1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
|
@comment -*-texinfo-*-
@comment This file was generated by doc2tex.pl from examples.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT examples.doc INSTEAD
@comment Id: examples.tex,v 1.1 2003/08/08 14:27:06 pertusus Exp $
@comment this file contains the examples
@c The following directives are necessary for proper compilation
@c with emacs (C-c C-e C-r). Please keep it as it is. Since it
@c is wrapped in `@ignore' and `@end ignore' it does not harm `tex' or
@c `makeinfo' but is a great help in editing this file (emacs
@c ignores the `@ignore').
@ignore
%**start
\input texinfo.tex
@setfilename examples.hlp
@node Top, Examples
@menu
* General concepts::
@end menu
@node Examples, Mathematical Background, Tricks and pitfalls, Top
@appendix Examples
%**end
@end ignore
@ifinfo
The following topics are treated:
@end ifinfo
@ifset singularmanual
@menu
* Milnor and Tjurina::
* Procedures and LIB::
* Critical points::
* Saturation::
* Long coefficients::
* Parameters::
* T1 and T2::
* Deformations::
* Finite fields::
* Elimination::
* Free resolution::
* Computation of Ext::
* Polar curves::
* Depth::
* Formatting output::
* Cyclic roots::
* G_a -Invariants::
* Invariants of a finite group::
* Factorization::
* Puiseux pairs::
* Primary decomposition::
* Normalization::
* Branches of an Isolated Space Curve Singularity::
* Kernel of module homomorphisms::
* Algebraic dependence::
* Classification::
* Fast lexicographical GB::
* Parallelization with MPtcp links::
@end menu
@end ifset
@ifclear singularmanual
@menu
* Milnor and Tjurina::
* Procedures and LIB::
* Critical points::
* Saturation::
* Parameters::
* Deformations::
* Elimination::
* Free resolution::
* Formatting output::
* Factorization::
* Kernel of module homomorphisms::
* Algebraic dependence::
@end menu
@end ifclear
@c ----------------------------------------------------------------------------
@c @node Start SINGULAR, Milnor and Tjurina,Examples, Examples
@c @section Start SINGULAR
@c @cindex Start SINGULAR
@c Call @sc{Singular} by typing @code{Singular} [return]
@c To use the online help type for instance:
@c @code{help;} @code{help command;} @code{help General syntax;} @code{help ring;}...
@c Please note: EVERY COMMAND MUST END WITH A SEMICOLON ";"
@c To leave @sc{Singular}, type one of the:
@c @code{quit;} @code{exit;} @code{$}
@c The two characters @code{//} make the rest of the line a comment.
@c ----------------------------------------------------------------------------
@node Milnor and Tjurina, Procedures and LIB, Examples, Examples
@section Milnor and Tjurina
@cindex Milnor
@cindex Tjurina
The Milnor number, resp.@: the Tjurina number, of a power
series f in
@tex
$K[[x_1,\ldots,x_n]]$
@end tex
@ifinfo
K[[x1,...,xn]]
@end ifinfo
is
@ifinfo
@* milnor(f) = dim_K(K[[x1,...,xn]]/jacob(f))
@*resp.@:
@* tjurina(f) = dim_K(K[[x1,...,xn]]/((f)+jacob(f)))
@*where
@end ifinfo
@tex
$$
\hbox{milnor}(f) = \hbox{dim}_K(K[[x_1,\ldots,x_n]]/\hbox{jacob}(f)),
$$
respectively
$$
\hbox{tjurina}(f) = \hbox{dim}_K(K[[x_1,\ldots,x_n]]/((f)+\hbox{jacob}(f)))
$$
where
@end tex
@code{jacob(f)} is the ideal generated by the partials
of @code{f}. @code{tjurina(f)} is finite, if and only if @code{f} has an
isolated singularity. The same holds for @code{milnor(f)} if
K has characteristic 0.
@sc{Singular} displays -1 if the dimension is infinite.
@sc{Singular} cannot compute with infinite power series. But it can
work in
@tex
$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$,
@end tex
@ifinfo
Loc_(x)K[x1,...,xn],
@end ifinfo
the localization of
@tex
$K[x_1,\ldots,x_n]$
@end tex
@ifinfo
K[x1,...,xn]
@end ifinfo
at the maximal ideal
@tex
$(x_1,\ldots,x_n)$.
@end tex
@ifinfo
(x1,...,xn).
@end ifinfo
To do this one has to define an
s-ordering like ds, Ds, ls, ws, Ws or an appropriate matrix
ordering (look at the manual to get information about the possible
monomial orderings in @sc{Singular}, or type @code{help Monomial orderings;}
to get a menu of possible orderings. For further help type, e.g.,
@code{help local orderings;}).
@ifset singularmanual
See @ref{Monomial orderings}.
@end ifset
We shall show in the example below how to realize the following:
@itemize @bullet
@item
set option @code{prot} to have a short protocol during standard basis
computation
@item
define the ring @code{r1} with char 32003, variables @code{x,y,z}, monomial
ordering @code{ds}, series ring (i.e., K[x,y,z] localized at (x,y,z))
@item
list the information about @code{r1} by typing its name
@item
define the integers @code{a,b,c,t}
@item
define a polynomial @code{f} (depending on @code{a,b,c,t}) and display it
@item
define the jacobian ideal @code{i} of @code{f}
@item
compute a standard basis of @code{i}
@item
compute the Milnor number (=250) with @code{vdim} and create and display
a string in order to comment the result
(text between quotes " "; is a 'string')
@item
compute a standard basis of @code{i+(f)}
@item
compute the Tjurina number (=195) with @code{vdim}
@item
then compute the Milnor number (=248) and the Tjurina number
(=195) for @code{t}=1
@item
reset the option to @code{noprot}
@end itemize
@smallexample
@c computed example Milnor_and_Tjurina examples.doc:196
option(prot);
ring r1 = 32003,(x,y,z),ds;
r1;
@expansion{} // characteristic : 32003
@expansion{} // number of vars : 3
@expansion{} // block 1 : ordering ds
@expansion{} // : names x y z
@expansion{} // block 2 : ordering C
int a,b,c,t=11,5,3,0;
poly f = x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3+
x^(c-2)*y^c*(y^2+t*x)^2;
f;
@expansion{} y5+x5y2+x2y2z3+xy7+z9+x11
ideal i=jacob(f);
i;
@expansion{} i[1]=5x4y2+2xy2z3+y7+11x10
@expansion{} i[2]=5y4+2x5y+2x2yz3+7xy6
@expansion{} i[3]=3x2y2z2+9z8
ideal j=std(i);
@expansion{} [1023:2]7(2)s8s10s11s12s(3)s13(4)s(5)s14(6)s(7)15--.s(6)-16.-.s(5)17.s(7)\
s--s18(6).--19-..sH(24)20(3)...21....22....23.--24-
@expansion{} product criterion:10 chain criterion:69
"The Milnor number of f(11,5,3) for t=0 is", vdim(j);
@expansion{} The Milnor number of f(11,5,3) for t=0 is 250
j=i+f; // overwrite j
j=std(j);
@expansion{} [1023:2]7(3)s8(2)s10s11(3)ss12(4)s(5)s13(6)s(8)s14(9).s(10).15--sH(23)(8)\
...16......17.......sH(21)(9)sH(20)16(10).17...........18.......19..----.\
.sH(19)
@expansion{} product criterion:10 chain criterion:53
vdim(j); // compute the Tjurina number for t=0
@expansion{} 195
t=1;
f=x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3
+x^(c-2)*y^c*(y^2+t*x)^2;
ideal i1=jacob(f);
ideal j1=std(i1);
@expansion{} [1023:2]7(2)s8s10s11s12s13(3)ss(4)s14(5)s(6)s15(7).....s(8)16.s...s(9)..1\
7............s18(10).....s(11)..-.19.......sH(24)(10).....20...........21\
..........22.............................23..............................\
.24.----------.25.26
@expansion{} product criterion:11 chain criterion:83
"The Milnor number of f(11,5,3) for t=1:",vdim(j1);
@expansion{} The Milnor number of f(11,5,3) for t=1: 248
vdim(std(j1+f)); // compute the Tjurina number for t=1
@expansion{} [1023:2]7(16)s8(15)s10s11ss(16)-12.s-s13s(17)s(18)s(19)-s(18).-14-s(17)-s\
(16)ss(17)s15(18)..-s...--.16....-.......s(16).sH(23)s(18)...17..........\
18.........sH(20)17(17)....................18..........19..---....-.-....\
.....20.-----...s17(9).........18..............19..-.......20.-......21..\
.......sH(19)16(5).....18......19.-----
@expansion{} product criterion:15 chain criterion:174
@expansion{} 195
option(noprot);
@c end example Milnor_and_Tjurina examples.doc:196
@end smallexample
@c ----------------------------------------------------------------------------
@node Procedures and LIB, Critical points, Milnor and Tjurina, Examples
@section Procedures and LIB
@cindex Procedures and LIB
The computation of the Milnor number (for an arbitrary isolated complete
intersection singularity ICIS) and the Tjurina number (for an arbitrary
isolated singularity) can be done by using procedures from the library
@code{sing.lib}. For a hypersurface singularity it is very easy to write a
procedure which computes the Milnor number and the Tjurina number.
We shall demonstrate:
@itemize @bullet
@item
load the library @code{sing.lib}
@c item
@c disable the protocol option
@item
define a local ring in 2 variables and characteristic 0
@item
define a plane curve singularity
@item
compute Milnor number and Tjurina number by using the procedures
@code{milnor} and @code{tjurina}
@item
write your own procedures:
(A procedure has a list of input parameters and of return values, both
lists may be empty.)
@itemize @minus
@item
the procedure @code{mil} which must be called with one parameter, a
polynomial.
The name g is local to the procedure and is killed automatically.
@code{mil} returns the Milnor number (and displays a comment).
@item
the procedure @code{tjur} where the parameters are not specified. They
are referred
to by @code{#[1]} for the 1st, @code{#[2]} for the 2nd parameter, etc.
@code{tjur} returns the Tjurina number (and displays a comment).
@item
the procedure @code{milrina} which returns a list consisting of two
integers,
the Milnor and the Tjurina number.
@end itemize
@end itemize
@smallexample
LIB "sing.lib";
// you should get the information that sing.lib has been loaded
// together with some other libraries which are needed by sing.lib
ring r = 0,(x,y),ds;
poly f = x7+y7+(x-y)^2*x2y2;
milnor(f);
@expansion{} 28
tjurina(f);
@expansion{} 24
proc mil (poly g)
@{
"Milnor number:";
return(vdim(std(jacob(g))));
@}
mil(f);
@expansion{} Milnor number:
@expansion{} 28
proc tjur
@{
"Tjurina number:";
return(vdim(std(jacob(#[1])+#[1])));
@}
tjur(f);
@expansion{} Tjurina number:
@expansion{} 24
proc milrina (poly f)
@{
ideal j=jacob(f);
list L=vdim(std(j)),vdim(std(j+f));
return(L);
@}
milrina(f); // a list containing Milnor and Tjurina number
@expansion{} [1]:
@expansion{} 28
@expansion{} [2]:
@expansion{} 24
milrina(f)[2]; // the second element of the list
@expansion{} 24
@end smallexample
@c ----------------------------------------------------------------------------
@node Critical points, Saturation, Procedures and LIB, Examples
@section Critical points
@cindex Critical points
The same computation which computes the Milnor, resp.@: the Tjurina,
number, but with ordering @code{dp} instead of @code{ds} (i.e., in
@tex
$K[x_1,\ldots,x_n]$
@end tex
@ifinfo
K[x1,...,xn]
@end ifinfo
instead of
@tex
$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$
@end tex
@ifinfo
Loc_(x)K[x1,...,xn])
@end ifinfo
gives:
@itemize @bullet
@item
the number of critical points of @code{f} in the affine plane
(counted with multiplicities)
@item
the number of singular points of @code{f} on the affine plane curve @code{f}=0
(counted with multiplicities).
@end itemize
We start with the ring @code{r1} from section @ref{Milnor and Tjurina} and its elements.
The following will be realized below:
@itemize @bullet
@item
reset the protocol option and activate the timer
@item
define the ring @code{r2} with char 32003, variables @code{x,y,z} and monomial
ordering @code{dp} (= degrevlex) (i.e., the polynomial ring = K[x,y,z]).
@item
Note that polynomials, ideals, matrices (of polys), vectors,
modules belong to a ring, hence we have to define @code{f} and @code{jacob(f)}
again in @code{r2}. Since these objects are local to a ring, we may use
the same names.
Instead of defining @code{f} again we map it from ring @code{r1} to @code{r2}
by using the @code{imap} command
(@code{imap} is a convenient way to map variables
from some ring identically to variables with the same name in the
basering, even if the ground field is different. Compare with @code{fetch}
which works for almost identical rings,
e.g., if the rings differ only by the ordering or by the names of the
variables and which may be used to rename variables).
Integers and strings, however, do not belong to any ring. Once
defined they are globally known.
@item
The result of the computation here (together with the previous one in
@ref{Milnor and Tjurina}) shows that (for @code{t}=0)
@tex
$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/\hbox{jacob}(f))$
@end tex
@ifinfo
dim_K(Loc_(x,y,z)K[x,y,z]/jacob(f))
@end ifinfo
= 250 (previously computed) while
@tex
$\hbox{dim}_K(K[x,y,z]/\hbox{jacob}(f))$
@end tex
@ifinfo
dim_K(K[x,y,z]/jacob(f))
@end ifinfo
= 536. Hence @code{f} has 286 critical points,
counted with multiplicity, outside the origin.
Moreover, since
@tex
$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/(\hbox{jacob}(f)+(f)))$
@end tex
@ifinfo
dim_K(Loc_(x,y,z)K[x,y,z]/(jacob(f)+(f)))
@end ifinfo
= 195 =
@tex
$\hbox{dim}_K(K[x,y,z]/(\hbox{jacob}(f)+(f)))$,
@end tex
@ifinfo
dim_K(K[x,y,z]/(jacob(f)+(f))),
@end ifinfo
the affine surface @code{f}=0 is smooth outside the origin.
@end itemize
@smallexample
@c computed example Critical_points examples.doc:402
ring r1 = 32003,(x,y,z),ds;
int a,b,c,t=11,5,3,0;
poly f = x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3+
x^(c-2)*y^c*(y^2+t*x)^2;
option(noprot);
timer=1;
ring r2 = 32003,(x,y,z),dp;
poly f=imap(r1,f);
ideal j=jacob(f);
vdim(std(j));
@expansion{} 536
vdim(std(j+f));
@expansion{} 195
timer=0; // reset timer
@c end example Critical_points examples.doc:402
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Saturation, Long coefficients, Critical points, Examples
@end ifset
@ifclear singularmanual
@node Saturation, Parameters, Critical points, Examples
@end ifclear
@section Saturation
@cindex Saturation
Since in the example above, the ideal
@ifinfo
@math{j+(f)}
@end ifinfo
@tex
$j+(f)$
@end tex
has the same @code{vdim}
in the polynomial ring and in the localization at 0 (each 195),
@ifinfo
@math{f=0}
@end ifinfo
@tex
$f=0$
@end tex
is smooth outside 0.
