File: examples.tex

package info (click to toggle)
texi2html 1.82%2Bdfsg1-3
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,848 kB
  • ctags: 16,527
  • sloc: perl: 15,888; xml: 6,075; sh: 3,977; makefile: 545
file content (3691 lines) | stat: -rw-r--r-- 114,075 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
@comment -*-texinfo-*-
@comment This file was generated by doc2tex.pl from examples.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT examples.doc INSTEAD
@comment Id: examples.tex,v 1.1 2003/08/08 14:27:06 pertusus Exp $
@comment this file contains the examples

@c The following directives are necessary for proper compilation
@c with emacs (C-c C-e C-r).  Please keep it as it is.  Since it
@c is wrapped in `@ignore' and `@end ignore' it does not harm `tex' or
@c `makeinfo' but is a great help in editing this file (emacs
@c ignores the `@ignore').
@ignore
%**start
\input texinfo.tex
@setfilename examples.hlp
@node Top, Examples
@menu
* General concepts::
@end menu
@node Examples, Mathematical Background, Tricks and pitfalls, Top
@appendix Examples
%**end
@end ignore

@ifinfo
The following topics are treated:
@end ifinfo

@ifset singularmanual
@menu
* Milnor and Tjurina::
* Procedures and LIB::
* Critical points::
* Saturation::
* Long coefficients::
* Parameters::
* T1 and T2::
* Deformations::
* Finite fields::
* Elimination::
* Free resolution::
* Computation of Ext::
* Polar curves::
* Depth::
* Formatting output::
* Cyclic roots::
* G_a -Invariants::
* Invariants of a finite group::
* Factorization::
* Puiseux pairs::
* Primary decomposition::
* Normalization::
* Branches of an Isolated Space Curve Singularity::
* Kernel of module homomorphisms::
* Algebraic dependence::
* Classification::
* Fast lexicographical GB::
* Parallelization with MPtcp links::
@end menu
@end ifset

@ifclear singularmanual
@menu
* Milnor and Tjurina::
* Procedures and LIB::
* Critical points::
* Saturation::
* Parameters::
* Deformations::
* Elimination::
* Free resolution::
* Formatting output::
* Factorization::
* Kernel of module homomorphisms::
* Algebraic dependence::
@end menu
@end ifclear

@c ----------------------------------------------------------------------------
@c @node Start SINGULAR, Milnor and Tjurina,Examples, Examples
@c @section Start SINGULAR
@c @cindex Start SINGULAR

@c Call @sc{Singular} by typing @code{Singular} [return]

@c To use the online help type for instance:
@c    @code{help;} @code{help command;} @code{help General syntax;} @code{help ring;}...
@c Please note:  EVERY COMMAND MUST END WITH A SEMICOLON ";"

@c To leave @sc{Singular}, type one of the:
@c    @code{quit;} @code{exit;} @code{$}

@c The two characters @code{//} make the rest of the line a comment.

@c ----------------------------------------------------------------------------
@node Milnor and Tjurina, Procedures and LIB, Examples, Examples
@section Milnor and Tjurina
@cindex Milnor
@cindex Tjurina

The Milnor number, resp.@: the Tjurina number, of a power
series f in
@tex
$K[[x_1,\ldots,x_n]]$
@end tex
@ifinfo
K[[x1,...,xn]]
@end ifinfo
is
@ifinfo
@*      milnor(f) = dim_K(K[[x1,...,xn]]/jacob(f))
@*resp.@:
@*      tjurina(f) = dim_K(K[[x1,...,xn]]/((f)+jacob(f)))
@*where
@end ifinfo
@tex
$$
\hbox{milnor}(f) = \hbox{dim}_K(K[[x_1,\ldots,x_n]]/\hbox{jacob}(f)),
$$
respectively
$$
\hbox{tjurina}(f) = \hbox{dim}_K(K[[x_1,\ldots,x_n]]/((f)+\hbox{jacob}(f)))
$$
where
@end tex
@code{jacob(f)} is the ideal generated by the partials
of @code{f}. @code{tjurina(f)} is finite, if and only if @code{f} has an
isolated singularity. The same holds for @code{milnor(f)} if
K has characteristic 0.
@sc{Singular} displays -1 if the dimension is infinite.

@sc{Singular} cannot compute with infinite power series. But it can
work in
@tex
$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$,
@end tex
@ifinfo
Loc_(x)K[x1,...,xn],
@end ifinfo
the localization of
@tex
$K[x_1,\ldots,x_n]$
@end tex
@ifinfo
K[x1,...,xn]
@end ifinfo
at the maximal ideal
@tex
$(x_1,\ldots,x_n)$.
@end tex
@ifinfo
(x1,...,xn).
@end ifinfo
To do this one has to define an
s-ordering like ds, Ds, ls, ws, Ws or an appropriate matrix
ordering (look at the manual to get information about the possible
monomial orderings in @sc{Singular}, or type @code{help Monomial orderings;}
to get a menu of possible orderings. For further help type, e.g.,
@code{help local orderings;}).
@ifset singularmanual
See @ref{Monomial orderings}.
@end ifset

We shall show in the example below how to realize the following:
@itemize @bullet
@item
set option @code{prot} to have a short protocol during standard basis
computation
@item
define the ring @code{r1} with char 32003, variables @code{x,y,z}, monomial
  ordering @code{ds}, series ring (i.e., K[x,y,z] localized at (x,y,z))
@item
list the information about @code{r1} by typing its name
@item
define the integers @code{a,b,c,t}
@item
define a polynomial @code{f} (depending on @code{a,b,c,t}) and display it
@item
define the jacobian ideal @code{i} of @code{f}
@item
compute a standard basis of @code{i}
@item
compute the Milnor number (=250) with @code{vdim} and create and display
  a string in order to comment the result
  (text between quotes "  "; is a 'string')
@item
compute a standard basis of @code{i+(f)}
@item
compute the Tjurina number (=195) with @code{vdim}
@item
then compute the Milnor number (=248) and the Tjurina number
(=195) for @code{t}=1
@item
reset the option to @code{noprot}
@end itemize

