@ @<Additional cases of unary...@>=
char_op: if cur_type<>known then bad_unary(char_op)
else begin cur_exp:=round_unscaled(cur_exp) mod 256; cur_type:=string_type;
if cur_exp<0 then cur_exp:=cur_exp+256;
end;
decimal: if cur_type<>known then bad_unary(decimal)
else begin old_setting:=selector; selector:=new_string;
print_scaled(cur_exp); cur_exp:=make_string;
selector:=old_setting; cur_type:=string_type;
end;
oct_op,hex_op,ASCII_op: if cur_type<>string_type then bad_unary(c)
else str_to_num(c);
font_size: if cur_type<>string_type then bad_unary(font_size)
else @<Find the design size of the font whose name is |cur_exp|@>;
@ @<Declare unary action...@>=
procedure str_to_num(@!c:quarterword); {converts a string to a number}
var @!n:integer; {accumulator}
@!m:ASCII_code; {current character}
@!k:pool_pointer; {index into |str_pool|}
@!b:8..16; {radix of conversion}
@!bad_char:boolean; {did the string contain an invalid digit?}
begin if c=ASCII_op then
if length(cur_exp)=0 then n:=-1
else n:=so(str_pool[str_start[cur_exp]])
else begin if c=oct_op then b:=8@+else b:=16;
n:=0; bad_char:=false;
for k:=str_start[cur_exp] to str_stop(cur_exp)-1 do
begin m:=so(str_pool[k]);
if (m>="0")and(m<="9") then m:=m-"0"
else if (m>="A")and(m<="F") then m:=m-"A"+10
else if (m>="a")and(m<="f") then m:=m-"a"+10
else begin bad_char:=true; m:=0;
end;
if m>=b then
begin bad_char:=true; m:=0;
end;
if n<32768 div b then n:=n*b+m@+else n:=32767;
end;
@<Give error messages if |bad_char| or |n>=4096|@>;
end;
flush_cur_exp(n*unity);
end;
@ @<Give error messages if |bad_char|...@>=
if bad_char then
begin exp_err("String contains illegal digits");
@.String contains illegal digits@>
if c=oct_op then
help1("I zeroed out characters that weren't in the range 0..7.")
else help1("I zeroed out characters that weren't hex digits.");
put_get_error;
end;
if (n>4095) then
if internal[warning_check]>0 then
begin print_err("Number too large ("); print_int(n); print_char(")");
@.Number too large@>
help2("I have trouble with numbers greater than 4095; watch out.")@/
("(Set warningcheck:=0 to suppress this message.)");
put_get_error;
end
@ The length operation is somewhat unusual in that it applies to a variety
of different types of operands.
@<Additional cases of unary...@>=
length_op: case cur_type of
string_type: flush_cur_exp(length(cur_exp)*unity);
path_type: flush_cur_exp(path_length);
known: cur_exp:=abs(cur_exp);
picture_type: flush_cur_exp(pict_length);
othercases if nice_pair(cur_exp,cur_type) then
flush_cur_exp(pyth_add(value(x_part_loc(value(cur_exp))),@|
value(y_part_loc(value(cur_exp)))))
else bad_unary(c)
endcases;
@ @<Declare unary action...@>=
function path_length:scaled; {computes the length of the current path}
var @!n:scaled; {the path length so far}
@!p:pointer; {traverser}
begin p:=cur_exp;
if left_type(p)=endpoint then n:=-unity@+else n:=0;
repeat p:=link(p); n:=n+unity;
until p=cur_exp;
path_length:=n;
end;
@ @<Declare unary action...@>=
function pict_length:scaled; {counts interior components in picture |cur_exp|}
label found;
var @!n:scaled; {the count so far}
@!p:pointer; {traverser}
begin n:=0;
p:=link(dummy_loc(cur_exp));
if p<>null then
begin if is_start_or_stop(p) then
if skip_1component(p)=null then p:=link(p);
while p<>null do
begin skip_component(p)(goto found);
n:=n+unity;
end;
end;
found:pict_length:=n;
end;
@ The turning number is computed only with respect to a triangular pen whose
@:turning_number_}{\&{turningnumber} primitive@>
vertices are $(0,1)$ and $(\pm{1\over2},0)$. The choice of pen isn't supposed
to matter but rounding error could make a difference if the path has a cusp.
@<Additional cases of unary...@>=
turning_op:if cur_type=pair_type then flush_cur_exp(0)
else if cur_type<>path_type then bad_unary(turning_op)
else if left_type(cur_exp)=endpoint then
flush_cur_exp(0) {not a cyclic path}
else begin cur_exp:=offset_prep(cur_exp,test_pen);
if internal[tracing_specs]>unity then
print_spec(cur_exp,test_pen," (for turningnumber)");
flush_cur_exp(count_turns(cur_exp));
end;
@ @<Declare unary action...@>=
function count_turns(@!c:pointer):scaled;
var @!p:pointer; {a knot in envelope spec |c|}
@!t:integer; {total pen offset changes counted}
begin t:=0; p:=c;
repeat t:=t+info(p)-zero_off;
p:=link(p);
until p=c;
count_turns:=(t div 3)*unity;
end;
@ @d type_test_end== flush_cur_exp(true_code)
else flush_cur_exp(false_code);
cur_type:=boolean_type;
end
@d type_range_end(#)==(cur_type<=#) then type_test_end
@d type_range(#)==begin if (cur_type>=#) and type_range_end
@d type_test(#)==begin if cur_type=# then type_test_end
@<Additional cases of unary operators@>=
boolean_type: type_range(boolean_type)(unknown_boolean);
string_type: type_range(string_type)(unknown_string);
pen_type: type_range(pen_type)(unknown_pen);
path_type: type_range(path_type)(unknown_path);
picture_type: type_range(picture_type)(unknown_picture);
transform_type,color_type,pair_type: type_test(c);
numeric_type: type_range(known)(independent);
known_op,unknown_op: test_known(c);
@ @<Declare unary action procedures@>=
procedure test_known(@!c:quarterword);
label done;
var @!b:true_code..false_code; {is the current expression known?}
@!p,@!q:pointer; {locations in a big node}
begin b:=false_code;
case cur_type of
vacuous,boolean_type,string_type,pen_type,path_type,picture_type,
known: b:=true_code;
transform_type,color_type,pair_type:begin p:=value(cur_exp);
q:=p+big_node_size[cur_type];
repeat q:=q-2;
if type(q)<>known then goto done;
until q=p;
b:=true_code;
done: end;
othercases do_nothing
endcases;
if c=known_op then flush_cur_exp(b)
else flush_cur_exp(true_code+false_code-b);
cur_type:=boolean_type;
end;
@ @<Additional cases of unary operators@>=
cycle_op: begin if cur_type<>path_type then flush_cur_exp(false_code)
else if left_type(cur_exp)<>endpoint then flush_cur_exp(true_code)
else flush_cur_exp(false_code);
cur_type:=boolean_type;
end;
@ @<Additional cases of unary operators@>=
arc_length: begin if cur_type=pair_type then pair_to_path;
if cur_type<>path_type then bad_unary(arc_length)
else flush_cur_exp(get_arc_length(cur_exp));
end;
@ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
object |type|.
@^data structure assumptions@>
@<Additional cases of unary operators@>=
filled_op,stroked_op,textual_op,clipped_op,bounded_op:
begin if cur_type<>picture_type then flush_cur_exp(false_code)
else if link(dummy_loc(cur_exp))=null then flush_cur_exp(false_code)
else if type(link(dummy_loc(cur_exp)))=c+fill_code-filled_op then
flush_cur_exp(true_code)
else flush_cur_exp(false_code);
cur_type:=boolean_type;
end;
@ @<Additional cases of unary operators@>=
make_pen_op: begin if cur_type=pair_type then pair_to_path;
if cur_type<>path_type then bad_unary(make_pen_op)
else begin cur_type:=pen_type;
cur_exp:=make_pen(cur_exp,true);
end;
end;
make_path_op: if cur_type<>pen_type then bad_unary(make_path_op)
else begin cur_type:=path_type;
make_path(cur_exp);
end;
reverse: if cur_type=path_type then
begin p:=htap_ypoc(cur_exp);
if right_type(p)=endpoint then p:=link(p);
toss_knot_list(cur_exp); cur_exp:=p;
end
else if cur_type=pair_type then pair_to_path
else bad_unary(reverse);
@ The |pair_value| routine changes the current expression to a
given ordered pair of values.
@<Declare unary action procedures@>=
procedure pair_value(@!x,@!y:scaled);
var @!p:pointer; {a pair node}
begin p:=get_node(value_node_size); flush_cur_exp(p); cur_type:=pair_type;
type(p):=pair_type; name_type(p):=capsule; init_big_node(p);
p:=value(p);@/
type(x_part_loc(p)):=known; value(x_part_loc(p)):=x;@/
type(y_part_loc(p)):=known; value(y_part_loc(p)):=y;@/
end;
@ @<Additional cases of unary operators@>=
ll_corner_op: if not get_cur_bbox then bad_unary(ll_corner_op)
else pair_value(minx,miny);
lr_corner_op: if not get_cur_bbox then bad_unary(lr_corner_op)
else pair_value(maxx,miny);
ul_corner_op: if not get_cur_bbox then bad_unary(ul_corner_op)
else pair_value(minx,maxy);
ur_corner_op: if not get_cur_bbox then bad_unary(ur_corner_op)
else pair_value(maxx,maxy);
@ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
box of the current expression. The boolean result is |false| if the expression
has the wrong type.
@<Declare unary action procedures@>=
function get_cur_bbox: boolean;
label exit;
begin case cur_type of
picture_type: begin set_bbox(cur_exp,true);
if minx_val(cur_exp)>maxx_val(cur_exp) then
begin minx:=0; maxx:=0; miny:=0; maxy:=0;
end
else begin minx:=minx_val(cur_exp);
maxx:=maxx_val(cur_exp);
miny:=miny_val(cur_exp);
maxy:=maxy_val(cur_exp);
end;
end;
path_type: path_bbox(cur_exp);
pen_type: pen_bbox(cur_exp);
othercases begin get_cur_bbox:=false;
return;
end
endcases;@/
get_cur_bbox:=true;
exit:end;
@ @<Additional cases of unary operators@>=
read_from_op,close_from_op: if cur_type<>string_type then bad_unary(c)
else do_read_or_close(c);
@ Here is a routine that interprets |cur_exp| as a file name and tries to read
a line from the file or to close the file.
@d close_file=46 {go here when closing the file}
@<Declare unary action procedures@>=
procedure do_read_or_close(@!c:quarterword);
label exit, continue, found, not_found, close_file;
var @!n,@!n0:readf_index; {indices for searching |rd_fname|}
begin @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
call |start_read_input| and |goto found| or |not_found|@>;
begin_file_reading;
name:=is_read;
if input_ln(rd_file[n],true) then goto found;
end_file_reading;
not_found:@<Record the end of file and set |cur_exp| to a dummy value@>;
return;
close_file:flush_cur_exp(0); cur_type:=vacuous; return;
found:flush_cur_exp(0);
finish_read;
exit:end;
@ Free slots in the |rd_file| and |rd_fname| arrays are marked with 0's in
|rd_fname|.
@<Find the |n| where |rd_fname[n]=cur_exp|...@>=
n:=read_files;
n0:=read_files;
repeat
continue:if n>0 then decr(n)
else if c=close_from_op then goto close_file
else @<Insert |cur_exp| at index |n0|, then call |start_read_input| and
|goto found| or |not_found|@>;
if rd_fname[n]=0 then
begin n0:=n; goto continue;
end;
until str_vs_str(cur_exp,rd_fname[n])=0;
if c=close_from_op then
begin a_close(rd_file[n]); goto not_found; end
@ @<Insert |cur_exp| at index |n0|, then call |start_read_input| and...@>=
begin if n0=read_files then
if read_files<max_read_files then incr(read_files)
else overflow("readfrom files",max_read_files);
n:=n0;
if start_read_input(cur_exp,n) then goto found @+else goto not_found;
end
@ @<Record the end of file and set |cur_exp| to a dummy value@>=
delete_str_ref(rd_fname[n]);
rd_fname[n]:=0;
if n=read_files-1 then read_files:=n;
if c=close_from_op then goto close_file;
@<Make sure |eof_line| is initialized@>;
flush_cur_exp(eof_line);
cur_type:=string_type
@ Since the |eof_line| string contains a non-printable character, it must be
initialized at run time and stored in a global variable.
@<Glob...@>=
eof_line:str_number; {string denoting end-of-file or 0 if uninitialized}
@ @<Set init...@>=
eof_line:=0;
@ @<Make sure |eof_line| is initialized@>=
if eof_line=0 then
begin append_char(0);
eof_line:=make_string;
str_ref[eof_line]:=max_str_ref;
end
@ Finally, we have the operations that combine a capsule~|p|
with the current expression.
@p @t\4@>@<Declare binary action procedures@>@;
procedure do_binary(@!p:pointer;@!c:quarterword);
label done,done1,exit;
var @!q,@!r,@!rr:pointer; {for list manipulation}
@!old_p,@!old_exp:pointer; {capsules to recycle}
@!v:integer; {for numeric manipulation}
begin check_arith;
if internal[tracing_commands]>two then
@<Trace the current binary operation@>;
@<Sidestep |independent| cases in capsule |p|@>;
@<Sidestep |independent| cases in the current expression@>;
case c of
plus,minus:@<Add or subtract the current expression from |p|@>;
@t\4@>@<Additional cases of binary operators@>@;
end; {there are no other cases}
recycle_value(p); free_node(p,value_node_size); {|return| to avoid this}
exit:check_arith; @<Recycle any sidestepped |independent| capsules@>;
end;
@ @<Declare binary action...@>=
procedure bad_binary(@!p:pointer;@!c:quarterword);
begin disp_err(p,"");
exp_err("Not implemented: ");
@.Not implemented...@>
if c>=min_of then print_op(c);
print_known_or_unknown_type(type(p),p);
if c>=min_of then print("of")@+else print_op(c);
print_known_or_unknown_type(cur_type,cur_exp);@/
help3("I'm afraid I don't know how to apply that operation to that")@/
("combination of types. Continue, and I'll return the second")@/
("argument (see above) as the result of the operation.");
put_get_error;
end;
@ @<Trace the current binary operation@>=
begin begin_diagnostic; print_nl("{(");
print_exp(p,0); {show the operand, but not verbosely}
print_char(")"); print_op(c); print_char("(");@/
print_exp(null,0); print(")}"); end_diagnostic(false);
end
@ Several of the binary operations are potentially complicated by the
fact that |independent| values can sneak into capsules. For example,
we've seen an instance of this difficulty in the unary operation
of negation. In order to reduce the number of cases that need to be
handled, we first change the two operands (if necessary)
to rid them of |independent| components. The original operands are
put into capsules called |old_p| and |old_exp|, which will be
recycled after the binary operation has been safely carried out.
@<Recycle any sidestepped |independent| capsules@>=
if old_p<>null then
begin recycle_value(old_p); free_node(old_p,value_node_size);
end;
if old_exp<>null then
begin recycle_value(old_exp); free_node(old_exp,value_node_size);
end
@ A big node is considered to be ``tarnished'' if it contains at least one
independent component. We will define a simple function called `|tarnished|'
that returns |null| if and only if its argument is not tarnished.
@<Sidestep |independent| cases in capsule |p|@>=
case type(p) of
transform_type,color_type,pair_type: old_p:=tarnished(p);
independent: old_p:=void;
othercases old_p:=null
endcases;
if old_p<>null then
begin q:=stash_cur_exp; old_p:=p; make_exp_copy(old_p);
p:=stash_cur_exp; unstash_cur_exp(q);
end;
@ @<Sidestep |independent| cases in the current expression@>=
case cur_type of
transform_type,color_type,pair_type:old_exp:=tarnished(cur_exp);
independent:old_exp:=void;
othercases old_exp:=null
endcases;
if old_exp<>null then
begin old_exp:=cur_exp; make_exp_copy(old_exp);
end
@ @<Declare binary action...@>=
function tarnished(@!p:pointer):pointer;
label exit;
var @!q:pointer; {beginning of the big node}
@!r:pointer; {current position in the big node}
begin q:=value(p); r:=q+big_node_size[type(p)];
repeat r:=r-2;
if type(r)=independent then
begin tarnished:=void; return;
end;
until r=q;
tarnished:=null;
exit:end;
@ @<Add or subtract the current expression from |p|@>=
if (cur_type<color_type)or(type(p)<color_type) then bad_binary(p,c)
else if (cur_type>pair_type)and(type(p)>pair_type) then
add_or_subtract(p,null,c)
else if cur_type<>type(p) then bad_binary(p,c)
else begin q:=value(p); r:=value(cur_exp);
rr:=r+big_node_size[cur_type];
while r<rr do
begin add_or_subtract(q,r,c);
q:=q+2; r:=r+2;
end;
end
@ The first argument to |add_or_subtract| is the location of a value node
in a capsule or pair node that will soon be recycled. The second argument
is either a location within a pair or transform node of |cur_exp|,
or it is null (which means that |cur_exp| itself should be the second
argument). The third argument is either |plus| or |minus|.
The sum or difference of the numeric quantities will replace the second
operand. Arithmetic overflow may go undetected; users aren't supposed to
be monkeying around with really big values.
@<Declare binary action...@>=
@t\4@>@<Declare the procedure called |dep_finish|@>@;
procedure add_or_subtract(@!p,@!q:pointer;@!c:quarterword);
label done,exit;
var @!s,@!t:small_number; {operand types}
@!r:pointer; {list traverser}
@!v:integer; {second operand value}
begin if q=null then
begin t:=cur_type;
if t<dependent then v:=cur_exp@+else v:=dep_list(cur_exp);
end
else begin t:=type(q);
if t<dependent then v:=value(q)@+else v:=dep_list(q);
end;
if t=known then
begin if c=minus then negate(v);
if type(p)=known then
begin v:=slow_add(value(p),v);
if q=null then cur_exp:=v@+else value(q):=v;
return;
end;
@<Add a known value to the constant term of |dep_list(p)|@>;
end
else begin if c=minus then negate_dep_list(v);
@<Add operand |p| to the dependency list |v|@>;
end;
exit:end;
@ @<Add a known value to the constant term of |dep_list(p)|@>=
r:=dep_list(p);
while info(r)<>null do r:=link(r);
value(r):=slow_add(value(r),v);
if q=null then
begin q:=get_node(value_node_size); cur_exp:=q; cur_type:=type(p);
name_type(q):=capsule;
end;
dep_list(q):=dep_list(p); type(q):=type(p);
prev_dep(q):=prev_dep(p); link(prev_dep(p)):=q;
type(p):=known; {this will keep the recycler from collecting non-garbage}
@ We prefer |dependent| lists to |proto_dependent| ones, because it is
nice to retain the extra accuracy of |fraction| coefficients.
But we have to handle both kinds, and mixtures too.
@<Add operand |p| to the dependency list |v|@>=
if type(p)=known then
@<Add the known |value(p)| to the constant term of |v|@>
else begin s:=type(p); r:=dep_list(p);
if t=dependent then
begin if s=dependent then
if max_coef(r)+max_coef(v)<coef_bound then
begin v:=p_plus_q(v,r,dependent); goto done;
end; {|fix_needed| will necessarily be false}
t:=proto_dependent; v:=p_over_v(v,unity,dependent,proto_dependent);
end;
if s=proto_dependent then v:=p_plus_q(v,r,proto_dependent)
else v:=p_plus_fq(v,unity,r,proto_dependent,dependent);
done: @<Output the answer, |v| (which might have become |known|)@>;
end
@ @<Add the known |value(p)| to the constant term of |v|@>=
begin while info(v)<>null do v:=link(v);
value(v):=slow_add(value(p),value(v));
end
@ @<Output the answer, |v| (which might have become |known|)@>=
if q<>null then dep_finish(v,q,t)
else begin cur_type:=t; dep_finish(v,null,t);
end
@ Here's the current situation: The dependency list |v| of type |t|
should either be put into the current expression (if |q=null|) or
into location |q| within a pair node (otherwise). The destination (|cur_exp|
or |q|) formerly held a dependency list with the same
final pointer as the list |v|.
@<Declare the procedure called |dep_finish|@>=
procedure dep_finish(@!v,@!q:pointer;@!t:small_number);
var @!p:pointer; {the destination}
@!vv:scaled; {the value, if it is |known|}
begin if q=null then p:=cur_exp@+else p:=q;
dep_list(p):=v; type(p):=t;
if info(v)=null then
begin vv:=value(v);
if q=null then flush_cur_exp(vv)
else begin recycle_value(p); type(q):=known; value(q):=vv;
end;
end
else if q=null then cur_type:=t;
if fix_needed then fix_dependencies;
end;
@ Let's turn now to the six basic relations of comparison.
@<Additional cases of binary operators@>=
less_than,less_or_equal,greater_than,greater_or_equal,equal_to,unequal_to:
begin check_arith; {at this point |arith_error| should be |false|?}
if (cur_type>pair_type)and(type(p)>pair_type) then
add_or_subtract(p,null,minus) {|cur_exp:=(p)-cur_exp|}
else if cur_type<>type(p) then
begin bad_binary(p,c); goto done;
end
else if cur_type=string_type then
flush_cur_exp(str_vs_str(value(p),cur_exp))
else if (cur_type=unknown_string)or(cur_type=unknown_boolean) then
@<Check if unknowns have been equated@>
else if (cur_type<=pair_type)and(cur_type>=transform_type) then
@<Reduce comparison of big nodes to comparison of scalars@>
else if cur_type=boolean_type then flush_cur_exp(cur_exp-value(p))
else begin bad_binary(p,c); goto done;
end;
@<Compare the current expression with zero@>;
done: arith_error:=false; {ignore overflow in comparisons}
end;
@ @<Compare the current expression with zero@>=
if cur_type<>known then
begin if cur_type<known then
begin disp_err(p,"");
help1("The quantities shown above have not been equated.")@/
end
else help2("Oh dear. I can't decide if the expression above is positive,")@/
("negative, or zero. So this comparison test won't be `true'.");
exp_err("Unknown relation will be considered false");
@.Unknown relation...@>
put_get_flush_error(false_code);
end
else case c of
less_than: boolean_reset(cur_exp<0);
less_or_equal: boolean_reset(cur_exp<=0);
greater_than: boolean_reset(cur_exp>0);
greater_or_equal: boolean_reset(cur_exp>=0);
equal_to: boolean_reset(cur_exp=0);
unequal_to: boolean_reset(cur_exp<>0);
end; {there are no other cases}
cur_type:=boolean_type
@ When two unknown strings are in the same ring, we know that they are
equal. Otherwise, we don't know whether they are equal or not, so we
make no change.
@<Check if unknowns have been equated@>=
begin q:=value(cur_exp);
while (q<>cur_exp)and(q<>p) do q:=value(q);
if q=p then flush_cur_exp(0);
end
@ @<Reduce comparison of big nodes to comparison of scalars@>=
begin q:=value(p); r:=value(cur_exp);
rr:=r+big_node_size[cur_type]-2;
loop@+ begin add_or_subtract(q,r,minus);
if type(r)<>known then goto done1;
if value(r)<>0 then goto done1;
if r=rr then goto done1;
q:=q+2; r:=r+2;
end;
done1:take_part(name_type(r)+x_part-x_part_sector);
end
@ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
@<Additional cases of binary operators@>=
and_op,or_op: if (type(p)<>boolean_type)or(cur_type<>boolean_type) then
bad_binary(p,c)
else if value(p)=c+false_code-and_op then cur_exp:=value(p);
@ @<Additional cases of binary operators@>=
times: if (cur_type<color_type)or(type(p)<color_type) then bad_binary(p,times)
else if (cur_type=known)or(type(p)=known) then
@<Multiply when at least one operand is known@>
else if (nice_color_or_pair(p,type(p))and(cur_type>pair_type))
or(nice_color_or_pair(cur_exp,cur_type)and(type(p)>pair_type)) then
begin hard_times(p); return;
end
else bad_binary(p,times);
@ @<Multiply when at least one operand is known@>=
begin if type(p)=known then
begin v:=value(p); free_node(p,value_node_size);
end
else begin v:=cur_exp; unstash_cur_exp(p);
end;
if cur_type=known then cur_exp:=take_scaled(cur_exp,v)
else if (cur_type=pair_type)or(cur_type=color_type) then
begin p:=value(cur_exp)+big_node_size[cur_type];
repeat p:=p-2;
dep_mult(p,v,true);
until p=value(cur_exp);
end
else dep_mult(null,v,true);
return;
end
@ @<Declare binary action...@>=
procedure dep_mult(@!p:pointer;@!v:integer;@!v_is_scaled:boolean);
label exit;
var @!q:pointer; {the dependency list being multiplied by |v|}
@!s,@!t:small_number; {its type, before and after}
begin if p=null then q:=cur_exp
else if type(p)<>known then q:=p
else begin if v_is_scaled then value(p):=take_scaled(value(p),v)
else value(p):=take_fraction(value(p),v);
return;
end;
t:=type(q); q:=dep_list(q); s:=t;
if t=dependent then if v_is_scaled then
if ab_vs_cd(max_coef(q),abs(v),coef_bound-1,unity)>=0 then t:=proto_dependent;
q:=p_times_v(q,v,s,t,v_is_scaled); dep_finish(q,p,t);
exit:end;
@ Here is a routine that is similar to |times|; but it is invoked only
internally, when |v| is a |fraction| whose magnitude is at most~1,
and when |cur_type>=color_type|.
@p procedure frac_mult(@!n,@!d:scaled); {multiplies |cur_exp| by |n/d|}
var @!p:pointer; {a pair node}
@!old_exp:pointer; {a capsule to recycle}
@!v:fraction; {|n/d|}
begin if internal[tracing_commands]>two then
@<Trace the fraction multiplication@>;
case cur_type of
transform_type,color_type,pair_type:old_exp:=tarnished(cur_exp);
independent:old_exp:=void;
othercases old_exp:=null
endcases;
if old_exp<>null then
begin old_exp:=cur_exp; make_exp_copy(old_exp);
end;
v:=make_fraction(n,d);
if cur_type=known then cur_exp:=take_fraction(cur_exp,v)
else if cur_type<=pair_type then
begin p:=value(cur_exp)+big_node_size[cur_type];
repeat p:=p-2;
dep_mult(p,v,false);
until p=value(cur_exp);
end
else dep_mult(null,v,false);
if old_exp<>null then
begin recycle_value(old_exp); free_node(old_exp,value_node_size);
end
end;
@ @<Trace the fraction multiplication@>=
begin begin_diagnostic; print_nl("{("); print_scaled(n); print_char("/");
print_scaled(d); print(")*("); print_exp(null,0); print(")}");
end_diagnostic(false);
end
@ The |hard_times| routine multiplies a nice color or pair by a dependency list.
@<Declare binary action procedures@>=
procedure hard_times(@!p:pointer);
label done;
var @!q:pointer; {a copy of the dependent variable |p|}
@!r:pointer; {a component of the big node for the nice color or pair}
@!v:scaled; {the known value for |r|}
begin if type(p)<=pair_type then
begin q:=stash_cur_exp; unstash_cur_exp(p); p:=q;
end; {now |cur_type=pair_type| or |cur_type=color_type|}
r:=value(cur_exp)+big_node_size[cur_type];
loop @+begin r:=r-2;
v:=value(r);
type(r):=type(p);
if r=value(cur_exp) then goto done;
new_dep(r,copy_dep_list(dep_list(p)));
dep_mult(r,v,true);
end;
done:mem[value_loc(r)]:=mem[value_loc(p)];
link(prev_dep(p)):=r;
free_node(p,value_node_size);
dep_mult(r,v,true);
end;
@ @<Additional cases of binary operators@>=
over: if (cur_type<>known)or(type(p)<color_type) then bad_binary(p,over)
else begin v:=cur_exp; unstash_cur_exp(p);
if v=0 then @<Squeal about division by zero@>
else begin if cur_type=known then cur_exp:=make_scaled(cur_exp,v)
else if cur_type<=pair_type then
begin p:=value(cur_exp)+big_node_size[cur_type];
repeat p:=p-2;
dep_div(p,v);
until p=value(cur_exp);
end
else dep_div(null,v);
end;
return;
end;
@ @<Declare binary action...@>=
procedure dep_div(@!p:pointer;@!v:scaled);
label exit;
var @!q:pointer; {the dependency list being divided by |v|}
@!s,@!t:small_number; {its type, before and after}
begin if p=null then q:=cur_exp
else if type(p)<>known then q:=p
else begin value(p):=make_scaled(value(p),v); return;
end;
t:=type(q); q:=dep_list(q); s:=t;
if t=dependent then
if ab_vs_cd(max_coef(q),unity,coef_bound-1,abs(v))>=0 then t:=proto_dependent;
q:=p_over_v(q,v,s,t); dep_finish(q,p,t);
exit:end;
@ @<Squeal about division by zero@>=
begin exp_err("Division by zero");
@.Division by zero@>
help2("You're trying to divide the quantity shown above the error")@/
("message by zero. I'm going to divide it by one instead.");
put_get_error;
end
@ @<Additional cases of binary operators@>=
pythag_add,pythag_sub: if (cur_type=known)and(type(p)=known) then
if c=pythag_add then cur_exp:=pyth_add(value(p),cur_exp)
else cur_exp:=pyth_sub(value(p),cur_exp)
else bad_binary(p,c);
@ The next few sections of the program deal with affine transformations
of coordinate data.