Hence
@ifinfo
@math{j+(f)}
@end ifinfo
@tex
$j+(f)$
@end tex
contains some power of the maximal ideal
@ifinfo
@math{m}
@end ifinfo
@tex
$m$
@end tex
. We shall
check this in a different manner:
For any two ideals
@ifinfo
@math{i, j}
@end ifinfo
@tex
$i, j$
@end tex
in the basering
@ifinfo
@math{R}
@end ifinfo
@tex
$R$
@end tex
let
@tex
$$
\hbox{sat}(i,j)=\{x\in R\;|\; \exists\;n\hbox{ s.t. }
x\cdot(j^n)\subseteq i\}
= \bigcup_{n=1}^\infty i:j^n$$
@end tex
@ifinfo
@*sat(i,j) = @{x in @math{R} | there is an n s.t. x*(j^n) contained in i@}
@* = union_(n=1...) of i:j^n,
@end ifinfo
@*denote the saturation of
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
with respect to
@ifinfo
@math{j}
@end ifinfo
@tex
$j$
@end tex
. This defines,
geometrically, the closure of the complement of V(
@ifinfo
@math{j}
@end ifinfo
@tex
$j$
@end tex
) in V(
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
)
(V(
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
) denotes the variety defined by
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
).
In our case,
@ifinfo
@math{sat(j+(f),m)}
@end ifinfo
@tex
$sat(j+(f),m)$
@end tex
must be the whole ring, hence
generated by 1.
The saturation is computed by the procedure @code{sat} in
@code{elim.lib} by computing iterated ideal quotients with the maximal
ideal. @code{sat} returns a list of two elements: the saturated ideal
and the number of iterations. (Note that @code{maxideal(n)} denotes the
n-th power of the maximal ideal).
@smallexample
@c computed example Saturation examples.doc:457
LIB "elim.lib"; // loading library elim.lib
// you should get the information that elim.lib has been loaded
// together with some other libraries which are needed by it
option(noprot); // no protocol
ring r2 = 32003,(x,y,z),dp;
poly f = x^11+y^5+z^(3*3)+x^(3+2)*y^(3-1)+x^(3-1)*y^(3-1)*z3+
x^(3-2)*y^3*(y^2)^2;
ideal j=jacob(f);
sat(j+f,maxideal(1));
@expansion{} [1]:
@expansion{} _[1]=1
@expansion{} [2]:
@expansion{} 17
// list the variables defined so far:
listvar();
@expansion{} // r2 [0] *ring
@expansion{} // j [0] ideal, 3 generator(s)
@expansion{} // f [0] poly
@expansion{} // LIB [0] string standard.lib,elim.li..., 83 char(s)
@c end example Saturation examples.doc:457
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Long coefficients, Parameters, Saturation, Examples
@section Long coefficients
@cindex Long coefficients
The following innocent example produces in its standard basis
extremely long coefficients in char 0 for the lexicographical
ordering.
But a very small deformation does not (the undeformed
example is degenerate with respect to the Newton boundary).
This example demonstrates that it might be wise, for complicated
examples, to do the calculation first in positive char (e.g., 32003).
It has been shown, that in complicated examples, more than 95 percent of
the time needed for a standard basis computation is used in the
computation of the coefficients (in char 0).
The representation of long integers with real is demonstrated.
@smallexample
@c computed example Long_coefficients examples.doc:491
timer = 1; // activate the timer
option(prot);
ring R0 = 0,(x,y),lp;
poly f = x5+y11+xy9+x3y9;
ideal i = jacob(f);
ideal i1 = i,i[1]*i[2]; // undeformed ideal
ideal i2 = i,i[1]*i[2]+1/1000000*x5y8; // deformation of i1
i1; i2;
@expansion{} i1[1]=5x4+3x2y9+y9
@expansion{} i1[2]=9x3y8+9xy8+11y10
@expansion{} i1[3]=45x7y8+27x5y17+45x5y8+55x4y10+36x3y17+33x2y19+9xy17+11y19
@expansion{} i2[1]=5x4+3x2y9+y9
@expansion{} i2[2]=9x3y8+9xy8+11y10
@expansion{} i2[3]=45x7y8+27x5y17+45000001/1000000x5y8+55x4y10+36x3y17+33x2y19+9xy17+1\
1y19
ideal j = std(i1);
@expansion{} [65535:1]11(2)ss19s20s21s22(3)-23-s27s28s29s30s31s32s33s34s35s36s37s38s39\
s40s70-
@expansion{} product criterion:1 chain criterion:30
j;
@expansion{} j[1]=264627y39+26244y35-1323135y30-131220y26+1715175y21+164025y17+1830125\
y16
@expansion{} j[2]=12103947791971846719838321886393392913750065060875xy8-28639152114168\
3198701331939250003266767738632875y38-31954402206909026926764622877573565\
78554430672591y37+57436621420822663849721381265738895282846320y36+1657764\
214948799497573918210031067353932439400y35+213018481589308191195677223898\
98682697001205500y34+1822194158663066565585991976961565719648069806148y33\
-4701709279892816135156972313196394005220175y32-1351872269688192267600786\
97600850686824231975y31-3873063305929810816961516976025038053001141375y30\
+1325886675843874047990382005421144061861290080000y29+1597720195476063141\
9467945895542406089526966887310y28-26270181336309092660633348002625330426\
7126525y27-7586082690893335269027136248944859544727953125y26-867853074106\
49464602285843351672148965395945625y25-5545808143273594102173252331151835\
700278863924745y24+19075563013460437364679153779038394895638325y23+548562\
322715501761058348996776922561074021125y22+157465452677648386073957464715\
68100780933983125y21-1414279129721176222978654235817359505555191156250y20\
-20711190069445893615213399650035715378169943423125y19+272942733337472665\
573418092977905322984009750y18+789065115845334505801847294677413365720955\
3750y17+63554897038491686787729656061044724651089803125y16-22099251729923\
906699732244761028266074350255961625y14+147937139679655904353579489722585\
91339027857296625y10
@expansion{} j[3]=5x4+3x2y9+y9
// Compute average coefficient length (=51) by
// - converting j[2] to a string in order to compute the number
// of characters
// - divide this by the number of monomials:
size(string(j[2]))/size(j[2]);
@expansion{} 51
vdim(j);
@expansion{} 63
// For a better representation normalize the long coefficients
// of the polynomial j[2] and map it to real:
poly p=(1/12103947791971846719838321886393392913750065060875)*j[2];
ring R1=real,(x,y),lp;
short=0; // force the long output format
poly p=imap(R0,p);
p;
@expansion{} x*y^8-2.366e-02*y^38-2.640e-01*y^37+4.745e-06*y^36+1.370e-04*y^35+1.760e-\
03*y^34+1.505e-01*y^33+3.884e-07*y^32-1.117e-05*y^31-3.200e-04*y^30+1.095\
e-01*y^29+1.320e+00*y^28-2.170e-05*y^27-6.267e-04*y^26-7.170e-03*y^25-4.5\
82e-01*y^24+1.576e-06*y^23+4.532e-05*y^22+1.301e-03*y^21-1.168e-01*y^20-1\
.711e+00*y^19+2.255e-05*y^18+6.519e-04*y^17+5.251e-03*y^16-1.826e+00*y^14\
+1.222e+00*y^10
// Compute a standard basis for the deformed ideal:
setring R0;
j = std(i2);
@expansion{} [65535:1]11(2)ss19s20s21s22(3)-s23(2)s27.28.s29(3)s30.s31ss32sss33sss34ss\
35--38-
@expansion{} product criterion:11 chain criterion:21
j;
@expansion{} j[1]=y16
@expansion{} j[2]=65610xy8+17393508y27+7223337y23+545292y19+6442040y18-119790y14+80190\
y10
@expansion{} j[3]=5x4+3x2y9+y9
vdim(j);
@expansion{} 40
@c end example Long_coefficients examples.doc:491
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Parameters, T1 and T2, Long coefficients, Examples
@end ifset
@ifclear singularmanual
@node Parameters, Deformations, Saturation, Examples
@end ifclear
@section Parameters
@cindex Parameters
@ifset singularmanual
Let us deform the above ideal now by introducing a parameter t
and compute over the ground field Q(t).
We compute the dimension at the generic point,
@end ifset
@ifclear singularmanual
Let us now deform a given 0-dimensional ideal j by introducing a parameter t
and compute over the ground field Q(t).
We compute the dimension at the generic point,
@end ifclear
i.e.,
@tex
$dim_{Q(t)}Q(t)[x,y]/j$.
@end tex
@ifinfo
dim_Q(t) Q(t)[x,y]/j.
@end ifinfo
@ifset singularmanual
(This gives the
same result as for the deformed ideal above. Hence, the above small
deformation was "generic".)
@end ifset
For almost all
@tex
$a \in Q$
@end tex
@ifinfo
a in Q
@end ifinfo
this is the same as
@tex
$dim_Q Q[x,y]/j_0$,
@end tex
@ifinfo
dim_Q Q[x,y]/j0,
@end ifinfo
where
@tex
$j_0=j|_{t=a}$.
@end tex
@ifinfo
j_0=j_t=a
@end ifinfo
@smallexample
@c computed example Parameters examples.doc:579
ring Rt = (0,t),(x,y),lp;
Rt;
@expansion{} // characteristic : 0
@expansion{} // 1 parameter : t
@expansion{} // minpoly : 0
@expansion{} // number of vars : 2
@expansion{} // block 1 : ordering lp
@expansion{} // : names x y
@expansion{} // block 2 : ordering C
poly f = x5+y11+xy9+x3y9;
ideal i = jacob(f);
ideal j = i,i[1]*i[2]+t*x5y8; // deformed ideal, parameter t
vdim(std(j));
@expansion{} 40
ring R=0,(x,y),lp;
ideal i=imap(Rt,i);
int a=random(1,30000);
ideal j=i,i[1]*i[2]+a*x5y8; // deformed ideal, fixed integer a
vdim(std(j));
@expansion{} 40
@c end example Parameters examples.doc:579
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node T1 and T2, Deformations, Parameters, Examples
@section T1 and T2
@cindex T1
@cindex T2
@ifinfo
@math{T^1}
@end ifinfo
@tex
$T^1$
@end tex
, resp.@:
@ifinfo
@math{T^2}
@end ifinfo
@tex
$T^2$
@end tex
, of an ideal
@ifinfo
@math{j}
@end ifinfo
@tex
$j$
@end tex
usually denote the modules of
infinitesimal deformations, resp.@: of obstructions.
In @sc{Singular} there are procedures @code{T_1} and @code{T_2} in
@code{sing.lib} such that
@code{T_1(j)} and @code{T_2(j)} compute a standard basis of
a presentation of these modules.
If T_1 and T_2 are finite dimensional K-vector spaces (e.g., for isolated
singularities), a basis can be computed by applying
@code{kbase(T_1(j));}, resp.@: @code{kbase(T_2(j));}, the dimensions by
applying @code{vdim}.
For a complete intersection j the procedure @code{Tjurina} also
computes T_1, but faster (T_2=0 in this case).
For a non complete intersection, it is faster to use the procedure @code{T_12}
instead of @code{T_1} and @code{T_2}.
Type @code{help T_1;} (or @code{help T_2;} or @code{help T_12;}) to obtain
more detailed information about these procedures.
We give three examples, the first being a hypersurface, the second a complete
intersection, the third no complete intersection:
@itemize @bullet
@item
load @code{sing.lib}
@item
check whether the ideal j is a complete intersection. It is, if
number of variables = dimension + minimal number of generators
@item
compute the Tjurina number
@item
compute a vector space basis (kbase) of T_1
@item
compute the Hilbert function of T_1
@item
create a polynomial encoding the Hilbert series
@item
compute the dimension of T_2
@end itemize
@smallexample
@c computed example T1_and_T2 examples.doc:639
LIB "sing.lib";
ring R=32003,(x,y,z),ds;
// ---------------------------------------
// hypersurface case (from series T[p,q,r]):
int p,q,r = 3,3,4;
poly f = x^p+y^q+z^r+xyz;
tjurina(f);
@expansion{} 8
// Tjurina number = 8
kbase(Tjurina(f));
@expansion{} // Tjurina number = 8
@expansion{} _[1]=z3
@expansion{} _[2]=z2
@expansion{} _[3]=yz
@expansion{} _[4]=xz
@expansion{} _[5]=z
@expansion{} _[6]=y
@expansion{} _[7]=x
@expansion{} _[8]=1
// ---------------------------------------
// complete intersection case (from series P[k,l]):
int k,l =3,2;
ideal j=xy,x^k+y^l+z2;
dim(std(j)); // Krull dimension
@expansion{} 1
size(minbase(j)); // minimal number of generators
@expansion{} 2
tjurina(j); // Tjurina number
@expansion{} 6
module T=Tjurina(j);
@expansion{} // Tjurina number = 6
kbase(T); // a sparse output of the k-basis of T_1
@expansion{} _[1]=z*gen(1)
@expansion{} _[2]=gen(1)
@expansion{} _[3]=y*gen(2)
@expansion{} _[4]=x2*gen(2)
@expansion{} _[5]=x*gen(2)
@expansion{} _[6]=gen(2)
print(kbase(T)); // columns of matrix are a k-basis of T_1
@expansion{} z,1,0,0, 0,0,
@expansion{} 0,0,y,x2,x,1
// ---------------------------------------
// general case (cone over rational normal curve of degree 4):
ring r1=0,(x,y,z,u,v),ds;
matrix m[2][4]=x,y,z,u,y,z,u,v;
ideal i=minor(m,2); // 2x2 minors of matrix m
module M=T_1(i); // a presentation matrix of T_1
@expansion{} // dim T_1 = 4
vdim(M); // Tjurina number
@expansion{} 4
hilb(M); // display of both Hilbert series
@expansion{} // 4 t^0
@expansion{} // -20 t^1
@expansion{} // 40 t^2
@expansion{} // -40 t^3
@expansion{} // 20 t^4
@expansion{} // -4 t^5
@expansion{}
@expansion{} // 4 t^0
@expansion{} // dimension (local) = 0
@expansion{} // multiplicity = 4
intvec v1=hilb(M,1); // first Hilbert series as intvec
intvec v2=hilb(M,2); // second Hilbert series as intvec
v1;
@expansion{} 4,-20,40,-40,20,-4,0
v2;
@expansion{} 4,0
v1[3]; // 3rd coefficient of the 1st Hilbert series
@expansion{} 40
module N=T_2(i);
@expansion{} // dim T_2 = 3
@c end example T1_and_T2 examples.doc:639
@end smallexample
@smallexample
// In some cases it might be useful to have a polynomial in some ring
// encoding the Hilbert series. This polynomial can then be
// differentiated, evaluated etc. It can be done as follows:
ring H = 0,t,ls;
poly h1;
int ii;
for (ii=1; ii<=size(v1); ii=ii+1)
@{
h1=h1+v1[ii]*t^(ii-1);
@}
h1; // 1st Hilbert series
@expansion{} 4-20t+40t2-40t3+20t4-4t5
diff(h1,t); // differentiate h1
@expansion{} -20+80t-120t2+80t3-20t4
subst(h1,t,1); // substitute t by 1
@expansion{} 0
// The procedures T_1, T_2, T_12 may be called with two arguments and then
// they return a list with more information (type help T_1; etc.)
// e.g., T_12(i,<any>); returns a list with 9 nonempty objects where
// _[1] = std basis of T_1-module, _[2] = std basis of T_2-module,
// _[3]= vdim of T_1, _[4]= vdim of T_2
setring r1; // make r1 again the basering
list L = T_12(i,1);
@expansion{} // dim T_1 = 4
@expansion{} // dim T_2 = 3
kbase(L[1]); // kbase of T_1
@expansion{} _[1]=1*gen(2)
@expansion{} _[2]=1*gen(3)
@expansion{} _[3]=1*gen(6)
@expansion{} _[4]=1*gen(7)
kbase(L[2]); // kbase of T_2
@expansion{} _[1]=1*gen(6)
@expansion{} _[2]=1*gen(8)
@expansion{} _[3]=1*gen(9)
L[3]; // vdim of T_1
@expansion{} 4
L[4]; // vdim of T_2
@expansion{} 3
@end smallexample
@c killall(); // a procedure from general.lib
@c @expansion{} // ** killing the basering for level 0
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Deformations, Finite fields, T1 and T2, Examples
@end ifset
@ifclear singularmanual
@node Deformations, Elimination, Parameters, Examples
@end ifclear
@section Deformations
@cindex Deformations
@itemize @bullet
@item
The libraries @code{sing.lib}, resp.@: @code{deform.lib}, contain procedures
to compute total and base space of the
miniversal (= semiuniversal) deformation of an
isolated complete intersection singularity, resp.@: arbitrary isolated
singularity.