@smallexample
@c computed example Milnor_and_Tjurina examples.doc:196 
  option(prot);
  ring r1 = 32003,(x,y,z),ds;
  r1;
@expansion{} //   characteristic : 32003
@expansion{} //   number of vars : 3
@expansion{} //        block   1 : ordering ds
@expansion{} //                  : names    x y z 
@expansion{} //        block   2 : ordering C
  int a,b,c,t=11,5,3,0;
  poly f = x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3+
           x^(c-2)*y^c*(y^2+t*x)^2;
  f;
@expansion{} y5+x5y2+x2y2z3+xy7+z9+x11
  ideal i=jacob(f);
  i;
@expansion{} i[1]=5x4y2+2xy2z3+y7+11x10
@expansion{} i[2]=5y4+2x5y+2x2yz3+7xy6
@expansion{} i[3]=3x2y2z2+9z8
  ideal j=std(i);
@expansion{} [1023:2]7(2)s8s10s11s12s(3)s13(4)s(5)s14(6)s(7)15--.s(6)-16.-.s(5)17.s(7)\
   s--s18(6).--19-..sH(24)20(3)...21....22....23.--24-
@expansion{} product criterion:10 chain criterion:69
  "The Milnor number of f(11,5,3) for t=0 is", vdim(j);
@expansion{} The Milnor number of f(11,5,3) for t=0 is 250
  j=i+f;    // overwrite j
  j=std(j);
@expansion{} [1023:2]7(3)s8(2)s10s11(3)ss12(4)s(5)s13(6)s(8)s14(9).s(10).15--sH(23)(8)\
   ...16......17.......sH(21)(9)sH(20)16(10).17...........18.......19..----.\
   .sH(19)
@expansion{} product criterion:10 chain criterion:53
  vdim(j);  // compute the Tjurina number for t=0
@expansion{} 195
  t=1;
  f=x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3
    +x^(c-2)*y^c*(y^2+t*x)^2;
  ideal i1=jacob(f);
  ideal j1=std(i1);
@expansion{} [1023:2]7(2)s8s10s11s12s13(3)ss(4)s14(5)s(6)s15(7).....s(8)16.s...s(9)..1\
   7............s18(10).....s(11)..-.19.......sH(24)(10).....20...........21\
   ..........22.............................23..............................\
   .24.----------.25.26
@expansion{} product criterion:11 chain criterion:83
  "The Milnor number of f(11,5,3) for t=1:",vdim(j1);
@expansion{} The Milnor number of f(11,5,3) for t=1: 248
  vdim(std(j1+f));   // compute the Tjurina number for t=1
@expansion{} [1023:2]7(16)s8(15)s10s11ss(16)-12.s-s13s(17)s(18)s(19)-s(18).-14-s(17)-s\
   (16)ss(17)s15(18)..-s...--.16....-.......s(16).sH(23)s(18)...17..........\
   18.........sH(20)17(17)....................18..........19..---....-.-....\
   .....20.-----...s17(9).........18..............19..-.......20.-......21..\
   .......sH(19)16(5).....18......19.-----
@expansion{} product criterion:15 chain criterion:174
@expansion{} 195
  option(noprot);
@c end example Milnor_and_Tjurina examples.doc:196
@end smallexample

@c ----------------------------------------------------------------------------
@node Procedures and LIB, Critical points, Milnor and Tjurina, Examples
@section Procedures and LIB
@cindex Procedures and LIB

The computation of the Milnor number (for an arbitrary isolated complete
intersection singularity ICIS) and the Tjurina number (for an arbitrary
isolated singularity) can be done by using procedures from the library
@code{sing.lib}. For a hypersurface singularity it is very easy to write a
procedure which computes the Milnor number and the Tjurina number.

We shall demonstrate:
@itemize @bullet
@item
load the library @code{sing.lib}
@c item
@c disable the protocol option
@item
define a local ring in 2 variables and characteristic 0
@item
define a plane curve singularity
@item
compute Milnor number and Tjurina number by using the procedures
@code{milnor} and @code{tjurina}
@item
write your own procedures:
(A procedure has a list of input parameters and of return values, both
lists may be empty.)
  @itemize @minus
  @item
  the procedure @code{mil} which must be called with one parameter, a
  polynomial.
  The name g is local to the procedure and is killed automatically.
  @code{mil} returns the Milnor number (and displays a comment).
  @item
  the procedure @code{tjur} where the parameters are not specified. They
  are referred
  to by @code{#[1]} for the 1st, @code{#[2]} for the 2nd parameter, etc.
  @code{tjur} returns the Tjurina number (and displays a comment).
  @item
  the procedure @code{milrina} which returns a list consisting of two
  integers,
  the Milnor and the Tjurina number.
  @end itemize
@end itemize