@<Additional cases of binary operators@>=
rotated_by,slanted_by,scaled_by,shifted_by,transformed_by,
x_scaled,y_scaled,z_scaled: @t@>@;@/
if type(p)=path_type then
begin path_trans(c)(p); return;
end
else if type(p)=pen_type then
begin pen_trans(c)(p);
cur_exp:=convex_hull(cur_exp); {rounding error could destroy convexity}
return;
end
else if (type(p)=pair_type)or(type(p)=transform_type) then big_trans(p,c)
else if type(p)=picture_type then
begin do_edges_trans(p,c); return;
end
else bad_binary(p,c);
@ Let |c| be one of the eight transform operators. The procedure call
|set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
|c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
change at all if |c=transformed_by|.)
Then, if all components of the resulting transform are |known|, they are
moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
and |cur_exp| is changed to the known value zero.
@<Declare binary action...@>=
procedure set_up_trans(@!c:quarterword);
label done,exit;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin if (c<>transformed_by)or(cur_type<>transform_type) then
@<Put the current transform into |cur_exp|@>;
@<If the current transform is entirely known, stash it in global variables;
otherwise |return|@>;
exit:end;
@ @<Glob...@>=
@!txx,@!txy,@!tyx,@!tyy,@!tx,@!ty:scaled; {current transform coefficients}
@ @<Put the current transform...@>=
begin p:=stash_cur_exp; cur_exp:=id_transform; cur_type:=transform_type;
q:=value(cur_exp);
case c of
@<For each of the eight cases, change the relevant fields of |cur_exp|
and |goto done|;
but do nothing if capsule |p| doesn't have the appropriate type@>@;
end; {there are no other cases}
disp_err(p,"Improper transformation argument");
@.Improper transformation argument@>
help3("The expression shown above has the wrong type,")@/
("so I can't transform anything using it.")@/
("Proceed, and I'll omit the transformation.");
put_get_error;
done: recycle_value(p); free_node(p,value_node_size);
end
@ @<If the current transform is entirely known, ...@>=
q:=value(cur_exp); r:=q+transform_node_size;
repeat r:=r-2;
if type(r)<>known then return;
until r=q;
txx:=value(xx_part_loc(q));
txy:=value(xy_part_loc(q));
tyx:=value(yx_part_loc(q));
tyy:=value(yy_part_loc(q));
tx:=value(x_part_loc(q));
ty:=value(y_part_loc(q));
flush_cur_exp(0)
@ @<For each of the eight cases...@>=
rotated_by:if type(p)=known then
@<Install sines and cosines, then |goto done|@>;
slanted_by:if type(p)>pair_type then
begin install(xy_part_loc(q),p); goto done;
end;
scaled_by:if type(p)>pair_type then
begin install(xx_part_loc(q),p); install(yy_part_loc(q),p); goto done;
end;
shifted_by:if type(p)=pair_type then
begin r:=value(p); install(x_part_loc(q),x_part_loc(r));
install(y_part_loc(q),y_part_loc(r)); goto done;
end;
x_scaled:if type(p)>pair_type then
begin install(xx_part_loc(q),p); goto done;
end;
y_scaled:if type(p)>pair_type then
begin install(yy_part_loc(q),p); goto done;
end;
z_scaled:if type(p)=pair_type then
@<Install a complex multiplier, then |goto done|@>;
transformed_by:do_nothing;
@ @<Install sines and cosines, then |goto done|@>=
begin n_sin_cos((value(p) mod three_sixty_units)*16);
value(xx_part_loc(q)):=round_fraction(n_cos);
value(yx_part_loc(q)):=round_fraction(n_sin);
value(xy_part_loc(q)):=-value(yx_part_loc(q));
value(yy_part_loc(q)):=value(xx_part_loc(q));
goto done;
end
@ @<Install a complex multiplier, then |goto done|@>=
begin r:=value(p);
install(xx_part_loc(q),x_part_loc(r));
install(yy_part_loc(q),x_part_loc(r));
install(yx_part_loc(q),y_part_loc(r));
if type(y_part_loc(r))=known then negate(value(y_part_loc(r)))
else negate_dep_list(dep_list(y_part_loc(r)));
install(xy_part_loc(q),y_part_loc(r));
goto done;
end
@ Procedure |set_up_known_trans| is like |set_up_trans|, but it
insists that the transformation be entirely known.
@<Declare binary action...@>=
procedure set_up_known_trans(@!c:quarterword);
begin set_up_trans(c);
if cur_type<>known then
begin exp_err("Transform components aren't all known");
@.Transform components...@>
help3("I'm unable to apply a partially specified transformation")@/
("except to a fully known pair or transform.")@/
("Proceed, and I'll omit the transformation.");
put_get_flush_error(0);
txx:=unity; txy:=0; tyx:=0; tyy:=unity; tx:=0; ty:=0;
end;
end;
@ Here's a procedure that applies the transform |txx..ty| to a pair of
coordinates in locations |p| and~|q|.
@<Declare binary action...@>=
procedure trans(@!p,@!q:pointer);
var @!v:scaled; {the new |x| value}
begin v:=take_scaled(mem[p].sc,txx)+take_scaled(mem[q].sc,txy)+tx;
mem[q].sc:=take_scaled(mem[p].sc,tyx)+take_scaled(mem[q].sc,tyy)+ty;
mem[p].sc:=v;
end;
@ The simplest transformation procedure applies a transform to all
coordinates of a path. The |path_trans(c)(p)| macro applies
a transformation defined by |cur_exp| and the transform operator |c|
to the path~|p|.
@d path_trans(#)==begin set_up_known_trans(#); path_trans_end
@d path_trans_end(#)==unstash_cur_exp(#); do_path_trans(cur_exp); end
@<Declare binary action...@>=
procedure do_path_trans(@!p:pointer);
label exit;
var @!q:pointer; {list traverser}
begin q:=p;
repeat
if left_type(q)<>endpoint then trans(q+3,q+4); {that's |left_x| and |left_y|}
trans(q+1,q+2); {that's |x_coord| and |y_coord|}
if right_type(q)<>endpoint then trans(q+5,q+6); {that's |right_x| and |right_y|}
@^data structure assumptions@>
q:=link(q);
until q=p;
exit:end;
@ Transforming a pen is very similar, except that there are no |left_type|
and |right_type| fields.
@d pen_trans(#)==begin set_up_known_trans(#); pen_trans_end
@d pen_trans_end(#)==unstash_cur_exp(#); do_pen_trans(cur_exp); end
@<Declare binary action...@>=
procedure do_pen_trans(@!p:pointer);
label exit;
var @!q:pointer; {list traverser}
begin if pen_is_elliptical(p) then
begin trans(p+3,p+4); {that's |left_x| and |left_y|}
trans(p+5,p+6); {that's |right_x| and |right_y|}
end;
q:=p;
repeat
trans(q+1,q+2); {that's |x_coord| and |y_coord|}
@^data structure assumptions@>
q:=link(q);
until q=p;
exit:end;
@ The next transformation procedure applies to edge structures. It will do
any transformation, but the results may be substandard if the picture contains
text that uses downloaded bitmap fonts. The binary action procedure is
|do_edges_trans|, but we also need a function that just scales a picture.
That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
should be thought of as procedures that update an edge structure |h|, except
that they have to return a (possibly new) structure because of the need to call
|private_edges|.
@<Declare binary action...@>=
function edges_trans(@!h:pointer):pointer;
label done1;
var @!q:pointer; {the object being transformed}
@!r,@!s:pointer; {for list manipulation}
@!sx,@!sy:scaled; {saved transformation parameters}
@!sqdet:scaled; {square root of determinant for |dash_scale|}
@!sgndet:integer; {sign of the determinant}
@!v:scaled; {a temporary value}
begin h:=private_edges(h);@/
sqdet:=sqrt_det(txx,txy,tyx,tyy);
sgndet:=ab_vs_cd(txx,tyy,txy,tyx);
if dash_list(h)<>null_dash then
@<Try to transform the dash list of |h|@>;
@<Make the bounding box of |h| unknown if it can't be updated properly
without scanning the whole structure@>;
q:=link(dummy_loc(h));
while q<>null do
begin @<Transform graphical object |q|@>;@/
q:=link(q);
end;
edges_trans:=h;
end;
@#
procedure do_edges_trans(@!p:pointer;@!c:quarterword);
begin set_up_known_trans(c);
value(p):=edges_trans(value(p));
unstash_cur_exp(p);
end;
@#
procedure scale_edges;
begin txx:=se_sf; tyy:=se_sf;
txy:=0; tyx:=0; tx:=0; ty:=0;
se_pic:=edges_trans(se_pic);
end;
@ @<Try to transform the dash list of |h|@>=
if (txy<>0)or(tyx<>0)or(ty<>0)or(abs(txx)<>abs(tyy)) then
flush_dash_list(h)
else begin if txx<0 then @<Reverse the dash list of |h|@>;
@<Scale the dash list by |txx| and shift it by |tx|@>;
dash_y(h):=take_scaled(dash_y(h),abs(tyy));
end
@ @<Reverse the dash list of |h|@>=
begin r:=dash_list(h);
dash_list(h):=null_dash;
while r<>null_dash do
begin s:=r; r:=link(r);@/
v:=start_x(s); start_x(s):=stop_x(s); stop_x(s):=v;@/
link(s):=dash_list(h);
dash_list(h):=s;
end;
end
@ @<Scale the dash list by |txx| and shift it by |tx|@>=
r:=dash_list(h);
while r<>null_dash do
begin start_x(r):=take_scaled(start_x(r),txx)+tx;
stop_x(r):=take_scaled(stop_x(r),txx)+tx;@/
r:=link(r);
end
@ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
if (txx=0)and(tyy=0) then
@<Swap the $x$ and $y$ parameters in the bounding box of |h|@>
else if (txy<>0)or(tyx<>0) then
begin init_bbox(h);
goto done1;
end;
if minx_val(h)<=maxx_val(h) then
@<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
|(tx,ty)|@>;
done1:
@ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
begin v:=minx_val(h); minx_val(h):=miny_val(h); miny_val(h):=v;@/
v:=maxx_val(h); maxx_val(h):=maxy_val(h); maxy_val(h):=v;
end
@ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
sum is similar.
@<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
begin minx_val(h):=take_scaled(minx_val(h),txx+txy)+tx;@/
maxx_val(h):=take_scaled(maxx_val(h),txx+txy)+tx;@/
miny_val(h):=take_scaled(miny_val(h),tyx+tyy)+ty;@/
maxy_val(h):=take_scaled(maxy_val(h),tyx+tyy)+ty;@/
if txx+txy<0 then
begin v:=minx_val(h); minx_val(h):=maxx_val(h); maxx_val(h):=v;
end;
if tyx+tyy<0 then
begin v:=miny_val(h); miny_val(h):=maxy_val(h); maxy_val(h):=v;
end;
end
@ Now we ready for the main task of transforming the graphical objects in edge
structure~|h|.
@<Transform graphical object |q|@>=
case type(q) of
fill_code,stroked_code: begin
do_path_trans(path_p(q));
@<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
end;
start_clip_code,start_bounds_code: do_path_trans(path_p(q));
text_code:begin r:=text_tx_loc(q);
@<Transform the compact transformation starting at |r|@>;
end;
stop_clip_code,stop_bounds_code: do_nothing;
end {there are no other cases}
@ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
since the \ps\ output procedures will try to compensate for the transformation
we are applying to |pen_p(q)|. Since this compensation is based on the square
root of the determinant, |sqdet| is the appropriate factor.
@<Transform |pen_p(q)|, making sure...@>=
if pen_p(q)<>null then
begin sx:=tx; sy:=ty;
tx:=0; ty:=0;@/
do_pen_trans(pen_p(q));
if ((type(q)=stroked_code)and(dash_p(q)<>null)) then
dash_scale(q):=take_scaled(dash_scale(q),sqdet);
if not pen_is_elliptical(pen_p(q)) then
if sgndet<0 then
pen_p(q):=make_pen(copy_path(pen_p(q)),true); {this unreverses the pen}
tx:=sx; ty:=sy;
end
@ This uses the fact that transformations are stored in the order
|(tx,ty,txx,txy,tyx,tyy)|.
@^data structure assumptions@>
@<Transform the compact transformation starting at |r|@>=
trans(r,r+1);
sx:=tx; sy:=ty;
tx:=0; ty:=0;
trans(r+2,r+4);
trans(r+3,r+5);
tx:=sx; ty:=sy
@ The hard cases of transformation occur when big nodes are involved,
and when some of their components are unknown.
@<Declare binary action...@>=
@t\4@>@<Declare subroutines needed by |big_trans|@>@;
procedure big_trans(@!p:pointer;@!c:quarterword);
label exit;
var @!q,@!r,@!pp,@!qq:pointer; {list manipulation registers}
@!s:small_number; {size of a big node}
begin s:=big_node_size[type(p)]; q:=value(p); r:=q+s;
repeat r:=r-2;
if type(r)<>known then @<Transform an unknown big node and |return|@>;
until r=q;
@<Transform a known big node@>;
exit:end; {node |p| will now be recycled by |do_binary|}
@ @<Transform an unknown big node and |return|@>=
begin set_up_known_trans(c); make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
begin bilin1(yy_part_loc(r),tyy,xy_part_loc(q),tyx,0);
bilin1(yx_part_loc(r),tyy,xx_part_loc(q),tyx,0);
bilin1(xy_part_loc(r),txx,yy_part_loc(q),txy,0);
bilin1(xx_part_loc(r),txx,yx_part_loc(q),txy,0);
end;
bilin1(y_part_loc(r),tyy,x_part_loc(q),tyx,ty);
bilin1(x_part_loc(r),txx,y_part_loc(q),txy,tx);
return;
end
@ Let |p| point to a two-word value field inside a big node of |cur_exp|,
and let |q| point to a another value field. The |bilin1| procedure
replaces |p| by $p\cdot t+q\cdot u+\delta$.
@<Declare subroutines needed by |big_trans|@>=
procedure bilin1(@!p:pointer;@!t:scaled;@!q:pointer;@!u,@!delta:scaled);
var @!r:pointer; {list traverser}
begin if t<>unity then dep_mult(p,t,true);
if u<>0 then
if type(q)=known then delta:=delta+take_scaled(value(q),u)
else begin @<Ensure that |type(p)=proto_dependent|@>;
dep_list(p):=p_plus_fq(dep_list(p),u,dep_list(q),proto_dependent,type(q));
end;
if type(p)=known then value(p):=value(p)+delta
else begin r:=dep_list(p);
while info(r)<>null do r:=link(r);
delta:=value(r)+delta;
if r<>dep_list(p) then value(r):=delta
else begin recycle_value(p); type(p):=known; value(p):=delta;
end;
end;
if fix_needed then fix_dependencies;
end;
@ @<Ensure that |type(p)=proto_dependent|@>=
if type(p)<>proto_dependent then
begin if type(p)=known then new_dep(p,const_dependency(value(p)))
else dep_list(p):=p_times_v(dep_list(p),unity,dependent,proto_dependent,true);
type(p):=proto_dependent;
end
@ @<Transform a known big node@>=
set_up_trans(c);
if cur_type=known then @<Transform known by known@>
else begin pp:=stash_cur_exp; qq:=value(pp);
make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
begin bilin2(yy_part_loc(r),yy_part_loc(qq),
value(xy_part_loc(q)),yx_part_loc(qq),null);
bilin2(yx_part_loc(r),yy_part_loc(qq),
value(xx_part_loc(q)),yx_part_loc(qq),null);
bilin2(xy_part_loc(r),xx_part_loc(qq),
value(yy_part_loc(q)),xy_part_loc(qq),null);
bilin2(xx_part_loc(r),xx_part_loc(qq),
value(yx_part_loc(q)),xy_part_loc(qq),null);
end;
bilin2(y_part_loc(r),yy_part_loc(qq),
value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
bilin2(x_part_loc(r),xx_part_loc(qq),
value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
recycle_value(pp); free_node(pp,value_node_size);
end;
@ Let |p| be a |proto_dependent| value whose dependency list ends
at |dep_final|. The following procedure adds |v| times another
numeric quantity to~|p|.
@<Declare subroutines needed by |big_trans|@>=
procedure add_mult_dep(@!p:pointer;@!v:scaled;@!r:pointer);
begin if type(r)=known then
value(dep_final):=value(dep_final)+take_scaled(value(r),v)
else begin dep_list(p):=
p_plus_fq(dep_list(p),v,dep_list(r),proto_dependent,type(r));
if fix_needed then fix_dependencies;
end;
end;
@ The |bilin2| procedure is something like |bilin1|, but with known
and unknown quantities reversed. Parameter |p| points to a value field
within the big node for |cur_exp|; and |type(p)=known|. Parameters
|t| and~|u| point to value fields elsewhere; so does parameter~|q|,
unless it is |null| (which stands for zero). Location~|p| will be
replaced by $p\cdot t+v\cdot u+q$.
@<Declare subroutines needed by |big_trans|@>=
procedure bilin2(@!p,@!t:pointer;@!v:scaled;@!u,@!q:pointer);
var @!vv:scaled; {temporary storage for |value(p)|}
begin vv:=value(p); type(p):=proto_dependent;
new_dep(p,const_dependency(0)); {this sets |dep_final|}
if vv<>0 then add_mult_dep(p,vv,t); {|dep_final| doesn't change}
if v<>0 then add_mult_dep(p,v,u);
if q<>null then add_mult_dep(p,unity,q);
if dep_list(p)=dep_final then
begin vv:=value(dep_final); recycle_value(p);
type(p):=known; value(p):=vv;
end;
end;
@ @<Transform known by known@>=
begin make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
begin bilin3(yy_part_loc(r),tyy,value(xy_part_loc(q)),tyx,0);
bilin3(yx_part_loc(r),tyy,value(xx_part_loc(q)),tyx,0);
bilin3(xy_part_loc(r),txx,value(yy_part_loc(q)),txy,0);
bilin3(xx_part_loc(r),txx,value(yx_part_loc(q)),txy,0);
end;
bilin3(y_part_loc(r),tyy,value(x_part_loc(q)),tyx,ty);
bilin3(x_part_loc(r),txx,value(y_part_loc(q)),txy,tx);
end
@ Finally, in |bilin3| everything is |known|.
@<Declare subroutines needed by |big_trans|@>=
procedure bilin3(@!p:pointer;@!t,@!v,@!u,@!delta:scaled);
begin if t<>unity then delta:=delta+take_scaled(value(p),t)
else delta:=delta+value(p);
if u<>0 then value(p):=delta+take_scaled(v,u)
else value(p):=delta;
end;
@ @<Additional cases of binary operators@>=
concatenate: if (cur_type=string_type)and(type(p)=string_type) then cat(p)
else bad_binary(p,concatenate);
substring_of: if nice_pair(p,type(p))and(cur_type=string_type) then
chop_string(value(p))
else bad_binary(p,substring_of);
subpath_of: begin if cur_type=pair_type then pair_to_path;
if nice_pair(p,type(p))and(cur_type=path_type) then
chop_path(value(p))
else bad_binary(p,subpath_of);
end;
@ @<Declare binary action...@>=
procedure cat(@!p:pointer);
var @!a,@!b:str_number; {the strings being concatenated}
@!k:pool_pointer; {index into |str_pool|}
begin a:=value(p); b:=cur_exp; str_room(length(a)+length(b));
for k:=str_start[a] to str_stop(a)-1 do append_char(so(str_pool[k]));
for k:=str_start[b] to str_stop(b)-1 do append_char(so(str_pool[k]));
cur_exp:=make_string; delete_str_ref(b);
end;
@ @<Declare binary action...@>=
procedure chop_string(@!p:pointer);
var @!a,@!b:integer; {start and stop points}
@!l:integer; {length of the original string}
@!k:integer; {runs from |a| to |b|}
@!s:str_number; {the original string}
@!reversed:boolean; {was |a>b|?}
begin a:=round_unscaled(value(x_part_loc(p)));
b:=round_unscaled(value(y_part_loc(p)));
if a<=b then reversed:=false
else begin reversed:=true; k:=a; a:=b; b:=k;
end;
s:=cur_exp; l:=length(s);
if a<0 then
begin a:=0;
if b<0 then b:=0;
end;
if b>l then
begin b:=l;
if a>l then a:=l;
end;
str_room(b-a);
if reversed then
for k:=str_start[s]+b-1 downto str_start[s]+a do append_char(so(str_pool[k]))
else for k:=str_start[s]+a to str_start[s]+b-1 do append_char(so(str_pool[k]));
cur_exp:=make_string; delete_str_ref(s);
end;
@ @<Declare binary action...@>=
procedure chop_path(@!p:pointer);
var @!q:pointer; {a knot in the original path}
@!pp,@!qq,@!rr,@!ss:pointer; {link variables for copies of path nodes}
@!a,@!b,@!k,@!l:scaled; {indices for chopping}
@!reversed:boolean; {was |a>b|?}
begin l:=path_length; a:=value(x_part_loc(p)); b:=value(y_part_loc(p));
if a<=b then reversed:=false
else begin reversed:=true; k:=a; a:=b; b:=k;
end;
@<Dispense with the cases |a<0| and/or |b>l|@>;
q:=cur_exp;
while a>=unity do
begin q:=link(q); a:=a-unity; b:=b-unity;
end;
if b=a then @<Construct a path from |pp| to |qq| of length zero@>
else @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
left_type(pp):=endpoint; right_type(qq):=endpoint; link(qq):=pp;
toss_knot_list(cur_exp);
if reversed then
begin cur_exp:=link(htap_ypoc(pp)); toss_knot_list(pp);
end
else cur_exp:=pp;
end;
@ @<Dispense with the cases |a<0| and/or |b>l|@>=
if a<0 then
if left_type(cur_exp)=endpoint then
begin a:=0; if b<0 then b:=0;
end
else repeat a:=a+l; b:=b+l;
until a>=0; {a cycle always has length |l>0|}
if b>l then if left_type(cur_exp)=endpoint then
begin b:=l; if a>l then a:=l;
end
else while a>=l do
begin a:=a-l; b:=b-l;
end
@ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
begin pp:=copy_knot(q); qq:=pp;
repeat q:=link(q); rr:=qq; qq:=copy_knot(q); link(rr):=qq; b:=b-unity;
until b<=0;
if a>0 then
begin ss:=pp; pp:=link(pp);
split_cubic(ss,a*@'10000); pp:=link(ss);
free_node(ss,knot_node_size);
if rr=ss then
begin b:=make_scaled(b,unity-a); rr:=pp;
end;
end;
if b<0 then
begin split_cubic(rr,(b+unity)*@'10000);
free_node(qq,knot_node_size);
qq:=link(rr);
end;
end
@ @<Construct a path from |pp| to |qq| of length zero@>=
begin if a>0 then
begin split_cubic(q,a*@'10000); q:=link(q);
end;
pp:=copy_knot(q); qq:=pp;
end
@ @<Additional cases of binary operators@>=
point_of,precontrol_of,postcontrol_of: begin if cur_type=pair_type then
pair_to_path;
if (cur_type=path_type)and(type(p)=known) then
find_point(value(p),c)
else bad_binary(p,c);
end;
pen_offset_of: if (cur_type=pen_type)and nice_pair(p,type(p)) then
set_up_offset(value(p))
else bad_binary(p,pen_offset_of);
direction_time_of: begin if cur_type=pair_type then pair_to_path;
if (cur_type=path_type)and nice_pair(p,type(p)) then
set_up_direction_time(value(p))
else bad_binary(p,direction_time_of);
end;
@ @<Declare binary action...@>=
procedure set_up_offset(@!p:pointer);
begin find_offset(value(x_part_loc(p)),value(y_part_loc(p)),cur_exp);
pair_value(cur_x,cur_y);
end;
@#
procedure set_up_direction_time(@!p:pointer);
begin flush_cur_exp(find_direction_time(value(x_part_loc(p)),
value(y_part_loc(p)),cur_exp));
end;
@ @<Declare binary action...@>=
procedure find_point(@!v:scaled;@!c:quarterword);
var @!p:pointer; {the path}
@!n:scaled; {its length}
begin p:=cur_exp;@/
if left_type(p)=endpoint then n:=-unity@+else n:=0;
repeat p:=link(p); n:=n+unity;
until p=cur_exp;
if n=0 then v:=0
else if v<0 then
if left_type(p)=endpoint then v:=0
else v:=n-1-((-v-1) mod n)
else if v>n then
if left_type(p)=endpoint then v:=n
else v:=v mod n;
p:=cur_exp;
while v>=unity do
begin p:=link(p); v:=v-unity;
end;
if v<>0 then @<Insert a fractional node by splitting the cubic@>;
@<Set the current expression to the desired path coordinates@>;
end;
@ @<Insert a fractional node...@>=
begin split_cubic(p,v*@'10000); p:=link(p);
end
@ @<Set the current expression to the desired path coordinates...@>=
case c of
point_of: pair_value(x_coord(p),y_coord(p));
precontrol_of: if left_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
else pair_value(left_x(p),left_y(p));
postcontrol_of: if right_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
else pair_value(right_x(p),right_y(p));
end {there are no other cases}
@ @<Additional cases of binary operators@>=
arc_time_of: begin if cur_type=pair_type then
pair_to_path;
if (cur_type=path_type)and(type(p)=known) then
flush_cur_exp(get_arc_time(cur_exp,value(p)))
else bad_binary(p,c);
end;
@ @<Additional cases of bin...@>=
intersect: begin if type(p)=pair_type then
begin q:=stash_cur_exp; unstash_cur_exp(p);
pair_to_path; p:=stash_cur_exp; unstash_cur_exp(q);
end;
if cur_type=pair_type then pair_to_path;
if (cur_type=path_type)and(type(p)=path_type) then
begin path_intersection(value(p),cur_exp);
pair_value(cur_t,cur_tt);
end
else bad_binary(p,intersect);
end;
@ @<Additional cases of bin...@>=
in_font:if (cur_type<>string_type)or(type(p)<>string_type)
then bad_binary(p,in_font)
else begin do_infont(p); return;
end;
@ Function |new_text_node| owns the reference count for its second argument
(the text string) but not its first (the font name).
@<Declare binary action...@>=
procedure do_infont(@!p:pointer);
var @!q:pointer;
begin q:=get_node(edge_header_size);
init_edges(q);
link(obj_tail(q)):=new_text_node(cur_exp,value(p));
obj_tail(q):=link(obj_tail(q));
free_node(p,value_node_size);@/
flush_cur_exp(q);
cur_type:=picture_type;
end;
@* \[40] Statements and commands.
The chief executive of \MP\ is the |do_statement| routine, which
contains the master switch that causes all the various pieces of \MP\
to do their things, in the right order.
In a sense, this is the grand climax of the program: It applies all the
tools that we have worked so hard to construct. In another sense, this is
the messiest part of the program: It necessarily refers to other pieces
of code all over the place, so that a person can't fully understand what is
going on without paging back and forth to be reminded of conventions that
are defined elsewhere. We are now at the hub of the web.
The structure of |do_statement| itself is quite simple. The first token
of the statement is fetched using |get_x_next|. If it can be the first
token of an expression, we look for an equation, an assignment, or a
title. Otherwise we use a \&{case} construction to branch at high speed to
the appropriate routine for various and sundry other types of commands,
each of which has an ``action procedure'' that does the necessary work.
The program uses the fact that
$$\hbox{|min_primary_command=max_statement_command=type_name|}$$
to interpret a statement that starts with, e.g., `\&{string}',
as a type declaration rather than a boolean expression.
@p @<Declare action procedures for use by |do_statement|@>@;
procedure do_statement; {governs \MP's activities}
begin cur_type:=vacuous; get_x_next;
if cur_cmd>max_primary_command then @<Worry about bad statement@>
else if cur_cmd>max_statement_command then
@<Do an equation, assignment, title, or
`$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>
else @<Do a statement that doesn't begin with an expression@>;
if cur_cmd<semicolon then
@<Flush unparsable junk that was found after the statement@>;
error_count:=0;
end;
@ The only command codes |>max_primary_command| that can be present
at the beginning of a statement are |semicolon| and higher; these
occur when the statement is null.
@<Worry about bad statement@>=
begin if cur_cmd<semicolon then
begin print_err("A statement can't begin with `");
@.A statement can't begin with x@>
print_cmd_mod(cur_cmd,cur_mod); print_char("'");
help5("I was looking for the beginning of a new statement.")@/
("If you just proceed without changing anything, I'll ignore")@/
("everything up to the next `;'. Please insert a semicolon")@/
("now in front of anything that you don't want me to delete.")@/
("(See Chapter 27 of The METAFONTbook for an example.)");@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_error; get_x_next;
end;
end
@ The help message printed here says that everything is flushed up to
a semicolon, but actually the commands |end_group| and |stop| will
also terminate a statement.