@item
The procedure @code{deform} in @code{sing.lib} returns a matrix whose columns
@ifinfo
@code{h_1,..., h_r}
@end ifinfo
@tex
$h_1,\ldots,h_r$
@end tex
represent all 1st order deformations. More precisely, if
@ifinfo
I in R is the ideal generated by @code{f_1,...,f_s}, then any infinitesimal
deformation of R/I over K[e]/(e^2) is given by @code{f+eg},
where f=(f_1,...,f_s), g a K-linear combination of the h_i.
@end ifinfo
@tex
$I \subset R$ is the ideal generated by $f_1,...,f_s$, then any infinitesimal
deformation of $R/I$ over $K[\varepsilon]/(\varepsilon^2)$ is given
by $f+\varepsilon g$,
where $f=(f_1,...,f_s)$, $g$ a $K$-linear combination of the $h_i$.
@end tex
@item
The procedure @code{versal} in @code{deform.lib} computes a formal
miniversal deformation up to a certain order which can be
prescribed by the user. For a complete intersection the 1st order
part is already miniversal.
@item
The procedure @code{versal} extends the basering to a new ring with
additional deformation parameters which contains the equations for the
miniversal base space and the miniversal total space.
@item
There are default names for the objects created, but the user may also
choose his own names.
@item
If the user sets @code{printlevel=2;} before running @code{versal}, some
intermediate results are shown. This is useful since @code{versal}
is already complicated and might run for some time on more
complicated examples. (type @code{help versal;})
@end itemize
@ifset singularmanual
We compute for the same examples as in the preceding section
the miniversal deformations:
@end ifset
@ifclear singularmanual
We give three examples, the first being a hypersurface, the second a
complete intersection, the third no complete intersection and compute
in each of the cases the miniversal deformation:
@end ifclear
@smallexample
@c computed example Deformations examples.doc:787
LIB "deform.lib";
ring R=32003,(x,y,z),ds;
//----------------------------------------------------
// hypersurface case (from series T[p,q,r]):
int p,q,r = 3,3,4;
poly f = x^p+y^q+z^r+xyz;
print(deform(f));
@expansion{} z3,z2,yz,xz,z,y,x,1
// the miniversal deformation of f=0 is the projection from the
// miniversal total space to the miniversal base space:
// @{ (A,B,C,D,E,F,G,H,x,y,z) | x3+y3+xyz+z4+A+Bx+Cxz+Dy+Eyz+Fz+Gz2+Hz3 =0 @}
// --> @{ (A,B,C,D,E,F,G,H) @}
//----------------------------------------------------
// complete intersection case (from series P[k,l]):
int k,l =3,2;
ideal j=xy,x^k+y^l+z2;
print(deform(j));
@expansion{} 0,0, 0,0,z,1,
@expansion{} y,x2,x,1,0,0
versal(j); // using default names
@expansion{} // smooth base space
@expansion{} // ready: T_1 and T_2
@expansion{}
@expansion{} // Result belongs to ring Px.
@expansion{} // Equations of total space of miniversal deformation are
@expansion{} // given by Fs, equations of miniversal base space by Js.
@expansion{} // Make Px the basering and list objects defined in Px by typing:
@expansion{} setring Px; show(Px);
@expansion{} listvar(matrix);
@expansion{} // NOTE: rings Qx, Px, So are alive!
@expansion{} // (use 'kill_rings("");' to remove)
setring Px;
show(Px); // show is a procedure from inout.lib
@expansion{} // ring: (32003),(A,B,C,D,E,F,x,y,z),(ds(6),ds(3),C);
@expansion{} // minpoly = 0
@expansion{} // objects belonging to this ring:
@expansion{} // Rs [0] matrix 2 x 1
@expansion{} // Fs [0] matrix 1 x 2
@expansion{} // Js [0] matrix 1 x 0
listvar(matrix);
@expansion{} // Rs [0] matrix 2 x 1
@expansion{} // Fs [0] matrix 1 x 2
@expansion{} // Js [0] matrix 1 x 0
// ___ Equations of miniversal base space ___:
Js;
@expansion{}
// ___ Equations of miniversal total space ___:
Fs;
@expansion{} Fs[1,1]=xy+Ez+F
@expansion{} Fs[1,2]=y2+z2+x3+Ay+Bx2+Cx+D
// the miniversal deformation of V(j) is the projection from the
// miniversal total space to the miniversal base space:
// @{ (A,B,C,D,E,F,x,y,z) | xy+F+Ez=0, y2+z2+x3+D+Cx+Bx2+Ay=0 @}
// --> @{ (A,B,C,D,E,F) @}
//----------------------------------------------------
// general case (cone over rational normal curve of degree 4):
ring r1=0,(x,y,z,u,v),ds;
matrix m[2][4]=x,y,z,u,y,z,u,v;
ideal i=minor(m,2); // 2x2 minors of matrix m
int time=timer;
// Def_r is the name of the miniversal base space with
// parameters A(1),...,A(4)
versal(i,0,"Def_r","A(");
@expansion{} // ready: T_1 and T_2
@expansion{}
@expansion{} // Result belongs to ring Def_rPx.
@expansion{} // Equations of total space of miniversal deformation are
@expansion{} // given by Fs, equations of miniversal base space by Js.
@expansion{} // Make Def_rPx the basering and list objects defined in Def_rPx by typin\
g:
@expansion{} setring Def_rPx; show(Def_rPx);
@expansion{} listvar(matrix);
@expansion{} // NOTE: rings Def_rQx, Def_rPx, Def_rSo are alive!
@expansion{} // (use 'kill_rings("Def_r");' to remove)
"// used time:",timer-time,"sec"; // time of last command
@expansion{} // used time: 1 sec
// the miniversal deformation of V(i) is the projection from the
// miniversal total space to the miniversal base space:
// @{ (A(1..4),x,y,z,u,v) |
// -y^2+x*z+A(2)*x-A(3)*y=0, -y*z+x*u-A(1)*x-A(3)*z=0,
// -y*u+x*v-A(3)*u-A(4)*z=0, -z^2+y*u-A(1)*y-A(2)*z=0,
// -z*u+y*v-A(2)*u-A(4)*u=0, -u^2+z*v+A(1)*u-A(4)*v=0 @}
// --> @{ A(1..4) |
// -A(1)*A(4) = A(3)*A(4) = -A(2)*A(4)-A(4)^2 = 0 @}
//----------------------------------------------------
@c end example Deformations examples.doc:787
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Finite fields, Elimination, Deformations, Examples
@section Finite fields
@cindex Finite fields
We define a variety in
@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
-space of codimension 2 defined by
polynomials of degree
@ifinfo
@math{d}
@end ifinfo
@tex
$d$
@end tex
with generic coefficients over the prime
field
@ifinfo
@math{Z/p}
@end ifinfo
@tex
$Z/p$
@end tex
and look for zeros on the torus. First over the prime
field and then in the finite extension field with
@tex
$p^k$
@end tex
@ifinfo
p^k
@end ifinfo
elements.
In general there will be many more solutions in the second case.
(Since the @sc{Singular} language is interpreted, the evaluation of many
@code{for}-loops is not very fast):
@smallexample
@c computed example Finite_fields examples.doc:860
int p=3; int n=3; int d=5; int k=2;
ring rp = p,(x(1..n)),dp;
int s = size(maxideal(d));
s;
@expansion{} 21
// create a dense homogeneous ideal m, all generators of degree d, with
// generic (random) coefficients:
ideal m = maxideal(d)*random(p,s,n-2);
m;
@expansion{} m[1]=x(1)^3*x(2)^2-x(1)*x(2)^4+x(1)^4*x(3)-x(1)^3*x(2)*x(3)+x(1)*x(2)^3*x\
(3)+x(2)^4*x(3)+x(2)^3*x(3)^2+x(1)*x(2)*x(3)^3+x(1)*x(3)^4-x(3)^5
// look for zeros on the torus by checking all points (with no component 0)
// of the affine n-space over the field with p elements :
ideal mt;
int i(1..n); // initialize integers i(1),...,i(n)
int l;
s=0;
for (i(1)=1;i(1)<p;i(1)=i(1)+1)
@{
for (i(2)=1;i(2)<p;i(2)=i(2)+1)
@{
for (i(3)=1;i(3)<p;i(3)=i(3)+1)
@{
mt=m;
for (l=1;l<=n;l=l+1)
@{
mt=subst(mt,x(l),i(l));
@}
if (size(mt)==0)
@{
"solution:",i(1..n);
s=s+1;
@}
@}
@}
@}
@expansion{} solution: 1 1 2
@expansion{} solution: 1 2 1
@expansion{} solution: 1 2 2
@expansion{} solution: 2 1 1
@expansion{} solution: 2 1 2
@expansion{} solution: 2 2 1
"//",s,"solutions over GF("+string(p)+")";
@expansion{} // 6 solutions over GF(3)
// Now go to the field with p^3 elements:
// As long as there is no map from Z/p to the field with p^3 elements
// implemented, use the following trick: convert the ideal to be mapped
// to the new ring to a string and then execute this string in the
// new ring
string ms="ideal m="+string(m)+";";
ms;
@expansion{} ideal m=x(1)^3*x(2)^2-x(1)*x(2)^4+x(1)^4*x(3)-x(1)^3*x(2)*x(3)+x(1)*x(2)^\
3*x(3)+x(2)^4*x(3)+x(2)^3*x(3)^2+x(1)*x(2)*x(3)^3+x(1)*x(3)^4-x(3)^5;
// define a ring rpk with p^k elements, call the primitive element z. Hence
// 'solution exponent: 0 1 5' means that (z^0,z^1,z^5) is a solution
ring rpk=(p^k,z),(x(1..n)),dp;
rpk;
@expansion{} // # ground field : 9
@expansion{} // primitive element : z
@expansion{} // minpoly : 1*z^2+1*z^1+2*z^0
@expansion{} // number of vars : 3
@expansion{} // block 1 : ordering dp
@expansion{} // : names x(1) x(2) x(3)
@expansion{} // block 2 : ordering C
execute(ms);
s=0;
ideal mt;
for (i(1)=0;i(1)<p^k-1;i(1)=i(1)+1)
@{
for (i(2)=0;i(2)<p^k-1;i(2)=i(2)+1)
@{
for (i(3)=0;i(3)<p^k-1;i(3)=i(3)+1)
@{
mt=m;
for (l=1;l<=n;l=l+1)
@{
mt=subst(mt,x(l),z^i(l));
@}
if (size(mt)==0)
@{
"solution exponent:",i(1..n);
s=s+1;
@}
@}
@}
@}
@expansion{} solution exponent: 0 0 2
@expansion{} solution exponent: 0 0 4
@expansion{} solution exponent: 0 0 6
@expansion{} solution exponent: 0 1 0
@expansion{} solution exponent: 0 3 0
@expansion{} solution exponent: 0 4 0
@expansion{} solution exponent: 0 4 4
@expansion{} solution exponent: 0 4 5
@expansion{} solution exponent: 0 4 7
@expansion{} solution exponent: 1 1 3
@expansion{} solution exponent: 1 1 5
@expansion{} solution exponent: 1 1 7
@expansion{} solution exponent: 1 2 1
@expansion{} solution exponent: 1 4 1
@expansion{} solution exponent: 1 5 0
@expansion{} solution exponent: 1 5 1
@expansion{} solution exponent: 1 5 5
@expansion{} solution exponent: 1 5 6
@expansion{} solution exponent: 2 2 0
@expansion{} solution exponent: 2 2 4
@expansion{} solution exponent: 2 2 6
@expansion{} solution exponent: 2 3 2
@expansion{} solution exponent: 2 5 2
@expansion{} solution exponent: 2 6 1
@expansion{} solution exponent: 2 6 2
@expansion{} solution exponent: 2 6 6
@expansion{} solution exponent: 2 6 7
@expansion{} solution exponent: 3 3 1
@expansion{} solution exponent: 3 3 5
@expansion{} solution exponent: 3 3 7
@expansion{} solution exponent: 3 4 3
@expansion{} solution exponent: 3 6 3
@expansion{} solution exponent: 3 7 0
@expansion{} solution exponent: 3 7 2
@expansion{} solution exponent: 3 7 3
@expansion{} solution exponent: 3 7 7
@expansion{} solution exponent: 4 0 0
@expansion{} solution exponent: 4 0 1
@expansion{} solution exponent: 4 0 3
@expansion{} solution exponent: 4 0 4
@expansion{} solution exponent: 4 4 0
@expansion{} solution exponent: 4 4 2
@expansion{} solution exponent: 4 4 6
@expansion{} solution exponent: 4 5 4
@expansion{} solution exponent: 4 7 4
@expansion{} solution exponent: 5 0 5
@expansion{} solution exponent: 5 1 1
@expansion{} solution exponent: 5 1 2
@expansion{} solution exponent: 5 1 4
@expansion{} solution exponent: 5 1 5
@expansion{} solution exponent: 5 5 1
@expansion{} solution exponent: 5 5 3
@expansion{} solution exponent: 5 5 7
@expansion{} solution exponent: 5 6 5
@expansion{} solution exponent: 6 1 6
@expansion{} solution exponent: 6 2 2
@expansion{} solution exponent: 6 2 3
@expansion{} solution exponent: 6 2 5
@expansion{} solution exponent: 6 2 6
@expansion{} solution exponent: 6 6 0
@expansion{} solution exponent: 6 6 2
@expansion{} solution exponent: 6 6 4
@expansion{} solution exponent: 6 7 6
@expansion{} solution exponent: 7 0 7
@expansion{} solution exponent: 7 2 7
@expansion{} solution exponent: 7 3 3
@expansion{} solution exponent: 7 3 4
@expansion{} solution exponent: 7 3 6
@expansion{} solution exponent: 7 3 7
@expansion{} solution exponent: 7 7 1
@expansion{} solution exponent: 7 7 3
@expansion{} solution exponent: 7 7 5
"//",s,"solutions over GF("+string(p^k)+")";
@expansion{} // 72 solutions over GF(9)
@c end example Finite_fields examples.doc:860
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Elimination, Free resolution, Finite fields, Examples
@end ifset
@ifclear singularmanual
@node Elimination, Free resolution, Deformations, Examples
@end ifclear
@section Elimination
@cindex Elimination
Elimination is the algebraic counterpart of the geometric concept of
projection. If
@tex
$f=(f_1,\ldots,f_n):k^r\rightarrow k^n$
@end tex
@ifinfo
f=(f1,...,fn) : k^r --> k^n
@end ifinfo
is a polynomial map,
the Zariski-closure of the image is the zero-set of the ideal
@tex
$$
\displaylines{
j=J \cap k[x_1,\ldots,x_n], \;\quad\hbox{\rm where}\cr
J=(x_1-f_1(t_1,\ldots,t_r),\ldots,x_n-f_n(t_1,\ldots,t_r))\subseteq
k[t_1,\ldots,t_r,x_1,\ldots,x_n]
}
$$
@end tex
@ifinfo
@smallexample
j = J intersected with K[x1,...,xn]
J=(x1-f1(t1,...,tr),...,xn-fn(t1,...,tr)) in k[t1,...tr,x1,...,xn]
@end smallexample
@end ifinfo
i.e, of the ideal j obtained from J by eliminating the variables
@tex
$t_1,\ldots,t_r$.