@smallexample
LIB "sing.lib";
// you should get the information that sing.lib has been loaded
// together with some other libraries which are needed by sing.lib
ring r = 0,(x,y),ds;
poly f = x7+y7+(x-y)^2*x2y2;
milnor(f);
@expansion{} 28
tjurina(f);
@expansion{} 24

proc mil (poly g)
@{
   "Milnor number:";
   return(vdim(std(jacob(g))));
@}
mil(f);
@expansion{} Milnor number:
@expansion{} 28

proc tjur
@{
   "Tjurina number:";
   return(vdim(std(jacob(#[1])+#[1])));
@}
tjur(f);
@expansion{} Tjurina number:
@expansion{} 24

proc milrina (poly f)
@{
   ideal j=jacob(f);
   list L=vdim(std(j)),vdim(std(j+f));
   return(L);
@}
milrina(f);     // a list containing Milnor and Tjurina number
@expansion{} [1]:
@expansion{}    28
@expansion{} [2]:
@expansion{}    24
milrina(f)[2];  // the second element of the list
@expansion{} 24
@end smallexample

@c ----------------------------------------------------------------------------
@node Critical points, Saturation, Procedures and LIB, Examples
@section Critical points
@cindex Critical points

The same computation which computes the Milnor, resp.@: the Tjurina,
number, but with ordering @code{dp} instead of @code{ds} (i.e., in
@tex
$K[x_1,\ldots,x_n]$
@end tex
@ifinfo
K[x1,...,xn]
@end ifinfo
instead of
@tex
$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n])$
@end tex
@ifinfo
Loc_(x)K[x1,...,xn])
@end ifinfo
gives:
@itemize @bullet
@item
the number of critical points of @code{f} in the affine plane
(counted with multiplicities)
@item
the number of singular points of @code{f} on the affine plane curve @code{f}=0
(counted with multiplicities).
@end itemize

We start with the ring @code{r1} from section @ref{Milnor and Tjurina} and its elements.

The following will be realized below:
@itemize @bullet
@item
reset the protocol option and activate the timer
@item
define the ring @code{r2} with char 32003, variables @code{x,y,z} and monomial
  ordering @code{dp} (= degrevlex) (i.e., the polynomial ring = K[x,y,z]).
@item
Note that polynomials, ideals, matrices (of polys), vectors,
  modules belong to a ring, hence we have to define @code{f} and @code{jacob(f)}
  again in @code{r2}. Since these objects are local to a ring, we may use
  the same names.
  Instead of defining @code{f} again we map it from ring @code{r1} to @code{r2}
  by using the @code{imap} command
  (@code{imap} is a convenient way to map variables
  from some ring identically to variables with the same name in the
  basering, even if the ground field is different. Compare with @code{fetch}
  which works for almost identical rings,
  e.g., if the rings differ only by the ordering or by the names of the
  variables and which may be used to rename variables).
  Integers and strings, however, do not belong to any ring. Once
  defined they are globally known.
@item
The result of the computation here (together with the previous one in
 @ref{Milnor and Tjurina}) shows that (for @code{t}=0)
@tex
$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/\hbox{jacob}(f))$
@end tex
@ifinfo
  dim_K(Loc_(x,y,z)K[x,y,z]/jacob(f))
@end ifinfo
= 250 (previously computed) while
@tex
$\hbox{dim}_K(K[x,y,z]/\hbox{jacob}(f))$
@end tex
@ifinfo
  dim_K(K[x,y,z]/jacob(f))
@end ifinfo
= 536. Hence @code{f} has 286 critical points,
  counted with multiplicity, outside the origin.
  Moreover, since
@tex
$\hbox{dim}_K(\hbox{Loc}_{(x,y,z)}K[x,y,z]/(\hbox{jacob}(f)+(f)))$
@end tex
@ifinfo
dim_K(Loc_(x,y,z)K[x,y,z]/(jacob(f)+(f)))
@end ifinfo
= 195 =
@tex
$\hbox{dim}_K(K[x,y,z]/(\hbox{jacob}(f)+(f)))$,
@end tex
@ifinfo
dim_K(K[x,y,z]/(jacob(f)+(f))),
@end ifinfo
the affine surface @code{f}=0 is smooth outside the origin.
@end itemize

@smallexample
@c computed example Critical_points examples.doc:402 
  ring r1 = 32003,(x,y,z),ds;
  int a,b,c,t=11,5,3,0;
  poly f = x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3+
           x^(c-2)*y^c*(y^2+t*x)^2;
  option(noprot);
  timer=1;
  ring r2 = 32003,(x,y,z),dp;
  poly f=imap(r1,f);
  ideal j=jacob(f);
  vdim(std(j));
@expansion{} 536
  vdim(std(j+f));
@expansion{} 195
  timer=0;  // reset timer
@c end example Critical_points examples.doc:402
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Saturation, Long coefficients, Critical points, Examples
@end ifset
@ifclear singularmanual
@node Saturation, Parameters, Critical points, Examples
@end ifclear
@section Saturation
@cindex Saturation

Since in the example above, the ideal 
@ifinfo
@math{j+(f)}
@end ifinfo
@tex
$j+(f)$
@end tex
 has the same @code{vdim}
in the polynomial ring and in the localization at 0 (each 195),

@ifinfo
@math{f=0}
@end ifinfo
@tex
$f=0$
@end tex
 is smooth outside 0.
Hence 
@ifinfo
@math{j+(f)}
@end ifinfo
@tex
$j+(f)$
@end tex
 contains some power of the maximal ideal 
@ifinfo
@math{m}
@end ifinfo
@tex
$m$
@end tex
. We shall
check this in a different manner:
For any two ideals 
@ifinfo
@math{i, j}
@end ifinfo
@tex
$i, j$
@end tex
 in the basering 
@ifinfo
@math{R}
@end ifinfo
@tex
$R$
@end tex
 let
@tex
$$
\hbox{sat}(i,j)=\{x\in R\;|\; \exists\;n\hbox{ s.t. }
x\cdot(j^n)\subseteq i\}
= \bigcup_{n=1}^\infty i:j^n$$
@end tex
@ifinfo
@*sat(i,j) = @{x in @math{R} | there is an n s.t. x*(j^n) contained in i@}
@*         = union_(n=1...) of i:j^n,
@end ifinfo
@*denote the saturation of 
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
 with respect to 
@ifinfo
@math{j}
@end ifinfo
@tex
$j$
@end tex
. This defines,
geometrically, the closure of the complement of V(
@ifinfo
@math{j}
@end ifinfo
@tex
$j$
@end tex
) in V(
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
)
(V(
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
) denotes the variety defined by 
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
).
In our case, 
@ifinfo
@math{sat(j+(f),m)}
@end ifinfo
@tex
$sat(j+(f),m)$
@end tex
 must be the whole ring, hence
generated by 1.