@<Flush unparsable junk that was found after the statement@>=
begin print_err("Extra tokens will be flushed");
@.Extra tokens will be flushed@>
help6("I've just read as much of that statement as I could fathom,")@/
("so a semicolon should have been next. It's very puzzling...")@/
("but I'll try to get myself back together, by ignoring")@/
("everything up to the next `;'. Please insert a semicolon")@/
("now in front of anything that you don't want me to delete.")@/
("(See Chapter 27 of The METAFONTbook for an example.)");@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_error; scanner_status:=flushing;
repeat get_t_next;
@<Decrease the string reference count...@>;
until end_of_statement; {|cur_cmd=semicolon|, |end_group|, or |stop|}
scanner_status:=normal;
end
@ If |do_statement| ends with |cur_cmd=end_group|, we should have
|cur_type=vacuous| unless the statement was simply an expression;
in the latter case, |cur_type| and |cur_exp| should represent that
expression.
@<Do a statement that doesn't...@>=
begin if internal[tracing_commands]>0 then show_cur_cmd_mod;
case cur_cmd of
type_name:do_type_declaration;
macro_def:if cur_mod>var_def then make_op_def
else if cur_mod>end_def then scan_def;
@t\4@>@<Cases of |do_statement| that invoke particular commands@>@;
end; {there are no other cases}
cur_type:=vacuous;
end
@ The most important statements begin with expressions.
@<Do an equation, assignment, title, or...@>=
begin var_flag:=assignment; scan_expression;
if cur_cmd<end_group then
begin if cur_cmd=equals then do_equation
else if cur_cmd=assignment then do_assignment
else if cur_type=string_type then @<Do a title@>
else if cur_type<>vacuous then
begin exp_err("Isolated expression");
@.Isolated expression@>
help3("I couldn't find an `=' or `:=' after the")@/
("expression that is shown above this error message,")@/
("so I guess I'll just ignore it and carry on.");
put_get_error;
end;
flush_cur_exp(0); cur_type:=vacuous;
end;
end
@ @<Do a title@>=
begin if internal[tracing_titles]>0 then
begin print_nl(""); print(cur_exp); update_terminal;
end;
end
@ Equations and assignments are performed by the pair of mutually recursive
@^recursion@>
routines |do_equation| and |do_assignment|. These routines are called when
|cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
side is in |cur_type| and |cur_exp|, while the right-hand side is yet
to be scanned. After the routines are finished, |cur_type| and |cur_exp|
will be equal to the right-hand side (which will normally be equal
to the left-hand side).
@<Declare action procedures for use by |do_statement|@>=
@t\4@>@<Declare the procedure called |try_eq|@>@;
@t\4@>@<Declare the procedure called |make_eq|@>@;
procedure@?do_assignment; forward;@t\2@>@/
procedure do_equation;
var @!lhs:pointer; {capsule for the left-hand side}
@!p:pointer; {temporary register}
begin lhs:=stash_cur_exp; get_x_next; var_flag:=assignment; scan_expression;
if cur_cmd=equals then do_equation
else if cur_cmd=assignment then do_assignment;
if internal[tracing_commands]>two then @<Trace the current equation@>;
if cur_type=unknown_path then if type(lhs)=pair_type then
begin p:=stash_cur_exp; unstash_cur_exp(lhs); lhs:=p;
end; {in this case |make_eq| will change the pair to a path}
make_eq(lhs); {equate |lhs| to |(cur_type,cur_exp)|}
end;
@ And |do_assignment| is similar to |do_expression|:
@<Declare action procedures for use by |do_statement|@>=
procedure do_assignment;
var @!lhs:pointer; {token list for the left-hand side}
@!p:pointer; {where the left-hand value is stored}
@!q:pointer; {temporary capsule for the right-hand value}
begin if cur_type<>token_list then
begin exp_err("Improper `:=' will be changed to `='");
@.Improper `:='@>
help2("I didn't find a variable name at the left of the `:=',")@/
("so I'm going to pretend that you said `=' instead.");@/
error; do_equation;
end
else begin lhs:=cur_exp; cur_type:=vacuous;@/
get_x_next; var_flag:=assignment; scan_expression;
if cur_cmd=equals then do_equation
else if cur_cmd=assignment then do_assignment;
if internal[tracing_commands]>two then @<Trace the current assignment@>;
if info(lhs)>hash_end then
@<Assign the current expression to an internal variable@>
else @<Assign the current expression to the variable |lhs|@>;
flush_node_list(lhs);
end;
end;
@ @<Trace the current equation@>=
begin begin_diagnostic; print_nl("{("); print_exp(lhs,0);
print(")=("); print_exp(null,0); print(")}"); end_diagnostic(false);
end
@ @<Trace the current assignment@>=
begin begin_diagnostic; print_nl("{");
if info(lhs)>hash_end then print(int_name[info(lhs)-(hash_end)])
else show_token_list(lhs,null,1000,0);
print(":="); print_exp(null,0); print_char("}"); end_diagnostic(false);
end
@ @<Assign the current expression to an internal variable@>=
if cur_type=known then internal[info(lhs)-(hash_end)]:=cur_exp
else begin exp_err("Internal quantity `");
@.Internal quantity...@>
print(int_name[info(lhs)-(hash_end)]);
print("' must receive a known value");
help2("I can't set an internal quantity to anything but a known")@/
("numeric value, so I'll have to ignore this assignment.");
put_get_error;
end
@ @<Assign the current expression to the variable |lhs|@>=
begin p:=find_variable(lhs);
if p<>null then
begin q:=stash_cur_exp; cur_type:=und_type(p); recycle_value(p);
type(p):=cur_type; value(p):=null; make_exp_copy(p);
p:=stash_cur_exp; unstash_cur_exp(q); make_eq(p);
end
else begin obliterated(lhs); put_get_error;
end;
end
@ And now we get to the nitty-gritty. The |make_eq| procedure is given
a pointer to a capsule that is to be equated to the current expression.
@<Declare the procedure called |make_eq|@>=
procedure make_eq(@!lhs:pointer);
label restart,done, not_found;
var @!t:small_number; {type of the left-hand side}
@!v:integer; {value of the left-hand side}
@!p,@!q:pointer; {pointers inside of big nodes}
begin restart: t:=type(lhs);
if t<=pair_type then v:=value(lhs);
case t of
@t\4@>@<For each type |t|, make an equation and |goto done| unless |cur_type|
is incompatible with~|t|@>@;
end; {all cases have been listed}
@<Announce that the equation cannot be performed@>;
done:check_arith; recycle_value(lhs); free_node(lhs,value_node_size);
end;
@ @<Announce that the equation cannot be performed@>=
disp_err(lhs,""); exp_err("Equation cannot be performed (");
@.Equation cannot be performed@>
if type(lhs)<=pair_type then print_type(type(lhs))@+else print("numeric");
print_char("=");
if cur_type<=pair_type then print_type(cur_type)@+else print("numeric");
print_char(")");@/
help2("I'm sorry, but I don't know how to make such things equal.")@/
("(See the two expressions just above the error message.)");
put_get_error
@ @<For each type |t|, make an equation and |goto done| unless...@>=
boolean_type,string_type,pen_type,path_type,picture_type:
if cur_type=t+unknown_tag then
begin nonlinear_eq(v,cur_exp,false); goto done;
end
else if cur_type=t then
@<Report redundant or inconsistent equation and |goto done|@>;
unknown_types:if cur_type=t-unknown_tag then
begin nonlinear_eq(cur_exp,lhs,true); goto done;
end
else if cur_type=t then
begin ring_merge(lhs,cur_exp); goto done;
end
else if cur_type=pair_type then if t=unknown_path then
begin pair_to_path; goto restart;
end;
transform_type,color_type,pair_type:if cur_type=t then
@<Do multiple equations and |goto done|@>;
known,dependent,proto_dependent,independent:if cur_type>=known then
begin try_eq(lhs,null); goto done;
end;
vacuous:do_nothing;
@ @<Report redundant or inconsistent equation and |goto done|@>=
begin if cur_type<=string_type then
begin if cur_type=string_type then
begin if str_vs_str(v,cur_exp)<>0 then goto not_found;
end
else if v<>cur_exp then goto not_found;
@<Exclaim about a redundant equation@>; goto done;
end;
print_err("Redundant or inconsistent equation");
@.Redundant or inconsistent equation@>
help2("An equation between already-known quantities can't help.")@/
("But don't worry; continue and I'll just ignore it.");
put_get_error; goto done;
not_found: print_err("Inconsistent equation");
@.Inconsistent equation@>
help2("The equation I just read contradicts what was said before.")@/
("But don't worry; continue and I'll just ignore it.");
put_get_error; goto done;
end
@ @<Do multiple equations and |goto done|@>=
begin p:=v+big_node_size[t]; q:=value(cur_exp)+big_node_size[t];
repeat p:=p-2; q:=q-2; try_eq(p,q);
until p=v;
goto done;
end
@ The first argument to |try_eq| is the location of a value node
in a capsule that will soon be recycled. The second argument is
either a location within a pair or transform node pointed to by
|cur_exp|, or it is |null| (which means that |cur_exp| itself
serves as the second argument). The idea is to leave |cur_exp| unchanged,
but to equate the two operands.
@<Declare the procedure called |try_eq|@>=
procedure try_eq(@!l,@!r:pointer);
label done,done1;
var @!p:pointer; {dependency list for right operand minus left operand}
@!t:known..independent; {the type of list |p|}
@!q:pointer; {the constant term of |p| is here}
@!pp:pointer; {dependency list for right operand}
@!tt:dependent..independent; {the type of list |pp|}
@!copied:boolean; {have we copied a list that ought to be recycled?}
begin @<Remove the left operand from its container, negate it, and
put it into dependency list~|p| with constant term~|q|@>;
@<Add the right operand to list |p|@>;
if info(p)=null then @<Deal with redundant or inconsistent equation@>
else begin linear_eq(p,t);
if r=null then if cur_type<>known then if type(cur_exp)=known then
begin pp:=cur_exp; cur_exp:=value(cur_exp); cur_type:=known;
free_node(pp,value_node_size);
end;
end;
end;
@ @<Remove the left operand from its container, negate it, and...@>=
t:=type(l);
if t=known then
begin t:=dependent; p:=const_dependency(-value(l)); q:=p;
end
else if t=independent then
begin t:=dependent; p:=single_dependency(l); negate(value(p));
q:=dep_final;
end
else begin p:=dep_list(l); q:=p;
loop@+ begin negate(value(q));
if info(q)=null then goto done;
q:=link(q);
end;
done: link(prev_dep(l)):=link(q); prev_dep(link(q)):=prev_dep(l);
type(l):=known;
end
@ @<Deal with redundant or inconsistent equation@>=
begin if abs(value(p))>64 then {off by .001 or more}
begin print_err("Inconsistent equation");@/
@.Inconsistent equation@>
print(" (off by "); print_scaled(value(p)); print_char(")");
help2("The equation I just read contradicts what was said before.")@/
("But don't worry; continue and I'll just ignore it.");
put_get_error;
end
else if r=null then @<Exclaim about a redundant equation@>;
free_node(p,dep_node_size);
end
@ @<Add the right operand to list |p|@>=
if r=null then
if cur_type=known then
begin value(q):=value(q)+cur_exp; goto done1;
end
else begin tt:=cur_type;
if tt=independent then pp:=single_dependency(cur_exp)
else pp:=dep_list(cur_exp);
end
else if type(r)=known then
begin value(q):=value(q)+value(r); goto done1;
end
else begin tt:=type(r);
if tt=independent then pp:=single_dependency(r)
else pp:=dep_list(r);
end;
if tt<>independent then copied:=false
else begin copied:=true; tt:=dependent;
end;
@<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
if copied then flush_node_list(pp);
done1:
@ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
watch_coefs:=false;
if t=tt then p:=p_plus_q(p,pp,t)
else if t=proto_dependent then
p:=p_plus_fq(p,unity,pp,proto_dependent,dependent)
else begin q:=p;
while info(q)<>null do
begin value(q):=round_fraction(value(q)); q:=link(q);
end;
t:=proto_dependent; p:=p_plus_q(p,pp,t);
end;
watch_coefs:=true;
@ Our next goal is to process type declarations. For this purpose it's
convenient to have a procedure that scans a $\langle\,$declared
variable$\,\rangle$ and returns the corresponding token list. After the
following procedure has acted, the token after the declared variable
will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
and~|cur_sym|.
@<Declare the function called |scan_declared_variable|@>=
function scan_declared_variable:pointer;
label done;
var @!x:pointer; {hash address of the variable's root}
@!h,@!t:pointer; {head and tail of the token list to be returned}
@!l:pointer; {hash address of left bracket}
begin get_symbol; x:=cur_sym;
if cur_cmd<>tag_token then clear_symbol(x,false);
h:=get_avail; info(h):=x; t:=h;@/
loop@+ begin get_x_next;
if cur_sym=0 then goto done;
if cur_cmd<>tag_token then if cur_cmd<>internal_quantity then
if cur_cmd=left_bracket then @<Descend past a collective subscript@>
else goto done;
link(t):=get_avail; t:=link(t); info(t):=cur_sym;
end;
done: if eq_type(x)<>tag_token then clear_symbol(x,false);
if equiv(x)=null then new_root(x);
scan_declared_variable:=h;
end;
@ If the subscript isn't collective, we don't accept it as part of the
declared variable.
@<Descend past a collective subscript@>=
begin l:=cur_sym; get_x_next;
if cur_cmd<>right_bracket then
begin back_input; cur_sym:=l; cur_cmd:=left_bracket; goto done;
end
else cur_sym:=collective_subscript;
end
@ Type declarations are introduced by the following primitive operations.
@<Put each...@>=
primitive("numeric",type_name,numeric_type);@/
@!@:numeric_}{\&{numeric} primitive@>
primitive("string",type_name,string_type);@/
@!@:string_}{\&{string} primitive@>
primitive("boolean",type_name,boolean_type);@/
@!@:boolean_}{\&{boolean} primitive@>
primitive("path",type_name,path_type);@/
@!@:path_}{\&{path} primitive@>
primitive("pen",type_name,pen_type);@/
@!@:pen_}{\&{pen} primitive@>
primitive("picture",type_name,picture_type);@/
@!@:picture_}{\&{picture} primitive@>
primitive("transform",type_name,transform_type);@/
@!@:transform_}{\&{transform} primitive@>
primitive("color",type_name,color_type);@/
@!@:color_}{\&{color} primitive@>
primitive("pair",type_name,pair_type);@/
@!@:pair_}{\&{pair} primitive@>
@ @<Cases of |print_cmd...@>=
type_name: print_type(m);
@ Now we are ready to handle type declarations, assuming that a
|type_name| has just been scanned.
@<Declare action procedures for use by |do_statement|@>=
procedure do_type_declaration;
var @!t:small_number; {the type being declared}
@!p:pointer; {token list for a declared variable}
@!q:pointer; {value node for the variable}
begin if cur_mod>=transform_type then t:=cur_mod@+else t:=cur_mod+unknown_tag;
repeat p:=scan_declared_variable;
flush_variable(equiv(info(p)),link(p),false);@/
q:=find_variable(p);
if q<>null then
begin type(q):=t; value(q):=null;
end
else begin print_err("Declared variable conflicts with previous vardef");
@.Declared variable conflicts...@>
help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")@/
("Proceed, and I'll ignore the illegal redeclaration.");
put_get_error;
end;
flush_list(p);
if cur_cmd<comma then @<Flush spurious symbols after the declared variable@>;
until end_of_statement;
end;
@ @<Flush spurious symbols after the declared variable@>=
begin print_err("Illegal suffix of declared variable will be flushed");
@.Illegal suffix...flushed@>
help5("Variables in declarations must consist entirely of")@/
("names and collective subscripts, e.g., `x[]a'.")@/
("Are you trying to use a reserved word in a variable name?")@/
("I'm going to discard the junk I found here,")@/
("up to the next comma or the end of the declaration.");
if cur_cmd=numeric_token then
help_line[2]:="Explicit subscripts like `x15a' aren't permitted.";
put_get_error; scanner_status:=flushing;
repeat get_t_next;
@<Decrease the string reference count...@>;
until cur_cmd>=comma; {either |end_of_statement| or |cur_cmd=comma|}
scanner_status:=normal;
end
@ \MP's |main_control| procedure just calls |do_statement| repeatedly
until coming to the end of the user's program.
Each execution of |do_statement| concludes with
|cur_cmd=semicolon|, |end_group|, or |stop|.
@p procedure main_control;
begin repeat do_statement;
if cur_cmd=end_group then
begin print_err("Extra `endgroup'");
@.Extra `endgroup'@>
help2("I'm not currently working on a `begingroup',")@/
("so I had better not try to end anything.");
flush_error(0);
end;
until cur_cmd=stop;
end;
@ @<Put each...@>=
primitive("end",stop,0);@/
@!@:end_}{\&{end} primitive@>
primitive("dump",stop,1);@/
@!@:dump_}{\&{dump} primitive@>
@ @<Cases of |print_cmd...@>=
stop:if m=0 then print("end")@+else print("dump");
@* \[41] Commands.
Let's turn now to statements that are classified as ``commands'' because
of their imperative nature. We'll begin with simple ones, so that it
will be clear how to hook command processing into the |do_statement| routine;
then we'll tackle the tougher commands.
Here's one of the simplest:
@<Cases of |do_statement|...@>=
random_seed: do_random_seed;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_random_seed;
begin get_x_next;
if cur_cmd<>assignment then
begin missing_err(":=");
@.Missing `:='@>
help1("Always say `randomseed:=<numeric expression>'.");
back_error;
end;
get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Unknown value will be ignored");
@.Unknown value...ignored@>
help2("Your expression was too random for me to handle,")@/
("so I won't change the random seed just now.");@/
put_get_flush_error(0);
end
else @<Initialize the random seed to |cur_exp|@>;
end;
@ @<Initialize the random seed to |cur_exp|@>=
begin init_randoms(cur_exp);
if selector>=log_only then
begin old_setting:=selector; selector:=log_only;
print_nl("{randomseed:="); print_scaled(cur_exp); print_char("}");
print_nl(""); selector:=old_setting;
end;
end
@ And here's another simple one (somewhat different in flavor):
@<Cases of |do_statement|...@>=
mode_command: begin print_ln; interaction:=cur_mod;
@<Initialize the print |selector| based on |interaction|@>;
if log_opened then selector:=selector+2;
get_x_next;
end;
@ @<Put each...@>=
primitive("batchmode",mode_command,batch_mode);
@!@:batch_mode_}{\&{batchmode} primitive@>
primitive("nonstopmode",mode_command,nonstop_mode);
@!@:nonstop_mode_}{\&{nonstopmode} primitive@>
primitive("scrollmode",mode_command,scroll_mode);
@!@:scroll_mode_}{\&{scrollmode} primitive@>
primitive("errorstopmode",mode_command,error_stop_mode);
@!@:error_stop_mode_}{\&{errorstopmode} primitive@>
@ @<Cases of |print_cmd_mod|...@>=
mode_command: case m of
batch_mode: print("batchmode");
nonstop_mode: print("nonstopmode");
scroll_mode: print("scrollmode");
othercases print("errorstopmode")
endcases;
@ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
@<Cases of |do_statement|...@>=
protection_command: do_protection;
@ @<Put each...@>=
primitive("inner",protection_command,0);@/
@!@:inner_}{\&{inner} primitive@>
primitive("outer",protection_command,1);@/
@!@:outer_}{\&{outer} primitive@>
@ @<Cases of |print_cmd...@>=
protection_command: if m=0 then print("inner")@+else print("outer");
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_protection;
var @!m:0..1; {0 to unprotect, 1 to protect}
@!t:halfword; {the |eq_type| before we change it}
begin m:=cur_mod;
repeat get_symbol; t:=eq_type(cur_sym);
if m=0 then
begin if t>=outer_tag then eq_type(cur_sym):=t-outer_tag;
end
else if t<outer_tag then eq_type(cur_sym):=t+outer_tag;
get_x_next;
until cur_cmd<>comma;
end;
@ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
declaration assigns the command code |left_delimiter| to `\.{(}' and
|right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
hash address of its mate.
@<Cases of |do_statement|...@>=
delimiters: def_delims;
@ @<Declare action procedures for use by |do_statement|@>=
procedure def_delims;
var l_delim,r_delim:pointer; {the new delimiter pair}
begin get_clear_symbol; l_delim:=cur_sym;@/
get_clear_symbol; r_delim:=cur_sym;@/
eq_type(l_delim):=left_delimiter; equiv(l_delim):=r_delim;@/
eq_type(r_delim):=right_delimiter; equiv(r_delim):=l_delim;@/
get_x_next;
end;
@ Here is a procedure that is called when \MP\ has reached a point
where some right delimiter is mandatory.
@<Declare the procedure called |check_delimiter|@>=
procedure check_delimiter(@!l_delim,@!r_delim:pointer);
label exit;
begin if cur_cmd=right_delimiter then if cur_mod=l_delim then return;
if cur_sym<>r_delim then
begin missing_err(text(r_delim));@/
@.Missing `)'@>
help2("I found no right delimiter to match a left one. So I've")@/
("put one in, behind the scenes; this may fix the problem.");
back_error;
end
else begin print_err("The token `"); print(text(r_delim));
@.The token...delimiter@>
print("' is no longer a right delimiter");
help3("Strange: This token has lost its former meaning!")@/
("I'll read it as a right delimiter this time;")@/
("but watch out, I'll probably miss it later.");
error;
end;
exit:end;
@ The next four commands save or change the values associated with tokens.
@<Cases of |do_statement|...@>=
save_command: repeat get_symbol; save_variable(cur_sym); get_x_next;
until cur_cmd<>comma;
interim_command: do_interim;
let_command: do_let;
new_internal: do_new_internal;
@ @<Declare action procedures for use by |do_statement|@>=
procedure@?do_statement; forward;@t\2@>@/
procedure do_interim;
begin get_x_next;
if cur_cmd<>internal_quantity then
begin print_err("The token `");
@.The token...quantity@>
if cur_sym=0 then print("(%CAPSULE)")
else print(text(cur_sym));
print("' isn't an internal quantity");
help1("Something like `tracingonline' should follow `interim'.");
back_error;
end
else begin save_internal(cur_mod); back_input;
end;
do_statement;
end;
@ The following procedure is careful not to undefine the left-hand symbol
too soon, lest commands like `{\tt let x=x}' have a surprising effect.
@<Declare action procedures for use by |do_statement|@>=
procedure do_let;
var @!l:pointer; {hash location of the left-hand symbol}
begin get_symbol; l:=cur_sym; get_x_next;
if cur_cmd<>equals then if cur_cmd<>assignment then
begin missing_err("=");
@.Missing `='@>
help3("You should have said `let symbol = something'.")@/
("But don't worry; I'll pretend that an equals sign")@/
("was present. The next token I read will be `something'.");
back_error;
end;
get_symbol;
case cur_cmd of
defined_macro,secondary_primary_macro,tertiary_secondary_macro,
expression_tertiary_macro: add_mac_ref(cur_mod);
othercases do_nothing
endcases;@/
clear_symbol(l,false); eq_type(l):=cur_cmd;
if cur_cmd=tag_token then equiv(l):=null
else equiv(l):=cur_mod;
get_x_next;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_new_internal;
begin repeat if int_ptr=max_internal then
overflow("number of internals",max_internal);
@:MetaPost capacity exceeded number of int}{\quad number of internals@>
get_clear_symbol; incr(int_ptr);
eq_type(cur_sym):=internal_quantity; equiv(cur_sym):=int_ptr;
int_name[int_ptr]:=text(cur_sym); internal[int_ptr]:=0;
get_x_next;
until cur_cmd<>comma;
end;
@ The various `\&{show}' commands are distinguished by modifier fields
in the usual way.
@d show_token_code=0 {show the meaning of a single token}
@d show_stats_code=1 {show current memory and string usage}
@d show_code=2 {show a list of expressions}
@d show_var_code=3 {show a variable and its descendents}
@d show_dependencies_code=4 {show dependent variables in terms of independents}
@<Put each...@>=
primitive("showtoken",show_command,show_token_code);@/
@!@:show_token_}{\&{showtoken} primitive@>
primitive("showstats",show_command,show_stats_code);@/
@!@:show_stats_}{\&{showstats} primitive@>
primitive("show",show_command,show_code);@/
@!@:show_}{\&{show} primitive@>
primitive("showvariable",show_command,show_var_code);@/
@!@:show_var_}{\&{showvariable} primitive@>
primitive("showdependencies",show_command,show_dependencies_code);@/
@!@:show_dependencies_}{\&{showdependencies} primitive@>
@ @<Cases of |print_cmd...@>=
show_command: case m of
show_token_code:print("showtoken");
show_stats_code:print("showstats");
show_code:print("show");
show_var_code:print("showvariable");
othercases print("showdependencies")
endcases;
@ @<Cases of |do_statement|...@>=
show_command:do_show_whatever;
@ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
if it's |show_code|, complicated structures are abbreviated, otherwise
they aren't.
@<Declare action procedures for use by |do_statement|@>=
procedure do_show;
begin repeat get_x_next; scan_expression;
print_nl(">> ");
@.>>@>
print_exp(null,2); flush_cur_exp(0);
until cur_cmd<>comma;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure disp_token;
begin print_nl("> ");
@.>\relax@>
if cur_sym=0 then @<Show a numeric or string or capsule token@>
else begin print(text(cur_sym)); print_char("=");
if eq_type(cur_sym)>=outer_tag then print("(outer) ");
print_cmd_mod(cur_cmd,cur_mod);
if cur_cmd=defined_macro then
begin print_ln; show_macro(cur_mod,null,100000);
end; {this avoids recursion between |show_macro| and |print_cmd_mod|}
@^recursion@>
end;
end;
@ @<Show a numeric or string or capsule token@>=
begin if cur_cmd=numeric_token then print_scaled(cur_mod)
else if cur_cmd=capsule_token then
begin g_pointer:=cur_mod; print_capsule;
end
else begin print_char(""""); print(cur_mod); print_char("""");
delete_str_ref(cur_mod);
end;
end
@ The following cases of |print_cmd_mod| might arise in connection
with |disp_token|, although they don't correspond to any
primitive tokens.
@<Cases of |print_cmd_...@>=
left_delimiter,right_delimiter: begin if c=left_delimiter then print("lef")
else print("righ");
print("t delimiter that matches "); print(text(m));
end;
tag_token:if m=null then print("tag")@+else print("variable");
defined_macro: print("macro:");
secondary_primary_macro,tertiary_secondary_macro,expression_tertiary_macro:
begin print_cmd_mod(macro_def,c); print("'d macro:");
print_ln; show_token_list(link(link(m)),null,1000,0);
end;
repeat_loop:print("[repeat the loop]");
internal_quantity:print(int_name[m]);
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_token;
begin repeat get_t_next; disp_token;
get_x_next;
until cur_cmd<>comma;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_stats;
begin print_nl("Memory usage ");
@.Memory usage...@>
@!stat print_int(var_used); print_char("&"); print_int(dyn_used);
if false then@+tats@t@>@;@/
print("unknown");
print(" ("); print_int(hi_mem_min-lo_mem_max-1);
print(" still untouched)"); print_ln;
print_nl("String usage ");
stat print_int(strs_in_use-init_str_use);
print_char("&"); print_int(pool_in_use-init_pool_ptr);
if false then@+tats@t@>@;@/
print("unknown");
print(" (");
print_int(max_strings-1-strs_used_up); print_char("&");
print_int(pool_size-pool_ptr); print(" now untouched)"); print_ln;
get_x_next;
end;
@ Here's a recursive procedure that gives an abbreviated account
of a variable, for use by |do_show_var|.
@<Declare action procedures for use by |do_statement|@>=
procedure disp_var(@!p:pointer);
var @!q:pointer; {traverses attributes and subscripts}
@!n:0..max_print_line; {amount of macro text to show}
begin if type(p)=structured then @<Descend the structure@>
else if type(p)>=unsuffixed_macro then @<Display a variable macro@>
else if type(p)<>undefined then
begin print_nl(""); print_variable_name(p); print_char("=");
print_exp(p,0);
end;
end;
@ @<Descend the structure@>=
begin q:=attr_head(p);
repeat disp_var(q); q:=link(q);
until q=end_attr;
q:=subscr_head(p);
while name_type(q)=subscr do
begin disp_var(q); q:=link(q);
end;
end
@ @<Display a variable macro@>=
begin print_nl(""); print_variable_name(p);
if type(p)>unsuffixed_macro then print("@@#"); {|suffixed_macro|}
print("=macro:");
if file_offset>=max_print_line-20 then n:=5
else n:=max_print_line-file_offset-15;
show_macro(value(p),null,n);
end
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_var;
label done;
begin repeat get_t_next;
if cur_sym>0 then if cur_sym<=hash_end then
if cur_cmd=tag_token then if cur_mod<>null then
begin disp_var(cur_mod); goto done;
end;
disp_token;
done:get_x_next;
until cur_cmd<>comma;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_dependencies;
var @!p:pointer; {link that runs through all dependencies}
begin p:=link(dep_head);
while p<>dep_head do
begin if interesting(p) then
begin print_nl(""); print_variable_name(p);
if type(p)=dependent then print_char("=")
else print(" = "); {extra spaces imply proto-dependency}
print_dependency(dep_list(p),type(p));
end;
p:=dep_list(p);
while info(p)<>null do p:=link(p);
p:=link(p);
end;
get_x_next;
end;
@ Finally we are ready for the procedure that governs all of the
show commands.