@end tex
@ifinfo
t1,...,tr.
@end ifinfo
This can be done by computing a standard basis of J with respect to a product
ordering where the block of t-variables precedes the block of
x-variables and then selecting those polynomials which do not contain
any t. In @sc{Singular} the most convenient way is to use the
@code{eliminate} command.
In contrast to the first method, with @code{eliminate} the result needs not be a
standard basis in the given ordering.
Hence, there may be cases where the first method is the preferred one.
@strong{WARNING:} In the case of a local or a mixed ordering, elimination needs special
care. f may be considered as a map of germs
@tex
$f:(k^r,0)\rightarrow(k^n,0)$,
@end tex
@ifinfo
f : (k^r,0) --> (k^n,0),
@end ifinfo
but even
if this map germ is finite, we are in general not able to compute the image
germ because for this we would need an implementation of the Weierstrass
preparation theorem. What we can compute, and what @code{eliminate} actually does,
is the following: let V(J) be the zero-set of J in
@tex
$k^r\times(k^n,0)$,
@end tex
@ifinfo
k^r x (k^n,0),
@end ifinfo
then the
closure of the image of V(J) under the projection
@tex
$$\hbox{pr}:k^r\times(k^n,0)\rightarrow(k^n,0)$$
can be computed.
@end tex
@ifinfo
@* pr: k^r x (k^n,0) --> (k^n,0)
@*can be computed.
@end ifinfo
Note that this germ contains also those components
of V(J) which meet the fiber of pr outside the origin.
This is achieved by an ordering with the block of t-variables having a
global ordering (and preceding the x-variables) and the x-variables having
a local ordering. In a local situation we propose @code{eliminate} with
ordering ls.
In any case, if the input is weighted homogeneous (=quasihomogeneous),
the weights given to the variables should be chosen accordingly.
@sc{Singular} offers a function @code{weight} which proposes,
given an ideal or module, integer weights for the variables, such that
the ideal, resp.@: module, is as homogeneous as possible with respect to these weights.
The function finds correct weights, if the input is weighted homogeneous
(but is rather slow for many variables). In order to check, whether the
input is quasihomogeneous, use the function @code{qhweight}, which returns
an intvec of correct weights if the input is quasihomogeneous and an intvec
of zeros otherwise.
Let us give two examples:
@enumerate
@item
First we compute the equations of the simple space curve
@tex
$\hbox{T}[7]^\prime$
@end tex
@ifinfo
T[7]'
@end ifinfo
consisting of two tangential cusps given in parametric form.
@item
We compute weights for the equations such that the
equations are quasihomogeneous w.r.t. these weights.
@item
Then we compute the tangent developable of the rational
normal curve in
@tex
$P^4$.
@end tex
@ifinfo
P^4.
@end ifinfo
@end enumerate
@smallexample
@c computed example Elimination examples.doc:1058
// 1. Compute equations of curve given in parametric form:
// Two transversal cusps in (k^3,0):
ring r1 = 0,(t,x,y,z),ls;
ideal i1 = x-t2,y-t3,z; // parametrization of the first branch
ideal i2 = y-t2,z-t3,x; // parametrization of the second branch
ideal j1 = eliminate(i1,t);
j1; // equations of the first branch
@expansion{} j1[1]=z
@expansion{} j1[2]=y2-x3
ideal j2 = eliminate(i2,t);
j2; // equations of the second branch
@expansion{} j2[1]=x
@expansion{} j2[2]=z2-y3
// Now map to a ring with only x,y,z as variables and compute the
// intersection of j1 and j2 there:
ring r2 = 0,(x,y,z),ds;
ideal j1= imap(r1,j1); // imap is a convenient ringmap for
ideal j2= imap(r1,j2); // inclusions and projections of rings
ideal i = intersect(j1,j2);
i; // equations of both branches
@expansion{} i[1]=z2-y3+x3y
@expansion{} i[2]=xz
@expansion{} i[3]=xy2-x4
@expansion{} i[4]=x3z
//
// 2. Compute the weights:
intvec v= qhweight(i); // compute weights
v;
@expansion{} 4,6,9
//
// 3. Compute the tangent developable
// The tangent developable of a projective variety given parametrically
// by F=(f1,...,fn) : P^r --> P^n is the union of all tangent spaces
// of the image. The tangent space at a smooth point F(t1,...,tr)
// is given as the image of the tangent space at (t1,...,tr) under
// the tangent map (affine coordinates)
// T(t1,...,tr): (y1,...,yr) --> jacob(f)*transpose((y1,...,yr))
// where jacob(f) denotes the jacobian matrix of f with respect to the
// t's evaluated at the point (t1,...,tr).
// Hence we have to create the graph of this map and then to eliminate
// the t's and y's.
// The rational normal curve in P^4 is given as the image of
// F(s,t) = (s4,s3t,s2t2,st3,t4)
// each component being homogeneous of degree 4.
ring P = 0,(s,t,x,y,a,b,c,d,e),dp;
ideal M = maxideal(1);
ideal F = M[1..2]; // take the 1st two generators of M
F=F^4;
// simplify(...,2); deletes 0-columns
matrix jac = simplify(jacob(F),2);
ideal T = x,y;
ideal J = jac*transpose(T);
ideal H = M[5..9];
ideal i = H-J; // this is tricky: difference between two
// ideals is not defined, but between two
// matrices. By automatic type conversion
// the ideals are converted to matrices,
// subtracted and afterwards converted
// to an ideal. Note that '+' is defined
// and adds (concatenates) two ideals
i;
@expansion{} i[1]=-4s3x+a
@expansion{} i[2]=-3s2tx-s3y+b
@expansion{} i[3]=-2st2x-2s2ty+c
@expansion{} i[4]=-t3x-3st2y+d
@expansion{} i[5]=-4t3y+e
// Now we define a ring with product ordering and weights 4
// for the variables a,...,e.
// Then we map i from P to P1 and eliminate s,t,x,y from i.
ring P1 = 0,(s,t,x,y,a,b,c,d,e),(dp(4),wp(4,4,4,4,4));
ideal i = fetch(P,i);
ideal j= eliminate(i,stxy); // equations of tangent developable
j;
@expansion{} j[1]=3c2-4bd+ae
@expansion{} j[2]=2bcd-3ad2-3b2e+4ace
@expansion{} j[3]=8b2d2-9acd2-9b2ce+12ac2e-2abde
// We can use the product ordering to eliminate s,t,x,y from i
// by a std-basis computation.
// We need proc 'nselect' from elim.lib.
LIB "elim.lib";
j = std(i); // compute a std basis j
j = nselect(j,1,4); // select generators from j not
j; // containing variable 1,...,4
@expansion{} j[1]=3c2-4bd+ae
@expansion{} j[2]=2bcd-3ad2-3b2e+4ace
@expansion{} j[3]=8b2d2-9acd2-9b2ce+12ac2e-2abde
@c end example Elimination examples.doc:1058
@end smallexample
@c killall();
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Free resolution, Computation of Ext, Elimination, Examples
@end ifset
@ifclear singularmanual
@node Free resolution, Formatting output, Elimination, Examples
@end ifclear
@section Free resolution
@cindex Free resolution
In @sc{Singular} a free resolution of a module or ideal has its own type:
@code{resolution}. It is a structure that stores all information related to
free resolutions. This allows partial computations of resolutions via
the command @code{res}. After applying @code{res}, only a pre-format of the
resolution is computed which allows to determine invariants like
Betti-numbers or homological dimension. To see the differentials
of the complex, a resolution must be converted into the type list which
yields a list of modules: the k-th module in this
list is the first syzygy-module (module of relations) of the (k-1)st module.
There are the following commands to compute a resolution:
@table @code
@item res
@ifset singularmanual
@ref{res}@*
@end ifset
computes a free resolution of an ideal or module using a heuristically
chosen method.
This is the preferred method to compute free resolutions of ideals or
modules.
@item lres
@ifset singularmanual
@ref{lres}@*
@end ifset
computes a free resolution of an ideal or module with La Scala's
method. The input needs to be homogeneous.
@item mres
@ifset singularmanual
@ref{mres}@*
@end ifset
computes a minimal free resolution of an ideal or module with the syzygy
method.
@item sres
@ifset singularmanual
@ref{sres}@*
@end ifset
computes a free resolution of an ideal or module with Schreyer's
method. The input has to be a standard basis.
@item nres
@ifset singularmanual
@ref{nres}@*
@end ifset
computes a free resolution of an ideal or module with the standard basis
method.
@item minres
@ifset singularmanual
@ref{minres}@*
@end ifset
minimizes a free resolution of an ideal or module.
@item syz
@ifset singularmanual
@ref{syz}@*
@end ifset
computes the first syzygy module.
@end table
@code{res(i,r)}, @code{lres(i,r)}, @code{sres(i,r)}, @code{mres(i,r)},
@code{nres(i,r)} compute the first r modules of the resolution
of i, resp.@: the full resolution if r=0 and the basering is not a qring.
See the manual for a precise description of these commands.
@*Note: The command @code{betti} does not require a minimal
resolution for the minimal betti numbers.
Now let's look at an example which uses resolutions: The Hilbert-Burch
theorem says that the ideal i of a reduced curve in
@tex
$K^3$
@end tex
@ifinfo
K^3
@end ifinfo
has a free resolution of length 2 and that i is given by the 2x2 minors
of the 2nd matrix in the resolution.
We test this for two transversal cusps in
@tex
$K^3$.
@end tex
@ifinfo
K^3.
@end ifinfo
Afterwards we compute the resolution of the ideal j of the tangent developable
of the rational normal curve in
@tex
$P^4$
@end tex
@ifinfo
P^4
@end ifinfo
from above.
Finally we demonstrate the use of the type @code{resolution} in connection with
the @code{lres} command.
@smallexample
@c computed example Free_resolution examples.doc:1231
// Two transversal cusps in (k^3,0):
ring r2 =0,(x,y,z),ds;
ideal i =z2-1y3+x3y,xz,-1xy2+x4,x3z;
resolution rs=mres(i,0); // computes a minimal resolution
rs; // the standard representation of complexes
@expansion{} 1 3 2
@expansion{} r2 <-- r2 <-- r2
@expansion{}
@expansion{} 0 1 2
@expansion{}
list resi=rs; // convertion to a list
print(resi[1]); // the 1st module is i minimized
@expansion{} xz,
@expansion{} z2-y3+x3y,
@expansion{} xy2-x4
print(resi[2]); // the 1st syzygy module of i
@expansion{} -z,-y2+x3,
@expansion{} x, 0,
@expansion{} y, z
resi[3]; // the 2nd syzygy module of i
@expansion{} _[1]=0
ideal j=minor(resi[2],2);
reduce(j,std(i)); // check whether j is contained in i
@expansion{} _[1]=0
@expansion{} _[2]=0
@expansion{} _[3]=0
size(reduce(i,std(j))); // check whether i is contained in j
@expansion{} 0
// size(<ideal>) counts the non-zero generators
// ---------------------------------------------
// The tangent developable of the rational normal curve in P^4:
ring P = 0,(a,b,c,d,e),dp;
ideal j= 3c2-4bd+ae, -2bcd+3ad2+3b2e-4ace,
8b2d2-9acd2-9b2ce+9ac2e+2abde-1a2e2;
resolution rs=mres(j,0);
rs;
@expansion{} 1 2 1
@expansion{} P <-- P <-- P
@expansion{}
@expansion{} 0 1 2
@expansion{}
list L=rs;
print(L[2]);
@expansion{} 2bcd-3ad2-3b2e+4ace,
@expansion{} -3c2+4bd-ae
// create an intmat with graded betti numbers
intmat B=betti(rs);
// this gives a nice output of betti numbers
print(B,"betti");
@expansion{} 0 1 2
@expansion{} ------------------------
@expansion{} 0: 1 - -
@expansion{} 1: - 1 -
@expansion{} 2: - 1 -
@expansion{} 3: - - 1
@expansion{} ------------------------
@expansion{} total: 1 2 1
// the user has access to all betti numbers
// the 2-nd column of B:
B[1..4,2];
@expansion{} 0 1 1 0
ring cyc5=32003,(a,b,c,d,e,h),dp;
ideal i=
a+b+c+d+e,
ab+bc+cd+de+ea,
abc+bcd+cde+dea+eab,
abcd+bcde+cdea+deab+eabc,
h5-abcde;
resolution rs=lres(i,0); //computes the resolution according La Scala
rs; //the shape of the minimal resolution
@expansion{} 1 5 10 10 5 1
@expansion{} cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5
@expansion{}
@expansion{} 0 1 2 3 4 5
@expansion{} resolution not minimized yet
@expansion{}
print(betti(rs),"betti"); //shows the Betti-numbers of cyclic 5
@expansion{} 0 1 2 3 4 5
@expansion{} ------------------------------------------
@expansion{} 0: 1 1 - - - -
@expansion{} 1: - 1 1 - - -
@expansion{} 2: - 1 1 - - -
@expansion{} 3: - 1 2 1 - -
@expansion{} 4: - 1 2 1 - -
@expansion{} 5: - - 2 2 - -
@expansion{} 6: - - 1 2 1 -
@expansion{} 7: - - 1 2 1 -
@expansion{} 8: - - - 1 1 -
@expansion{} 9: - - - 1 1 -
@expansion{} 10: - - - - 1 1
@expansion{} ------------------------------------------
@expansion{} total: 1 5 10 10 5 1
dim(rs); //the homological dimension
@expansion{} 4
size(list(rs)); //gets the full (non-reduced) resolution
@expansion{} 6
minres(rs); //minimizes the resolution
@expansion{} 1 5 10 10 5 1
@expansion{} cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5
@expansion{}
@expansion{} 0 1 2 3 4 5
@expansion{}
size(list(rs)); //gets the minimized resolution
@expansion{} 6
@c end example Free_resolution examples.doc:1231
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Computation of Ext, Polar curves, Free resolution, Examples
@section Computation of Ext
@cindex Ext
We start by showing how to calculate the
@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
-th Ext group of an
ideal. The ingredients to do this are by the definition of Ext the
following: calculate a (minimal) resolution at least up to length
@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
, apply the Hom-functor, and calculate the
@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
-th homology
group, that is form the quotient
@tex
$\hbox{\rm ker} / \hbox{\rm Im}$
@end tex
@ifinfo
ker/Im
@end ifinfo
in the resolution sequence.
The Hom functor is given simply by transposing (hence dualizing) the
module or the corresponding matrix with the command @code{transpose}.
The image of the
@ifinfo
@math{(n-1)}
@end ifinfo
@tex
$(n-1)$
@end tex
-st map is generated by the columns of the
corresponding matrix. To calculate the kernel apply the command
@code{syz} at the
@ifinfo
@math{(n-1)}
@end ifinfo
@tex
$(n-1)$
@end tex
-st transposed entry of the resolution.
Finally, the quotient is obtained by the command @code{modulo}, which
gives for two modules A = ker, B = Im the module of relations of
@tex
$A/(A \cap B)$
@end tex
@ifinfo
A/(A intersect B)
@end ifinfo
in the usual way. As we have a chain complex this is obviously the same
as ker/Im.