The saturation is computed by the procedure @code{sat} in
@code{elim.lib} by computing iterated ideal quotients with the maximal
ideal.  @code{sat} returns a list of two elements: the saturated ideal
and the number of iterations.  (Note that @code{maxideal(n)} denotes the
n-th power of the maximal ideal).

@smallexample
@c computed example Saturation examples.doc:457 
  LIB "elim.lib";         // loading library elim.lib
  // you should get the information that elim.lib has been loaded
  // together with some other libraries which are needed by it
  option(noprot);         // no protocol
  ring r2 = 32003,(x,y,z),dp;
  poly f = x^11+y^5+z^(3*3)+x^(3+2)*y^(3-1)+x^(3-1)*y^(3-1)*z3+
    x^(3-2)*y^3*(y^2)^2;
  ideal j=jacob(f);
  sat(j+f,maxideal(1));
@expansion{} [1]:
@expansion{}    _[1]=1
@expansion{} [2]:
@expansion{}    17
  // list the variables defined so far:
  listvar();
@expansion{} // r2                   [0]  *ring
@expansion{} //      j                    [0]  ideal, 3 generator(s)
@expansion{} //      f                    [0]  poly
@expansion{} // LIB                  [0]  string standard.lib,elim.li..., 83 char(s)
@c end example Saturation examples.doc:457
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Long coefficients, Parameters, Saturation, Examples
@section Long coefficients
@cindex Long coefficients

The following innocent example produces in its standard basis
extremely long coefficients in char 0 for the lexicographical
ordering.
But a very small deformation does not (the undeformed
example is degenerate with respect to the Newton boundary).
This example demonstrates that it might be wise, for complicated
examples, to do the calculation first in positive char (e.g., 32003).
It has been shown, that in complicated examples, more than 95 percent of
the time needed for a standard basis computation is used in the
computation of the coefficients (in char 0).
The representation of long integers with real is demonstrated.

@smallexample
@c computed example Long_coefficients examples.doc:491 
timer = 1;                              // activate the timer
option(prot);
ring R0 = 0,(x,y),lp;
poly f = x5+y11+xy9+x3y9;
ideal i = jacob(f);
ideal i1 = i,i[1]*i[2];                 // undeformed ideal
ideal i2 = i,i[1]*i[2]+1/1000000*x5y8;  // deformation of i1
i1; i2;
@expansion{} i1[1]=5x4+3x2y9+y9
@expansion{} i1[2]=9x3y8+9xy8+11y10
@expansion{} i1[3]=45x7y8+27x5y17+45x5y8+55x4y10+36x3y17+33x2y19+9xy17+11y19
@expansion{} i2[1]=5x4+3x2y9+y9
@expansion{} i2[2]=9x3y8+9xy8+11y10
@expansion{} i2[3]=45x7y8+27x5y17+45000001/1000000x5y8+55x4y10+36x3y17+33x2y19+9xy17+1\
   1y19
ideal j = std(i1);
@expansion{} [65535:1]11(2)ss19s20s21s22(3)-23-s27s28s29s30s31s32s33s34s35s36s37s38s39\
   s40s70-
@expansion{} product criterion:1 chain criterion:30
j;
@expansion{} j[1]=264627y39+26244y35-1323135y30-131220y26+1715175y21+164025y17+1830125\
   y16
@expansion{} j[2]=12103947791971846719838321886393392913750065060875xy8-28639152114168\
   3198701331939250003266767738632875y38-31954402206909026926764622877573565\
   78554430672591y37+57436621420822663849721381265738895282846320y36+1657764\
   214948799497573918210031067353932439400y35+213018481589308191195677223898\
   98682697001205500y34+1822194158663066565585991976961565719648069806148y33\
   -4701709279892816135156972313196394005220175y32-1351872269688192267600786\
   97600850686824231975y31-3873063305929810816961516976025038053001141375y30\
   +1325886675843874047990382005421144061861290080000y29+1597720195476063141\
   9467945895542406089526966887310y28-26270181336309092660633348002625330426\
   7126525y27-7586082690893335269027136248944859544727953125y26-867853074106\
   49464602285843351672148965395945625y25-5545808143273594102173252331151835\
   700278863924745y24+19075563013460437364679153779038394895638325y23+548562\
   322715501761058348996776922561074021125y22+157465452677648386073957464715\
   68100780933983125y21-1414279129721176222978654235817359505555191156250y20\
   -20711190069445893615213399650035715378169943423125y19+272942733337472665\
   573418092977905322984009750y18+789065115845334505801847294677413365720955\
   3750y17+63554897038491686787729656061044724651089803125y16-22099251729923\
   906699732244761028266074350255961625y14+147937139679655904353579489722585\
   91339027857296625y10
@expansion{} j[3]=5x4+3x2y9+y9
// Compute average coefficient length (=51) by
//   - converting j[2] to a string in order to compute the number
//   of characters
//   - divide this by the number of monomials:
size(string(j[2]))/size(j[2]);
@expansion{} 51
vdim(j);
@expansion{} 63
// For a better representation normalize the long coefficients
// of the polynomial j[2] and map it  to real:
poly p=(1/12103947791971846719838321886393392913750065060875)*j[2];
ring R1=real,(x,y),lp;
short=0; // force the long output format
poly p=imap(R0,p);
p;
@expansion{} x*y^8-2.366e-02*y^38-2.640e-01*y^37+4.745e-06*y^36+1.370e-04*y^35+1.760e-\
   03*y^34+1.505e-01*y^33+3.884e-07*y^32-1.117e-05*y^31-3.200e-04*y^30+1.095\
   e-01*y^29+1.320e+00*y^28-2.170e-05*y^27-6.267e-04*y^26-7.170e-03*y^25-4.5\
   82e-01*y^24+1.576e-06*y^23+4.532e-05*y^22+1.301e-03*y^21-1.168e-01*y^20-1\
   .711e+00*y^19+2.255e-05*y^18+6.519e-04*y^17+5.251e-03*y^16-1.826e+00*y^14\
   +1.222e+00*y^10
// Compute a standard basis for the deformed ideal:
setring R0;
j = std(i2);
@expansion{} [65535:1]11(2)ss19s20s21s22(3)-s23(2)s27.28.s29(3)s30.s31ss32sss33sss34ss\
   35--38-
@expansion{} product criterion:11 chain criterion:21
j;
@expansion{} j[1]=y16
@expansion{} j[2]=65610xy8+17393508y27+7223337y23+545292y19+6442040y18-119790y14+80190\
   y10
@expansion{} j[3]=5x4+3x2y9+y9
vdim(j);
@expansion{} 40
@c end example Long_coefficients examples.doc:491
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Parameters, T1 and T2, Long coefficients, Examples
@end ifset
@ifclear singularmanual
@node Parameters, Deformations, Saturation, Examples
@end ifclear
@section Parameters
@cindex Parameters