@<Declare action procedures for use by |do_statement|@>=
procedure do_show_whatever;
begin if interaction=error_stop_mode then wake_up_terminal;
case cur_mod of
show_token_code:do_show_token;
show_stats_code:do_show_stats;
show_code:do_show;
show_var_code:do_show_var;
show_dependencies_code:do_show_dependencies;
end; {there are no other cases}
if internal[showstopping]>0 then
begin print_err("OK");
@.OK@>
if interaction<error_stop_mode then
begin help0; decr(error_count);
end
else help1("This isn't an error message; I'm just showing something.");
if cur_cmd=semicolon then error@+else put_get_error;
end;
end;
@ The `\&{addto}' command needs the following additional primitives:
@d double_path_code=0 {command modifier for `\&{doublepath}'}
@d contour_code=1 {command modifier for `\&{contour}'}
@d also_code=2 {command modifier for `\&{also}'}
@<Put each...@>=
primitive("doublepath",thing_to_add,double_path_code);@/
@!@:double_path_}{\&{doublepath} primitive@>
primitive("contour",thing_to_add,contour_code);@/
@!@:contour_}{\&{contour} primitive@>
primitive("also",thing_to_add,also_code);@/
@!@:also_}{\&{also} primitive@>
primitive("withpen",with_option,pen_type);@/
@!@:with_pen_}{\&{withpen} primitive@>
primitive("dashed",with_option,picture_type);@/
@!@:dashed_}{\&{dashed} primitive@>
primitive("withcolor",with_option,color_type);@/
@!@:with_color_}{\&{withcolor} primitive@>
@ @<Cases of |print_cmd...@>=
thing_to_add:if m=contour_code then print("contour")
else if m=double_path_code then print("doublepath")
else print("also");
with_option:if m=pen_type then print("withpen")
else if m=color_type then print("withcolor")
else print("dashed");
@ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
updates the list of graphical objects starting at |p|. Each $\langle$with
clause$\rangle$ updates all graphical objects whose |type| is compatible.
Other objects are ignored.
@<Declare action procedures for use by |do_statement|@>=
procedure scan_with_list(@!p:pointer);
label done, done1, done2;
var @!t:small_number; {|cur_mod| of the |with_option| (should match |cur_type|)}
@!q:pointer; {for list manipulation}
@!cp,@!pp,@!dp:pointer;
{objects being updated; |void| initially; |null| to suppress update}
begin cp:=void; pp:=void; dp:=void;
while cur_cmd=with_option do
begin t:=cur_mod; get_x_next; scan_expression;
if cur_type<>t then @<Complain about improper type@>
else if t=color_type then
begin if cp=void then @<Make |cp| a colored object in object list~|p|@>;
if cp<>null then
@<Transfer a color from the current expression to object~|cp|@>;
flush_cur_exp(0);
end
else if t=pen_type then
begin if pp=void then @<Make |pp| an object in list~|p| that needs
a pen@>;
if pp<>null then
begin if pen_p(pp)<>null then toss_knot_list(pen_p(pp));
pen_p(pp):=cur_exp; cur_type:=vacuous;
end;
end
else begin if dp=void then @<Make |dp| a stroked node in list~|p|@>;
if dp<>null then
begin if dash_p(dp)<>null then delete_edge_ref(dash_p(dp));
dash_p(dp):=make_dashes(cur_exp);
dash_scale(dp):=unity;
cur_type:=vacuous;
end;
end;
end;
@<Copy the information from objects |cp|, |pp|, and |dp| into the rest
of the list@>;
end;
@ @<Complain about improper type@>=
begin exp_err("Improper type");
@.Improper type@>
help2("Next time say `withpen <known pen expression>';")@/
("I'll ignore the bad `with' clause and look for another.");
if t=picture_type then
help_line[1]:="Next time say `dashed <known picture expression>';"
else if t=color_type then
help_line[1]:="Next time say `withcolor <known color expression>';";
put_get_flush_error(0);
end
@ Forcing the color to be between |0| and |unity| here guarantees that no
picture will ever contain a color outside the legal range for \ps\ graphics.
@<Transfer a color from the current expression to object~|cp|@>=
begin q:=value(cur_exp);
red_val(cp):=value(red_part_loc(q));
green_val(cp):=value(green_part_loc(q));
blue_val(cp):=value(blue_part_loc(q));@/
if red_val(cp)<0 then red_val(cp):=0;
if green_val(cp)<0 then green_val(cp):=0;
if blue_val(cp)<0 then blue_val(cp):=0;
if red_val(cp)>unity then red_val(cp):=unity;
if green_val(cp)>unity then green_val(cp):=unity;
if blue_val(cp)>unity then blue_val(cp):=unity;
end
@ @<Make |cp| a colored object in object list~|p|@>=
begin cp:=p;
while cp<>null do
begin if has_color(cp) then goto done;
cp:=link(cp);
end;
done:do_nothing;
end
@ @<Make |pp| an object in list~|p| that needs a pen@>=
begin pp:=p;
while pp<>null do
begin if has_pen(pp) then goto done1;
pp:=link(pp);
end;
done1:do_nothing;
end
@ @<Make |dp| a stroked node in list~|p|@>=
begin dp:=p;
while dp<>null do
begin if type(dp)=stroked_code then goto done2;
dp:=link(dp);
end;
done2:do_nothing;
end
@ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
if cp>void then @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
if pp>void then
@<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
if dp>void then @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
@ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
begin q:=link(cp);
while q<>null do
begin if has_color(q) then
begin red_val(q):=red_val(cp);
green_val(q):=green_val(cp);
blue_val(q):=blue_val(cp);@/
end;
q:=link(q);
end;
end
@ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
begin q:=link(pp);
while q<>null do
begin if has_pen(q) then
begin if pen_p(q)<>null then toss_knot_list(pen_p(q));
pen_p(q):=copy_pen(pen_p(pp));
end;
q:=link(q);
end;
end
@ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
begin q:=link(dp);
while q<>null do
begin if type(q)=stroked_code then
begin if dash_p(q)<>null then delete_edge_ref(dash_p(q));
dash_p(q):=dash_p(dp);
dash_scale(q):=unity;
if dash_p(q)<>null then add_edge_ref(dash_p(q));
end;
q:=link(q);
end;
end
@ One of the things we need to do when we've parsed an \&{addto} or
similar command is find the header of a supposed \&{picture} variable, given
a token list for that variable. Since the edge structure is about to be
updated, we use |private_edges| to make sure that this is possible.
@<Declare action procedures for use by |do_statement|@>=
function find_edges_var(@!t:pointer):pointer;
var @!p:pointer;
@!cur_edges:pointer; {the return value}
begin p:=find_variable(t); cur_edges:=null;
if p=null then
begin obliterated(t); put_get_error;
end
else if type(p)<>picture_type then
begin print_err("Variable "); show_token_list(t,null,1000,0);
@.Variable x is the wrong type@>
print(" is the wrong type ("); print_type(type(p)); print_char(")");
help2("I was looking for a ""known"" picture variable.")@/
("So I'll not change anything just now."); put_get_error;
end
else begin value(p):=private_edges(value(p));
cur_edges:=value(p);
end;
flush_node_list(t);
find_edges_var:=cur_edges;
end;
@ @<Cases of |do_statement|...@>=
add_to_command: do_add_to;
bounds_command:do_bounds;
@ @<Put each...@>=
primitive("clip",bounds_command,start_clip_code);@/
@!@:clip_}{\&{clip} primitive@>
primitive("setbounds",bounds_command,start_bounds_code);@/
@!@:set_bounds_}{\&{setbounds} primitive@>
@ @<Cases of |print_cmd...@>=
bounds_command: if m=start_clip_code then print("clip")
else print("setbounds");
@ The following function parses the beginning of an \&{addto} or \&{clip}
command: it expects a variable name followed by a token with |cur_cmd=sep|
and then an expression. The function returns the token list for the variable
and stores the command modifier for the separator token in the global variable
|last_add_type|. We must be careful because this variable might get overwritten
any time we call |get_x_next|.
@<Glob...@>=
@!last_add_type:quarterword;
{command modifier that identifies the last \&{addto} command}
@ @<Declare action procedures for use by |do_statement|@>=
function start_draw_cmd(@!sep:quarterword):pointer;
var @!lhv:pointer; {variable to add to left}
@!add_type:quarterword; {value to be returned in |last_add_type|}
begin lhv:=null;@/
get_x_next; var_flag:=sep; scan_primary;
if cur_type<>token_list then
@<Abandon edges command because there's no variable@>
else begin lhv:=cur_exp; add_type:=cur_mod;@/
cur_type:=vacuous; get_x_next; scan_expression;
end;
last_add_type:=add_type;
start_draw_cmd:=lhv;
end;
@ @<Abandon edges command because there's no variable@>=
begin exp_err("Not a suitable variable");
@.Not a suitable variable@>
help4("At this point I needed to see the name of a picture variable.")@/
("(Or perhaps you have indeed presented me with one; I might")@/
("have missed it, if it wasn't followed by the proper token.)")@/
("So I'll not change anything just now.");
put_get_flush_error(0);
end
@ Here is an example of how to use |start_draw_cmd|.
@<Declare action procedures for use by |do_statement|@>=
procedure do_bounds;
var @!lhv,@!lhe:pointer; {variable on left, the corresponding edge structure}
@!p:pointer; {for list manipulation}
@!m:integer; {initial value of |cur_mod|}
begin m:=cur_mod;
lhv:=start_draw_cmd(to_token);@/
if lhv<>null then
begin lhe:=find_edges_var(lhv);
if lhe=null then flush_cur_exp(0)
else if cur_type<>path_type then
begin exp_err("Improper `clip'");
@.Improper `addto'@>
help2("This expression should have specified a known path.")@/
("So I'll not change anything just now."); put_get_flush_error(0);
end
else if left_type(cur_exp)=endpoint then @<Complain about a non-cycle@>
else @<Make |cur_exp| into a \&{setbounds} or clipping path and add
it to |lhe|@>;
end;
end;
@ @<Complain about a non-cycle@>=
begin print_err("Not a cycle");
@.Not a cycle@>
help2("That contour should have ended with `..cycle' or `&cycle'.")@/
("So I'll not change anything just now."); put_get_error;
end
@ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
begin p:=new_bounds_node(cur_exp,m);
link(p):=link(dummy_loc(lhe));
link(dummy_loc(lhe)):=p;@/
if obj_tail(lhe)=dummy_loc(lhe) then obj_tail(lhe):=p;
p:=get_node(gr_object_size[stop_type(m)]);
type(p):=stop_type(m);
link(obj_tail(lhe)):=p;
obj_tail(lhe):=p;@/
init_bbox(lhe);
end
@ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
cases to deal with.
@<Declare action procedures for use by |do_statement|@>=
procedure do_add_to;
var @!lhv,@!lhe:pointer; {variable on left, the corresponding edge structure}
@!p:pointer; {the graphical object or list for |scan_with_list| to update}
@!e:pointer; {an edge structure to be merged}
@!add_type:quarterword; {|also_code|, |contour_code|, or |double_path_code|}
begin lhv:=start_draw_cmd(thing_to_add); add_type:=last_add_type;@/
if lhv<>null then
begin if add_type=also_code then
@<Make sure the current expression is a suitable picture and set |e| and |p|
appropriately@>
else @<Create a graphical object |p| based on |add_type| and the current
expression@>;
scan_with_list(p);
@<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
end;
end;
@ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
setting |e:=null| prevents anything from being added to |lhe|.
@ @<Make sure the current expression is a suitable picture and set |e|...@>=
begin p:=null; e:=null;
if cur_type<>picture_type then
begin exp_err("Improper `addto'");
@.Improper `addto'@>
help2("This expression should have specified a known picture.")@/
("So I'll not change anything just now."); put_get_flush_error(0);
end
else begin e:=private_edges(cur_exp); cur_type:=vacuous;
p:=link(dummy_loc(e));
end;
end
@ In this case |add_type<>also_code| so setting |p:=null| suppresses future
attempts to add to the edge structure.
@<Create a graphical object |p| based on |add_type| and the current...@>=
begin e:=null; p:=null;
if cur_type=pair_type then pair_to_path;
if cur_type<>path_type then
begin exp_err("Improper `addto'");
@.Improper `addto'@>
help2("This expression should have specified a known path.")@/
("So I'll not change anything just now."); put_get_flush_error(0);
end
else if add_type=contour_code then
if left_type(cur_exp)=endpoint then
@<Complain about a non-cycle@>
else begin p:=new_fill_node(cur_exp);
cur_type:=vacuous;
end
else begin p:=new_stroked_node(cur_exp);
cur_type:=vacuous;
end;
end
@ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
lhe:=find_edges_var(lhv);
if lhe=null then
begin if (e=null)and(p<>null) then e:=toss_gr_object(p);
if e<>null then delete_edge_ref(e);
end
else if add_type=also_code then
if e<>null then @<Merge |e| into |lhe| and delete |e|@>
else do_nothing
else if p<>null then
begin link(obj_tail(lhe)):=p;
obj_tail(lhe):=p;
if add_type=double_path_code then
if pen_p(p)=null then pen_p(p):=get_pen_circle(0);
end
@ @<Merge |e| into |lhe| and delete |e|@>=
begin if link(dummy_loc(e))<>null then
begin link(obj_tail(lhe)):=link(dummy_loc(e));
obj_tail(lhe):=obj_tail(e);@/
obj_tail(e):=dummy_loc(e);
link(dummy_loc(e)):=null;
flush_dash_list(lhe);
end;
toss_edges(e);
end
@ @<Cases of |do_statement|...@>=
ship_out_command: do_ship_out;
@ @<Declare action procedures for use by |do_statement|@>=
@t\4@>@<Declare the function called |tfm_check|@>@;
@t\4@>@<Declare the \ps\ output procedures@>@;
procedure do_ship_out;
var @!c:integer; {the character code}
begin get_x_next; scan_expression;
if cur_type<>picture_type then
@<Complain that it's not a known picture@>
else begin c:=round_unscaled(internal[char_code]) mod 256;
if c<0 then c:=c+256;
@<Store the width information for character code~|c|@>;@/
ship_out(cur_exp);
flush_cur_exp(0);
end;
end;
@ @<Complain that it's not a known picture@>=
begin exp_err("Not a known picture");
help1("I can only output known pictures.");
put_get_flush_error(0);
end
@ The \&{everyjob} command simply assigns a nonzero value to the global variable
|start_sym|.
@<Cases of |do_statement|...@>=
every_job_command: begin get_symbol; start_sym:=cur_sym; get_x_next;
end;
@ @<Glob...@>=
@!start_sym:halfword; {a symbolic token to insert at beginning of job}
@ @<Set init...@>=
start_sym:=0;
@ Finally, we have only the ``message'' commands remaining.
@d message_code=0
@d err_message_code=1
@d err_help_code=2
@<Put each...@>=
primitive("message",message_command,message_code);@/
@!@:message_}{\&{message} primitive@>
primitive("errmessage",message_command,err_message_code);@/
@!@:err_message_}{\&{errmessage} primitive@>
primitive("errhelp",message_command,err_help_code);@/
@!@:err_help_}{\&{errhelp} primitive@>
@ @<Cases of |print_cmd...@>=
message_command: if m<err_message_code then print("message")
else if m=err_message_code then print("errmessage")
else print("errhelp");
@ @<Cases of |do_statement|...@>=
message_command: do_message;
@ @<Declare action procedures for use by |do_statement|@>=
@<Declare a procedure called |no_string_err|@>@;
procedure do_message;
var @!m:message_code..err_help_code; {the type of message}
begin m:=cur_mod; get_x_next; scan_expression;
if cur_type<>string_type then
no_string_err("A message should be a known string expression.")
else case m of
message_code:begin print_nl(""); print(cur_exp);
end;
err_message_code:@<Print string |cur_exp| as an error message@>;
err_help_code:@<Save string |cur_exp| as the |err_help|@>;
end; {there are no other cases}
flush_cur_exp(0);
end;
@ @<Declare a procedure called |no_string_err|@>=
procedure no_string_err(s:str_number);
begin exp_err("Not a string");
@.Not a string@>
help1(s);
put_get_error;
end;
@ The global variable |err_help| is zero when the user has most recently
given an empty help string, or if none has ever been given.
@<Save string |cur_exp| as the |err_help|@>=
begin if err_help<>0 then delete_str_ref(err_help);
if length(cur_exp)=0 then err_help:=0
else begin err_help:=cur_exp; add_str_ref(err_help);
end;
end
@ If \&{errmessage} occurs often in |scroll_mode|, without user-defined
\&{errhelp}, we don't want to give a long help message each time. So we
give a verbose explanation only once.
@<Glob...@>=
@!long_help_seen:boolean; {has the long \.{\\errmessage} help been used?}
@ @<Set init...@>=long_help_seen:=false;
@ @<Print string |cur_exp| as an error message@>=
begin print_err(""); print(cur_exp);
if err_help<>0 then use_err_help:=true
else if long_help_seen then help1("(That was another `errmessage'.)")
else begin if interaction<error_stop_mode then long_help_seen:=true;
help4("This error message was generated by an `errmessage'")@/
("command, so I can't give any explicit help.")@/
("Pretend that you're Miss Marple: Examine all clues,")@/
@^Marple, Jane@>
("and deduce the truth by inspired guesses.");
end;
put_get_error; use_err_help:=false;
end
@ @<Cases of |do_statement|...@>=
write_command: do_write;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_write;
label continue;
var @!t:str_number; {the line of text to be written}
@!n,@!n0:write_index; {for searching |wr_fname| and |wr_file| arrays}
@!old_setting:0..max_selector; {for saving |selector| during output}
begin get_x_next;
scan_expression;
if cur_type<>string_type then
no_string_err("The text to be written should be a known string expression")
else if cur_cmd<>to_token then
begin print_err("Missing `to' clause");
help1("A write command should end with `to <filename>'");
put_get_error;
end
else begin t:=cur_exp; cur_type:=vacuous;
get_x_next;
scan_expression;
if cur_type<>string_type then
no_string_err("I can't write to that file name. It isn't a known string")
else @<Write |t| to the file named by |cur_exp|@>;
delete_str_ref(t);
end;
flush_cur_exp(0);
end;
@ @<Write |t| to the file named by |cur_exp|@>=
begin @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
|cur_exp| must be inserted@>;
@<Make sure |eof_line| is initialized@>;
if str_vs_str(t,eof_line)=0 then
@<Record the end of file on |wr_file[n]|@>
else begin old_setting:=selector;
selector:=n;
print(t); print_ln;
selector := old_setting;
end;
end
@ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
n:=write_files;
n0:=write_files;
repeat
continue:if n=0 then
@<Insert |cur_exp| at index |n0| and call |open_write_file|@>
else begin decr(n);
if wr_fname[n]=0 then
begin n0:=n; goto continue;
end;
end;
until str_vs_str(cur_exp,wr_fname[n])=0
@ @<Insert |cur_exp| at index |n0| and call |open_write_file|@>=
begin if n0=write_files then
if write_files<max_write_files then incr(write_files)
else overflow("write files",max_write_files);
n:=n0;
open_write_file(cur_exp,n);
end
@ @<Record the end of file on |wr_file[n]|@>=
begin a_close(wr_file[n]);
delete_str_ref(wr_fname[n]);
wr_fname[n]:=0;
if n=write_files-1 then write_files:=n;
end
@* \[42] Writing font metric data.
\TeX\ gets its knowledge about fonts from font metric files, also called
\.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
but other programs know about them too. One of \MP's duties is to
write \.{TFM} files so that the user's fonts can readily be
applied to typesetting.
@:TFM files}{\.{TFM} files@>
@^font metric files@>
The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
Since the number of bytes is always a multiple of~4, we could
also regard the file as a sequence of 32-bit words, but \MP\ uses the
byte interpretation. The format of \.{TFM} files was designed by
Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
@^Ramshaw, Lyle Harold@>
of information in a compact but useful form.
@<Glob...@>=
@!tfm_file:byte_file; {the font metric output goes here}
@!metric_file_name: str_number; {full name of the font metric file}
@ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
integers that give the lengths of the various subsequent portions
of the file. These twelve integers are, in order:
$$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
|lf|&length of the entire file, in words;\cr
|lh|&length of the header data, in words;\cr
|bc|&smallest character code in the font;\cr
|ec|&largest character code in the font;\cr
|nw|&number of words in the width table;\cr
|nh|&number of words in the height table;\cr
|nd|&number of words in the depth table;\cr
|ni|&number of words in the italic correction table;\cr
|nl|&number of words in the lig/kern table;\cr
|nk|&number of words in the kern table;\cr
|ne|&number of words in the extensible character table;\cr
|np|&number of font parameter words.\cr}}$$
They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
|ne<=256|, and
$$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
and as few as 0 characters (if |bc=ec+1|).
Incidentally, when two or more 8-bit bytes are combined to form an integer of
16 or more bits, the most significant bytes appear first in the file.
This is called BigEndian order.
@!@^BigEndian order@>
@ The rest of the \.{TFM} file may be regarded as a sequence of ten data
arrays having the informal specification
$$\def\arr$[#1]#2${\&{array} $[#1]$ \&{of} #2}
\tabskip\centering
\halign to\displaywidth{\hfil\\{#}\tabskip=0pt&$\,:\,$\arr#\hfil
\tabskip\centering\cr
header&|[0..lh-1]@t\\{stuff}@>|\cr
char\_info&|[bc..ec]char_info_word|\cr
width&|[0..nw-1]fix_word|\cr
height&|[0..nh-1]fix_word|\cr
depth&|[0..nd-1]fix_word|\cr
italic&|[0..ni-1]fix_word|\cr
lig\_kern&|[0..nl-1]lig_kern_command|\cr
kern&|[0..nk-1]fix_word|\cr
exten&|[0..ne-1]extensible_recipe|\cr
param&|[1..np]fix_word|\cr}$$
The most important data type used here is a |@!fix_word|, which is
a 32-bit representation of a binary fraction. A |fix_word| is a signed
quantity, with the two's complement of the entire word used to represent
negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
the smallest is $-2048$. We will see below, however, that all but two of
the |fix_word| values must lie between $-16$ and $+16$.
@ The first data array is a block of header information, which contains
general facts about the font. The header must contain at least two words,
|header[0]| and |header[1]|, whose meaning is explained below. Additional
header information of use to other software routines might also be
included, and \MP\ will generate it if the \.{headerbyte} command occurs.
For example, 16 more words of header information are in use at the Xerox
Palo Alto Research Center; the first ten specify the character coding
scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
last gives the ``face byte.''
\yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
the \.{GF} output file. This helps ensure consistency between files,
since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
should match the check sums on actual fonts that are used. The actual
relation between this check sum and the rest of the \.{TFM} file is not
important; the check sum is simply an identification number with the
property that incompatible fonts almost always have distinct check sums.
@^check sum@>
\yskip\hang|header[1]| is a |fix_word| containing the design size of the
font, in units of \TeX\ points. This number must be at least 1.0; it is
fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
font, i.e., a font that was designed to look best at a 10-point size,
whatever that really means. When a \TeX\ user asks for a font `\.{at}
$\delta$ \.{pt}', the effect is to override the design size and replace it
by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
the font image by a factor of $\delta$ divided by the design size. {\sl
All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
numbers in design-size units.} Thus, for example, the value of |param[6]|,
which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
since many fonts have a design size equal to one em. The other dimensions
must be less than 16 design-size units in absolute value; thus,
|header[1]| and |param[1]| are the only |fix_word| entries in the whole
\.{TFM} file whose first byte might be something besides 0 or 255.
@ Next comes the |char_info| array, which contains one |@!char_info_word|
per character. Each word in this part of the file contains six fields
packed into four bytes as follows.
\yskip\hang first byte: |@!width_index| (8 bits)\par
\hang second byte: |@!height_index| (4 bits) times 16, plus |@!depth_index|
(4~bits)\par
\hang third byte: |@!italic_index| (6 bits) times 4, plus |@!tag|
(2~bits)\par
\hang fourth byte: |@!remainder| (8 bits)\par
\yskip\noindent
The actual width of a character is \\{width}|[width_index]|, in design-size
units; this is a device for compressing information, since many characters
have the same width. Since it is quite common for many characters
to have the same height, depth, or italic correction, the \.{TFM} format
imposes a limit of 16 different heights, 16 different depths, and
64 different italic corrections.
Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
\\{italic}[0]=0$ should always hold, so that an index of zero implies a
value of zero. The |width_index| should never be zero unless the
character does not exist in the font, since a character is valid if and
only if it lies between |bc| and |ec| and has a nonzero |width_index|.
@ The |tag| field in a |char_info_word| has four values that explain how to
interpret the |remainder| field.
\yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
\hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
program starting at location |remainder| in the |lig_kern| array.\par
\hang|tag=2| (|list_tag|) means that this character is part of a chain of
characters of ascending sizes, and not the largest in the chain. The
|remainder| field gives the character code of the next larger character.\par
\hang|tag=3| (|ext_tag|) means that this character code represents an
extensible character, i.e., a character that is built up of smaller pieces
so that it can be made arbitrarily large. The pieces are specified in
|@!exten[remainder]|.\par
\yskip\noindent
Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
unless they are used in special circumstances in math formulas. For example,
\TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
operation looks for both |list_tag| and |ext_tag|.
@d no_tag=0 {vanilla character}
@d lig_tag=1 {character has a ligature/kerning program}
@d list_tag=2 {character has a successor in a charlist}
@d ext_tag=3 {character is extensible}
@ The |lig_kern| array contains instructions in a simple programming language
that explains what to do for special letter pairs. Each word in this array is a
|@!lig_kern_command| of four bytes.
\yskip\hang first byte: |skip_byte|, indicates that this is the final program
step if the byte is 128 or more, otherwise the next step is obtained by
skipping this number of intervening steps.\par
\hang second byte: |next_char|, ``if |next_char| follows the current character,
then perform the operation and stop, otherwise continue.''\par
\hang third byte: |op_byte|, indicates a ligature step if less than~128,
a kern step otherwise.\par
\hang fourth byte: |remainder|.\par
\yskip\noindent
In a kern step, an
additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
between the current character and |next_char|. This amount is
often negative, so that the characters are brought closer together
by kerning; but it might be positive.
There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
$0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
|remainder| is inserted between the current character and |next_char|;
then the current character is deleted if $b=0$, and |next_char| is
deleted if $c=0$; then we pass over $a$~characters to reach the next
current character (which may have a ligature/kerning program of its own).
If the very first instruction of the |lig_kern| array has |skip_byte=255|,
the |next_char| byte is the so-called right boundary character of this font;
the value of |next_char| need not lie between |bc| and~|ec|.
If the very last instruction of the |lig_kern| array has |skip_byte=255|,
there is a special ligature/kerning program for a left boundary character,
beginning at location |256*op_byte+remainder|.
The interpretation is that \TeX\ puts implicit boundary characters
before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect
ligatures and kerning.
If the very first instruction of a character's |lig_kern| program has
|skip_byte>128|, the program actually begins in location
|256*op_byte+remainder|. This feature allows access to large |lig_kern|
arrays, because the first instruction must otherwise
appear in a location |<=255|.
Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
the condition
$$\hbox{|256*op_byte+remainder<nl|.}$$
If such an instruction is encountered during
normal program execution, it denotes an unconditional halt; no ligature
command is performed.
@d stop_flag=128+min_quarterword
{value indicating `\.{STOP}' in a lig/kern program}
@d kern_flag=128+min_quarterword {op code for a kern step}
@d skip_byte(#)==lig_kern[#].b0
@d next_char(#)==lig_kern[#].b1
@d op_byte(#)==lig_kern[#].b2
@d rem_byte(#)==lig_kern[#].b3
@ Extensible characters are specified by an |@!extensible_recipe|, which
consists of four bytes called |@!top|, |@!mid|, |@!bot|, and |@!rep| (in this
order). These bytes are the character codes of individual pieces used to
build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
present in the built-up result. For example, an extensible vertical line is
like an extensible bracket, except that the top and bottom pieces are missing.
Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
if the piece isn't present. Then the extensible characters have the form
$TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
The width of the extensible character is the width of $R$; and the
height-plus-depth is the sum of the individual height-plus-depths of the
components used, since the pieces are butted together in a vertical list.
@d ext_top(#)==exten[#].b0 {|top| piece in a recipe}
@d ext_mid(#)==exten[#].b1 {|mid| piece in a recipe}
@d ext_bot(#)==exten[#].b2 {|bot| piece in a recipe}
@d ext_rep(#)==exten[#].b3 {|rep| piece in a recipe}
@ The final portion of a \.{TFM} file is the |param| array, which is another
sequence of |fix_word| values.