We collect these statements in the following short procedure:
@smallexample
proc ext(int n, ideal I)
@{
resolution rs = mres(I,n+1);
module tAn = transpose(rs[n+1]);
module tAn_1 = transpose(rs[n]);
module ext_n = modulo(syz(tAn),tAn_1);
return(ext_n);
@}
@end smallexample
Now consider the following example:
@smallexample
ring r5 = 32003,(a,b,c,d,e),dp;
ideal I = a2b2+ab2c+b2cd, a2c2+ac2d+c2de,a2d2+ad2e+bd2e,a2e2+abe2+bce2;
print(ext(2,I));
@expansion{} 1,0,0,0,0,0,0,
@expansion{} 0,1,0,0,0,0,0,
@expansion{} 0,0,1,0,0,0,0,
@expansion{} 0,0,0,1,0,0,0,
@expansion{} 0,0,0,0,1,0,0,
@expansion{} 0,0,0,0,0,1,0,
@expansion{} 0,0,0,0,0,0,1
ext(3,I); // too big to be displayed here
@end smallexample
The library @code{homolog.lib} contains several procedures for computing
Ext-modules and related modules, which are much more general and
sophisticated then the above one. They are used in the following
example.
If
@ifinfo
@math{M}
@end ifinfo
@tex
$M$
@end tex
is a module, then
@tex
$\hbox{Ext}^1(M,M)$, resp.\ $\hbox{Ext}^2(M,M)$,
@end tex
@ifinfo
Ext^1(M,M), resp.@: Ext^2(M,M),
@end ifinfo
are the modules of infinitesimal deformations, resp.@: of obstructions, of
@ifinfo
@math{M}
@end ifinfo
@tex
$M$
@end tex
(like T1 and T2 for a singularity). Similar to the treatment
for singularities, the semiuniversal deformation of
@ifinfo
@math{M}
@end ifinfo
@tex
$M$
@end tex
can be
computed (if
@tex
$\hbox{Ext}^1$
@end tex
@ifinfo
Ext^1
@end ifinfo
is finite dimensional) with the help of
@tex
$\hbox{Ext}^1$, $\hbox{Ext}^2$
@end tex
@ifinfo
Ext^1, Ext^2
@end ifinfo
and the cup product. There is an extra procedure for
@tex
$\hbox{Ext}^k(R/J,R)$
@end tex
@ifinfo
Ext^k(R/J,R)
@end ifinfo
if
@ifinfo
@math{J}
@end ifinfo
@tex
$J$
@end tex
is an ideal in
@ifinfo
@math{R}
@end ifinfo
@tex
$R$
@end tex
since this is faster than the
general Ext.
We compute
@itemize @bullet
@item
the infinitesimal deformations
@tex
($=\hbox{Ext}^1(K,K)$)
@end tex
@ifinfo
(=Ext^1(K,K))
@end ifinfo
and obstructions
@tex
($=\hbox{Ext}^2(K,K)$)
@end tex
@ifinfo
(=Ext^2(K,K))
@end ifinfo
of the residue field
@ifinfo
@math{K=R/m}
@end ifinfo
@tex
$K=R/m$
@end tex
of an ordinary cusp,
@tex
$R=Loc_m K[x,y]/(x^2-y^3)$, $m=(x,y)$.
@end tex
@ifinfo
R=Loc_m K[x,y]/(x^2-y^3), m=(x,y).
@end ifinfo
To compute
@tex
$\hbox{Ext}^1(m,m)$
@end tex
@ifinfo
Ext^1(m,m),
@end ifinfo
we have to apply @code{Ext(1,syz(m),syz(m))} with
@code{syz(m)} the first syzygy module of
@ifinfo
@math{m}
@end ifinfo
@tex
$m$
@end tex
, which is isomorphic to
@tex
$\hbox{Ext}^2(K,K)$.
@end tex
@ifinfo
Ext^2(K,K).
@end ifinfo
@item
@tex
$\hbox{Ext}^k(R/i,R)$
@end tex
@ifinfo
Ext^k(R/i,R)
@end ifinfo
for some ideal
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
and with an extra option.
@end itemize
@smallexample
@c computed example Computation_of_Ext examples.doc:1432
LIB "homolog.lib";
ring R=0,(x,y),ds;
ideal i=x2-y3;
qring q = std(i); // defines the quotient ring Loc_m k[x,y]/(x2-y3)
ideal m = maxideal(1);
module T1K = Ext(1,m,m); // computes Ext^1(R/m,R/m)
@expansion{} // dimension of Ext^1: 0
@expansion{} // vdim of Ext^1: 2
@expansion{}
print(T1K);
@expansion{} 0, 0,y,x,0,y,0, x2-y3,
@expansion{} -y2,x,x,0,y,0,x2-y3,0,
@expansion{} 1, 0,0,0,0,0,0, 0
printlevel=2; // gives more explanation
module T2K=Ext(2,m,m); // computes Ext^2(R/m,R/m)
@expansion{} // Computing Ext^2 (help Ext; gives an explanation):
@expansion{} // Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),
@expansion{} // and 0<--coker(N)<--G0<--G1 a presentation of coker(N),
@expansion{} // then Hom(F2,G0)-->Hom(F3,G0) is given by:
@expansion{} y2,x,
@expansion{} x, y
@expansion{} // and Hom(F1,G0) + Hom(F2,G1)-->Hom(F2,G0) is given by:
@expansion{} -y,x, x,0,y,0,
@expansion{} x, -y2,0,x,0,y
@expansion{}
@expansion{} // dimension of Ext^2: 0
@expansion{} // vdim of Ext^2: 2
@expansion{}
print(std(T2K));
@expansion{} -y2,0,x,0,y,
@expansion{} 0, x,0,y,0,
@expansion{} 1, 0,0,0,0
printlevel=0;
module E = Ext(1,syz(m),syz(m));
@expansion{} // dimension of Ext^1: 0
@expansion{} // vdim of Ext^1: 2
@expansion{}
print(std(E));
@expansion{} -y,x, 0, 0,0,x,0,y,
@expansion{} 0, -y,-y,0,x,0,y,0,
@expansion{} 0, 0, 0, 1,0,0,0,0,
@expansion{} 0, 0, 1, 0,0,0,0,0,
@expansion{} 0, 1, 0, 0,0,0,0,0,
@expansion{} 1, 0, 0, 0,0,0,0,0
//The matrices which we have just computed are presentation matrices
//of the modules T2K and E. Hence we may ignore those columns
//containing 1 as an entry and see that T2K and E are isomorphic
//as expected, but differently presented.
//-------------------------------------------
ring S=0,(x,y,z),dp;
ideal i = x2y,y2z,z3x;
module E = Ext_R(2,i);
@expansion{} // dimension of Ext^2: 1
@expansion{}
print(E);
@expansion{} 0,y,0,z2,
@expansion{} z,0,0,-x,
@expansion{} 0,0,x,-y
// if a 3-rd argument is given (of any type)
// a list of Ext^k(R/i,R), a SB of Ext^k(R/i,R) and a vector space basis
// is returned:
list LE = Ext_R(3,i,"");
@expansion{} // dimension of Ext^3: 0
@expansion{} // vdim of Ext^3: 2
@expansion{}
LE;
@expansion{} [1]:
@expansion{} _[1]=y*gen(1)
@expansion{} _[2]=x*gen(1)
@expansion{} _[3]=z2*gen(1)
@expansion{} [2]:
@expansion{} _[1]=y*gen(1)
@expansion{} _[2]=x*gen(1)
@expansion{} _[3]=z2*gen(1)
@expansion{} [3]:
@expansion{} _[1,1]=z
@expansion{} _[1,2]=1
print(LE[2]);
@expansion{} y,x,z2
print(kbase(LE[2]));
@expansion{} z,1
@c end example Computation_of_Ext examples.doc:1432
@end smallexample
@c killall();
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Polar curves, Depth, Computation of Ext, Examples
@section Polar curves
@cindex Polar curves
The polar curve of a hypersurface given by a polynomial
@tex
$f\in k[x_1,\ldots,x_n,t]$
@end tex
@ifinfo
f in k[x1,...,xn,t]
@end ifinfo
with respect to
@ifinfo
@math{t}
@end ifinfo
@tex
$t$
@end tex
(we may consider
@ifinfo
@math{f=0}
@end ifinfo
@tex
$f=0$
@end tex
as a family of
hypersurfaces parametrized by
@ifinfo
@math{t}
@end ifinfo
@tex
$t$
@end tex
) is defined as the Zariski
closure of
@tex
$V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n) \setminus V(f)$
@end tex
@ifinfo
V(diff(f,x1),...,diff(f,xn)) \ V(f)
@end ifinfo
if this happens to be a curve. Some authors consider
@tex
$V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n)$
@end tex
@ifinfo
V(diff(f,x1),...,diff(f,xn))
@end ifinfo
itself as polar curve.
We may consider projective hypersurfaces
@tex
(in $P^n$),
@end tex
@ifinfo
(in P^n),
@end ifinfo
affine hypersurfaces
@tex
(in $k^n$)
@end tex
@ifinfo
(in k^n)
@end ifinfo
or germs of hypersurfaces
@tex
(in $(k^n,0)$),
@end tex
@ifinfo
(in (k^n,0)),
@end ifinfo
getting in this way
projective, affine or local polar curves.
Now let us compute this for a family of curves. We need the library
@code{elim.lib} for saturation and @code{sing.lib} for the singular
locus.
@smallexample
@c computed example Polar_curves examples.doc:1526
LIB "elim.lib";
LIB "sing.lib";
// Affine polar curve:
ring R = 0,(x,z,t),dp; // global ordering dp
poly f = z5+xz3+x2-tz6;
dim_slocus(f); // dimension of singular locus
@expansion{} 1
ideal j = diff(f,x),diff(f,z);
dim(std(j)); // dim V(j)
@expansion{} 1
dim(std(j+ideal(f))); // V(j,f) also 1-dimensional
@expansion{} 1
// j defines a curve, but to get the polar curve we must remove the
// branches contained in f=0 (they exist since dim V(j,f) = 1). This
// gives the polar curve set theoretically. But for the structure we
// may take either j:f or j:f^k for k sufficiently large. The first is
// just the ideal quotient, the second the iterated ideal quotient
// or saturation. In our case both coincide.
ideal q = quotient(j,ideal(f)); // ideal quotient
ideal qsat = sat(j,f)[1]; // saturation, proc from elim.lib
ideal sq = std(q);
dim(sq);
@expansion{} 1
// 1-dimensional, hence q defines the affine polar curve
//
// to check that q and qsat are the same, we show both inclusions, i.e.,
// both reductions must give the 0-ideal
size(reduce(qsat,sq));
@expansion{} 0
size(reduce(q,std(qsat)));
@expansion{} 0
qsat;
@expansion{} qsat[1]=12zt+3z-10
@expansion{} qsat[2]=5z2+12xt+3x
@expansion{} qsat[3]=144xt2+72xt+9x+50z
// We see that the affine polar curve does not pass through the origin,
// hence we expect the local polar "curve" to be empty
// ------------------------------------------------
// Local polar curve:
ring r = 0,(x,z,t),ds; // local ordering ds
poly f = z5+xz3+x2-tz6;
ideal j = diff(f,x),diff(f,z);
dim(std(j)); // V(j) 1-dimensional
@expansion{} 1
dim(std(j+ideal(f))); // V(j,f) also 1-dimensional
@expansion{} 1
ideal q = quotient(j,ideal(f)); // ideal quotient
q;
@expansion{} q[1]=1
// The local polar "curve" is empty, i.e., V(j) is contained in V(f)
// ------------------------------------------------
// Projective polar curve: (we need "sing.lib" and "elim.lib")
ring P = 0,(x,z,t,y),dp; // global ordering dp
poly f = z5y+xz3y2+x2y4-tz6;
// but consider t as parameter
dim_slocus(f); // projective 1-dimensional singular locus
@expansion{} 2
ideal j = diff(f,x),diff(f,z);
dim(std(j)); // V(j), projective 1-dimensional
@expansion{} 2
dim(std(j+ideal(f))); // V(j,f) also projective 1-dimensional
@expansion{} 2
ideal q = quotient(j,ideal(f));
ideal qsat = sat(j,f)[1]; // saturation, proc from elim.lib
dim(std(qsat));
@expansion{} 2
// projective 1-dimensional, hence q and/or qsat define the projective
// polar curve. In this case, q and qsat are not the same, we needed
// 2 quotients.
// Let us check both reductions:
size(reduce(qsat,std(q)));
@expansion{} 4
size(reduce(q,std(qsat)));
@expansion{} 0
// Hence q is contained in qsat but not conversely
q;
@expansion{} q[1]=12zty+3zy-10y2
@expansion{} q[2]=60z2t-36xty-9xy-50zy
qsat;
@expansion{} qsat[1]=12zt+3z-10y
@expansion{} qsat[2]=12xty+5z2+3xy
@expansion{} qsat[3]=144xt2+72xt+9x+50z
@expansion{} qsat[4]=z3+2xy2
//
// Now consider again the affine polar curve,
// homogenize it with respect to y (deg t=0) and compare:
// affine polar curve:
ideal qa = 12zt+3z-10,5z2+12xt+3x,-144xt2-72xt-9x-50z;
// homogenized:
ideal qh = 12zt+3z-10y,5z2+12xyt+3xy,-144xt2-72xt-9x-50z;
size(reduce(qh,std(qsat)));
@expansion{} 0
size(reduce(qsat,std(qh)));
@expansion{} 0
// both ideals coincide
@c end example Polar_curves examples.doc:1526
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Depth, Formatting output, Polar curves, Examples
@section Depth
@cindex Depth
We compute the depth of the module of Kaehler differentials
@tex
D$_k$(R)
@end tex
@ifinfo
D_k(R)
@end ifinfo
of the variety defined by the
@ifinfo
@math{(m+1)}
@end ifinfo
@tex
$(m+1)$
@end tex
-minors of a generic symmetric
@tex
$(n \times n)$-matrix.
@end tex
@ifinfo
(n x n)-matrix.
@end ifinfo
We do this by computing the resolution over the polynomial
ring. Then, by the Auslander-Buchsbaum formula, the depth is equal to
the number of variables minus the length of a minimal resolution. This
example was suggested by U.@: Vetter in order to check whether his bound
@tex
$\hbox{depth}(\hbox{D}_k(R))\geq m(m+1)/2 + m-1$
@end tex
@ifinfo
depth(D_k(R)) >= m(m+1)/2 + m-1
@end ifinfo
could be improved.
@smallexample
@c computed example Depth examples.doc:1632
LIB "matrix.lib"; LIB "sing.lib";
int n = 4;
int m = 3;
int N = n*(n+1)/2; // will become number of variables
ring R = 32003,x(1..N),dp;
matrix X = symmat(n); // proc from matrix.lib
// creates the symmetric generic nxn matrix
print(X);
@expansion{} x(1),x(2),x(3),x(4),
@expansion{} x(2),x(5),x(6),x(7),
@expansion{} x(3),x(6),x(8),x(9),
@expansion{} x(4),x(7),x(9),x(10)
ideal J = minor(X,m);
J=std(J);
// Kaehler differentials D_k(R)
// of R=k[x1..xn]/J:
module D = J*freemodule(N)+transpose(jacob(J));
ncols(D);
@expansion{} 110
nrows(D);
@expansion{} 10
//
// Note: D is a submodule with 110 generators of a free module
// of rank 10 over a polynomial ring in 10 variables.
// Compute a full resolution of D with sres.
// This takes about 17 sec on a Mac PB 520c and 2 sec an a HP 735
int time = timer;
module sD = std(D);
list Dres = sres(sD,0); // the full resolution
timer-time; // time used for std + sres
@expansion{} 0
intmat B = betti(Dres);
print(B,"betti");
@expansion{} 0 1 2 3 4 5 6
@expansion{} ------------------------------------------------
@expansion{} 0: 10 - - - - - -
@expansion{} 1: - 10 - - - - -
@expansion{} 2: - 84 144 60 - - -
@expansion{} 3: - - 35 80 60 16 1
@expansion{} ------------------------------------------------
@expansion{} total: 10 94 179 140 60 16 1
N-ncols(B)+1; // the desired depth
@expansion{} 4
@c end example Depth examples.doc:1632
@end smallexample
@c killall();
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Formatting output, Cyclic roots, Depth, Examples
@end ifset
@ifclear singularmanual
@node Formatting output, Factorization, Free resolution, Examples
@end ifclear
@section Formatting output
@cindex Formatting output
We show how to insert the result of a computation inside a text
by using strings.