@ifset singularmanual
Let us deform the above ideal now by introducing a parameter t
and compute over the ground field Q(t).
We compute the dimension at the generic point,
@end ifset
@ifclear singularmanual
Let us now deform a given 0-dimensional ideal j by introducing a parameter t
and compute over the ground field Q(t).
We compute the dimension at the generic point,
@end ifclear
i.e.,
@tex
$dim_{Q(t)}Q(t)[x,y]/j$.
@end tex
@ifinfo
dim_Q(t) Q(t)[x,y]/j.
@end ifinfo
@ifset singularmanual
(This gives the
same result as for the deformed ideal above. Hence, the above small
deformation was "generic".)
@end ifset

For almost all
@tex
$a \in Q$
@end tex
@ifinfo
a in Q
@end ifinfo
this is the same as
@tex
$dim_Q Q[x,y]/j_0$,
@end tex
@ifinfo
dim_Q Q[x,y]/j0,
@end ifinfo
where
@tex
$j_0=j|_{t=a}$.
@end tex
@ifinfo
j_0=j_t=a
@end ifinfo

@smallexample
@c computed example Parameters examples.doc:579 
  ring Rt = (0,t),(x,y),lp;
  Rt;
@expansion{} //   characteristic : 0
@expansion{} //   1 parameter    : t 
@expansion{} //   minpoly        : 0
@expansion{} //   number of vars : 2
@expansion{} //        block   1 : ordering lp
@expansion{} //                  : names    x y 
@expansion{} //        block   2 : ordering C
  poly f = x5+y11+xy9+x3y9;
  ideal i = jacob(f);
  ideal j = i,i[1]*i[2]+t*x5y8;  // deformed ideal, parameter t
  vdim(std(j));
@expansion{} 40
  ring R=0,(x,y),lp;
  ideal i=imap(Rt,i);
  int a=random(1,30000);
  ideal j=i,i[1]*i[2]+a*x5y8;  // deformed ideal, fixed integer a
  vdim(std(j));
@expansion{} 40
@c end example Parameters examples.doc:579
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node T1 and T2, Deformations, Parameters, Examples
@section T1 and T2
@cindex T1
@cindex T2


@ifinfo
@math{T^1}
@end ifinfo
@tex
$T^1$
@end tex
, resp.@: 
@ifinfo
@math{T^2}
@end ifinfo
@tex
$T^2$
@end tex
, of an ideal 
@ifinfo
@math{j}
@end ifinfo
@tex
$j$
@end tex
 usually denote the modules of
infinitesimal deformations, resp.@: of obstructions.
In @sc{Singular} there are procedures @code{T_1} and @code{T_2} in
@code{sing.lib} such that
@code{T_1(j)} and @code{T_2(j)} compute a standard basis of
a presentation of these modules.
If T_1 and T_2 are finite dimensional K-vector spaces (e.g., for isolated
singularities), a basis can be computed by applying
@code{kbase(T_1(j));}, resp.@: @code{kbase(T_2(j));}, the dimensions by
applying @code{vdim}.
For a complete intersection j the procedure @code{Tjurina} also
computes T_1, but faster (T_2=0 in this case).
For a non complete intersection, it is faster to use the procedure @code{T_12}
instead of @code{T_1} and @code{T_2}.
Type @code{help T_1;} (or @code{help T_2;} or @code{help T_12;}) to obtain
more detailed information about these procedures.