\yskip\hang|param[1]=slant| is the amount of italic slant, which is used
to help position accents. For example, |slant=.25| means that when you go
up one unit, you also go .25 units to the right. The |slant| is a pure
number; it is the only |fix_word| other than the design size itself that is
not scaled by the design size.
\hang|param[2]=space| is the normal spacing between words in text.
Note that character @'40 in the font need not have anything to do with
blank spaces.
\hang|param[3]=space_stretch| is the amount of glue stretching between words.
\hang|param[4]=space_shrink| is the amount of glue shrinking between words.
\hang|param[5]=x_height| is the size of one ex in the font; it is also
the height of letters for which accents don't have to be raised or lowered.
\hang|param[6]=quad| is the size of one em in the font.
\hang|param[7]=extra_space| is the amount added to |param[2]| at the
ends of sentences.
\yskip\noindent
If fewer than seven parameters are present, \TeX\ sets the missing parameters
to zero.
@d slant_code=1
@d space_code=2
@d space_stretch_code=3
@d space_shrink_code=4
@d x_height_code=5
@d quad_code=6
@d extra_space_code=7
@ So that is what \.{TFM} files hold. One of \MP's duties is to output such
information, and it does this all at once at the end of a job.
In order to prepare for such frenetic activity, it squirrels away the
necessary facts in various arrays as information becomes available.
Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
|tfm_ital_corr|. Other information about a character (e.g., about
its ligatures or successors) is accessible via the |char_tag| and
|char_remainder| arrays. Other information about the font as a whole
is kept in additional arrays called |header_byte|, |lig_kern|,
|kern|, |exten|, and |param|.
@d undefined_label==lig_table_size {an undefined local label}
@<Glob...@>=
@!bc,@!ec:eight_bits; {smallest and largest character codes shipped out}
@!tfm_width:array[eight_bits] of scaled; {\&{charwd} values}
@!tfm_height:array[eight_bits] of scaled; {\&{charht} values}
@!tfm_depth:array[eight_bits] of scaled; {\&{chardp} values}
@!tfm_ital_corr:array[eight_bits] of scaled; {\&{charic} values}
@!char_exists:array[eight_bits] of boolean; {has this code been shipped out?}
@!char_tag:array[eight_bits] of no_tag..ext_tag; {|remainder| category}
@!char_remainder:array[eight_bits] of 0..lig_table_size; {the |remainder| byte}
@!header_byte:array[1..header_size] of -1..255;
{bytes of the \.{TFM} header, or $-1$ if unset}
@!lig_kern:array[0..lig_table_size] of four_quarters; {the ligature/kern table}
@!nl:0..32767-256; {the number of ligature/kern steps so far}
@!kern:array[0..max_kerns] of scaled; {distinct kerning amounts}
@!nk:0..max_kerns; {the number of distinct kerns so far}
@!exten:array[eight_bits] of four_quarters; {extensible character recipes}
@!ne:0..256; {the number of extensible characters so far}
@!param:array[1..max_font_dimen] of scaled; {\&{fontinfo} parameters}
@!np:0..max_font_dimen; {the largest \&{fontinfo} parameter specified so far}
@!nw,@!nh,@!nd,@!ni:0..256; {sizes of \.{TFM} subtables}
@!skip_table:array[eight_bits] of 0..lig_table_size; {local label status}
@!lk_started:boolean; {has there been a lig/kern step in this command yet?}
@!bchar:integer; {right boundary character}
@!bch_label:0..lig_table_size; {left boundary starting location}
@!ll,@!lll:0..lig_table_size; {registers used for lig/kern processing}
@!label_loc:array[0..256] of -1..lig_table_size; {lig/kern starting addresses}
@!label_char:array[1..256] of eight_bits; {characters for |label_loc|}
@!label_ptr:0..256; {highest position occupied in |label_loc|}
@ @<Set init...@>=
for k:=0 to 255 do
begin tfm_width[k]:=0; tfm_height[k]:=0; tfm_depth[k]:=0; tfm_ital_corr[k]:=0;
char_exists[k]:=false; char_tag[k]:=no_tag; char_remainder[k]:=0;
skip_table[k]:=undefined_label;
end;
for k:=1 to header_size do header_byte[k]:=-1;
bc:=255; ec:=0; nl:=0; nk:=0; ne:=0; np:=0;@/
internal[boundary_char]:=-unity;
bch_label:=undefined_label;@/
label_loc[0]:=-1; label_ptr:=0;
@ @<Declare the function called |tfm_check|@>=
function tfm_check(@!m:small_number):scaled;
begin if abs(internal[m])>=fraction_half then
begin print_err("Enormous "); print(int_name[m]);
@.Enormous charwd...@>
@.Enormous chardp...@>
@.Enormous charht...@>
@.Enormous charic...@>
@.Enormous designsize...@>
print(" has been reduced");
help1("Font metric dimensions must be less than 2048pt.");
put_get_error;
if internal[m]>0 then tfm_check:=fraction_half-1
else tfm_check:=1-fraction_half;
end
else tfm_check:=internal[m];
end;
@ @<Store the width information for character code~|c|@>=
if c<bc then bc:=c;
if c>ec then ec:=c;
char_exists[c]:=true;
tfm_width[c]:=tfm_check(char_wd);
tfm_height[c]:=tfm_check(char_ht);
tfm_depth[c]:=tfm_check(char_dp);
tfm_ital_corr[c]:=tfm_check(char_ic)
@ Now let's consider \MP's special \.{TFM}-oriented commands.
@<Cases of |do_statement|...@>=
tfm_command: do_tfm_command;
@ @d char_list_code=0
@d lig_table_code=1
@d extensible_code=2
@d header_byte_code=3
@d font_dimen_code=4
@<Put each...@>=
primitive("charlist",tfm_command,char_list_code);@/
@!@:char_list_}{\&{charlist} primitive@>
primitive("ligtable",tfm_command,lig_table_code);@/
@!@:lig_table_}{\&{ligtable} primitive@>
primitive("extensible",tfm_command,extensible_code);@/
@!@:extensible_}{\&{extensible} primitive@>
primitive("headerbyte",tfm_command,header_byte_code);@/
@!@:header_byte_}{\&{headerbyte} primitive@>
primitive("fontdimen",tfm_command,font_dimen_code);@/
@!@:font_dimen_}{\&{fontdimen} primitive@>
@ @<Cases of |print_cmd...@>=
tfm_command: case m of
char_list_code:print("charlist");
lig_table_code:print("ligtable");
extensible_code:print("extensible");
header_byte_code:print("headerbyte");
othercases print("fontdimen")
endcases;
@ @<Declare action procedures for use by |do_statement|@>=
function get_code:eight_bits; {scans a character code value}
label found;
var @!c:integer; {the code value found}
begin get_x_next; scan_expression;
if cur_type=known then
begin c:=round_unscaled(cur_exp);
if c>=0 then if c<256 then goto found;
end
else if cur_type=string_type then if length(cur_exp)=1 then
begin c:=so(str_pool[str_start[cur_exp]]); goto found;
end;
exp_err("Invalid code has been replaced by 0");
@.Invalid code...@>
help2("I was looking for a number between 0 and 255, or for a")@/
("string of length 1. Didn't find it; will use 0 instead.");
put_get_flush_error(0); c:=0;
found: get_code:=c;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure set_tag(@!c:halfword;@!t:small_number;@!r:halfword);
begin if char_tag[c]=no_tag then
begin char_tag[c]:=t; char_remainder[c]:=r;
if t=lig_tag then
begin incr(label_ptr); label_loc[label_ptr]:=r; label_char[label_ptr]:=c;
end;
end
else @<Complain about a character tag conflict@>;
end;
@ @<Complain about a character tag conflict@>=
begin print_err("Character ");
if (c>" ")and(c<127) then print(c)
else if c=256 then print("||")
else begin print("code "); print_int(c);
end;
print(" is already ");
@.Character c is already...@>
case char_tag[c] of
lig_tag: print("in a ligtable");
list_tag: print("in a charlist");
ext_tag: print("extensible");
end; {there are no other cases}
help2("It's not legal to label a character more than once.")@/
("So I'll not change anything just now.");
put_get_error; end
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_tfm_command;
label continue,done;
var @!c,@!cc:0..256; {character codes}
@!k:0..max_kerns; {index into the |kern| array}
@!j:integer; {index into |header_byte| or |param|}
begin case cur_mod of
char_list_code: begin c:=get_code;
{we will store a list of character successors}
while cur_cmd=colon do
begin cc:=get_code; set_tag(c,list_tag,cc); c:=cc;
end;
end;
lig_table_code: @<Store a list of ligature/kern steps@>;
extensible_code: @<Define an extensible recipe@>;
header_byte_code, font_dimen_code: begin c:=cur_mod; get_x_next;
scan_expression;
if (cur_type<>known)or(cur_exp<half_unit) then
begin exp_err("Improper location");
@.Improper location@>
help2("I was looking for a known, positive number.")@/
("For safety's sake I'll ignore the present command.");
put_get_error;
end
else begin j:=round_unscaled(cur_exp);
if cur_cmd<>colon then
begin missing_err(":");
@.Missing `:'@>
help1("A colon should follow a headerbyte or fontinfo location.");
back_error;
end;
if c=header_byte_code then @<Store a list of header bytes@>
else @<Store a list of font dimensions@>;
end;
end;
end; {there are no other cases}
end;
@ @<Store a list of ligature/kern steps@>=
begin lk_started:=false;
continue: get_x_next;
if(cur_cmd=skip_to)and lk_started then
@<Process a |skip_to| command and |goto done|@>;
if cur_cmd=bchar_label then
begin c:=256; cur_cmd:=colon;@+end
else begin back_input; c:=get_code;@+end;
if(cur_cmd=colon)or(cur_cmd=double_colon)then
@<Record a label in a lig/kern subprogram and |goto continue|@>;
if cur_cmd=lig_kern_token then @<Compile a ligature/kern command@>
else begin print_err("Illegal ligtable step");
@.Illegal ligtable step@>
help1("I was looking for `=:' or `kern' here.");
back_error; next_char(nl):=qi(0); op_byte(nl):=qi(0); rem_byte(nl):=qi(0);@/
skip_byte(nl):=stop_flag+1; {this specifies an unconditional stop}
end;
if nl=lig_table_size then overflow("ligtable size",lig_table_size);
@:MetaPost capacity exceeded ligtable size}{\quad ligtable size@>
incr(nl);
if cur_cmd=comma then goto continue;
if skip_byte(nl-1)<stop_flag then skip_byte(nl-1):=stop_flag;
done:end
@ @<Put each...@>=
primitive("=:",lig_kern_token,0);
@!@:=:_}{\.{=:} primitive@>
primitive("=:|",lig_kern_token,1);
@!@:=:/_}{\.{=:\char'174} primitive@>
primitive("=:|>",lig_kern_token,5);
@!@:=:/>_}{\.{=:\char'174>} primitive@>
primitive("|=:",lig_kern_token,2);
@!@:=:/_}{\.{\char'174=:} primitive@>
primitive("|=:>",lig_kern_token,6);
@!@:=:/>_}{\.{\char'174=:>} primitive@>
primitive("|=:|",lig_kern_token,3);
@!@:=:/_}{\.{\char'174=:\char'174} primitive@>
primitive("|=:|>",lig_kern_token,7);
@!@:=:/>_}{\.{\char'174=:\char'174>} primitive@>
primitive("|=:|>>",lig_kern_token,11);
@!@:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
primitive("kern",lig_kern_token,128);
@!@:kern_}{\&{kern} primitive@>
@ @<Cases of |print_cmd...@>=
lig_kern_token: case m of
0:print("=:");
1:print("=:|");
2:print("|=:");
3:print("|=:|");
5:print("=:|>");
6:print("|=:>");
7:print("|=:|>");
11:print("|=:|>>");
othercases print("kern")
endcases;
@ Local labels are implemented by maintaining the |skip_table| array,
where |skip_table[c]| is either |undefined_label| or the address of the
most recent lig/kern instruction that skips to local label~|c|. In the
latter case, the |skip_byte| in that instruction will (temporarily)
be zero if there were no prior skips to this label, or it will be the
distance to the prior skip.
We may need to cancel skips that span more than 127 lig/kern steps.
@d cancel_skips(#)==ll:=#;
repeat lll:=qo(skip_byte(ll)); skip_byte(ll):=stop_flag; ll:=ll-lll;
until lll=0
@d skip_error(#)==begin print_err("Too far to skip");
@.Too far to skip@>
help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
error; cancel_skips(#);
end
@<Process a |skip_to| command and |goto done|@>=
begin c:=get_code;
if nl-skip_table[c]>128 then {|skip_table[c]<<nl<=undefined_label|}
begin skip_error(skip_table[c]); skip_table[c]:=undefined_label;
end;
if skip_table[c]=undefined_label then skip_byte(nl-1):=qi(0)
else skip_byte(nl-1):=qi(nl-skip_table[c]-1);
skip_table[c]:=nl-1; goto done;
end
@ @<Record a label in a lig/kern subprogram and |goto continue|@>=
begin if cur_cmd=colon then
if c=256 then bch_label:=nl
else set_tag(c,lig_tag,nl)
else if skip_table[c]<undefined_label then
begin ll:=skip_table[c]; skip_table[c]:=undefined_label;
repeat lll:=qo(skip_byte(ll));
if nl-ll>128 then
begin skip_error(ll); goto continue;
end;
skip_byte(ll):=qi(nl-ll-1); ll:=ll-lll;
until lll=0;
end;
goto continue;
end
@ @<Compile a ligature/kern...@>=
begin next_char(nl):=qi(c); skip_byte(nl):=qi(0);
if cur_mod<128 then {ligature op}
begin op_byte(nl):=qi(cur_mod); rem_byte(nl):=qi(get_code);
end
else begin get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Improper kern");
@.Improper kern@>
help2("The amount of kern should be a known numeric value.")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
put_get_flush_error(0);
end;
kern[nk]:=cur_exp;
k:=0;@+while kern[k]<>cur_exp do incr(k);
if k=nk then
begin if nk=max_kerns then overflow("kern",max_kerns);
@:MetaPost capacity exceeded kern}{\quad kern@>
incr(nk);
end;
op_byte(nl):=kern_flag+(k div 256);
rem_byte(nl):=qi((k mod 256));
end;
lk_started:=true;
end
@ @d missing_extensible_punctuation(#)==
begin missing_err(#);
@.Missing `\char`\#'@>
help1("I'm processing `extensible c: t,m,b,r'."); back_error;
end
@<Define an extensible recipe@>=
begin if ne=256 then overflow("extensible",256);
@:MetaPost capacity exceeded extensible}{\quad extensible@>
c:=get_code; set_tag(c,ext_tag,ne);
if cur_cmd<>colon then missing_extensible_punctuation(":");
ext_top(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_mid(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_bot(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_rep(ne):=qi(get_code);
incr(ne);
end
@ @<Store a list of header bytes@>=
repeat if j>header_size then overflow("headerbyte",header_size);
@:MetaPost capacity exceeded headerbyte}{\quad headerbyte@>
header_byte[j]:=get_code; incr(j);
until cur_cmd<>comma
@ @<Store a list of font dimensions@>=
repeat if j>max_font_dimen then overflow("fontdimen",max_font_dimen);
@:MetaPost capacity exceeded fontdimen}{\quad fontdimen@>
while j>np do
begin incr(np); param[np]:=0;
end;
get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Improper font parameter");
@.Improper font parameter@>
help1("I'm zeroing this one. Proceed, with fingers crossed.");
put_get_flush_error(0);
end;
param[j]:=cur_exp; incr(j);
until cur_cmd<>comma
@ OK: We've stored all the data that is needed for the \.{TFM} file.
All that remains is to output it in the correct format.
An interesting problem needs to be solved in this connection, because
the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
and 64~italic corrections. If the data has more distinct values than
this, we want to meet the necessary restrictions by perturbing the
given values as little as possible.
\MP\ solves this problem in two steps. First the values of a given
kind (widths, heights, depths, or italic corrections) are sorted;
then the list of sorted values is perturbed, if necessary.
The sorting operation is facilitated by having a special node of
essentially infinite |value| at the end of the current list.
@<Initialize table entries...@>=
value(inf_val):=fraction_four;
@ Straight linear insertion is good enough for sorting, since the lists
are usually not terribly long. As we work on the data, the current list
will start at |link(temp_head)| and end at |inf_val|; the nodes in this
list will be in increasing order of their |value| fields.
Given such a list, the |sort_in| function takes a value and returns a pointer
to where that value can be found in the list. The value is inserted in
the proper place, if necessary.
At the time we need to do these operations, most of \MP's work has been
completed, so we will have plenty of memory to play with. The value nodes
that are allocated for sorting will never be returned to free storage.
@d clear_the_list==link(temp_head):=inf_val
@p function sort_in(@!v:scaled):pointer;
label found;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin p:=temp_head;
loop@+ begin q:=link(p);
if v<=value(q) then goto found;
p:=q;
end;
found: if v<value(q) then
begin r:=get_node(value_node_size); value(r):=v; link(r):=q; link(p):=r;
end;
sort_in:=link(p);
end;
@ Now we come to the interesting part, where we reduce the list if necessary
until it has the required size. The |min_cover| routine is basic to this
process; it computes the minimum number~|m| such that the values of the
current sorted list can be covered by |m|~intervals of width~|d|. It
also sets the global value |perturbation| to the smallest value $d'>d$
such that the covering found by this algorithm would be different.
In particular, |min_cover(0)| returns the number of distinct values in the
current list and sets |perturbation| to the minimum distance between
adjacent values.
@p function min_cover(@!d:scaled):integer;
var @!p:pointer; {runs through the current list}
@!l:scaled; {the least element covered by the current interval}
@!m:integer; {lower bound on the size of the minimum cover}
begin m:=0; p:=link(temp_head); perturbation:=el_gordo;
while p<>inf_val do
begin incr(m); l:=value(p);
repeat p:=link(p);
until value(p)>l+d;
if value(p)-l<perturbation then perturbation:=value(p)-l;
end;
min_cover:=m;
end;
@ @<Glob...@>=
@!perturbation:scaled; {quantity related to \.{TFM} rounding}
@!excess:integer; {the list is this much too long}
@ The smallest |d| such that a given list can be covered with |m| intervals
is determined by the |threshold| routine, which is sort of an inverse
to |min_cover|. The idea is to increase the interval size rapidly until
finding the range, then to go sequentially until the exact borderline has
been discovered.
@p function threshold(@!m:integer):scaled;
var @!d:scaled; {lower bound on the smallest interval size}
begin excess:=min_cover(0)-m;
if excess<=0 then threshold:=0
else begin repeat d:=perturbation;
until min_cover(d+d)<=m;
while min_cover(d)>m do d:=perturbation;
threshold:=d;
end;
end;
@ The |skimp| procedure reduces the current list to at most |m| entries,
by changing values if necessary. It also sets |info(p):=k| if |value(p)|
is the |k|th distinct value on the resulting list, and it sets
|perturbation| to the maximum amount by which a |value| field has
been changed. The size of the resulting list is returned as the
value of |skimp|.
@p function skimp(@!m:integer):integer;
var @!d:scaled; {the size of intervals being coalesced}
@!p,@!q,@!r:pointer; {list manipulation registers}
@!l:scaled; {the least value in the current interval}
@!v:scaled; {a compromise value}
begin d:=threshold(m); perturbation:=0;
q:=temp_head; m:=0; p:=link(temp_head);
while p<>inf_val do
begin incr(m); l:=value(p); info(p):=m;
if value(link(p))<=l+d then
@<Replace an interval of values by its midpoint@>;
q:=p; p:=link(p);
end;
skimp:=m;
end;
@ @<Replace an interval...@>=
begin repeat p:=link(p); info(p):=m;
decr(excess);@+if excess=0 then d:=0;
until value(link(p))>l+d;
v:=l+halfp(value(p)-l);
if value(p)-v>perturbation then perturbation:=value(p)-v;
r:=q;
repeat r:=link(r); value(r):=v;
until r=p;
link(q):=p; {remove duplicate values from the current list}
end
@ A warning message is issued whenever something is perturbed by
more than 1/16\thinspace pt.
@p procedure tfm_warning(@!m:small_number);
begin print_nl("(some "); print(int_name[m]);
@.some charwds...@>
@.some chardps...@>
@.some charhts...@>
@.some charics...@>
print(" values had to be adjusted by as much as ");
print_scaled(perturbation); print("pt)");
end;
@ Here's an example of how we use these routines.
The width data needs to be perturbed only if there are 256 distinct
widths, but \MP\ must check for this case even though it is
highly unusual.
An integer variable |k| will be defined when we use this code.
The |dimen_head| array will contain pointers to the sorted
lists of dimensions.
@<Massage the \.{TFM} widths@>=
clear_the_list;
for k:=bc to ec do if char_exists[k] then
tfm_width[k]:=sort_in(tfm_width[k]);
nw:=skimp(255)+1; dimen_head[1]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_wd)
@ @<Glob...@>=
@!dimen_head:array[1..4] of pointer; {lists of \.{TFM} dimensions}
@ Heights, depths, and italic corrections are different from widths
not only because their list length is more severely restricted, but
also because zero values do not need to be put into the lists.
@<Massage the \.{TFM} heights, depths, and italic corrections@>=
clear_the_list;
for k:=bc to ec do if char_exists[k] then
if tfm_height[k]=0 then tfm_height[k]:=zero_val
else tfm_height[k]:=sort_in(tfm_height[k]);
nh:=skimp(15)+1; dimen_head[2]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_ht);
clear_the_list;
for k:=bc to ec do if char_exists[k] then
if tfm_depth[k]=0 then tfm_depth[k]:=zero_val
else tfm_depth[k]:=sort_in(tfm_depth[k]);
nd:=skimp(15)+1; dimen_head[3]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_dp);
clear_the_list;
for k:=bc to ec do if char_exists[k] then
if tfm_ital_corr[k]=0 then tfm_ital_corr[k]:=zero_val
else tfm_ital_corr[k]:=sort_in(tfm_ital_corr[k]);
ni:=skimp(63)+1; dimen_head[4]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_ic)
@ @<Initialize table entries...@>=
value(zero_val):=0; info(zero_val):=0;
@ Bytes 5--8 of the header are set to the design size, unless the user has
some crazy reason for specifying them differently.
Error messages are not allowed at the time this procedure is called,
so a warning is printed instead.
The value of |max_tfm_dimen| is calculated so that
$$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
< \\{three\_bytes}.$$
@d three_bytes==@'100000000 {$2^{24}$}
@p procedure fix_design_size;
var @!d:scaled; {the design size}
begin d:=internal[design_size];
if (d<unity)or(d>=fraction_half) then
begin if d<>0 then
print_nl("(illegal design size has been changed to 128pt)");
@.illegal design size...@>
d:=@'40000000; internal[design_size]:=d;
end;
if header_byte[5]<0 then if header_byte[6]<0 then
if header_byte[7]<0 then if header_byte[8]<0 then
begin header_byte[5]:=d div @'4000000;
header_byte[6]:=(d div 4096) mod 256;
header_byte[7]:=(d div 16) mod 256;
header_byte[8]:=(d mod 16)*16;
end;
max_tfm_dimen:=16*internal[design_size]-internal[design_size] div @'10000000;
if max_tfm_dimen>=fraction_half then max_tfm_dimen:=fraction_half-1;
end;
@ The |dimen_out| procedure computes a |fix_word| relative to the
design size. If the data was out of range, it is corrected and the
global variable |tfm_changed| is increased by~one.
@p function dimen_out(@!x:scaled):integer;
begin if abs(x)>max_tfm_dimen then
begin incr(tfm_changed);
if x>0 then x:=three_bytes-1@+else x:=1-three_bytes;
end
else x:=make_scaled(x*16,internal[design_size]);
dimen_out:=x;
end;
@ @<Glob...@>=
@!max_tfm_dimen:scaled; {bound on widths, heights, kerns, etc.}
@!tfm_changed:integer; {the number of data entries that were out of bounds}
@ If the user has not specified any of the first four header bytes,
the |fix_check_sum| procedure replaces them by a ``check sum'' computed
from the |tfm_width| data relative to the design size.
@^check sum@>
@p procedure fix_check_sum;
label exit;
var @!k:eight_bits; {runs through character codes}
@!b1,@!b2,@!b3,@!b4:eight_bits; {bytes of the check sum}
@!x:integer; {hash value used in check sum computation}
begin if header_byte[1]<0 then if header_byte[2]<0 then
if header_byte[3]<0 then if header_byte[4]<0 then
begin @<Compute a check sum in |(b1,b2,b3,b4)|@>;
header_byte[1]:=b1; header_byte[2]:=b2;
header_byte[3]:=b3; header_byte[4]:=b4; return;
end;
for k:=1 to 4 do if header_byte[k]<0 then header_byte[k]:=0;
exit:end;
@ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
b1:=bc; b2:=ec; b3:=bc; b4:=ec; tfm_changed:=0;
for k:=bc to ec do if char_exists[k] then
begin x:=dimen_out(value(tfm_width[k]))+(k+4)*@'20000000; {this is positive}
b1:=(b1+b1+x) mod 255;
b2:=(b2+b2+x) mod 253;
b3:=(b3+b3+x) mod 251;
b4:=(b4+b4+x) mod 247;
end
@ Finally we're ready to actually write the \.{TFM} information.
Here are some utility routines for this purpose.
@d tfm_out(#)==write(tfm_file,#) {output one byte to |tfm_file|}
@p procedure tfm_two(@!x:integer); {output two bytes to |tfm_file|}
begin tfm_out(x div 256); tfm_out(x mod 256);
end;
@#
procedure tfm_four(@!x:integer); {output four bytes to |tfm_file|}
begin if x>=0 then tfm_out(x div three_bytes)
else begin x:=x+@'10000000000; {use two's complement for negative values}
x:=x+@'10000000000;
tfm_out((x div three_bytes) + 128);
end;
x:=x mod three_bytes; tfm_out(x div unity);
x:=x mod unity; tfm_out(x div @'400);
tfm_out(x mod @'400);
end;
@#
procedure tfm_qqqq(@!x:four_quarters); {output four quarterwords to |tfm_file|}
begin tfm_out(qo(x.b0)); tfm_out(qo(x.b1)); tfm_out(qo(x.b2));
tfm_out(qo(x.b3));
end;
@ @<Finish the \.{TFM} file@>=
if job_name=0 then open_log_file;
pack_job_name(".tfm");
while not b_open_out(tfm_file) do
prompt_file_name("file name for font metrics",".tfm");
metric_file_name:=b_make_name_string(tfm_file);
@<Output the subfile sizes and header bytes@>;
@<Output the character information bytes, then
output the dimensions themselves@>;
@<Output the ligature/kern program@>;
@<Output the extensible character recipes and the font metric parameters@>;
@!stat if internal[tracing_stats]>0 then
@<Log the subfile sizes of the \.{TFM} file@>;@;@+tats@/
print_nl("Font metrics written on "); print(metric_file_name); print_char(".");
@.Font metrics written...@>
b_close(tfm_file)
@ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
this code.
@<Output the subfile sizes and header bytes@>=
k:=header_size;
while header_byte[k]<0 do decr(k);
lh:=(k+3) div 4; {this is the number of header words}
if bc>ec then bc:=1; {if there are no characters, |ec=0| and |bc=1|}
@<Compute the ligature/kern program offset and implant the
left boundary label@>;
tfm_two(6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+lk_offset+nk+ne+np);
{this is the total number of file words that will be output}
tfm_two(lh); tfm_two(bc); tfm_two(ec); tfm_two(nw); tfm_two(nh);
tfm_two(nd); tfm_two(ni); tfm_two(nl+lk_offset); tfm_two(nk); tfm_two(ne);
tfm_two(np);
for k:=1 to 4*lh do
begin if header_byte[k]<0 then header_byte[k]:=0;
tfm_out(header_byte[k]);
end
@ @<Output the character information bytes...@>=
for k:=bc to ec do
if not char_exists[k] then tfm_four(0)
else begin tfm_out(info(tfm_width[k])); {the width index}
tfm_out((info(tfm_height[k]))*16+info(tfm_depth[k]));
tfm_out((info(tfm_ital_corr[k]))*4+char_tag[k]);
tfm_out(char_remainder[k]);
end;
tfm_changed:=0;
for k:=1 to 4 do
begin tfm_four(0); p:=dimen_head[k];
while p<>inf_val do
begin tfm_four(dimen_out(value(p))); p:=link(p);
end;
end
@ We need to output special instructions at the beginning of the
|lig_kern| array in order to specify the right boundary character
and/or to handle starting addresses that exceed 255. The |label_loc|
and |label_char| arrays have been set up to record all the
starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
\le|label_loc|[|label_ptr]|$.