First we compute the powers of 2 and comment the result with some text.
Then we do the same and give the output a nice format by computing and
adding appropriate space.
@smallexample
@c computed example Formatting_output examples.doc:1682
// The powers of 2:
int n;
for (n = 2; n <= 128; n = n * 2)
@{"n = " + string (n);@}
@expansion{} n = 2
@expansion{} n = 4
@expansion{} n = 8
@expansion{} n = 16
@expansion{} n = 32
@expansion{} n = 64
@expansion{} n = 128
// The powers of 2 in a nice format
int j;
string space = "";
for (n = 2; n <= 128; n = n * 2)
@{
space = "";
for (j = 1; j <= 5 - size (string (n)); j = j+1)
@{ space = space + " "; @}
"n =" + space + string (n);
@}
@expansion{} n = 2
@expansion{} n = 4
@expansion{} n = 8
@expansion{} n = 16
@expansion{} n = 32
@expansion{} n = 64
@expansion{} n = 128
@c end example Formatting_output examples.doc:1682
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Cyclic roots, G_a -Invariants, Formatting output, Examples
@section Cyclic roots
@cindex Cyclic roots
We write a procedure returning a string that enables us to create
automatically the ideal of cyclic roots over the basering with n
variables. The procedure assumes that the variables consist of a single
letter each (hence no indexed variables are allowed; the procedure
@code{cyclic} in @code{poly.lib} does not have this restriction). Then
we compute a standard basis of this ideal and some numerical
information. (This ideal is used as a classical benchmark for standard
basis computations).
@smallexample
// We call the procedure 'cyclic':
proc cyclic (int n)
@{
string vs = varstr(basering)+varstr(basering);
int c=find(vs,",");
while ( c!=0 )
@{
vs=vs[1,c-1]+vs[c+1,size(vs)];
c=find(vs,",");
@}
string t,s;
int i,j;
for ( j=1; j<=n-1; j=j+1 )
@{
t="";
for ( i=1; i <=n; i=i+1 )
@{
t = t + vs[i,j] + "+";
@}
t = t[1,size(t)-1] + ","+newline;
s=s+t;
@}
s=s+vs[1,n]+"-1";
return (s);
@}
ring r=0,(a,b,c,d,e),lp; // basering, char 0, lex ordering
string sc=cyclic(nvars(basering));
sc; // the string of the ideal
@expansion{} a+b+c+d+e,
@expansion{} ab+bc+cd+de+ea,
@expansion{} abc+bcd+cde+dea+eab,
@expansion{} abcd+bcde+cdea+deab+eabc,
@expansion{} abcde-1
execute("ideal i="+sc+";"); // this defines the ideal of cyclic roots
i;
@expansion{} i[1]=a+b+c+d+e
@expansion{} i[2]=ab+bc+cd+ae+de
@expansion{} i[3]=abc+bcd+abe+ade+cde
@expansion{} i[4]=abcd+abce+abde+acde+bcde
@expansion{} i[5]=abcde-1
timer=1;
ideal j=std(i);
@expansion{} //used time: 7.5 sec
size(j); // number of elements in the std basis
@expansion{} 11
degree(j);
@expansion{} // codimension = 5
@expansion{} // dimension = 0
@expansion{} // degree = 70
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node G_a -Invariants, Invariants of a finite group, Cyclic roots, Examples
@section G_a -Invariants
@cindex G_a -Invariants
We work in characteristic 0 and use the Lie algebra generated by one
vector field of the form
@tex
$\sum x_i \partial /\partial x_{i+1}$.
@end tex
@ifinfo
sum x(i)*d/dx(i+1).
@end ifinfo
@smallexample
@c computed example G_a_-Invariants examples.doc:1783
LIB "ainvar.lib";
int n=5;
int i;
ring s=32003,(x(1..n)),wp(1,2,3,4,5);
// definition of the vector field m=sum m[i,1]*d/dx(i)
matrix m[n][1];
for (i=1;i<=n-1;i=i+1)
@{
m[i+1,1]=x(i);
@}
// computation of the ring of invariants
ideal in=invariantRing(m,x(2),x(1),0);
in; //invariant ring is generated by 5 invariants
@expansion{} in[1]=x(1)
@expansion{} in[2]=x(2)^2-2*x(1)*x(3)
@expansion{} in[3]=x(3)^2-2*x(2)*x(4)+2*x(1)*x(5)
@expansion{} in[4]=x(2)^3-3*x(1)*x(2)*x(3)+3*x(1)^2*x(4)
@expansion{} in[5]=x(3)^3-3*x(2)*x(3)*x(4)-15997*x(1)*x(4)^2+3*x(2)^2*x(5)-6*x(1)*x(3)\
*x(5)
ring q=32003,(x,y,z,u,v,w),dp;
matrix m[6][1];
m[2,1]=x;
m[3,1]=y;
m[5,1]=u;
m[6,1]=v;
// the vector field is: xd/dy+yd/dz+ud/dv+vd/dw
ideal in=invariantRing(m,y,x,0);
in; //invariant ring is generated by 6 invariants
@expansion{} in[1]=x
@expansion{} in[2]=u
@expansion{} in[3]=v2-2uw
@expansion{} in[4]=zu-yv+xw
@expansion{} in[5]=yu-xv
@expansion{} in[6]=y2-2xz
@c end example G_a_-Invariants examples.doc:1783
@end smallexample
@c kill n,i,s,q;
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Invariants of a finite group, Factorization, G_a -Invariants, Examples
@section Invariants of a finite group
@cindex Invariants of a finite group
Two algorithms to compute the invariant ring are implemented in
@sc{Singular}, @code{invariant_ring} and @code{invariant_ring_random},
both by Agnes E. Heydtmann (@code{agnes@@math.uni-sb.de}).
Bases of homogeneous invariants are generated successively and those are
chosen as primary invariants that lower the dimension of the ideal
generated by the previously found invariants (see paper "Generating a
Noetherian Normalization of the Invariant Ring of a Finite Group" by
Decker, Heydtmann, Schreyer (1997) to appear in JSC). In the
non-modular case secondary invariants are calculated by finding a basis
(in terms of monomials) of the basering modulo the primary invariants,
mapping to invariants with the Reynolds operator and using those or
their power products such that they are linearly independent modulo the
primary invariants (see paper "Some Algorithms in Invariant Theory of
Finite Groups" by Kemper and Steel (1997)). In the modular case they
are generated according to "Generating Invariant Rings of Finite Groups
over Arbitrary Fields" by Kemper (1996, to appear in JSC).
We calculate now an example from Sturmfels: "Algorithms in Invariant
Theory 2.3.7":
@smallexample
@c computed example Invariants_of_a_finite_group examples.doc:1838
LIB "finvar.lib";
ring R=0,(x,y,z),dp;
matrix A[3][3]=0,1,0,-1,0,0,0,0,-1;
// the group G is generated by A in Gl(3,Q);
print(A);
@expansion{} 0, 1,0,
@expansion{} -1,0,0,
@expansion{} 0, 0,-1
print(A*A*A*A); // the fourth power of A is 1
@expansion{} 1,0,0,
@expansion{} 0,1,0,
@expansion{} 0,0,1
// Use the first method to compute the invariants of G:
matrix B(1..3);
B(1..3)=invariant_ring(A);
// SINGULAR returns 2 matrices, the first containing
// primary invariants and the second secondary
// invariants, i.e., module generators over a Noetherian
// normalization
// the third result are the irreducible secondary invariants
// if the Molien series was available
print(B(1));
@expansion{} z2,x2+y2,x2y2
print(B(2));
@expansion{} 1,xyz,x2z-y2z,x3y-xy3
print(B(3));
@expansion{} xyz,x2z-y2z,x3y-xy3
// Use the second method,
// with random numbers between -1 and 1:
B(1..3)=invariant_ring_random(A,1);
print(B(1..3));
@expansion{} z2,x2+y2,x4+y4-z4
@expansion{} 1,xyz,x2z-y2z,x3y-xy3
@expansion{} xyz,x2z-y2z,x3y-xy3
@c end example Invariants_of_a_finite_group examples.doc:1838
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Factorization, Puiseux pairs, Invariants of a finite group, Examples
@end ifset
@ifclear singularmanual
@node Factorization, Kernel of module homomorphisms, Formatting output, Examples
@end ifclear
@section Factorization
@cindex Factorization
The factorization of polynomials is implemented in the C++ libraries
Factory (written mainly by Ruediger Stobbe) and libfac (written by
Michael Messollen) which are part of the @sc{Singular} system.
@smallexample
@c computed example Factorization examples.doc:1879
ring r = 0,(x,y),dp;
poly f = 9x16-18x13y2-9x12y3+9x10y4-18x11y2+36x8y4
+18x7y5-18x5y6+9x6y4-18x3y6-9x2y7+9y8;
// = 9 * (x5-1y2)^2 * (x6-2x3y2-1x2y3+y4)
factorize(f);
@expansion{} [1]:
@expansion{} _[1]=9
@expansion{} _[2]=x6-2x3y2-x2y3+y4
@expansion{} _[3]=-x5+y2
@expansion{} [2]:
@expansion{} 1,1,2
// returns factors and multiplicities,
// first factor is a constant.
poly g = (y4+x8)*(x2+y2);
factorize(g);
@expansion{} [1]:
@expansion{} _[1]=1
@expansion{} _[2]=x8+y4
@expansion{} _[3]=x2+y2
@expansion{} [2]:
@expansion{} 1,1,1
// The same in characteristic 2:
ring s =2,(x,y),dp;
poly g = (y4+x8)*(x2+y2);
factorize(g);
@expansion{} [1]:
@expansion{} _[1]=1
@expansion{} _[2]=x+y
@expansion{} _[3]=x2+y
@expansion{} [2]:
@expansion{} 1,2,4
@c end example Factorization examples.doc:1879
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Puiseux pairs, Primary decomposition, Factorization, Examples
@section Puiseux pairs
@cindex Puiseux pairs
The Puiseux pairs of an irreducible and reduced curve singularity are
its most important invariants. They can be computed from its
Hamburger-Noether expansion. The library @code{hnoether.lib} written by
Martin Lamm uses the algorithm of Antonio Campillo "Algebroid curves in
positive characteristic" SLN 813, 1980. This algorithm has the
advantage that it needs least possible field extensions and, moreover,
works in any characteristic. This fact can be used to compute the
invariants over a field of finite characteristic, say 32003, which will
then most probably be the same in characteristic 0.
We compute the Hamburger-Noether expansion of a plane curve
singularity given by a polynomial
@ifinfo
@math{f}
@end ifinfo
@tex
$f$
@end tex
in two variables. This is a
matrix which allows to compute the parametrization (up to a given order)
and all numerical invariants like the
@itemize @bullet
@item
characteristic exponents,
@item
Puiseux pairs (of a complex model),
@item
degree of the conductor,
@item
delta invariant,
@item
generators of the semigroup.
@end itemize
Besides this, the library contains procedures to compute the Newton
polygon of
@ifinfo
@math{f}
@end ifinfo
@tex
$f$
@end tex
, the squarefree part of
@ifinfo
@math{f}
@end ifinfo
@tex
$f$
@end tex
and a procedure to
convert one set of invariants to another.
@smallexample
@c computed example Puiseux_pairs examples.doc:1934
LIB "hnoether.lib";
// ======== The irreducible case ========
ring s = 0,(x,y),ds;
poly f = y4-2x3y2-4x5y+x6-x7;
list hn = develop(f);
show(hn[1]); // Hamburger-Noether matrix
@expansion{} // matrix, 3x3
@expansion{} 0,x, 0,
@expansion{} 0,1, x,
@expansion{} 0,1/4,-1/2
displayHNE(hn); // Hamburger-Noether development
@expansion{} HNE[1]=-y+z(0)*z(1)
@expansion{} HNE[2]=-x+z(1)^2+z(1)^2*z(2)
@expansion{} HNE[3]=1/4*z(2)^2-1/2*z(2)^3
setring s;
displayInvariants(hn);
@expansion{} characteristic exponents : 4,6,7
@expansion{} generators of semigroup : 4,6,13
@expansion{} Puiseux pairs : (3,2)(7,2)
@expansion{} degree of the conductor : 16
@expansion{} delta invariant : 8
@expansion{} sequence of multiplicities: 4,2,2,1,1
// invariants(hn); returns the invariants as list
// partial parametrization of f: param takes the first variable
// as infinite except the ring has more than 2 variables. Then
// the 3rd variable is chosen.
param(hn);
@expansion{} // ** Warning: result is exact up to order 5 in x and 7 in y !
@expansion{} _[1]=1/16x4-3/16x5+1/4x7
@expansion{} _[2]=1/64x6-5/64x7+3/32x8+1/16x9-1/8x10
ring extring=0,(x,y,t),ds;
poly f=x3+2xy2+y2;
list hn=develop(f,-1);
param(hn); // partial parametrization of f
@expansion{} // ** Warning: result is exact up to order 2 in x and 3 in y !
@expansion{} _[1]=-t2
@expansion{} _[2]=-t3
list hn1=develop(f,6);
param(hn1); // a better parametrization
@expansion{} // ** Warning: result is exact up to order 6 in x and 7 in y !
@expansion{} _[1]=-t2+2t4-4t6
@expansion{} _[2]=-t3+2t5-4t7
// instead of recomputing you may extend the development:
list hn2=extdevelop(hn,12);
param(hn2); // a still better parametrization
@expansion{} // ** Warning: result is exact up to order 12 in x and 13 in y !
@expansion{} _[1]=-t2+2t4-4t6+8t8-16t10+32t12
@expansion{} _[2]=-t3+2t5-4t7+8t9-16t11+32t13
//
// ======== The reducible case ========
ring r = 0,(x,y),dp;
poly f=x11-2y2x8-y3x7-y2x6+y4x5+2y4x3+y5x2-y6;
// = (x5-1y2) * (x6-2x3y2-1x2y3+y4)
list hn=reddevelop(f);
show(hn[1][1]); // Hamburger-Noether matrix of 1st branch
@expansion{} // matrix, 3x3
@expansion{} 0,x,0,
@expansion{} 0,1,x,
@expansion{} 0,1,-1
displayInvariants(hn);
@expansion{} --- invariants of branch number 1 : ---
@expansion{} characteristic exponents : 4,6,7
@expansion{} generators of semigroup : 4,6,13
@expansion{} Puiseux pairs : (3,2)(7,2)
@expansion{} degree of the conductor : 16
@expansion{} delta invariant : 8
@expansion{} sequence of multiplicities: 4,2,2,1,1
@expansion{}
@expansion{} --- invariants of branch number 2 : ---
@expansion{} characteristic exponents : 2,5
@expansion{} generators of semigroup : 2,5
@expansion{} Puiseux pairs : (5,2)
@expansion{} degree of the conductor : 4
@expansion{} delta invariant : 2
@expansion{} sequence of multiplicities: 2,2,1,1
@expansion{}
@expansion{} -------------- contact numbers : --------------
@expansion{}
@expansion{} branch | 2
@expansion{} -------+-----
@expansion{} 1 | 2
@expansion{}
@expansion{} -------------- intersection multiplicities : --------------
@expansion{}
@expansion{} branch | 2
@expansion{} -------+-----
@expansion{} 1 | 12
@expansion{}
@expansion{} -------------- delta invariant of the curve : 22
param(hn[2]); // parametrization of 2nd branch
@expansion{} _[1]=x2
@expansion{} _[2]=x5
@c end example Puiseux_pairs examples.doc:1934
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Primary decomposition, Normalization, Puiseux pairs, Examples
@section Primary decomposition
@cindex Primary decomposition
There are two algorithms implemented in @sc{Singular} which provide
primary decomposition: @code{primdecGTZ}, based on
Gianni/Trager/Zacharias (written by Gerhard Pfister) and
@code{primdecSY}, based on Shimoyama/Yokoyama (written by Wolfram Decker
and Hans Schoenemann).