We give three examples, the first being a hypersurface, the second a complete
intersection, the third no complete intersection:
@itemize @bullet
@item
load @code{sing.lib}
@item
check whether the ideal j is a complete intersection. It is, if
     number of variables = dimension + minimal number of generators
@item
compute the Tjurina number
@item
compute a vector space basis (kbase) of T_1
@item
compute the Hilbert function of T_1
@item
create a polynomial encoding the Hilbert series
@item
compute the dimension of T_2
@end itemize

@smallexample
@c computed example T1_and_T2 examples.doc:639 
  LIB "sing.lib";
  ring R=32003,(x,y,z),ds;
  // ---------------------------------------
  // hypersurface case (from series T[p,q,r]):
  int p,q,r = 3,3,4;
  poly f = x^p+y^q+z^r+xyz;
  tjurina(f);
@expansion{} 8
  // Tjurina number = 8
  kbase(Tjurina(f));
@expansion{} // Tjurina number = 8
@expansion{} _[1]=z3
@expansion{} _[2]=z2
@expansion{} _[3]=yz
@expansion{} _[4]=xz
@expansion{} _[5]=z
@expansion{} _[6]=y
@expansion{} _[7]=x
@expansion{} _[8]=1
  // ---------------------------------------
  // complete intersection case (from series P[k,l]):
  int k,l =3,2;
  ideal j=xy,x^k+y^l+z2;
  dim(std(j));          // Krull dimension
@expansion{} 1
  size(minbase(j));     // minimal number of generators
@expansion{} 2
  tjurina(j);           // Tjurina number
@expansion{} 6
  module T=Tjurina(j);
@expansion{} // Tjurina number = 6
  kbase(T);             // a sparse output of the k-basis of T_1
@expansion{} _[1]=z*gen(1)
@expansion{} _[2]=gen(1)
@expansion{} _[3]=y*gen(2)
@expansion{} _[4]=x2*gen(2)
@expansion{} _[5]=x*gen(2)
@expansion{} _[6]=gen(2)
  print(kbase(T));      // columns of matrix are a k-basis of T_1
@expansion{} z,1,0,0, 0,0,
@expansion{} 0,0,y,x2,x,1 
  // ---------------------------------------
  // general case (cone over rational normal curve of degree 4):
  ring r1=0,(x,y,z,u,v),ds;
  matrix m[2][4]=x,y,z,u,y,z,u,v;
  ideal i=minor(m,2);   // 2x2 minors of matrix m
  module M=T_1(i);       // a presentation matrix of T_1
@expansion{} // dim T_1 = 4
  vdim(M);              // Tjurina number
@expansion{} 4
  hilb(M);              // display of both Hilbert series
@expansion{} //         4 t^0
@expansion{} //       -20 t^1
@expansion{} //        40 t^2
@expansion{} //       -40 t^3
@expansion{} //        20 t^4
@expansion{} //        -4 t^5
@expansion{} 
@expansion{} //         4 t^0
@expansion{} // dimension (local)   = 0
@expansion{} // multiplicity = 4
  intvec v1=hilb(M,1);  // first Hilbert series as intvec
  intvec v2=hilb(M,2);  // second Hilbert series as intvec
  v1;
@expansion{} 4,-20,40,-40,20,-4,0
  v2;
@expansion{} 4,0
  v1[3];                // 3rd coefficient of the 1st Hilbert series
@expansion{} 40
  module N=T_2(i);
@expansion{} // dim T_2 = 3
@c end example T1_and_T2 examples.doc:639
@end smallexample
@smallexample
// In some cases it might be useful to have a polynomial in some ring
// encoding the Hilbert series. This polynomial can then be
// differentiated, evaluated etc. It can be done as follows:
ring H = 0,t,ls;
poly h1;
int ii;
for (ii=1; ii<=size(v1); ii=ii+1)
@{
   h1=h1+v1[ii]*t^(ii-1);
@}
h1;                   // 1st Hilbert series
@expansion{} 4-20t+40t2-40t3+20t4-4t5
diff(h1,t);           // differentiate  h1
@expansion{} -20+80t-120t2+80t3-20t4
subst(h1,t,1);        // substitute t by 1
@expansion{} 0

// The procedures T_1, T_2, T_12 may be called with two arguments and then
// they return a list with more information (type help T_1; etc.)
// e.g., T_12(i,<any>); returns a list with 9 nonempty objects where
// _[1] = std basis of T_1-module, _[2] = std basis of T_2-module,
// _[3]= vdim of T_1, _[4]= vdim of T_2
setring r1;           // make r1 again the basering
list L = T_12(i,1);
@expansion{} // dim T_1  =  4
@expansion{} // dim T_2  =  3
kbase(L[1]);          // kbase of T_1
@expansion{} _[1]=1*gen(2)
@expansion{} _[2]=1*gen(3)
@expansion{} _[3]=1*gen(6)
@expansion{} _[4]=1*gen(7)
kbase(L[2]);          // kbase of T_2
@expansion{} _[1]=1*gen(6)
@expansion{} _[2]=1*gen(8)
@expansion{} _[3]=1*gen(9)
L[3];                 // vdim of T_1
@expansion{} 4
L[4];                 // vdim of T_2
@expansion{} 3
@end smallexample
@c killall();            // a procedure from general.lib
@c @expansion{} // ** killing the basering for level 0
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Deformations, Finite fields, T1 and T2, Examples
@end ifset
@ifclear singularmanual
@node Deformations, Elimination, Parameters, Examples
@end ifclear
@section Deformations
@cindex Deformations