@<Compute the ligature/kern program offset...@>=
bchar:=round_unscaled(internal[boundary_char]);
if(bchar<0)or(bchar>255)then
begin bchar:=-1; lk_started:=false; lk_offset:=0;@+end
else begin lk_started:=true; lk_offset:=1;@+end;
@<Find the minimum |lk_offset| and adjust all remainders@>;
if bch_label<undefined_label then
begin skip_byte(nl):=qi(255); next_char(nl):=qi(0);
op_byte(nl):=qi(((bch_label+lk_offset)div 256));
rem_byte(nl):=qi(((bch_label+lk_offset)mod 256));
incr(nl); {possibly |nl=lig_table_size+1|}
end
@ @<Find the minimum |lk_offset|...@>=
k:=label_ptr; {pointer to the largest unallocated label}
if label_loc[k]+lk_offset>255 then
begin lk_offset:=0; lk_started:=false; {location 0 can do double duty}
repeat char_remainder[label_char[k]]:=lk_offset;
while label_loc[k-1]=label_loc[k] do
begin decr(k); char_remainder[label_char[k]]:=lk_offset;
end;
incr(lk_offset); decr(k);
until lk_offset+label_loc[k]<256;
{N.B.: |lk_offset=256| satisfies this when |k=0|}
end;
if lk_offset>0 then
while k>0 do
begin char_remainder[label_char[k]]
:=char_remainder[label_char[k]]+lk_offset;
decr(k);
end
@ @<Output the ligature/kern program@>=
for k:=0 to 255 do if skip_table[k]<undefined_label then
begin print_nl("(local label "); print_int(k); print(":: was missing)");
@.local label l:: was missing@>
cancel_skips(skip_table[k]);
end;
if lk_started then {|lk_offset=1| for the special |bchar|}
begin tfm_out(255); tfm_out(bchar); tfm_two(0);
end
else for k:=1 to lk_offset do {output the redirection specs}
begin ll:=label_loc[label_ptr];
if bchar<0 then
begin tfm_out(254); tfm_out(0);
end
else begin tfm_out(255); tfm_out(bchar);
end;
tfm_two(ll+lk_offset);
repeat decr(label_ptr);
until label_loc[label_ptr]<ll;
end;
for k:=0 to nl-1 do tfm_qqqq(lig_kern[k]);
for k:=0 to nk-1 do tfm_four(dimen_out(kern[k]))
@ @<Output the extensible character recipes...@>=
for k:=0 to ne-1 do tfm_qqqq(exten[k]);
for k:=1 to np do
if k=1 then
if abs(param[1])<fraction_half then tfm_four(param[1]*16)
else begin incr(tfm_changed);
if param[1]>0 then tfm_four(el_gordo)
else tfm_four(-el_gordo);
end
else tfm_four(dimen_out(param[k]));
if tfm_changed>0 then
begin if tfm_changed=1 then print_nl("(a font metric dimension")
@.a font metric dimension...@>
else begin print_nl("("); print_int(tfm_changed);
@.font metric dimensions...@>
print(" font metric dimensions");
end;
print(" had to be decreased)");
end
@ @<Log the subfile sizes of the \.{TFM} file@>=
begin wlog_ln(' ');
if bch_label<undefined_label then decr(nl);
wlog_ln('(You used ',nw:1,'w,',@| nh:1,'h,',@| nd:1,'d,',@| ni:1,'i,',@|
nl:1,'l,',@| nk:1,'k,',@| ne:1,'e,',@|
np:1,'p metric file positions');
wlog_ln(' out of ',@| '256w,16h,16d,64i,',@|
lig_table_size:1,'l,',max_kerns:1,'k,256e,',@|
max_font_dimen:1,'p)');
end
@* \[43] Reading font metric data.
\MP\ isn't a typesetting program but it does need to find the bounding box
of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
well as write them.
@<Glob...@>=
tfm_infile:byte_file;
@ All the width, height, and depth information is stored in an array called
|font_info|. This array is allocated sequentially and each font is stored
as a series of |char_info| words followed by the width, height, and depth
tables. Since |font_name| entries are permanent, their |str_ref| values are
set to |max_str_ref|.
@<Types...@>=
font_number=0..font_max;
@ @<Glob...@>=
font_info:array[0..font_mem_size] of memory_word;
{height, width, and depth data}
next_fmem:0..font_mem_size; {next unused entry in |font_info|}
last_fnum:font_number; {last font number used so far}
font_dsize:array[font_number] of scaled;
{16 times the ``design'' size in \ps\ points}
font_name:array[font_number] of str_number;
{name as specified in the \&{infont} command}
font_ps_name:array[font_number] of str_number;
{PostScript name for use when |internal[prologues]>0|}
last_ps_fnum:font_number; {last valid |font_ps_name| index}
font_bc,font_ec:array[font_number] of eight_bits;
{first and last character code}
@ The |font_info| array is indexed via a group directory arrays.
For example, the |char_info| data for character~|c| in font~|f| will be
in |font_info[char_base[f]+c].qqqq|.
@<Glob...@>=
char_base:array[font_number] of 0..font_mem_size;
{base address for |char_info|}
width_base:array[font_number] of 0..font_mem_size;
{index for zeroth character width}
height_base:array[font_number] of 0..font_mem_size;
{index for zeroth character height}
depth_base:array[font_number] of 0..font_mem_size;
{index for zeroth character depth}
@ A |null_font| containing no characters is useful for error recovery. Its
|font_name| entry starts out empty but is reset each time an erroneous font is
found. This helps to cut down on the number of duplicate error messages without
wasting a lot of space.
@d null_font=0 {the |font_number| for an empty font}
@<Initialize table...@>=
font_dsize[null_font]:=0;
font_name[null_font]:="";
font_ps_name[null_font]:="";
font_bc[null_font]:=1;
font_ec[null_font]:=0;@/
char_base[null_font]:=0;
width_base[null_font]:=0;
height_base[null_font]:=0;
depth_base[null_font]:=0;@/
next_fmem:=0;
last_fnum:=null_font;
last_ps_fnum:=null_font;
@ Each |char_info| word is of type |four_quarters|. The |b0| field contains
|min_quarter_word| plus the |width index|; the |b1| field contains the height
index; the |b2| fields contains the depth index, and the |b3| field used only
for temporary storage. (It is used to keep track of which characters occur in
an edge structure that is being shipped out.)
The corresponding words in the width, height, and depth tables are stored as
|scaled| values in units of \ps\ points.
With the macros below, the |char_info| word for character~|c| in font~|f| is
|char_info(f)(c)| and the width is
$$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
@d char_info_end(#)==#].qqqq
@d char_info(#)==font_info[char_base[#]+char_info_end
@d char_width_end(#)==#.b0].sc
@d char_width(#)==font_info[width_base[#]+char_width_end
@d char_height_end(#)==#.b1].sc
@d char_height(#)==font_info[height_base[#]+char_height_end
@d char_depth_end(#)==#.b2].sc
@d char_depth(#)==font_info[depth_base[#]+char_depth_end
@d ichar_exists(#)==(#.b0>min_quarterword)
@ The |font_ps_name| for a built-in font should be what PostScript expects.
A preliminary name is obtained here from the \.{TFM} name as given in the
|fname| argument. This gets updated later from an external table if necessary.
@d bad_tfm=11 {go here if the \.{TFM} file is bad}
@<Declare text measuring subroutines@>=
@<Declare subroutines for parsing file names@>@;
function read_font_info(fname:str_number):font_number;
label bad_tfm,done;
var @!file_opened:boolean; {has |tfm_infile| been opened?}
@!n:font_number; {the number to return}
@!lf,@!lh,@!bc,@!ec,@!nw,@!nh,@!nd:halfword; {subfile size parameters}
@!whd_size:integer; {words needed for heights, widths, and depths}
@!i,@!ii:0..font_mem_size; {|font_info| indices}
@!jj:0..font_mem_size; {counts bytes to be ignored}
@!z:scaled; {used to compute the design size}
@!d:fraction;
{height, width, or depth as a fraction of design size times $2^{-8}$}
@!h_and_d:eight_bits; {height and depth indices being unpacked}
begin n:=null_font;
@<Open |tfm_infile| for input@>;
@<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
otherwise |goto bad_tfm| or |goto done| as appropriate@>;
bad_tfm:@<Complain that the \.{TFM} file is bad@>;
done:if file_opened then b_close(tfm_infile);
if n<>null_font then
begin font_ps_name[n]:=fname;
font_name[n]:=fname;
str_ref[fname]:=max_str_ref;
end;
read_font_info:=n;
end;
@ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
@.TFtoPL@> @.PLtoTF@>
and \.{PLtoTF} can be used to debug \.{TFM} files.
@<Complain that the \.{TFM} file is bad@>=
print_err("Font ");
print(fname);
if file_opened then print(" not usable: TFM file is bad")
else print(" not usable: TFM file not found");
help3("I wasn't able to read the size data for this font so this")@/
("`infont' operation won't produce anything. If the font name")@/
("is right, you might ask an expert to make a TFM file");
if file_opened then
help_line[0]:="is right, try asking an expert to fix the TFM file";
error
@ @<Read data from |tfm_infile|; if there is no room, say so...@>=
@<Read the \.{TFM} size fields@>;
@<Use the size fields to allocate space in |font_info|@>;
@<Read the \.{TFM} header@>;
@<Read the character data and the width, height, and depth tables and
|goto done|@>
@ A bad \.{TFM} file can be shorter than it claims to be. The code given here
might try to read past the end of the file if this happens. Changes will be
needed if it causes a system error to refer to |tfm_infile^| or call
|get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
@^system dependencies@>
of |tfget| could be changed to
``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
@d tfget==get(tfm_infile)
@d tfbyte==tfm_infile^
@d read_two(#)==begin #:=tfbyte;
if #>127 then goto bad_tfm;
tfget; #:=#*@'400+tfbyte;
end
@d tf_ignore(#)==for jj:=# downto 1 do tfget
@<Read the \.{TFM} size fields@>=
read_two(lf);
tfget; read_two(lh);
tfget; read_two(bc);
tfget; read_two(ec);
if (bc>1+ec)or(ec>255) then goto bad_tfm;
tfget; read_two(nw);
tfget; read_two(nh);
tfget; read_two(nd);
whd_size:=(ec+1-bc)+nw+nh+nd;
if lf<6+lh+whd_size then goto bad_tfm;
tf_ignore(10)
@ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
necessary to apply the |so| and |qo| macros when looking up the width of a
character in the string pool. In order to ensure nonnegative |char_base|
values when |bc>0|, it may be necessary to reserve a few unused |font_info|
elements.
@<Use the size fields to allocate space in |font_info|@>=
if next_fmem<bc+min_pool_ASCII then next_fmem:=bc+min_pool_ASCII;
{ensure nonnegative |char_base|}
if (last_fnum=font_max)or(next_fmem+whd_size>=font_mem_size) then
@<Explain that there isn't enough space and |goto done|@>;
incr(last_fnum);
n:=last_fnum;
font_bc[n]:=bc;
font_ec[n]:=ec;
char_base[n]:=next_fmem-bc-min_pool_ASCII;
width_base[n]:=next_fmem+ec-bc+1-min_quarterword;
height_base[n]:=width_base[n]+min_quarterword+nw;
depth_base[n]:=height_base[n]+nh;
next_fmem:=next_fmem+whd_size;
@ @<Explain that there isn't enough space and |goto done|@>=
begin print_err("Font ");
print(fname);
print(" not usable: Not enough space");
help3("This `infont' operation won't produce anything because I")@/
("don't have enough room to store the character-size data for")@/
("the font. You may have to ask a wizard to enlarge me.");
error;
goto done;
end
@ @<Read the \.{TFM} header@>=
if lh<2 then goto bad_tfm;
tf_ignore(4);
tfget; read_two(z);
tfget; z:=z*@'400+tfbyte;
tfget; z:=z*@'400+tfbyte; {now |z| is 16 times the design size}
font_dsize[n]:=take_fraction(z,267432584);
{times ${72\over72.27}2^{28}$ to convert from \TeX\ points}
tf_ignore(4*(lh-2))
@ @<Read the character data and the width, height, and depth tables...@>=
ii:=width_base[n]+min_quarterword;
i:=char_base[n]+min_pool_ASCII+bc;
while i<ii do
begin tfget; font_info[i].qqqq.b0:=qi(tfbyte);@/
tfget; h_and_d:=tfbyte;
font_info[i].qqqq.b1:=h_and_d div 16;
font_info[i].qqqq.b2:=h_and_d mod 16;@/
tfget; tfget;
incr(i);
end;
while i<next_fmem do
@<Read a four byte dimension, scale it by the design size, store it in
|font_info[i]|, and increment |i|@>;
if eof(tfm_infile) then goto bad_tfm;
goto done
@ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
we can multiply it by sixteen and think of it as a |fraction| that has been
divided by sixteen. This cancels the extra scale factor contained in
|font_dsize[n|.
@<Read a four byte dimension, scale it by the design size, store it in...@>=
begin tfget; d:=tfbyte;
if d>=@'200 then d:=d-@'400;
tfget; d:=d*@'400+tfbyte;@/
tfget; d:=d*@'400+tfbyte;@/
tfget; d:=d*@'400+tfbyte;@/
font_info[i].sc:=take_fraction(d*16,font_dsize[n]);
incr(i);
end
@ @<Open |tfm_infile| for input@>=
file_opened:=false;
str_scan_file(fname);
if cur_area="" then cur_area:=MP_font_area;
if cur_ext="" then cur_ext:=".tfm";
pack_cur_name;
if not b_open_in(tfm_infile) then goto bad_tfm;
file_opened:=true
@ When we have a font name and we don't know whether it has been loaded yet,
we scan the |font_name| array before calling |read_font_info|.
@<Declare text measuring subroutines@>=
function find_font(@!f:str_number):font_number;
label exit,found;
var @!n:font_number;
begin for n:=0 to last_fnum do
if str_vs_str(f,font_name[n])=0 then goto found;
find_font:=read_font_info(f);
return;
found:find_font:=n;
exit:end;
@ One simple application of |find_font| is the implementation of the |font_size|
operator that gets the design size for a given font name.
@<Find the design size of the font whose name is |cur_exp|@>=
flush_cur_exp((font_dsize[find_font(cur_exp)]+8) div 16)
@ If we discover that the font doesn't have a requested character, we omit it
from the bounding box computation and expect the \ps\ interpreter to drop it.
This routine issues a warning message if the user has asked for it.
@<Declare text measuring subroutines@>=
procedure lost_warning(@!f:font_number;@!k:pool_pointer);
begin if internal[tracing_lost_chars]>0 then
begin begin_diagnostic;
print_nl("Missing character: There is no ");
@.Missing character@>
print(so(str_pool[k])); print(" in font ");
print(font_name[f]); print_char("!"); end_diagnostic(false);
end;
end;
@ The whole purpose of saving the height, width, and depth information is to be
able to find the bounding box of an item of text in an edge structure. The
|set_text_box| procedure takes a text node and adds this information.
@<Declare text measuring subroutines@>=
procedure set_text_box(@!p:pointer);
var @!f:font_number; {|font_n(p)|}
@!bc,@!ec:pool_ASCII_code; {range of valid characters for font |f|}
@!k,kk:pool_pointer; {current character and character to stop at}
@!cc:four_quarters; {the |char_info| for the current character}
@!h,@!d:scaled; {dimensions of the current character}
begin width_val(p):=0;
height_val(p):=-el_gordo;
depth_val(p):=-el_gordo;@/
f:=font_n(p);
bc:=si(font_bc[f]);
ec:=si(font_ec[f]);@/
kk:=str_stop(text_p(p));
k:=str_start[text_p(p)];
while k<kk do
@<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
@<Set the height and depth to zero if the bounding box is empty@>;
end;
@ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
begin if (str_pool[k]<bc)or(str_pool[k]>ec) then lost_warning(f,k)
else begin cc:=char_info(f)(str_pool[k]);
if not ichar_exists(cc) then lost_warning(f,k)
else begin width_val(p):=width_val(p)+char_width(f)(cc);
h:=char_height(f)(cc);
d:=char_depth(f)(cc);
if h>height_val(p) then height_val(p):=h;
if d>depth_val(p) then depth_val(p):=d;
end;
end;
incr(k);
end
@ Let's hope modern compilers do comparisons correctly when the difference would
overflow.
@<Set the height and depth to zero if the bounding box is empty@>=
if height_val(p)<-depth_val(p) then
begin height_val(p):=0;
depth_val(p):=0;
end
@ The file |ps_tab_file| gives a table of \TeX\ font names and corresponding
PostScript names for fonts that do not have to be downloaded, i.e., fonts that
can be used when |internal[prologues]>0|. Each line consists of a \TeX\ name,
one or more spaces, a PostScript name, and possibly a space and some other junk.
This routine reads the table, updates |font_ps_name| entries starting after
|last_ps_fnum|, and sets |last_ps_fnum:=last_fnum|. If the file |ps_tab_file|
is missing, we assume that the existing font names are OK and nothing needs to
be done.
@<Declare the \ps\ output procedures@>=
procedure read_psname_table;
label common_ending, done;
var @!k:font_number; {font for possible name match}
@!lmax:integer; {upper limit on length of name to match}
@!j:integer; {characters left to read before string gets too long}
@!c:text_char; {character being read from |ps_tab_file|}
@!s:str_number; {possible font name to match}
begin name_of_file:=ps_tab_name;
if a_open_in(ps_tab_file) then
begin @<Set |lmax| to the maximum |font_name| length for fonts
|last_ps_fnum+1| through |last_fnum|@>;
while not eof(ps_tab_file) do
begin @<Read at most |lmax| characters from |ps_tab_file| into string |s|
but |goto common_ending| if there is trouble@>;
for k:=last_ps_fnum+1 to last_fnum do
if str_vs_str(s,font_name[k])=0 then
@<|flush_string(s)|, read in |font_ps_name[k]|, and
|goto common_ending|@>;
flush_string(s);
common_ending:read_ln(ps_tab_file);
end;
last_ps_fnum:=last_fnum;
a_close(ps_tab_file);
end;
end;
@ @<Glob...@>=
@!ps_tab_file:alpha_file; {file for font name translation table}
@ @<Set |lmax| to the maximum |font_name| length for fonts...@>=
lmax:=0;
for k:=last_ps_fnum+1 to last_fnum do
if length(font_name[k])>lmax then lmax:=length(font_name[k])
@ @<Read at most |lmax| characters from |ps_tab_file| into string |s|...@>=
str_room(lmax);
j:=lmax;
loop @+begin if eoln(ps_tab_file) then
fatal_error("The psfont map file is bad!");
read(ps_tab_file,c);
if c=' ' then goto done;
decr(j);
if j>=0 then append_char(xord[c])
else begin flush_cur_string;
goto common_ending;
end;
end;
done:s:=make_string
@ PostScript font names should be at most 28 characters long but we allow 32
just to be safe.
@<|flush_string(s)|, read in |font_ps_name[k]|, and...@>=
begin flush_string(s);
j:=32;
str_room(j);
repeat if eoln(ps_tab_file) then fatal_error("The psfont map file is bad!");
read(ps_tab_file,c);
until c<>' ';
repeat decr(j);
if j<0 then fatal_error("The psfont map file is bad!");
append_char(xord[c]);
if eoln(ps_tab_file) then c:=' ' @+else read(ps_tab_file,c);
until c=' ';
delete_str_ref(font_ps_name[k]);
font_ps_name[k]:=make_string;
goto common_ending;
end
@* \[44] Shipping pictures out.
The |ship_out| procedure, to be described below, is given a pointer to
an edge structure. Its mission is to output a file containing the \ps\
description of an edge structure.
@ Each time an edge structure is shipped out we write a new \ps\ output
file named according to the current \&{charcode}.
@:char_code_}{\&{charcode} primitive@>
@<Declare the \ps\ output procedures@>=
procedure open_output_file;
var @!c:integer; {\&{charcode} rounded to the nearest integer}
@!old_setting:0..max_selector; {previous |selector| setting}
@!s:str_number; {a file extension derived from |c|}
begin if job_name=0 then open_log_file;
c:=round_unscaled(internal[char_code]);
if c<0 then s:=".ps"
else @<Use |c| to compute the file extension |s|@>;
pack_job_name(s);
while not a_open_out(ps_file) do
prompt_file_name("file name for output",s);
delete_str_ref(s);
@<Store the true output file name if appropriate@>;
@<Begin the progress report for the ouput of picture~|c|@>;
end;
@ The file extension created here could be up to five characters long in
extreme cases so it may have to be shortened on some systems.
@^system dependencies@>
@<Use |c| to compute the file extension |s|@>=
begin old_setting:=selector; selector:=new_string;
print_char("."); print_int(c);
s:=make_string;
selector:=old_setting;
end
@ The user won't want to see all the output file names so we only save the
first and last ones and a count of how many there were. For this purpose
files are ordered primarily by \&{charcode} and secondarily by order of
creation.
@:char_code_}{\&{charcode} primitive@>
@<Store the true output file name if appropriate@>=
if (c<first_output_code)and(first_output_code>=0) then
begin first_output_code:=c;
delete_str_ref(first_file_name);
first_file_name:=a_make_name_string(ps_file);
end;
if c>=last_output_code then
begin last_output_code:=c;
delete_str_ref(last_file_name);
last_file_name:=a_make_name_string(ps_file);
end
@ @<Glob...@>=
@!first_file_name,@!last_file_name:str_number; {full file names}
@!first_output_code,@!last_output_code:integer; {rounded \&{charcode} values}
@:char_code_}{\&{charcode} primitive@>
@!total_shipped:integer; {total number of |ship_out| operations completed}
@ @<Set init...@>=
first_file_name:="";
last_file_name:="";@/
first_output_code:=32768;
last_output_code:=-32768;@/
total_shipped:=0;
@ @<Begin the progress report for the ouput of picture~|c|@>=
if term_offset>max_print_line-6 then print_ln
else if (term_offset>0)or(file_offset>0) then print_char(" ");
print_char("[");
if c>=0 then print_int(c)
@ @<End progress report@>=
print_char("]");
update_terminal;
incr(total_shipped)
@ @<Explain what output files were written@>=
if total_shipped>0 then
begin print_nl("");
print_int(total_shipped);
print(" output file");
if total_shipped>1 then print_char("s");
print(" written: ");
print(first_file_name);
if total_shipped>1 then
begin if 31+length(first_file_name)+length(last_file_name)>@|
max_print_line
then print_ln;
print(" .. ");
print(last_file_name);
end;
end
@ We often need to print a pair of coordinates.
@d ps_room(#)==if ps_offset+#>max_print_line then print_ln {optional line break}
@<Declare the \ps\ output procedures@>=
procedure ps_pair_out(@!x,@!y:scaled);
begin ps_room(26);
print_scaled(x); print_char(" ");
print_scaled(y); print_char(" ")
end;
@ @<Declare the \ps\ output procedures@>=
procedure ps_print(@!s:str_number);
begin ps_room(length(s));
print(s);
end;
@ The most important output procedure is the one that gives the \ps\ version of
a \MP\ path.
@<Declare the \ps\ output procedures@>=
procedure ps_path_out(@!h:pointer);
label exit;
var @!p,@!q:pointer; {for scanning the path}
@!d:scaled; {a temporary value}
@!curved:boolean; {|true| unless the cubic is almost straight}
begin ps_room(40);
if need_newpath then print("newpath ");
need_newpath:=true;
ps_pair_out(x_coord(h),y_coord(h));
print("moveto");@/
p:=h;
repeat if right_type(p)=endpoint then
begin if p=h then ps_print(" 0 0 rlineto");
return;
end;
q:=link(p);
@<Start a new line and print the \ps\ commands for the curve from
|p| to~|q|@>;
p:=q;
until p=h;
ps_print(" closepath");
exit:end;
@ @<Glob...@>=
need_newpath:boolean;
{will |ps_path_out| need to issue a \&{newpath} command next time}
@:newpath_}{\&{newpath} command@>
@ @<Start a new line and print the \ps\ commands for the curve from...@>=
curved:=true;
@<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
print_ln;
if curved then
begin ps_pair_out(right_x(p),right_y(p));
ps_pair_out(left_x(q),left_y(q));
ps_pair_out(x_coord(q),y_coord(q));
ps_print("curveto");
end
else if q<>h then
begin ps_pair_out(x_coord(q),y_coord(q));
ps_print("lineto");
end
@ Two types of straight lines come up often in \MP\ paths:
cubics with zero initial and final velocity as created by |make_path| or
|make_envelope|, and cubics with control points uniformly spaced on a line
as created by |make_choices|.
@d bend_tolerance=131 {allow rounding error of $2\cdot10^{-3}$}
@<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
if right_x(p)=x_coord(p) then
if right_y(p)=y_coord(p) then
if left_x(q)=x_coord(q) then
if left_y(q)=y_coord(q) then curved:=false;
d:=left_x(q)-right_x(p);
if abs(right_x(p)-x_coord(p)-d)<=bend_tolerance then
if abs(x_coord(q)-left_x(q)-d)<=bend_tolerance then
begin d:=left_y(q)-right_y(p);
if abs(right_y(p)-y_coord(p)-d)<=bend_tolerance then
if abs(y_coord(q)-left_y(q)-d)<=bend_tolerance then curved:=false;
end
@ We need to keep track of several parameters from the \ps\ graphics state.
@^graphics state@>
This allows us to be sure that \ps\ has the correct values when they are
needed without wasting time and space setting them unnecessarily.
@<Glob...@>=
@!gs_red,@!gs_green,@!gs_blue:scaled;
{color from the last \&{setrgbcolor} or \&{setgray} command}
@:setrgbcolor}{\&{setrgbcolor} command@>
@:setgray}{\&{setgray} command@>
@!gs_ljoin,@!gs_lcap:quarterword;
{values from the last \&{setlinejoin} and \&{setlinecap} commands}
@:setlinejoin}{\&{setlinejoin} command@>
@:setlinecap}{\&{setlinecap} command@>
@!gs_miterlim:scaled; {the value from the last \&{setmiterlimit} command}
@:setmiterlimit}{\&{setmiterlimit} command@>
@!gs_dash_p:pointer; {edge structure for last \&{setdash} command}
@:setdash}{\&{setdash} command@>
@!gs_dash_sc:scaled; {scale factor used with |gs_dash_p|}
@!gs_width:scaled; {width setting or $-1$ if no \&{setlinewidth} command so far}
@!gs_adj_wx:boolean; {what resolution-dependent adjustment applies to the width}
@:setlinewidth}{\&{setlinewidth} command@>
@ To avoid making undue assumptions about the initial graphics state, these
parameters are given special values that are guaranteed not to match anything
in the edge structure being shipped out. On the other hand, the initial color
should be black so that the translation of an all-black picture will have no
\&{setcolor} commands. (These would be undesirable in a font application.)
Hence we use |c=0| when initializing the graphics state and we use |c<0|
to recover from a situation where we have lost track of the graphics state.
@<Declare the \ps\ output procedures@>=
procedure unknown_graphics_state(c:scaled);
begin gs_red:=c; gs_green:=c; gs_blue:=c;@/
gs_ljoin:=3;
gs_lcap:=3;
gs_miterlim:=0;@/
gs_dash_p:=void;
gs_dash_sc:=0;
gs_width:=-1;
end;
@ When it is time to output a graphical object, |fix_graphics_state| ensures
that \ps's idea of the graphics state agrees with what is stored in the object.
@<Declare the \ps\ output procedures@>=
@<Declare subroutines needed by |fix_graphics_state|@>@;
procedure fix_graphics_state(p:pointer);
{get ready to output graphical object |p|}
var @!hh,@!pp:pointer; {for list manipulation}
@!wx,@!wy,@!ww:scaled; {dimensions of pen bounding box}
@!adj_wx:boolean; {whether pixel rounding should be based on |wx| or |wy|}
@!tx,@!ty:integer; {temporaries for computing |adj_wx|}
@!scf:scaled; {a scale factor for the dash pattern}
begin if has_color(p) then
@<Make sure \ps\ will use the right color for object~|p|@>;
if (type(p)=fill_code)or(type(p)=stroked_code) then
if pen_p(p)<>null then
if pen_is_elliptical(pen_p(p)) then
begin @<Generate \ps\ code that sets the stroke width to the
appropriate rounded value@>;
@<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
@<Decide whether the line cap parameter matters and set it if necessary@>;
@<Set the other numeric parameters as needed for object~|p|@>;
end;
if ps_offset>0 then print_ln;
end;
@ @<Decide whether the line cap parameter matters and set it if necessary@>=
if type(p)=stroked_code then
if (left_type(path_p(p))=endpoint)or(dash_p(p)<>null) then
if gs_lcap<>lcap_val(p) then
begin ps_room(13);
print_char(" ");
print_char("0"+lcap_val(p)); print(" setlinecap");
gs_lcap:=lcap_val(p);
end
@ @<Set the other numeric parameters as needed for object~|p|@>=
if gs_ljoin<>ljoin_val(p) then
begin ps_room(14);
print_char(" ");
print_char("0"+ljoin_val(p)); print(" setlinejoin");
gs_ljoin:=ljoin_val(p);
end;
if gs_miterlim<>miterlim_val(p) then
begin ps_room(27);
print_char(" ");
print_scaled(miterlim_val(p)); print(" setmiterlimit");
gs_miterlim:=miterlim_val(p);
end
@ @<Make sure \ps\ will use the right color for object~|p|@>=
if (gs_red<>red_val(p))or(gs_green<>green_val(p))or@|
(gs_blue<>blue_val(p)) then
begin gs_red:=red_val(p);
gs_green:=green_val(p);
gs_blue:=blue_val(p);@/
if (gs_red=gs_green)and(gs_green=gs_blue) then
begin ps_room(16);
print_char(" ");
print_scaled(gs_red);
print(" setgray");
end
else begin ps_room(36);
print_char(" ");
print_scaled(gs_red); print_char(" ");
print_scaled(gs_green); print_char(" ");
print_scaled(gs_blue);
print(" setrgbcolor");
end;
end;
@ In order to get consistent widths for horizontal and vertical pen strokes, we
want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
@:setwidth}{\&{setwidth}command@>
We set |gs_width| to the ideal horizontal or vertical stroke width and then
generate \ps\ code that computes the rounded value. For non-circular pens, the
pen shape will be rescaled so that horizontal or vertical parts of the stroke
have the computed width.