The result of @code{primdecGTZ} and @code{primdecSY} is returned as
a list of pairs of ideals,
where the second ideal form the prime ideal and the first
ideal form the corresponding primary ideal.
@smallexample
@c computed example Primary_decomposition examples.doc:1988
LIB "primdec.lib";
ring r = 0,(a,b,c,d,e,f),dp;
ideal i= f3, ef2, e2f, bcf-adf, de+cf, be+af, e3;
primdecGTZ(i);
@expansion{} [1]:
@expansion{} [1]:
@expansion{} _[1]=f
@expansion{} _[2]=e
@expansion{} [2]:
@expansion{} _[1]=f
@expansion{} _[2]=e
@expansion{} [2]:
@expansion{} [1]:
@expansion{} _[1]=f3
@expansion{} _[2]=ef2
@expansion{} _[3]=e2f
@expansion{} _[4]=e3
@expansion{} _[5]=de+cf
@expansion{} _[6]=be+af
@expansion{} _[7]=-bc+ad
@expansion{} [2]:
@expansion{} _[1]=f
@expansion{} _[2]=e
@expansion{} _[3]=-bc+ad
// We consider now the ideal J of the base space of the
// miniversal deformation of the cone over the rational
// normal curve computed in section *8* and compute
// its primary decomposition.
ring R = 0,(A,B,C,D),dp;
ideal J = CD, BD+D2, AD;
primdecGTZ(J);
@expansion{} [1]:
@expansion{} [1]:
@expansion{} _[1]=D
@expansion{} [2]:
@expansion{} _[1]=D
@expansion{} [2]:
@expansion{} [1]:
@expansion{} _[1]=C
@expansion{} _[2]=B+D
@expansion{} _[3]=A
@expansion{} [2]:
@expansion{} _[1]=C
@expansion{} _[2]=B+D
@expansion{} _[3]=A
// We see that there are two components which are both
// prime, even linear subspaces, one 3-dimensional,
// the other 1-dimensional.
// (This is Pinkhams example and was the first known
// surface singularity with two components of
// different dimensions)
//
// Let us now produce an embedded component in the last
// example, compute the minimal associated primes and
// the radical. We use the Characteristic set methods
// from prim_dec.lib.
J = intersect(J,maxideal(3));
// The following shows that the maximal ideal defines an embedded
// (prime) component.
primdecSY(J);
@expansion{} [1]:
@expansion{} [1]:
@expansion{} _[1]=D
@expansion{} [2]:
@expansion{} _[1]=D
@expansion{} [2]:
@expansion{} [1]:
@expansion{} _[1]=C
@expansion{} _[2]=B+D
@expansion{} _[3]=A
@expansion{} [2]:
@expansion{} _[1]=C
@expansion{} _[2]=B+D
@expansion{} _[3]=A
@expansion{} [3]:
@expansion{} [1]:
@expansion{} _[1]=D2
@expansion{} _[2]=C2
@expansion{} _[3]=B2
@expansion{} _[4]=AB
@expansion{} _[5]=A2
@expansion{} _[6]=BCD
@expansion{} _[7]=ACD
@expansion{} [2]:
@expansion{} _[1]=D
@expansion{} _[2]=C
@expansion{} _[3]=B
@expansion{} _[4]=A
minAssChar(J);
@expansion{} [1]:
@expansion{} _[1]=C
@expansion{} _[2]=B+D
@expansion{} _[3]=A
@expansion{} [2]:
@expansion{} _[1]=D
radical(J);
@expansion{} _[1]=CD
@expansion{} _[2]=BD+D2
@expansion{} _[3]=AD
@c end example Primary_decomposition examples.doc:1988
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Normalization, Branches of an Isolated Space Curve Singularity, Primary decomposition, Examples
@section Normalization
@cindex Normalization
The normalization will be computed for a reduced ring
@ifinfo
@math{R/I}
@end ifinfo
@tex
$R/I$
@end tex
. The
result is a list of rings; ideals are always called @code{norid} in the
rings of this list. The normalization of
@ifinfo
@math{R/I}
@end ifinfo
@tex
$R/I$
@end tex
is the product of
the factor rings of the rings in the list divided out by the ideals
@code{norid}.
@smallexample
@c computed example Normalization examples.doc:2032
LIB "normal.lib";
// ----- first example: rational quadruple point -----
ring R=32003,(x,y,z),wp(3,5,15);
ideal I=z*(y3-x5)+x10;
list pr=normal(I);
@expansion{}
@expansion{} // 'normal' created a list of 1 ring(s).
@expansion{} // nor[1+1] is the delta-invariant in case of choose=wd.
@expansion{} // To see the rings, type (if the name of your list is nor):
@expansion{} show( nor);
@expansion{} // To access the 1-st ring and map (similar for the others), type:
@expansion{} def R = nor[1]; setring R; norid; normap;
@expansion{} // R/norid is the 1-st ring of the normalization and
@expansion{} // normap the map from the original basering to R/norid
def S=pr[1];
setring S;
norid;
@expansion{} norid[1]=T(2)*T(3)-T(1)*T(4)
@expansion{} norid[2]=T(1)^7-T(1)^2*T(3)+T(2)*T(5)
@expansion{} norid[3]=T(1)^2*T(5)-T(2)*T(4)
@expansion{} norid[4]=T(1)^5*T(4)-T(3)*T(4)+T(5)^2
@expansion{} norid[5]=T(1)^6*T(3)-T(1)*T(3)^2+T(4)*T(5)
@expansion{} norid[6]=T(1)*T(3)*T(5)-T(4)^2
// ----- second example: union of straight lines -----
ring R1=0,(x,y,z),dp;
ideal I=(x-y)*(x-z)*(y-z);
list qr=normal(I);
@expansion{}
@expansion{} // 'normal' created a list of 3 ring(s).
@expansion{} // nor[3+1] is the delta-invariant in case of choose=wd.
@expansion{} // To see the rings, type (if the name of your list is nor):
@expansion{} show( nor);
@expansion{} // To access the 1-st ring and map (similar for the others), type:
@expansion{} def R = nor[1]; setring R; norid; normap;
@expansion{} // R/norid is the 1-st ring of the normalization and
@expansion{} // normap the map from the original basering to R/norid
def S1=qr[1]; def S2=qr[2];
setring S1; norid;
@expansion{} norid[1]=0
setring S2; norid;
@expansion{} norid[1]=0
@c end example Normalization examples.doc:2032
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Branches of an Isolated Space Curve Singularity, Kernel of module homomorphisms, Normalization,Examples
@section Branches of an Isolated Space Curve Singularity
@cindex Branches of an Isolated Space Curve Singularity
In this example, the number of branches of a given quasihomogeneous isolated
space curve singularity will be computed as an example of the pitfalls
appearing in the use of primary decomposition. When dealing with singularities,
two situations are possible in which the primary decomposition algorithm
might not lead to a complete decomposition: first of all, one of the computed
components could be globally irreducible, but analytically reducible
(this is impossible for quasihomogeneous singularities) and,
as a second possibility, a component might be irreducible over the rational
numbers, but reducible over the complex numbers.
@smallexample
@c computed example Branches_of_an_Isolated_Space_Curve_Singularity examples.doc:2067
ring r=0,(x,y,z),ds;
ideal i=x^4-y*z^2,x*y-z^3,y^2-x^3*z; // the space curve singularity
qhweight(i);
@expansion{} 1,2,1
// The given space curve singularity is quasihomogeneous. Hence we can pass
// to the polynomial ring.
ring rr=0,(x,y,z),dp;
ideal i=imap(r,i);
resolution ires=mres(i,0);
ires;
@expansion{} 1 3 2
@expansion{} rr <-- rr <-- rr
@expansion{}
@expansion{} 0 1 2
@expansion{}
// From the structure of the resolution, we see that the Cohen-Macaulay
// type of the given singularity is 2
//
// Let us now look for the branches using the primdec library.
LIB "primdec.lib";
primdecSY(i);
@expansion{} [1]:
@expansion{} [1]:
@expansion{} _[1]=z3-xy
@expansion{} _[2]=x3+x2z+xz2+xy+yz
@expansion{} _[3]=x2z2+x2y+xyz+yz2+y2
@expansion{} [2]:
@expansion{} _[1]=z3-xy
@expansion{} _[2]=x3+x2z+xz2+xy+yz
@expansion{} _[3]=x2z2+x2y+xyz+yz2+y2
@expansion{} [2]:
@expansion{} [1]:
@expansion{} _[1]=x-z
@expansion{} _[2]=z2-y
@expansion{} [2]:
@expansion{} _[1]=x-z
@expansion{} _[2]=z2-y
def li=_[2];
ideal i2=li[2]; // call the second ideal i2
// The curve seems to have 2 branches by what we computed using the
// algorithm of Shimoyama-Yokoyama.
// Now the same computation by the Gianni-Trager-Zacharias algorithm:
primdecGTZ(i);
@expansion{} [1]:
@expansion{} [1]:
@expansion{} _[1]=z8+yz6+y2z4+y3z2+y4
@expansion{} _[2]=xz5+z6+yz4+y2z2+y3
@expansion{} _[3]=-z3+xy
@expansion{} _[4]=x2z2+xz3+xyz+yz2+y2
@expansion{} _[5]=x3+x2z+xz2+xy+yz
@expansion{} [2]:
@expansion{} _[1]=z8+yz6+y2z4+y3z2+y4
@expansion{} _[2]=xz5+z6+yz4+y2z2+y3
@expansion{} _[3]=-z3+xy
@expansion{} _[4]=x2z2+xz3+xyz+yz2+y2
@expansion{} _[5]=x3+x2z+xz2+xy+yz
@expansion{} [2]:
@expansion{} [1]:
@expansion{} _[1]=-z2+y
@expansion{} _[2]=x-z
@expansion{} [2]:
@expansion{} _[1]=-z2+y
@expansion{} _[2]=x-z
// Having computed the primary decomposition in 2 different ways and
// having obtained the same number of branches, we might expect that the
// number of branches is really 2, but we can check this by formulae
// for the invariants of space curve singularities:
//
// mu = tau - t + 1 (for quasihomogeneous curve singularities)
// where mu denotes the Milnor number, tau the Tjurina number and
// t the Cohen-Macaulay type
//
// mu = 2 delta - r + 1
// where delta denotes the delta-Invariant and r the number of branches
//
// tau can be computed by using the corresponding procedure T1 from
// sing.lib.
setring r;
LIB "sing.lib";
T_1(i);
@expansion{} // dim T_1 = 13
@expansion{} _[1]=gen(6)+2z*gen(5)
@expansion{} _[2]=gen(4)+3x2*gen(2)
@expansion{} _[3]=gen(3)+gen(1)
@expansion{} _[4]=x*gen(5)-y*gen(2)-z*gen(1)
@expansion{} _[5]=x*gen(1)-z2*gen(2)
@expansion{} _[6]=y*gen(5)+3x2z*gen(2)
@expansion{} _[7]=y*gen(2)-z*gen(1)
@expansion{} _[8]=2y*gen(1)-z2*gen(5)
@expansion{} _[9]=z2*gen(5)
@expansion{} _[10]=z2*gen(1)
@expansion{} _[11]=x3*gen(2)
@expansion{} _[12]=x2z2*gen(2)
@expansion{} _[13]=xz3*gen(2)
@expansion{} _[14]=z4*gen(2)
setring rr;
// Hence tau is 13 and therefore mu is 12. But then it is impossible that
// the singularity has two branches, since mu is even and delta is an
// integer!
// So obviously, we did not decompose completely. Because the first branch
// is smooth, only the second ideal can be the one which can be decomposed
// further.
// Let us now consider the normalization of this second ideal i2.
LIB "normal.lib";
normal(i2);
@expansion{}
@expansion{} // 'normal' created a list of 1 ring(s).
@expansion{} // nor[1+1] is the delta-invariant in case of choose=wd.
@expansion{} // To see the rings, type (if the name of your list is nor):
@expansion{} show( nor);
@expansion{} // To access the 1-st ring and map (similar for the others), type:
@expansion{} def R = nor[1]; setring R; norid; normap;
@expansion{} // R/norid is the 1-st ring of the normalization and
@expansion{} // normap the map from the original basering to R/norid
@expansion{} [1]:
@expansion{} // characteristic : 0
@expansion{} // number of vars : 1
@expansion{} // block 1 : ordering dp
@expansion{} // : names T(1)
@expansion{} // block 2 : ordering C
def rno=_[1];
setring rno;
norid;
@expansion{} norid[1]=0
// The ideal is generated by a polynomial in one variable of degree 4 which
// factors completely into 4 polynomials of type T(2)+a.
// From this, we know that the ring of the normalization is the direct sum of
// 4 polynomial rings in one variable.
// Hence our original curve has these 4 branches plus a smooth one
// which we already determined by primary decomposition.
// Our final result is therefore: 5 branches.
@c end example Branches_of_an_Isolated_Space_Curve_Singularity examples.doc:2067
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Kernel of module homomorphisms, Algebraic dependence, Branches of an Isolated Space Curve Singularity, Examples
@end ifset
@ifclear singularmanual
@node Kernel of module homomorphisms, Algebraic dependence, Factorization, Examples
@end ifclear
@section Kernel of module homomorphisms
@cindex Kernel of module homomorphisms
Let
@ifinfo
@math{A}
@end ifinfo
@tex
$A$
@end tex
,
@ifinfo
@math{B}
@end ifinfo
@tex
$B$
@end tex
be two matrices of size
@tex
$m\times r$ and $m\times s$
@end tex
@ifinfo
m x r and m x s
@end ifinfo
over the ring
@ifinfo
@math{R}
@end ifinfo
@tex
$R$
@end tex
and consider the corresponding maps
@tex
$$
R^r \buildrel{A}\over{\longrightarrow}
R^m \buildrel{B}\over{\longleftarrow} R^s\;.
$$
@end tex
@ifinfo
@smallexample
r A m
R -----> R
^
|
|
s
R .
@end smallexample
@end ifinfo
We want to compute the kernel of the map
@tex
$R^r \buildrel{A}\over{\longrightarrow}
R^m\longrightarrow
R^m/\hbox{Im}(B) \;.$
@end tex
@ifinfo
@smallexample
r A m m
R -----> R -----> R /Im(B) .
@end smallexample
@end ifinfo
This can be done using the @code{modulo} command:
@tex
$$
\hbox{\tt modulo}(A,B)=\hbox{ker}(R^r
\buildrel{A}\over{\longrightarrow}R^m/\hbox{Im}(B)) \; .
$$
@end tex
@ifinfo
@smallexample
r A m
modulo(A,B)=ker(R -----> R /Im(B)) .
@end smallexample
@end ifinfo
@smallexample
@c computed example Kernel_of_module_homomorphisms examples.doc:2196
ring r=0,(x,y,z),(c,dp);
matrix A[2][2]=x,y,z,1;
matrix B[2][2]=x2,y2,z2,xz;
print(modulo(A,B));
@expansion{} yz2-x2, xyz-y2, x2z-xy, x3-y2z,
@expansion{} x2z-xz2,-x2z+y2z,xyz-yz2,0
@c end example Kernel_of_module_homomorphisms examples.doc:2196
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Algebraic dependence, Classification, Kernel of module homomorphisms, Examples
@end ifset
@ifclear singularmanual
@node Algebraic dependence, , Kernel of module homomorphisms, Examples
@end ifclear
@section Algebraic dependence
@cindex Algebraic dependence
Let
@tex
$g$, $f_1$, \dots, $f_r\in K[x_1,\ldots,x_n]$.