@itemize @bullet
@item
The libraries @code{sing.lib}, resp.@: @code{deform.lib}, contain procedures
to compute total and base space of the
miniversal (= semiuniversal) deformation of an
isolated complete intersection singularity, resp.@: arbitrary isolated
singularity.
@item
The procedure @code{deform} in @code{sing.lib} returns a matrix whose columns
@ifinfo
@code{h_1,..., h_r}
@end ifinfo
@tex
$h_1,\ldots,h_r$
@end tex
represent all 1st order deformations. More precisely, if
@ifinfo
I in R is the ideal generated by @code{f_1,...,f_s}, then any infinitesimal
deformation of R/I over K[e]/(e^2) is given by @code{f+eg},
where f=(f_1,...,f_s), g a K-linear combination of the h_i.
@end ifinfo
@tex
$I \subset R$ is the ideal generated by $f_1,...,f_s$, then any infinitesimal
deformation of $R/I$ over $K[\varepsilon]/(\varepsilon^2)$ is given
by $f+\varepsilon g$,
where $f=(f_1,...,f_s)$, $g$ a $K$-linear combination of the $h_i$.
@end tex

@item
The procedure @code{versal} in @code{deform.lib} computes a formal
miniversal deformation up to a certain order which can be
prescribed by the user. For a complete intersection the 1st order
part is already miniversal.
@item
The procedure @code{versal} extends the basering to a new ring with
additional deformation parameters which contains the equations for the
miniversal base space and the miniversal total space.
@item
There are default names for the objects created, but the user may also
choose his own names.
@item
If the user sets @code{printlevel=2;} before running @code{versal}, some
intermediate results are shown. This is useful since @code{versal}
is already complicated and might run for some time on more
complicated examples. (type @code{help versal;})
@end itemize

@ifset singularmanual
We compute for the same examples as in the preceding section
the miniversal deformations:
@end ifset
@ifclear singularmanual
We give three examples, the first being a hypersurface, the second a
complete intersection, the third no complete intersection and compute
in each of the cases the miniversal deformation:
@end ifclear

@smallexample
@c computed example Deformations examples.doc:787 
  LIB "deform.lib";
  ring R=32003,(x,y,z),ds;
  //----------------------------------------------------
  // hypersurface case (from series T[p,q,r]):
  int p,q,r = 3,3,4;
  poly f = x^p+y^q+z^r+xyz;
  print(deform(f));
@expansion{} z3,z2,yz,xz,z,y,x,1
  // the miniversal deformation of f=0 is the projection from the
  // miniversal total space to the miniversal base space:
  // @{ (A,B,C,D,E,F,G,H,x,y,z) | x3+y3+xyz+z4+A+Bx+Cxz+Dy+Eyz+Fz+Gz2+Hz3 =0 @}
  //  --> @{ (A,B,C,D,E,F,G,H) @}
  //----------------------------------------------------
  // complete intersection case (from series P[k,l]):
  int k,l =3,2;
  ideal j=xy,x^k+y^l+z2;
  print(deform(j));
@expansion{} 0,0, 0,0,z,1,
@expansion{} y,x2,x,1,0,0 
  versal(j);                  // using default names
@expansion{} // smooth base space
@expansion{} // ready: T_1 and T_2
@expansion{} 
@expansion{} // Result belongs to ring Px.
@expansion{} // Equations of total space of miniversal deformation are 
@expansion{} // given by Fs, equations of miniversal base space by Js.
@expansion{} // Make Px the basering and list objects defined in Px by typing:
@expansion{}    setring Px; show(Px);
@expansion{}    listvar(matrix);
@expansion{} // NOTE: rings Qx, Px, So are alive!
@expansion{} // (use 'kill_rings("");' to remove)
  setring Px;
  show(Px);                   // show is a procedure from inout.lib
@expansion{} // ring: (32003),(A,B,C,D,E,F,x,y,z),(ds(6),ds(3),C);
@expansion{} // minpoly = 0
@expansion{} // objects belonging to this ring:
@expansion{} // Rs                   [0]  matrix 2 x 1
@expansion{} // Fs                   [0]  matrix 1 x 2
@expansion{} // Js                   [0]  matrix 1 x 0
  listvar(matrix);
@expansion{} // Rs                   [0]  matrix 2 x 1
@expansion{} // Fs                   [0]  matrix 1 x 2
@expansion{} // Js                   [0]  matrix 1 x 0
  // ___ Equations of miniversal base space ___:
  Js;
@expansion{} 
  // ___ Equations of miniversal total space ___:
  Fs;
@expansion{} Fs[1,1]=xy+Ez+F
@expansion{} Fs[1,2]=y2+z2+x3+Ay+Bx2+Cx+D
  // the miniversal deformation of V(j) is the projection from the
  // miniversal total space to the miniversal base space:
  // @{ (A,B,C,D,E,F,x,y,z) | xy+F+Ez=0, y2+z2+x3+D+Cx+Bx2+Ay=0 @}
  //  --> @{ (A,B,C,D,E,F) @}
  //----------------------------------------------------
  // general case (cone over rational normal curve of degree 4):
  ring r1=0,(x,y,z,u,v),ds;
  matrix m[2][4]=x,y,z,u,y,z,u,v;
  ideal i=minor(m,2);                 // 2x2 minors of matrix m
  int time=timer;
  // Def_r is the name of the miniversal base space with
  // parameters A(1),...,A(4)
  versal(i,0,"Def_r","A(");
@expansion{} // ready: T_1 and T_2
@expansion{} 
@expansion{} // Result belongs to ring Def_rPx.
@expansion{} // Equations of total space of miniversal deformation are 
@expansion{} // given by Fs, equations of miniversal base space by Js.
@expansion{} // Make Def_rPx the basering and list objects defined in Def_rPx by typin\
   g:
@expansion{}    setring Def_rPx; show(Def_rPx);
@expansion{}    listvar(matrix);
@expansion{} // NOTE: rings Def_rQx, Def_rPx, Def_rSo are alive!
@expansion{} // (use 'kill_rings("Def_r");' to remove)
  "// used time:",timer-time,"sec";   // time of last command
@expansion{} // used time: 1 sec
  // the miniversal deformation of V(i) is the projection from the
  // miniversal total space to the miniversal base space:
  // @{ (A(1..4),x,y,z,u,v) |
  //         -y^2+x*z+A(2)*x-A(3)*y=0, -y*z+x*u-A(1)*x-A(3)*z=0,
  //         -y*u+x*v-A(3)*u-A(4)*z=0, -z^2+y*u-A(1)*y-A(2)*z=0,
  //         -z*u+y*v-A(2)*u-A(4)*u=0, -u^2+z*v+A(1)*u-A(4)*v=0 @}
  //  --> @{ A(1..4) |
  //         -A(1)*A(4) = A(3)*A(4) = -A(2)*A(4)-A(4)^2 = 0 @}
  //----------------------------------------------------
@c end example Deformations examples.doc:787
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Finite fields, Elimination, Deformations, Examples
@section Finite fields
@cindex Finite fields