Rounding the width to whole pixels is not likely to improve the appearance of
diagonal or curved strokes, but we do it anyway for consistency. The
\&{truncate} command generated here tends to make all the strokes a little
@:truncate}{\&{truncate} command@>
thinner, but this is appropriate for \ps's scan-conversion rules. Even with
truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
to compute in \ps.
@<Generate \ps\ code that sets the stroke width...@>=
@<Set |wx| and |wy| to the width and height of the bounding box for
|pen_p(p)|@>;
@<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
important and set |adj_wx| and |ww| accordingly@>;
if (ww<>gs_width) or (adj_wx<>gs_adj_wx) then
begin if adj_wx then
begin ps_room(13);
print_char(" "); print_scaled(ww);
ps_print(" 0 dtransform exch truncate exch idtransform pop setlinewidth");
end
else begin ps_room(15);
print(" 0 "); print_scaled(ww);
ps_print(" dtransform truncate idtransform setlinewidth pop");
end;
gs_width := ww;
gs_adj_wx := adj_wx;
end
@ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
pp:=pen_p(p);
if (right_x(pp)=x_coord(pp)) and (left_y(pp)=y_coord(pp)) then
begin wx := abs(left_x(pp) - x_coord(pp));
wy := abs(right_y(pp) - y_coord(pp));
end
else begin
wx := pyth_add(left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
wy := pyth_add(left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
end
@ The path is considered ``essentially horizontal'' if its range of
$y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
vertical'' paths are detected similarly. This code ensures that no component
of the pen transformation is more that |aspect_bound*(ww+1)|.
@d aspect_bound=10 {``less important'' of |wx|, |wy| cannot exceed the other by
more than this factor}
@<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
tx:=1; ty:=1;
if coord_rangeOK(path_p(p), y_loc(0), wy) then tx:=aspect_bound
else if coord_rangeOK(path_p(p), x_loc(0), wx) then ty:=aspect_bound;
if wy div ty>=wx div tx then
begin ww:=wy; adj_wx:=false;
end
else begin ww:=wx; adj_wx:=true;
end
@ This routine quickly tests if path |h| is ``essentially horizontal'' or
``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
allowable range for $x$ or~$y$. We do not need and cannot afford a full
bounding-box computation.
@<Declare subroutines needed by |fix_graphics_state|@>=
function coord_rangeOK(@!h:pointer; @!zoff:small_number; dz:scaled):boolean;
label found, not_found, exit;
var @!p:pointer; {for scanning the path form |h|}
@!zlo,@!zhi:scaled; {coordinate range so far}
@!z:scaled; {coordinate currently being tested}
begin zlo:=knot_coord(h+zoff);
zhi:=zlo;
p:=h;
while right_type(p)<>endpoint do
begin z:=right_coord(p+zoff);@/
@<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
p:=link(p);
z:=left_coord(p+zoff);@/
@<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
z:=knot_coord(p+zoff);@/
@<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
if p=h then goto not_found;
end;
not_found:coord_rangeOK:=true;
return;
found:coord_rangeOK:=false;
exit:end;
@ @<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>=
if z<zlo then zlo:=z
else if z>zhi then zhi:=z;
if zhi-zlo>dz then goto found
@ Filling with an elliptical pen is implemented via a combination of \&{stroke}
and \&{fill} commands and a nontrivial dash pattern would interfere with this.
@:stroke}{\&{stroke} command@>
@:fill}{\&{fill} command@>
Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
a reference.
@<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
if type(p)=fill_code then hh:=null
else begin hh:=dash_p(p);
scf:=get_pen_scale(pen_p(p));
if scf=0 then
if gs_width=0 then scf:=dash_scale(p) @+else hh:=null
else begin scf:=make_scaled(gs_width,scf);
scf:=take_scaled(scf,dash_scale(p));
end;
end;
if hh=null then
begin if gs_dash_p<>null then
begin ps_print(" [] 0 setdash");
gs_dash_p:=null;
end;
end
else if (gs_dash_sc<>scf) or not same_dashes(gs_dash_p,hh) then
@<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>
@ Translating a dash list into \ps\ is very similar to printing it symbolically
in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
ignored. The same fate applies in the bizarre case of a dash pattern that
cannot be printed without overflow.
@<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
begin gs_dash_p:=hh;
gs_dash_sc:=scf;
if (dash_y(hh)=0) or (abs(dash_y(hh)) div unity >= el_gordo div scf) then
ps_print(" [] 0 setdash")
else begin pp:=dash_list(hh);
start_x(null_dash):=start_x(pp)+dash_y(hh);@/
ps_room(28);
print(" [");
while pp<>null_dash do
begin ps_pair_out(take_scaled(stop_x(pp)-start_x(pp),scf),@|
take_scaled(start_x(link(pp))-stop_x(pp),scf));
pp:=link(pp);
end;
ps_room(22);
print("] ");
print_scaled(take_scaled(dash_offset(hh),scf));
print(" setdash");
end;
end
@ @<Declare subroutines needed by |fix_graphics_state|@>=
function same_dashes(@!h,@!hh:pointer):boolean;
{do |h| and |hh| represent the same dash pattern?}
label done;
var @!p,@!pp:pointer; {dash nodes being compared}
begin if h=hh then same_dashes:=true
else if (h<=void)or(hh<=void) then same_dashes:=false
else if dash_y(h)<>dash_y(hh) then same_dashes:=false
else @<Compare |dash_list(h)| and |dash_list(hh)|@>;
end;
@ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
begin p:=dash_list(h);
pp:=dash_list(hh);
while (p<>null_dash)and(pp<>null_dash) do
if (start_x(p)<>start_x(pp))or(stop_x(p)<>stop_x(pp)) then goto done
else begin p:=link(p);
pp:=link(pp);
end;
done:same_dashes:=p=pp;
end
@ When stroking a path with an elliptical pen, it is necessary to transform
the coordinate system so that a unit circular pen will have the desired shape.
To keep this transformation local, we enclose it in a
$$\&{gsave}\ldots\&{grestore}$$
block. Any translation component must be applied to the path being stroked
while the rest of the transformation must apply only to the pen.
If |fill_also=true|, the path is to be filled as well as stroked so we must
insert commands to do this after giving the path.
@<Declare the \ps\ output procedures@>=
procedure stroke_ellipse(@!h:pointer;@!fill_also:boolean);
{generate an elliptical pen stroke from object |h|}
var @!txx,@!txy,@!tyx,@!tyy:scaled; {transformation parameters}
@!p:pointer; {the pen to stroke with}
@!d1,@!det:scaled; {for tweaking transformation parameters}
@!s:integer; {also for tweaking transformation paramters}
@!transformed:boolean; {keeps track of whether gsave/grestore are needed}
begin transformed:=false;@/
@<Use |pen_p(h)| to set the transformation parameters and give the initial
translation@>;
@<Tweak the transformation parameters so the transformation is nonsingular@>;
ps_path_out(path_p(h));@/
if fill_also then print_nl("gsave fill grestore");
@<Issue \ps\ commands to transform the coordinate system@>;
ps_print(" stroke");
if transformed then ps_print(" grestore");
print_ln;
end;
@ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
p:=pen_p(h);
txx:=left_x(p);
tyx:=left_y(p);@/
txy:=right_x(p);
tyy:=right_y(p);
if (x_coord(p)<>0)or(y_coord(p)<>0) then
begin print_nl("gsave ");
ps_pair_out(x_coord(p),y_coord(p));
ps_print("translate ");@/
txx:=txx-x_coord(p);
tyx:=tyx-y_coord(p);@/
txy:=txy-x_coord(p);
tyy:=tyy-y_coord(p);
transformed:=true;
end
else print_nl("");
@<Adjust the transformation to account for |gs_width| and output the
initial \&{gsave} if |transformed| should be |true|@>
@ @<Adjust the transformation to account for |gs_width| and output the...@>=
if gs_width<>unity then
if gs_width=0 then
begin txx:=unity; tyy:=unity;
end
else begin txx:=make_scaled(txx,gs_width);
txy:=make_scaled(txy,gs_width);
tyx:=make_scaled(tyx,gs_width);
tyy:=make_scaled(tyy,gs_width);
end;
if (txy<>0)or(tyx<>0)or(txx<>unity)or(tyy<>unity) then
if (not transformed) then
begin ps_print("gsave ");
transformed:=true;
end
@ @<Issue \ps\ commands to transform the coordinate system@>=
if (txy<>0)or(tyx<>0) then
begin print_ln;
print_char("[");
ps_pair_out(txx,tyx);
ps_pair_out(txy,tyy);@/
ps_print("0 0] concat");
end
else if (txx<>unity)or(tyy<>unity) then
begin print_ln;
ps_pair_out(txx,tyy);
print("scale");
end
@ The \ps\ interpreter will probably abort if it encounters a singular
transformation matrix. The determinant must be large enough to ensure that
the printed representation will be nonsingular. Since the printed
representation is always within $2^{-17}$ of the internal |scaled| value, the
total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
the magnitudes of |txx/65536|, |txy/65536|, etc.
The |aspect_bound*(gs_width+1)| bound on the components of the pen
transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
@<Tweak the transformation parameters so the transformation is nonsingular@>=
det:=take_scaled(txx,tyy) - take_scaled(txy,tyx);
d1:=4*aspect_bound+1;
if abs(det)<d1 then
begin if det>=0 then
begin d1:=d1-det; s:=1; @+end
else begin d1:=-d1-det; s:=-1; @+end;
d1:=d1*unity;
if abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) then
if abs(txx)>abs(tyy) then tyy:=tyy+(d1+s*abs(txx)) div txx
else txx:=txx+(d1+s*abs(tyy)) div tyy
else if abs(txy)>abs(tyx) then tyx:=tyx+(d1+s*abs(txy)) div txy
else txy:=txy+(d1+s*abs(tyx)) div tyx;
end
@ Here is a simple routine that just fills a cycle.
@<Declare the \ps\ output procedures@>=
procedure ps_fill_out(@!p:pointer); {fill cyclic path~|p|}
begin ps_path_out(p);
ps_print(" fill");
print_ln;
end;
@ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
procedure fills the cycle generated by |make_envelope|. It need not do
anything unless some region has positive winding number with respect to~|p|,
but it does not seem worthwhile to for test this.
@<Declare the \ps\ output procedures@>=
procedure do_outer_envelope(@!p,@!h:pointer);
begin p:=make_envelope(p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
ps_fill_out(p);
toss_knot_list(p);
end;
@ A text node may specify an arbitrary transformation but the usual case
involves only shifting, scaling, and occasionally rotation. The purpose
of |choose_scale| is to select a scale factor so that the remaining
transformation is as ``nice'' as possible. The definition of ``nice''
is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
nice because they work out well for bitmap fonts. The code here selects
a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
non-shifting part of the transformation matrix. It is careful to avoid
additions that might cause undetected overflow.
@<Declare the \ps\ output procedures@>=
function choose_scale(@!p:pointer):scaled; {|p| should point to a text node}
var @!a,@!b,@!c,@!d,@!ad,@!bc:scaled; {temporary values}
begin a:=txx_val(p);
b:=txy_val(p);
c:=tyx_val(p);
d:=tyy_val(p);@/
if (a<0) then negate(a);
if (b<0) then negate(b);
if (c<0) then negate(c);
if (d<0) then negate(d);
ad:=half(a-d);
bc:=half(b-c);@/
choose_scale:=pyth_add(pyth_add(d+ad,ad), pyth_add(c+bc,bc));
end;
@ @<Declare the \ps\ output procedures@>=
procedure ps_string_out(s:str_number);
var @!i:pool_pointer; {current character code position}
@!k:ASCII_code; {bits to be converted to octal}
begin print("(");
i:=str_start[s];
while i<str_stop(s) do
begin if ps_offset+5>max_print_line then
begin print_char("\");
print_ln;
end;
k:=so(str_pool[i]);
if (@<Character |k| cannot be printed@>) then
begin print_char("\");
print_char("0"+(k div 64));
print_char("0"+((k div 8) mod 8));
print_char("0"+(k mod 8));
end
else begin if (k="(")or(k=")")or(k="\") then print_char("\");
print_char(k);
end;
incr(i);
end;
print(")");
end;
@ @<Declare the \ps\ output procedures@>=
function is_ps_name(@!s:str_number):boolean;
label not_found,exit;
var @!i:pool_pointer; {current character code position}
@!k:ASCII_code; {the character being checked}
begin i:=str_start[s];
while i<str_stop(s) do
begin k:=so(str_pool[i]);
if (k<=" ")or(k>"~") then goto not_found;
if (k="(")or(k=")")or(k="<")or(k=">")or@|
(k="{")or(k="}")or(k="/")or(k="%") then goto not_found;
incr(i);
end;
is_ps_name:=true;
return;
not_found:is_ps_name:=false;
exit:end;
@ @<Declare the \ps\ output procedures@>=
procedure ps_name_out(@!s:str_number;@!lit:boolean);
begin ps_room(length(s)+2);
print_char(" ");
if is_ps_name(s) then
begin if lit then print_char("/");
print(s);
end
else begin ps_string_out(s);
if not lit then ps_print("cvx ");
ps_print("cvn");
end;
end;
@ We also need to keep track of which characters are used in text nodes
in the edge structure that is being shipped out. This is done by procedures
that use the left-over |b3| field in the |char_info| words; i.e.,
|char_info(f)(c).b3| gives the status of character |c| in font |f|.
@d unused=0
@d used=1
@ @<Declare the \ps\ output procedures@>=
procedure unmark_font(@!f:font_number);
var @!k:0..font_mem_size; {an index into |font_info|}
begin for k:= char_base[f]+si(font_bc[f]) to char_base[f]+si(font_ec[f]) do
font_info[k].qqqq.b3:=unused;
end;
@ @<Declare the \ps\ output procedures@>=
procedure mark_string_chars(@!f:font_number;@!s:str_number);
var @!b:integer; {|char_base[f]|}
@!bc,@!ec:pool_ASCII_code; {only characters between these bounds are marked}
@!k:pool_pointer; {an index into string |s|}
begin b:=char_base[f];
bc:=si(font_bc[f]);
ec:=si(font_ec[f]);@/
k:=str_stop(s);
while k>str_start[s] do
begin decr(k);
if (str_pool[k]>=bc)and(str_pool[k]<=ec) then
font_info[b+str_pool[k]].qqqq.b3:=used;
end
end;
@ @<Declare the \ps\ output procedures@>=
procedure hex_digit_out(@!d:small_number);
begin if d<10 then print_char(d+"0")
else print_char(d+"a"-10);
end;
@ We output the marks as a hexadecimal bit string starting at |c| or
|font_bc[f]|, whichever is greater. If the output has to be truncated
to avoid exceeding |emergency_line_length| the return value says where to
start scanning next time.
@<Declare the \ps\ output procedures@>=
function ps_marks_out(@!f:font_number;@!c:eight_bits):halfword;
var @!bc,@!ec:eight_bits; {only encode characters between these bounds}
@!lim:integer; {the maximum number of marks to encode before truncating}
@!p:0..font_mem_size; {|font_info| index for the current character}
@!d,@!b:0..15; {used to construct a hexadecimal digit}
begin lim:=4*(emergency_line_length-ps_offset-4);
bc:=font_bc[f];
ec:=font_ec[f];
if c>bc then bc:=c;
@<Restrict the range |bc..ec| so that it contains no unused characters
at either end and has length at most |lim|@>;
@<Print the initial label indicating that the bitmap starts at |bc|@>;
@<Print a hexadecimal encoding of the marks for characters |bc..ec|@>;
while (ec<font_ec[f])and(font_info[p].qqqq.b3=unused) do
begin incr(p); incr(ec);
end;
ps_marks_out:=ec+1;
end;
@ We could save time by setting the return value before the loop that
decrements |ec|, but there is no point in being so tricky.
@<Restrict the range |bc..ec| so that it contains no unused characters...@>=
p:=char_base[f]+si(bc);
while (font_info[p].qqqq.b3=unused)and(bc<ec) do
begin incr(p); incr(bc);
end;
if ec>=bc+lim then ec:=bc+lim-1;
p:=char_base[f]+si(ec);
while (font_info[p].qqqq.b3=unused)and(bc<ec) do
begin decr(p); decr(ec);
end;
@ @<Print the initial label indicating that the bitmap starts at |bc|@>=
print_char(" ");
hex_digit_out(bc div 16);
hex_digit_out(bc mod 16);
print_char(":")
@ @<Print a hexadecimal encoding of the marks for characters |bc..ec|@>=
b:=8; d:=0;
for p:=char_base[f]+si(bc) to char_base[f]+si(ec) do
begin if b=0 then
begin hex_digit_out(d);
d:=0; b:=8;
end;
if font_info[p].qqqq.b3<>unused then d:=d+b;
b:=halfp(b);
end;
hex_digit_out(d)
@ Here is a simple function that determines whether there are any marked
characters in font~|f| with character code at least~|c|.
@<Declare the \ps\ output procedures@>=
function check_ps_marks(@!f:font_number; @!c:integer):boolean;
label exit;
var @!p:0..font_mem_size; {|font_info| index for the current character}
begin for p:=char_base[f]+si(c) to char_base[f]+si(font_ec[f]) do
if font_info[p].qqqq.b3=used then
begin check_ps_marks:=true; return;
end;
check_ps_marks:=false;
exit: end;
@ There may be many sizes of one font and we need to keep track of the
characters used for each size. This is done by keeping a linked list of
sizes for each font with a counter in each text node giving the appropriate
position in the size list for its font.
@d sc_factor(#)==mem[#+1].sc {the scale factor stored in a font size node}
@d font_size_size=2 {size of a font size node}
@<Glob...@>=
font_sizes:array[font_number] of pointer;
@ @d fscale_tolerance==65 {that's $.001\times2^{16}$}
@<Declare the \ps\ output procedures@>=
function size_index(@!f:font_number;@!s:scaled):quarterword;
label found;
var @!p,@!q:pointer; {the previous and current font size nodes}
@!i:quarterword; {the size index for |q|}
begin q:=font_sizes[f];
i:=0;
while q<>null do
begin if abs(s-sc_factor(q))<=fscale_tolerance then goto found
else begin p:=q; q:=link(q);
incr(i);
end;
if i=max_quarterword then
overflow("sizes per font",max_quarterword);
@:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
end;
q:=get_node(font_size_size);
sc_factor(q):=s;
if i=0 then font_sizes[f]:=q @+else link(p):=q;
found:size_index:=i;
end;
@ @<Declare the \ps\ output procedures@>=
function indexed_size(@!f:font_number;@!j:quarterword):scaled;
var @!p:pointer; {a font size node}
@!i:quarterword; {the size index for |p|}
begin p:=font_sizes[f];
i:=0;
if p=null then confusion("size");
while (i<>j) do
begin incr(i); p:=link(p);
if p=null then confusion("size");
end;
indexed_size:=sc_factor(p);
end;
@ @<Declare the \ps\ output procedures@>=
procedure clear_sizes;
var @!f:font_number; {the font whose size list is being cleared}
@!p:pointer; {current font size nodes}
begin for f:=null_font+1 to last_fnum do
while font_sizes[f]<>null do
begin p:=font_sizes[f];
font_sizes[f]:=link(p);
free_node(p,font_size_size);
end;
end;
@ The \&{special} command saves up lines of text to be printed during the next
|ship_out| operation. The saved items are stored as a list of capsule tokens.
@<Glob...@>=
@!last_pending:pointer; {the last token in a list of pending specials}
@ @<Set init...@>=
last_pending:=spec_head;
@ @<Cases of |do_statement|...@>=
special_command:do_special;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_special;
begin get_x_next; scan_expression;
if cur_type<>string_type then @<Complain about improper special operation@>
else begin link(last_pending):=stash_cur_exp;
last_pending:=link(last_pending);
link(last_pending):=null;
end;
end;
@ @<Complain about improper special operation@>=
begin exp_err("Unsuitable expression");
help1("Only known strings are allowed for output as specials.");
put_get_error;
end
@ @<Print any pending specials@>=
t:=link(spec_head);
while t<>null do
begin if length(value(t))<=emergency_line_length then print(value(t))
else overflow("output line length",emergency_line_length);
@:MetaPost capacity exceeded output line length}{\quad output line length@>
print_ln;
t:=link(t);
end;
flush_token_list(link(spec_head));
link(spec_head):=null;
last_pending:=spec_head
@ We are now ready for the main output procedure. Note that the |selector|
setting is saved in a global variable so that |begin_diagnostic| can access it.
@<Declare the \ps\ output procedures@>=
procedure ship_out(@!h:pointer); {output edge structure |h|}
label done,found;
var @!p:pointer; {the current graphical object}
@!q:pointer; {something that |p| points to}
@!t:integer; {a temporary value}
@!f,ff:font_number; {fonts used in a text node or as loop counters}
@!ldf:font_number; {the last \.{DocumentFont} listed (otherwise |null_font|)}
@!done_fonts:boolean; {have we finished listing the fonts in the header?}
@!next_size:quarterword; {the size index for fonts being listed}
@!cur_fsize:array[font_number] of pointer; {current positions in |font_sizes|}
@!ds,@!scf:scaled; {design size and scale factor for a text node}
@!transformed:boolean; {is the coordinate system being transformed?}
begin open_output_file;
if (internal[prologues]>0) and (last_ps_fnum<last_fnum) then
read_psname_table;
non_ps_setting:=selector; selector:=ps_file_only;@/
@<Print the initial comment and give the bounding box for edge structure~|h|@>;
if internal[prologues]>0 then @<Print the prologue@>;
print("%%EndProlog");
print_nl("%%Page: 1 1"); print_ln;
@<Print any pending specials@>;
unknown_graphics_state(0);
need_newpath:=true;
p:=link(dummy_loc(h));
while p<>null do
begin fix_graphics_state(p);
case type(p) of
@<Cases for translating graphical object~|p| into \ps@>@;
start_bounds_code,stop_bounds_code: do_nothing;
end; {all cases are enumerated}
p:=link(p);
end;
print("showpage"); print_ln;
print("%%EOF"); print_ln;
a_close(ps_file);
selector:=non_ps_setting;
if internal[prologues]<=0 then clear_sizes;
@<End progress report@>;
if internal[tracing_output]>0 then print_edges(h," (just shipped out)",true);
end;
@ These special comments described in the {\sl PostScript Language Reference
Manual}, 2nd.~edition are understood by some \ps-reading programs.
We can't normally output ``conforming'' \ps\ because
the structuring conventions don't allow us to say ``Please make sure the
following characters are downloaded and define the \.{fshow} macro to access
them.''
The exact bounding box is written out if |prologues<0|, although this
is not standard \ps, since it allows \TeX\ to calculate the box dimensions
accurately. (Overfull boxes are avoided if an illustration is made to
match a given \.{\char`\\hsize}.)
@<Print the initial comment and give the bounding box for edge...@>=
print("%!PS");
if internal[prologues]>0 then print("-Adobe-3.0 EPSF-3.0");
print_nl("%%BoundingBox: ");
set_bbox(h,true);
if minx_val(h)>maxx_val(h) then print("0 0 0 0")
else if internal[prologues]<0 then
begin ps_pair_out(minx_val(h),miny_val(h));
ps_pair_out(maxx_val(h),maxy_val(h));
end
else begin ps_pair_out(floor_scaled(minx_val(h)),floor_scaled(miny_val(h)));
ps_pair_out(-floor_scaled(-maxx_val(h)),-floor_scaled(-maxy_val(h)));
end;
print_nl("%%Creator: MetaPost");
print_nl("%%CreationDate: ");
print_int(round_unscaled(internal[year])); print_char(".");
print_dd(round_unscaled(internal[month])); print_char(".");
print_dd(round_unscaled(internal[day])); print_char(":");@/
t:=round_unscaled(internal[time]);
print_dd(t div 60); print_dd(t mod 60);@/
print_nl("%%Pages: 1");@/
@<List all the fonts and magnifications for edge structure~|h|@>;
print_ln
@ @<List all the fonts and magnifications for edge structure~|h|@>=
@<Scan all the text nodes and set the |font_sizes| lists;
if |internal[prologues]<=0| list the sizes selected by |choose_scale|,
apply |unmark_font| to each font encountered, and call |mark_string|
whenever the size index is zero@>;
if internal[prologues]>0 then
@<Give a \.{DocumentFonts} comment listing all fonts with non-null
|font_sizes| and eliminate duplicates@>
else begin next_size:=0;
@<Make |cur_fsize| a copy of the |font_sizes| array@>;
repeat done_fonts:=true;
for f:=null_font+1 to last_fnum do
begin if cur_fsize[f]<>null then
@<Print the \.{\%*Font} comment for font |f| and advance |cur_fsize[f]|@>;
if cur_fsize[f]<>null then
begin unmark_font(f); done_fonts:=false; @+end;
end;
if not done_fonts then
@<Increment |next_size| and apply |mark_string_chars| to all text nodes with
that size index@>;
until done_fonts;
end
@ @<Make |cur_fsize| a copy of the |font_sizes| array@>=
for f:=null_font+1 to last_fnum do
cur_fsize[f]:=font_sizes[f]
@ It's not a good idea to make any assumptions about the |font_ps_name| entries,
so we carefully remove duplicates. There is no harm in using a slow, brute-force
search.
@<Give a \.{DocumentFonts} comment listing all fonts with non-null...@>=
begin ldf:=null_font;
for f:=null_font+1 to last_fnum do
if font_sizes[f]<>null then
begin if ldf=null_font then print_nl("%%DocumentFonts:");
for ff:=ldf downto null_font do
if font_sizes[ff]<>null then
if str_vs_str(font_ps_name[f],font_ps_name[ff])=0 then
goto found;
if ps_offset+1+length(font_ps_name[f])>max_print_line then
print_nl("%%+");
print_char(" ");
print(font_ps_name[f]);
ldf:=f;
found:
end;
end
@ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
for f:=null_font+1 to last_fnum do font_sizes[f]:=null;
p:=link(dummy_loc(h));
while p<>null do
begin if type(p)=text_code then
if font_n(p)<>null_font then
begin f:=font_n(p);
if internal[prologues]>0 then font_sizes[f]:=void
else begin if font_sizes[f]=null then unmark_font(f);
name_type(p):=size_index(f,choose_scale(p));
if name_type(p)=0 then
mark_string_chars(f,text_p(p));
end;
end;
p:=link(p);
end
@ If the file name is so long that it can't be printed without exceeding
|emergency_line_length| then there will be missing items in the \.{\%*Font:}
line. We might have to repeat line in order to get the character usage
information to fit within |emergency_line_length|.
@<Print the \.{\%*Font} comment for font |f| and advance |cur_fsize[f]|@>=
begin t:=0;
while check_ps_marks(f,t) do
begin print_nl("%*Font: ");
if ps_offset+length(font_name[f])+12>emergency_line_length then
goto done;
print(font_name[f]);
print_char(" ");
ds:=(font_dsize[f] + 8) div 16;
print_scaled(take_scaled(ds,sc_factor(cur_fsize[f])));
if ps_offset+12>emergency_line_length then goto done;
print_char(" ");
print_scaled(ds);
if ps_offset+5>emergency_line_length then goto done;
t:=ps_marks_out(f,t);
end;
done:
cur_fsize[f]:=link(cur_fsize[f]);
end
@ @<Increment |next_size| and apply |mark_string_chars| to all text nodes...@>=
begin incr(next_size);
p:=link(dummy_loc(h));
while p<>null do
begin if type(p)=text_code then
if font_n(p)<>null_font then
if name_type(p)=next_size then
mark_string_chars(font_n(p),text_p(p));
p:=link(p);
end;
end
@ The prologue defines \.{fshow} and corrects for the fact that \.{fshow}
arguments use |font_name| instead of |font_ps_name|. Downloaded bitmap fonts
might not have reasonable |font_ps_name| entries, but we just charge ahead
anyway. The user should not make \&{prologues} positive if this will cause
trouble.
@:prologues_}{\&{prologues} primitive@>
@<Print the prologue@>=
begin if ldf<>null_font then
begin for f:=null_font+1 to last_fnum do
if font_sizes[f]<>null then
begin ps_name_out(font_name[f],true);
ps_name_out(font_ps_name[f],true);
ps_print(" def");
print_ln;
end;
print("/fshow {exch findfont exch scalefont setfont show}bind def");
print_ln;
end;
end
@ Since we do not have a stack for the graphics state, it is considered
completely unknown after the \.{grestore} from a stop clip object. Procedure
|unknown_graphics_state| needs a negative argument in this case.