@end tex
@ifinfo
g, f_1, @dots{}, f_r in K[x1,@dots{},xn].
@end ifinfo
We want to check whether
@enumerate
@item
@tex
$f_1$, \dots, $f_r$
@end tex
@ifinfo
f_1, @dots{}, f_r
@end ifinfo
are algebraically dependent.
Let
@tex
$I=\langle Y_1-f_1,\ldots,Y_r-f_r \rangle \subseteq
K[x_1,\ldots,x_n,Y_1,\ldots,Y_r]$.
@end tex
@ifinfo
@smallexample
I=<Y_1-f_1,@dots{},Y_r-f_r> subset K[x1,@dots{},xn,Y_1,@dots{},Y_r].
@end smallexample
@end ifinfo
Then
@tex
$I \cap K[Y_1,\ldots,Y_r]$
@end tex
@ifinfo
I intersected with K[Y_1,@dots{},Y_r]
@end ifinfo
are the algebraic relations between
@tex
$f_1$, \dots, $f_r$.
@end tex
@ifinfo
f_1, @dots{}, f_r.
@end ifinfo
@item
@tex
$g \in K [f_1,\ldots,f_r]$.
@end tex
@ifinfo
g in K[f_1,@dots{},f_r].
@end ifinfo
@tex
$g \in K[f_1,\ldots,f_r]$
@end tex
@ifinfo
g in K[f_1,@dots{},f_r]
@end ifinfo
if and only if the normal form of
@ifinfo
@math{g}
@end ifinfo
@tex
$g$
@end tex
with respect to
@ifinfo
@math{I}
@end ifinfo
@tex
$I$
@end tex
and a
block ordering with respect to
@tex
$X=(x_1,\ldots,x_n)$ and $Y=(Y_1,\ldots,Y_r)$ with $X>Y$
@end tex
@ifinfo
X=(x1,@dots{},xn) and Y=(Y_1,@dots{},Y_r) with X>Y
@end ifinfo
is in
@ifinfo
@math{K[Y]}
@end ifinfo
@tex
$K[Y]$
@end tex
.
@end enumerate
Both questions can be answered using the following procedure. If the
second argument is zero, it checks for algebraic dependence and returns
the ideal of relations between the generators of the given ideal.
Otherwise it checks for subring membership and returns the normal form
of the second argument with respect to the ideal I.
@smallexample
@c computed example Algebraic_dependence examples.doc:2290
proc algebraicDep(ideal J, poly g)
@{
def R=basering; // give a name to the basering
int n=size(J);
int k=nvars(R);
int i;
intvec v;
// construction of the new ring:
// construct a weight vector
v[n+k]=0; // gives a zero vector of length n+k
for(i=1;i<=k;i++)
@{
v[i]=1;
@}
string orde="(a("+string(v)+"),dp);";
string ri="ring Rhelp=("+charstr(R)+"),
("+varstr(R)+",Y(1.."+string(n)+")),"+orde;
// ring definition as a string
execute(ri); // execution of the string
// construction of the new ideal I=(J[1]-Y(1),...,J[n]-Y(n))
ideal I=imap(R,J);
for(i=1;i<=n;i++)
@{
I[i]=I[i]-var(k+i);
@}
poly g=imap(R,g);
if(g==0)
@{
// construction of the ideal of relations by elimination
poly el=var(1);
for(i=2;i<=k;i++)
@{
el=el*var(i);
@}
ideal KK=eliminate(I,el);
keepring(Rhelp);
return(KK);
@}
// reduction of g with respect to I
ideal KK=reduce(g,std(I));
keepring(Rhelp);
return(KK);
@}
// applications of the procedure
ring r=0,(x,y,z),dp;
ideal i=xz,yz;
algebraicDep(i,0);
@expansion{} _[1]=0
// Note: after call of algebraicDep(), the basering is Rhelp.
setring r; kill Rhelp;
ideal j=xy+z2,z2+y2,x2y2-2xy3+y4;
algebraicDep(j,0);
@expansion{} _[1]=Y(1)^2-2*Y(1)*Y(2)+Y(2)^2-Y(3)
setring r; kill Rhelp;
poly g=y2z2-xz;
algebraicDep(i,g);
@expansion{} _[1]=Y(2)^2-Y(1)
// this shows that g is contained in i.
setring r; kill Rhelp;
algebraicDep(j,g);
@expansion{} _[1]=-z^4+z^2*Y(2)-x*z
// this shows that g is contained in j.
@c end example Algebraic_dependence examples.doc:2290
@end smallexample
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Classification, Fast lexicographical GB, Algebraic dependence, Examples
@section Classification
@cindex Classification
Classification of isolated hypersurface singularities with respect to
right equivalence is provided by the command @code{classify} of the
library @code{classify.lib}. The classification is done using the
algorithm of Arnold. Before entering this algorithm, a first guess based
on the Hilbert polynomial of the Milnor algebra is made.
@smallexample
@c computed example Classification examples.doc:2369
LIB "classify.lib";
ring r=0,(x,y,z),ds;
poly p=singularity("E[6k+2]",2)[1];
p=p+z^2;
p;
@expansion{} z2+x3+xy6+y8
// We received an E_14 singularity in normal form
// from the database of normal forms. Since only the residual
// part is saved in the database, we added z^2 to get an E_14
// of embedding dimension 3.
//
// Now we apply a coordinate change in order to deal with a
// singularity which is not in normal form:
map phi=r,x+y,y+z,x;
poly q=phi(p);
// Yes, q really looks ugly, now:
q;
@expansion{} x2+x3+3x2y+3xy2+y3+xy6+y7+6xy5z+6y6z+15xy4z2+15y5z2+20xy3z3+20y4z3+15xy2z\
4+15y3z4+6xyz5+6y2z5+xz6+yz6+y8+8y7z+28y6z2+56y5z3+70y4z4+56y3z5+28y2z6+8\
yz7+z8
// Classification
classify(q);
@expansion{} About the singularity :
@expansion{} Milnor number(f) = 14
@expansion{} Corank(f) = 2
@expansion{} Determinacy <= 12
@expansion{} Guessing type via Milnorcode: E[6k+2]=E[14]
@expansion{}
@expansion{} Computing normal form ...
@expansion{} I have to apply the splitting lemma. This will take some time....:-)
@expansion{} Arnold step number 9
@expansion{} The singularity
@expansion{} x3-9/4x4+27/4x5-189/8x6+737/8x7+6x6y+15x5y2+20x4y3+15x3y4+6x2y5+xy6-24\
089/64x8-x7y+11/2x6y2+26x5y3+95/2x4y4+47x3y5+53/2x2y6+8xy7+y8+104535/64x9\
+27x8y+135/2x7y2+90x6y3+135/2x5y4+27x4y5+9/2x3y6-940383/128x10-405/4x9y-2\
025/8x8y2-675/2x7y3-2025/8x6y4-405/4x5y5-135/8x4y6+4359015/128x11+1701/4x\
10y+8505/8x9y2+2835/2x8y3+8505/8x7y4+1701/4x6y5+567/8x5y6-82812341/512x12\
-15333/8x11y-76809/16x10y2-25735/4x9y3-78525/16x8y4-16893/8x7y5-8799/16x6\
y6-198x5y7-495/4x4y8-55x3y9-33/2x2y10-3xy11-1/4y12
@expansion{} is R-equivalent to E[14].
@expansion{} Milnor number = 14
@expansion{} modality = 1
@expansion{} 2z2+x3+xy6+y8
// The library also provides routines to determine the corank of q
// and its residual part without going through the whole
// classification algorithm.
corank(q);
@expansion{} 2
morsesplit(q);
@expansion{} y3-9/4y4+27/4y5-189/8y6+737/8y7+6y6z+15y5z2+20y4z3+15y3z4+6y2z5+yz6-24089\
/64y8-y7z+11/2y6z2+26y5z3+95/2y4z4+47y3z5+53/2y2z6+8yz7+z8+104535/64y9+27\
y8z+135/2y7z2+90y6z3+135/2y5z4+27y4z5+9/2y3z6-940383/128y10-405/4y9z-2025\
/8y8z2-675/2y7z3-2025/8y6z4-405/4y5z5-135/8y4z6+4359015/128y11+1701/4y10z\
+8505/8y9z2+2835/2y8z3+8505/8y7z4+1701/4y6z5+567/8y5z6-82812341/512y12-15\
333/8y11z-76809/16y10z2-25735/4y9z3-78525/16y8z4-16893/8y7z5-8799/16y6z6-\
198y5z7-495/4y4z8-55y3z9-33/2y2z10-3yz11-1/4z12
@c end example Classification examples.doc:2369
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Fast lexicographical GB, Parallelization with MPtcp links, Classification, Examples
@section Fast lexicographical GB
@cindex Fast lexicographical GB
Compute Groebner basis in lexicographical ordering
by using the FGLM algorithm (@code{stdfglm})
and Hilbert driven Groebner (@code{stdhilb}).
The command @code{stdfglm} applies only for zero-dimensional ideals and
returns a reduced Groebner basis.
For the ideal below, @code{stdfglm} is more than 100 times
and @code{stdhilb} about 10 times faster than @code{std}.
@smallexample
@c computed example Fast_lexicographical_GB examples.doc:2413
ring r =32003,(a,b,c,d,e),lp;
ideal i=a+b+c+d, ab+bc+cd+ae+de, abc+bcd+abe+ade+cde,
abc+abce+abde+acde+bcde, abcde-1;
int t=timer;
ideal j1=stdfglm(i);
timer-t;
@expansion{} 0
size(j1); // size (no. of polys) in computed GB
@expansion{} 5
t=timer;
ideal j2=stdhilb(i);
timer-t;
@expansion{} 0
size(j2); // size (no. of polys) in computed GB
@expansion{} 158
// usual Groebner basis computation for lex ordering
t=timer;
ideal j0 =std(i);
timer-t;
@expansion{} 1
@c end example Fast_lexicographical_GB examples.doc:2413
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Parallelization with MPtcp links, , Fast lexicographical GB, Examples
@section Parallelization with MPtcp links
@cindex Parallelization
@cindex MPtcp
@cindex link
In this example, we demonstrate how MPtcp links can be used to
parallelize computations.
To compute a standard basis for a zero-dimensional ideal in the
lexicographical ordering, one of the two powerful routines
@code{stdhilb}
@ifset singularmanual
(see @ref{stdhilb})
@end ifset
and @code{stdfglm}
@ifset singularmanual
(see @ref{stdfglm})
@end ifset
should be used. However, a priory one can not predict
which one of the two commands is faster. This very much depends on the
(input) example. Therefore, we use MPtcp links to let both commands
work on the problem independently and in parallel, so that the one which
finishes first delivers the result.
The example we use is the so-called "omdi example". See @i{Tim
Wichmann; Der FGLM-Algorithmus: verallgemeinert und implementiert in
Singular; Diplomarbeit Fachbereich Mathematik, Universitaet
Kaiserslautern; 1997} for more details.
@smallexample
@c computed example Parallelization_with_MPtcp_links examples.doc:2464
ring r=0,(a,b,c,u,v,w,x,y,z),lp;
ideal i=a+c+v+2x-1, ab+cu+2vw+2xy+2xz-2/3, ab2+cu2+2vw2+2xy2+2xz2-2/5,
ab3+cu3+2vw3+2xy3+2xz3-2/7, ab4+cu4+2vw4+2xy4+2xz4-2/9, vw2+2xyz-1/9,
vw4+2xy2z2-1/25, vw3+xyz2+xy2z-1/15, vw4+xyz3+xy3z-1/21;
link l_hilb,l_fglm = "MPtcp:fork","MPtcp:fork"; // 1.
open(l_fglm); open(l_hilb);
write(l_hilb, quote(system("pid"))); // 2.
write(l_fglm, quote(system("pid")));
int pid_hilb,pid_fglm = read(l_hilb),read(l_fglm);
write(l_hilb, quote(stdhilb(i))); // 3.
write(l_fglm, quote(stdfglm(eval(i))));
while ((! status(l_hilb, "read", "ready", 1)) && // 4.
(! status(l_fglm, "read", "ready", 1))) @{@}
if (status(l_hilb, "read", "ready"))
@{
"stdhilb won !!!!"; size(read(l_hilb));
close(l_hilb); pid_fglm = system("sh","kill "+string(pid_fglm));
@}
else // 5.
@{
"stdfglm won !!!!"; size(read(l_fglm));
close(l_fglm); pid_hilb = system("sh","kill "+string(pid_hilb));
@}
@expansion{} stdfglm won !!!!
@expansion{} 9
@c end example Parallelization_with_MPtcp_links examples.doc:2464
@end smallexample
Some explanatory remarks are in order:
@enumerate
@item
Instead of using links of the type @code{MPtcp:fork}, we alternatively
could use @code{MPtcp:launch} links such that the two "competing"
@sc{Singular} processes run on different machines. This has the
advantage of "true" parallel computing since no resource sharing is
involved (as it usually is with forked processes).
@item
Unfortunately, MPtcp links do not offer means to (asynchronously)
interrupt or kill an attached (i.e., launched or forked)
process. Therefore, we explicitly need to get the process id numbers of
the competing @sc{Singular} processes, so that we can "kill" the
looser later.
@item
Notice how quoting is used in order to prevent local evaluation
(i.e., local computation of results). Since we "forked" the two
competing processes, the identifier @code{i} is defined and has
identical values in both child processes. Therefore, the innermost
@code{eval} can be omitted (as is done for the @code{l_hilb} link),
and only the identifier @code{i} needs to be communicated to the
children. However, when @code{MPtcp:launch} links are used, the inner
evaluation must be applied so that actual values, and not the
identifiers are communicated (as is done for the @code{l_fglm} link).
@item
We go into a "sleepy" loop and wait until one of the two children
finished the computation. That is, the current process checks approximately
once per second the status of one of the connecting links, and sleeps
(i.e., suspends its execution) in the intermediate time.
@item
The child which has won delivers the result and is terminated with the usual
@code{close} command. The other child which is still computing needs to
be terminated by an explicit (i.e., system) kill command, since it can
not be terminated through the link while it is still computing.
@end enumerate
@end ifset
@c --------------------------------------------------------------------
@ifclear singularmanual
@section Further smallexamples
The example section of the @sc{Singular} manual contains further examples,
e.g.:
@itemize @bullet
@item Long coefficients
@*how they arise in innocent smallexamples
@item T1 and T2
@*compute first order deformations and obstructions
@item Finite fields
@*compute in fields with
@tex
$q=p^n$
@end tex
@ifinfo
q=p^n
@end ifinfo
elements
@item Ext
@*compute Ext groups, derived from the Hom functor
@item Polar curves
@*compute local and global polar curves
@item Depth
@*various ways to compute the depth of a module
@item Cyclic roots
@*create and compute with this standard benchmark smallexample
@item Invariants of finite group
@*compute invariant rings for finite group
@item Puiseux pairs
@*compute Puiseux development and invariants with the
Hamburger-Noether method
@item Primary decomposition
@*compute primar decomposition of an ideal
@item Normalization
@*compute the normalization of a ring
@item Classification
@*determine type and normal form of a hypersurface singularity
after Arnold
@item Fast lexicographical GB
@*FGLM and Hilbert-driven Groebner
@item Parallelization with MPtcp links
@*use MP for distributed and parallel computation
@end itemize
In this list the names of the items are the names of the
examples in the online help system. So by the command
@code{help T1 and T2} the example about the computation of
first order deformations and obstructions is displayed.
@end ifclear
|