@<Cases for translating graphical object~|p| into \ps@>=
start_clip_code:begin print_nl("gsave ");
ps_path_out(path_p(p));
ps_print(" clip");
print_ln;
end;
stop_clip_code:begin print_nl("grestore");
print_ln;
unknown_graphics_state(-1);
end;
@ @<Cases for translating graphical object~|p| into \ps@>=
fill_code: if pen_p(p)=null then ps_fill_out(path_p(p))
else if pen_is_elliptical(pen_p(p)) then stroke_ellipse(p,true)
else begin do_outer_envelope(copy_path(path_p(p)), p);
do_outer_envelope(htap_ypoc(path_p(p)), p);
end;
stroked_code: if pen_is_elliptical(pen_p(p)) then stroke_ellipse(p,false)
else begin q:=copy_path(path_p(p));
t:=lcap_val(p);
@<Break the cycle and set |t:=1| if path |q| is cyclic@>;
q:=make_envelope(q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
ps_fill_out(q);
toss_knot_list(q);
end;
@ The envelope of a cyclic path~|q| could be computed by calling
|make_envelope| once for |q| and once for its reversal. We don't do this
because it would fail color regions that are covered by the pen regardless
of where it is placed on~|q|.
@<Break the cycle and set |t:=1| if path |q| is cyclic@>=
if left_type(q)<>endpoint then
begin left_type(insert_knot(q,x_coord(q),y_coord(q))):=endpoint;
right_type(q):=endpoint;
q:=link(q);
t:=1;
end
@ @<Cases for translating graphical object~|p| into \ps@>=
text_code: if (font_n(p)<>null_font) and (length(text_p(p))>0) then
begin if internal[prologues]>0 then
scf:=choose_scale(p)
else scf:=indexed_size(font_n(p), name_type(p));
@<Shift or transform as necessary before outputting text node~|p| at scale
factor~|scf|; set |transformed:=true| if the original transformation must
be restored@>;
ps_string_out(text_p(p));
ps_name_out(font_name[font_n(p)],false);
@<Print the size information and \ps\ commands for text node~|p|@>;
print_ln;
end;
@ @<Print the size information and \ps\ commands for text node~|p|@>=
ps_room(18);
print_char(" ");
ds:=(font_dsize[font_n(p)]+8) div 16;
print_scaled(take_scaled(ds,scf));
print(" fshow");
if transformed then ps_print(" grestore")
@ @<Shift or transform as necessary before outputting text node~|p| at...@>=
transformed:=(txx_val(p)<>scf)or(tyy_val(p)<>scf)or@|
(txy_val(p)<>0)or(tyx_val(p)<>0);
if transformed then
begin print("gsave [");
ps_pair_out(make_scaled(txx_val(p),scf),@|make_scaled(tyx_val(p),scf));
ps_pair_out(make_scaled(txy_val(p),scf),@|make_scaled(tyy_val(p),scf));
ps_pair_out(tx_val(p),ty_val(p));@/
ps_print("] concat 0 0 moveto");
end
else begin ps_pair_out(tx_val(p),ty_val(p));
ps_print("moveto");
end;
print_ln
@ Now that we've finished |ship_out|, let's look at the other commands
by which a user can send things to the \.{GF} file.
@ @<Determine if a character has been shipped out@>=
begin cur_exp:=round_unscaled(cur_exp) mod 256;
if cur_exp<0 then cur_exp:=cur_exp+256;
boolean_reset(char_exists[cur_exp]); cur_type:=boolean_type;
end
@* \[45] Dumping and undumping the tables.
After \.{INIMP} has seen a collection of macros, it
can write all the necessary information on an auxiliary file so
that production versions of \MP\ are able to initialize their
memory at high speed. The present section of the program takes
care of such output and input. We shall consider simultaneously
the processes of storing and restoring,
so that the inverse relation between them is clear.
@.INIMP@>
The global variable |mem_ident| is a string that is printed right
after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
for example, `\.{(preloaded mem=plain 90.4.14)}', showing the year,
month, and day that the mem file was created. We have |mem_ident=0|
before \MP's tables are loaded.
@<Glob...@>=
@!mem_ident:str_number;
@ @<Set init...@>=
mem_ident:=0;
@ @<Initialize table entries...@>=
mem_ident:=" (INIMP)";
@ @<Declare act...@>=
@!init procedure store_mem_file;
label done;
var @!k:integer; {all-purpose index}
@!p,@!q: pointer; {all-purpose pointers}
@!x: integer; {something to dump}
@!w: four_quarters; {four ASCII codes}
@!s: str_number; {all-purpose string}
begin @<Create the |mem_ident|, open the mem file,
and inform the user that dumping has begun@>;
@<Dump constants for consistency check@>;
@<Dump the string pool@>;
@<Dump the dynamic memory@>;
@<Dump the table of equivalents and the hash table@>;
@<Dump a few more things and the closing check word@>;
@<Close the mem file@>;
end;
tini
@ Corresponding to the procedure that dumps a mem file, we also have a function
that reads~one~in. The function returns |false| if the dumped mem is
incompatible with the present \MP\ table sizes, etc.
@d off_base=6666 {go here if the mem file is unacceptable}
@d too_small(#)==begin wake_up_terminal;
wterm_ln('---! Must increase the ',#);
@.Must increase the x@>
goto off_base;
end
@p @t\4@>@<Declare the function called |open_mem_file|@>@;
function load_mem_file:boolean;
label done,off_base,exit;
var @!k:integer; {all-purpose index}
@!p,@!q: pointer; {all-purpose pointers}
@!x: integer; {something undumped}
@!s: str_number; {some temporary string}
@!w: four_quarters; {four ASCII codes}
begin @<Undump constants for consistency check@>;
@<Undump the string pool@>;
@<Undump the dynamic memory@>;
@<Undump the table of equivalents and the hash table@>;
@<Undump a few more things and the closing check word@>;
load_mem_file:=true; return; {it worked!}
off_base: wake_up_terminal;
wterm_ln('(Fatal mem file error; I''m stymied)');
@.Fatal mem file error@>
load_mem_file:=false;
exit:end;
@ Mem files consist of |memory_word| items, and we use the following
macros to dump words of different types:
@d dump_wd(#)==begin mem_file^:=#; put(mem_file);@+end
@d dump_int(#)==begin mem_file^.int:=#; put(mem_file);@+end
@d dump_hh(#)==begin mem_file^.hh:=#; put(mem_file);@+end
@d dump_qqqq(#)==begin mem_file^.qqqq:=#; put(mem_file);@+end
@<Glob...@>=
@!mem_file:word_file; {for input or output of mem information}
@ The inverse macros are slightly more complicated, since we need to check
the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
read an integer value |x| that is supposed to be in the range |a<=x<=b|.
@d undump_wd(#)==begin get(mem_file); #:=mem_file^;@+end
@d undump_int(#)==begin get(mem_file); #:=mem_file^.int;@+end
@d undump_hh(#)==begin get(mem_file); #:=mem_file^.hh;@+end
@d undump_qqqq(#)==begin get(mem_file); #:=mem_file^.qqqq;@+end
@d undump_end_end(#)==#:=x;@+end
@d undump_end(#)==(x>#) then goto off_base@+else undump_end_end
@d undump(#)==begin undump_int(x); if (x<#) or undump_end
@d undump_size_end_end(#)==too_small(#)@+else undump_end_end
@d undump_size_end(#)==if x># then undump_size_end_end
@d undump_size(#)==begin undump_int(x);
if x<# then goto off_base; undump_size_end
@ The next few sections of the program should make it clear how we use the
dump/undump macros.
@<Dump constants for consistency check@>=
dump_int(@$);@/
dump_int(mem_min);@/
dump_int(mem_top);@/
dump_int(hash_size);@/
dump_int(hash_prime);@/
dump_int(max_in_open)
@ Sections of a \.{WEB} program that are ``commented out'' still contribute
strings to the string pool; therefore \.{INIMP} and \MP\ will have
the same strings. (And it is, of course, a good thing that they do.)
@.WEB@>
@^string pool@>
@<Undump constants for consistency check@>=
x:=mem_file^.int;
if x<>@$ then goto off_base; {check that strings are the same}
undump_int(x);
if x<>mem_min then goto off_base;
undump_int(x);
if x<>mem_top then goto off_base;
undump_int(x);
if x<>hash_size then goto off_base;
undump_int(x);
if x<>hash_prime then goto off_base;
undump_int(x);
if x<>max_in_open then goto off_base
@ We do string pool compaction to avoid dumping unused strings.
@d dump_four_ASCII==
w.b0:=qi(so(str_pool[k])); w.b1:=qi(so(str_pool[k+1]));
w.b2:=qi(so(str_pool[k+2])); w.b3:=qi(so(str_pool[k+3]));
dump_qqqq(w)
@<Dump the string pool@>=
do_compaction(pool_size);
dump_int(pool_ptr);
dump_int(max_str_ptr);
dump_int(str_ptr);
k:=0;
while (next_str[k]=k+1) and (k<=max_str_ptr) do incr(k);
dump_int(k);
while k<=max_str_ptr do
begin dump_int(next_str[k]); incr(k);
end;
k:=0;
loop @+begin dump_int(str_start[k]);
if k=str_ptr then goto done else k:=next_str[k];
end;
done:k:=0;
while k+4<pool_ptr do
begin dump_four_ASCII; k:=k+4;
end;
k:=pool_ptr-4; dump_four_ASCII;
print_ln; print("at most "); print_int(max_str_ptr);
print(" strings of total length ");
print_int(pool_ptr)
@ @d undump_four_ASCII==
undump_qqqq(w);
str_pool[k]:=si(qo(w.b0)); str_pool[k+1]:=si(qo(w.b1));
str_pool[k+2]:=si(qo(w.b2)); str_pool[k+3]:=si(qo(w.b3))
@<Undump the string pool@>=
undump_size(0)(pool_size)('string pool size')(pool_ptr);
undump_size(0)(max_strings-1)('max strings')(max_str_ptr);
undump(0)(max_str_ptr)(str_ptr);
undump(0)(max_str_ptr+1)(s);
for k:=0 to s-1 do next_str[k]:=k+1;
for k:=s to max_str_ptr do undump(s+1)(max_str_ptr+1)(next_str[k]);
fixed_str_use:=0;
k:=0;
loop @+begin undump(0)(pool_ptr)(str_start[k]);
if k=str_ptr then goto done;
str_ref[k]:=max_str_ref;
incr(fixed_str_use);
last_fixed_str:=k; k:=next_str[k];
end;
done:k:=0;
while k+4<pool_ptr do
begin undump_four_ASCII; k:=k+4;
end;
k:=pool_ptr-4; undump_four_ASCII;
init_str_use:=fixed_str_use; init_pool_ptr:=pool_ptr;
max_pool_ptr:=pool_ptr;
strs_used_up:=fixed_str_use;
stat pool_in_use:=str_start[str_ptr]; strs_in_use:=fixed_str_use;
max_pl_used:=pool_in_use; max_strs_used:=strs_in_use;@/
pact_count:=0; pact_chars:=0; pact_strs:=0;
tats
@ By sorting the list of available spaces in the variable-size portion of
|mem|, we are usually able to get by without having to dump very much
of the dynamic memory.
We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
information even when it has not been gathering statistics.
@<Dump the dynamic memory@>=
sort_avail; var_used:=0;
dump_int(lo_mem_max); dump_int(rover);
p:=mem_min; q:=rover; x:=0;
repeat for k:=p to q+1 do dump_wd(mem[k]);
x:=x+q+2-p; var_used:=var_used+q-p;
p:=q+node_size(q); q:=rlink(q);
until q=rover;
var_used:=var_used+lo_mem_max-p; dyn_used:=mem_end+1-hi_mem_min;@/
for k:=p to lo_mem_max do dump_wd(mem[k]);
x:=x+lo_mem_max+1-p;
dump_int(hi_mem_min); dump_int(avail);
for k:=hi_mem_min to mem_end do dump_wd(mem[k]);
x:=x+mem_end+1-hi_mem_min;
p:=avail;
while p<>null do
begin decr(dyn_used); p:=link(p);
end;
dump_int(var_used); dump_int(dyn_used);
print_ln; print_int(x);
print(" memory locations dumped; current usage is ");
print_int(var_used); print_char("&"); print_int(dyn_used)
@ @<Undump the dynamic memory@>=
undump(lo_mem_stat_max+1000)(hi_mem_stat_min-1)(lo_mem_max);
undump(lo_mem_stat_max+1)(lo_mem_max)(rover);
p:=mem_min; q:=rover;
repeat for k:=p to q+1 do undump_wd(mem[k]);
p:=q+node_size(q);
if (p>lo_mem_max)or((q>=rlink(q))and(rlink(q)<>rover)) then goto off_base;
q:=rlink(q);
until q=rover;
for k:=p to lo_mem_max do undump_wd(mem[k]);
undump(lo_mem_max+1)(hi_mem_stat_min)(hi_mem_min);
undump(null)(mem_top)(avail); mem_end:=mem_top;
for k:=hi_mem_min to mem_end do undump_wd(mem[k]);
undump_int(var_used); undump_int(dyn_used)
@ A different scheme is used to compress the hash table, since its lower region
is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
packed for |p>=hash_used|, so the remaining entries are output in~a~block.
@<Dump the table of equivalents and the hash table@>=
dump_int(hash_used); st_count:=frozen_inaccessible-1-hash_used;
for p:=1 to hash_used do if text(p)<>0 then
begin dump_int(p); dump_hh(hash[p]); dump_hh(eqtb[p]); incr(st_count);
end;
for p:=hash_used+1 to hash_end do
begin dump_hh(hash[p]); dump_hh(eqtb[p]);
end;
dump_int(st_count);@/
print_ln; print_int(st_count); print(" symbolic tokens")
@ @<Undump the table of equivalents and the hash table@>=
undump(1)(frozen_inaccessible)(hash_used); p:=0;
repeat undump(p+1)(hash_used)(p); undump_hh(hash[p]); undump_hh(eqtb[p]);
until p=hash_used;
for p:=hash_used+1 to hash_end do
begin undump_hh(hash[p]); undump_hh(eqtb[p]);
end;
undump_int(st_count)
@ We have already printed a lot of statistics, so we set |tracing_stats:=0|
to prevent them appearing again.
@<Dump a few more things and the closing check word@>=
dump_int(int_ptr);
for k:=1 to int_ptr do
begin dump_int(internal[k]); dump_int(int_name[k]);
end;
dump_int(start_sym); dump_int(interaction); dump_int(mem_ident);
dump_int(bg_loc); dump_int(eg_loc); dump_int(serial_no); dump_int(69073);
internal[tracing_stats]:=0
@ @<Undump a few more things and the closing check word@>=
undump(max_given_internal)(max_internal)(int_ptr);
for k:=1 to int_ptr do
begin undump_int(internal[k]);
undump(0)(str_ptr)(int_name[k]);
end;
undump(0)(frozen_inaccessible)(start_sym);
undump(batch_mode)(error_stop_mode)(interaction);
undump(0)(str_ptr)(mem_ident);
undump(1)(hash_end)(bg_loc);
undump(1)(hash_end)(eg_loc);
undump_int(serial_no);@/
undump_int(x);@+if (x<>69073)or eof(mem_file) then goto off_base
@ @<Create the |mem_ident|...@>=
selector:=new_string;
print(" (preloaded mem="); print(job_name); print_char(" ");
print_int(round_unscaled(internal[year]) mod 100); print_char(".");
print_int(round_unscaled(internal[month])); print_char(".");
print_int(round_unscaled(internal[day])); print_char(")");
if interaction=batch_mode then selector:=log_only
else selector:=term_and_log;
str_room(1); mem_ident:=make_string; str_ref[mem_ident]:=max_str_ref;@/
pack_job_name(mem_extension);
while not w_open_out(mem_file) do
prompt_file_name("mem file name",mem_extension);
print_nl("Beginning to dump on file ");
@.Beginning to dump...@>
s:=w_make_name_string(mem_file);
print(s); flush_string(s);
print_nl(mem_ident)
@ @<Close the mem file@>=
w_close(mem_file)
@* \[46] The main program.
This is it: the part of \MP\ that executes all those procedures we have
written.
Well---almost. We haven't put the parsing subroutines into the
program yet; and we'd better leave space for a few more routines that may
have been forgotten.
@p @<Declare the basic parsing subroutines@>@;
@<Declare miscellaneous procedures that were declared |forward|@>@;
@<Last-minute procedures@>
@ We've noted that there are two versions of \MP. One, called \.{INIMP},
@.INIMP@>
has to be run first; it initializes everything from scratch, without
reading a mem file, and it has the capability of dumping a mem file.
The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
@.VIRMP@>
to input a mem file in order to get started. \.{VIRMP} typically has
a bit more memory capacity than \.{INIMP}, because it does not need the
space consumed by the dumping/undumping routines and the numerous calls on
|primitive|, etc.
The \.{VIRMP} program cannot read a mem file instantaneously, of course;
the best implementations therefore allow for production versions of \MP\ that
not only avoid the loading routine for \PASCAL\ object code, they also have
a mem file pre-loaded. This is impossible to do if we stick to standard
\PASCAL; but there is a simple way to fool many systems into avoiding the
initialization, as follows:\quad(1)~We declare a global integer variable
called |ready_already|. The probability is negligible that this
variable holds any particular value like 314159 when \.{VIRMP} is first
loaded.\quad(2)~After we have read in a mem file and initialized
everything, we set |ready_already:=314159|.\quad(3)~Soon \.{VIRMP}
will print `\.*', waiting for more input; and at this point we
interrupt the program and save its core image in some form that the
operating system can reload speedily.\quad(4)~When that core image is
activated, the program starts again at the beginning; but now
|ready_already=314159| and all the other global variables have
their initial values too. The former chastity has vanished!
In other words, if we allow ourselves to test the condition
|ready_already=314159|, before |ready_already| has been
assigned a value, we can avoid the lengthy initialization. Dirty tricks
rarely pay off so handsomely.
@^dirty \PASCAL@>
@^system dependencies@>
@<Glob...@>=
@!ready_already:integer; {a sacrifice of purity for economy}
@ Now this is really it: \MP\ starts and ends here.
The initial test involving |ready_already| should be deleted if the
\PASCAL\ runtime system is smart enough to detect such a ``mistake.''
@^system dependencies@>
@p begin @!{|start_here|}
history:=fatal_error_stop; {in case we quit during initialization}
t_open_out; {open the terminal for output}
if ready_already=314159 then goto start_of_MP;
@<Check the ``constant'' values...@>@;
if bad>0 then
begin wterm_ln('Ouch---my internal constants have been clobbered!',
'---case ',bad:1);
@.Ouch...clobbered@>
goto final_end;
end;
initialize; {set global variables to their starting values}
@!init if not get_strings_started then goto final_end;
init_tab; {initialize the tables}
init_prim; {call |primitive| for each primitive}
init_str_use:=str_ptr; init_pool_ptr:=pool_ptr;@/
max_str_ptr:=str_ptr; max_pool_ptr:=pool_ptr;
fix_date_and_time;
tini@/
ready_already:=314159;
start_of_MP: @<Initialize the output routines@>;
@<Get the first line of input and prepare to start@>;
history:=spotless; {ready to go!}
if start_sym>0 then {insert the `\&{everyjob}' symbol}
begin cur_sym:=start_sym; back_input;
end;
main_control; {come to life}
final_cleanup; {prepare for death}
end_of_MP: close_files_and_terminate;
final_end: ready_already:=0;
end.
@ Here we do whatever is needed to complete \MP's job gracefully on the
local operating system. The code here might come into play after a fatal
error; it must therefore consist entirely of ``safe'' operations that
cannot produce error messages. For example, it would be a mistake to call
|str_room| or |make_string| at this time, because a call on |overflow|
might lead to an infinite loop.
@^system dependencies@>
This program doesn't bother to close the input files that may still be open.
@<Last-minute...@>=
procedure close_files_and_terminate;
var @!k:integer; {all-purpose index}
@!lh:integer; {the length of the \.{TFM} header, in words}
@!lk_offset:0..256; {extra words inserted at beginning of |lig_kern| array}
@!p:pointer; {runs through a list of \.{TFM} dimensions}
begin @<Close all open files in the |rd_file| and |wr_file| arrays@>;
@!stat if internal[tracing_stats]>0 then
@<Output statistics about this job@>;@;@+tats@/
wake_up_terminal; @<Do all the finishing work on the \.{TFM} file@>;
@<Explain what output files were written@>;
if log_opened then
begin wlog_cr;
a_close(log_file); selector:=selector-2;
if selector=term_only then
begin print_nl("Transcript written on ");
@.Transcript written...@>
print(log_name); print_char(".");
end;
end;
end;
@ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
for k:=0 to read_files-1 do
if rd_fname[k]<>0 then a_close(rd_file[k]);
for k:=0 to write_files-1 do
if wr_fname[k]<>0 then a_close(wr_file[k])
@ We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
We reclaim all of the variable-size memory at this point, so that
there is no chance of another memory overflow after the memory capacity
has already been exceeded.
@<Do all the finishing work on the \.{TFM} file@>=
if internal[fontmaking]>0 then
begin @<Make the dynamic memory into one big available node@>;
@<Massage the \.{TFM} widths@>;
fix_design_size; fix_check_sum;
@<Massage the \.{TFM} heights, depths, and italic corrections@>;
internal[fontmaking]:=0; {avoid loop in case of fatal error}
@<Finish the \.{TFM} file@>;
end
@ @<Make the dynamic memory into one big available node@>=
rover:=lo_mem_stat_max+1; link(rover):=empty_flag; lo_mem_max:=hi_mem_min-1;
if lo_mem_max-rover>max_halfword then lo_mem_max:=max_halfword+rover;
node_size(rover):=lo_mem_max-rover; llink(rover):=rover; rlink(rover):=rover;
link(lo_mem_max):=null; info(lo_mem_max):=null
@ The present section goes directly to the log file instead of using
|print| commands, because there's no need for these strings to take
up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
@<Output statistics...@>=
if log_opened then
begin wlog_ln(' ');
wlog_ln('Here is how much of MetaPost''s memory',' you used:');
@.Here is how much...@>
wlog(' ',max_strs_used-init_str_use:1,' string');
if max_strs_used<>init_str_use+1 then wlog('s');
wlog_ln(' out of ', max_strings-1-init_str_use:1);@/
wlog_ln(' ',max_pl_used-init_pool_ptr:1,' string characters out of ',
pool_size-init_pool_ptr:1);@/
wlog_ln(' ',lo_mem_max-mem_min+mem_end-hi_mem_min+2:1,@|
' words of memory out of ',mem_end+1-mem_min:1);@/
wlog_ln(' ',st_count:1,' symbolic tokens out of ',
hash_size:1);@/
wlog_ln(' ',max_in_stack:1,'i,',@|
int_ptr:1,'n,',@|
max_param_stack:1,'p,',@|
max_buf_stack+1:1,'b stack positions out of ',@|
stack_size:1,'i,',
max_internal:1,'n,',
param_size:1,'p,',
buf_size:1,'b');
wlog_ln(' ',pact_count:1,' string compactions (moved ',
pact_chars:1,' characters, ',
pact_strs:1,' strings)');
end
@ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
been scanned.
@<Last-minute...@>=
procedure final_cleanup;
label exit;
var c:small_number; {0 for \&{end}, 1 for \&{dump}}
begin c:=cur_mod;
if job_name=0 then open_log_file;
while input_ptr>0 do
if token_state then end_token_list@+else end_file_reading;
while loop_ptr<>null do stop_iteration;
while open_parens>0 do
begin print(" )"); decr(open_parens);
end;
while cond_ptr<>null do
begin print_nl("(end occurred when ");@/
@.end occurred...@>
print_cmd_mod(fi_or_else,cur_if);
{`\.{if}' or `\.{elseif}' or `\.{else}'}
if if_line<>0 then
begin print(" on line "); print_int(if_line);
end;
print(" was incomplete)");
if_line:=if_line_field(cond_ptr);
cur_if:=name_type(cond_ptr); cond_ptr:=link(cond_ptr);
end;
if history<>spotless then
if ((history=warning_issued)or(interaction<error_stop_mode)) then
if selector=term_and_log then
begin selector:=term_only;
print_nl("(see the transcript file for additional information)");
@.see the transcript file...@>
selector:=term_and_log;
end;
if c=1 then
begin @!init store_mem_file; return;@+tini@/
print_nl("(dump is performed only by INIMP)"); return;
@.dump...only by INIMP@>
end;
exit:end;
@ @<Last-minute...@>=
@!init procedure init_prim; {initialize all the primitives}
begin
@<Put each...@>;
end;
@#
procedure init_tab; {initialize other tables}
var @!k:integer; {all-purpose index}
begin @<Initialize table entries (done by \.{INIMP} only)@>@;
end;
tini
@ When we begin the following code, \MP's tables may still contain garbage;
the strings might not even be present. Thus we must proceed cautiously to get
bootstrapped in.
But when we finish this part of the program, \MP\ is ready to call on the
|main_control| routine to do its work.
@<Get the first line...@>=
begin @<Initialize the input routines@>;
if (mem_ident=0)or(buffer[loc]="&") then
begin if mem_ident<>0 then initialize; {erase preloaded mem}
if not open_mem_file then goto final_end;
if not load_mem_file then
begin w_close(mem_file); goto final_end;
end;
w_close(mem_file);
while (loc<limit)and(buffer[loc]=" ") do incr(loc);
end;
buffer[limit]:="%";@/
fix_date_and_time; init_randoms((internal[time] div unity)+internal[day]);@/
@<Initialize the print |selector|...@>;
if loc<limit then if buffer[loc]<>"\" then start_input; {\&{input} assumed}
end
@* \[47] Debugging.
Once \MP\ is working, you should be able to diagnose most errors with
the \.{show} commands and other diagnostic features. But for the initial
stages of debugging, and for the revelation of really deep mysteries, you
can compile \MP\ with a few more aids, including the \PASCAL\ runtime
checks and its debugger. An additional routine called |debug_help|
will also come into play when you type `\.D' after an error message;
|debug_help| also occurs just before a fatal error causes \MP\ to succumb.
@^debugging@>
@^system dependencies@>
The interface to |debug_help| is primitive, but it is good enough when used
with a \PASCAL\ debugger that allows you to set breakpoints and to read
variables and change their values. After getting the prompt `\.{debug \#}', you
type either a negative number (this exits |debug_help|), or zero (this
goes to a location where you can set a breakpoint, thereby entering into
dialog with the \PASCAL\ debugger), or a positive number |m| followed by
an argument |n|. The meaning of |m| and |n| will be clear from the
program below. (If |m=13|, there is an additional argument, |l|.)
@.debug \#@>
@d breakpoint=888 {place where a breakpoint is desirable}
@<Last-minute...@>=
@!debug procedure debug_help; {routine to display various things}
label breakpoint,exit;
var @!k,@!l,@!m,@!n:integer;
begin loop begin wake_up_terminal;
print_nl("debug # (-1 to exit):"); update_terminal;
@.debug \#@>
read(term_in,m);
if m<0 then return
else if m=0 then
begin goto breakpoint;@\ {go to every label at least once}
breakpoint: m:=0; @{'BREAKPOINT'@}@\
end
else begin read(term_in,n);
case m of
@t\4@>@<Numbered cases for |debug_help|@>@;
othercases print("?")
endcases;
end;
end;
exit:end;
gubed
@ @<Numbered cases...@>=
1: print_word(mem[n]); {display |mem[n]| in all forms}
2: print_int(info(n));
3: print_int(link(n));
4: begin print_int(eq_type(n)); print_char(":"); print_int(equiv(n));
end;
5: print_variable_name(n);
6: print_int(internal[n]);
7: do_show_dependencies;
9: show_token_list(n,null,100000,0);
10: print(n);
11: check_mem(n>0); {check wellformedness; print new busy locations if |n>0|}
12: search_mem(n); {look for pointers to |n|}
13: begin read(term_in,l); print_cmd_mod(n,l);
end;
14: for k:=0 to n do print(buffer[k]);
15: panicking:=not panicking;
@* \[48] System-dependent changes.
This section should be replaced, if necessary, by any special
modification of the program
that are necessary to make \MP\ work at a particular installation.
It is usually best to design your change file so that all changes to
previous sections preserve the section numbering; then everybody's version
will be consistent with the published program. More extensive changes,
which introduce new sections, can be inserted here; then only the index
itself will get a new section number.
@^system dependencies@>
@* \[49] Index.
Here is where you can find all uses of each identifier in the program,
with underlined entries pointing to where the identifier was defined.
If the identifier is only one letter long, however, you get to see only
the underlined entries. {\sl All references are to section numbers instead of
page numbers.}
This index also lists error messages and other aspects of the program
that you might want to look up some day. For example, the entry
for ``system dependencies'' lists all sections that should receive
special attention from people who are installing \MP\ in a new
operating environment. A list of various things that can't happen appears
under ``this can't happen''.
Approximately 25 sections are listed under ``inner loop''; these account
for more than 60\pct! of \MP's running time, exclusive of input and output.
|