We define a variety in 
@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
-space of codimension 2 defined by
polynomials of degree 
@ifinfo
@math{d}
@end ifinfo
@tex
$d$
@end tex
 with generic coefficients over the prime
field 
@ifinfo
@math{Z/p}
@end ifinfo
@tex
$Z/p$
@end tex
 and look for zeros on the torus. First over the prime
field and then in the finite extension field with
@tex
$p^k$
@end tex
@ifinfo
p^k
@end ifinfo
elements.
In general there will be many more solutions in the second case.
(Since the @sc{Singular} language is interpreted, the evaluation of many
@code{for}-loops is not very fast):

@smallexample
@c computed example Finite_fields examples.doc:860 
  int p=3;  int n=3;  int d=5; int k=2;
  ring rp = p,(x(1..n)),dp;
  int s = size(maxideal(d));
  s;
@expansion{} 21
  // create a dense homogeneous ideal m, all generators of degree d, with
  // generic (random) coefficients:
  ideal m = maxideal(d)*random(p,s,n-2);
  m;
@expansion{} m[1]=x(1)^3*x(2)^2-x(1)*x(2)^4+x(1)^4*x(3)-x(1)^3*x(2)*x(3)+x(1)*x(2)^3*x\
   (3)+x(2)^4*x(3)+x(2)^3*x(3)^2+x(1)*x(2)*x(3)^3+x(1)*x(3)^4-x(3)^5
  // look for zeros on the torus by checking all points (with no component 0)
  // of the affine n-space over the field with p elements :
  ideal mt;
  int i(1..n);                    // initialize integers i(1),...,i(n)
  int l;
  s=0;
  for (i(1)=1;i(1)<p;i(1)=i(1)+1)
  @{
    for (i(2)=1;i(2)<p;i(2)=i(2)+1)
    @{
      for (i(3)=1;i(3)<p;i(3)=i(3)+1)
      @{
        mt=m;
        for (l=1;l<=n;l=l+1)
        @{
          mt=subst(mt,x(l),i(l));
        @}
        if (size(mt)==0)
        @{
          "solution:",i(1..n);
          s=s+1;
        @}
      @}
    @}
  @}
@expansion{} solution: 1 1 2
@expansion{} solution: 1 2 1
@expansion{} solution: 1 2 2
@expansion{} solution: 2 1 1
@expansion{} solution: 2 1 2
@expansion{} solution: 2 2 1
  "//",s,"solutions over GF("+string(p)+")";
@expansion{} // 6 solutions over GF(3)
  // Now go to the field with p^3 elements:
  // As long as there is no map from Z/p to the field with p^3 elements
  // implemented, use the following trick: convert the ideal to be mapped
  // to the new ring to a string and then execute this string in the
  // new ring
  string ms="ideal m="+string(m)+";";
  ms;
@expansion{} ideal m=x(1)^3*x(2)^2-x(1)*x(2)^4+x(1)^4*x(3)-x(1)^3*x(2)*x(3)+x(1)*x(2)^\
   3*x(3)+x(2)^4*x(3)+x(2)^3*x(3)^2+x(1)*x(2)*x(3)^3+x(1)*x(3)^4-x(3)^5;
  // define a ring rpk with p^k elements, call the primitive element z. Hence
  // 'solution exponent: 0 1 5' means that (z^0,z^1,z^5) is a solution
  ring rpk=(p^k,z),(x(1..n)),dp;
  rpk;
@expansion{} //   # ground field : 9
@expansion{} //   primitive element : z
@expansion{} //   minpoly        : 1*z^2+1*z^1+2*z^0
@expansion{} //   number of vars : 3
@expansion{} //        block   1 : ordering dp
@expansion{} //                  : names    x(1) x(2) x(3) 
@expansion{} //        block   2 : ordering C
  execute(ms);
  s=0;
  ideal mt;
  for (i(1)=0;i(1)<p^k-1;i(1)=i(1)+1)
  @{
    for (i(2)=0;i(2)<p^k-1;i(2)=i(2)+1)
    @{
      for (i(3)=0;i(3)<p^k-1;i(3)=i(3)+1)
      @{
        mt=m;
        for (l=1;l<=n;l=l+1)
        @{
          mt=subst(mt,x(l),z^i(l));
        @}
        if (size(mt)==0)
        @{
          "solution exponent:",i(1..n);
          s=s+1;
        @}
      @}
    @}
  @}
@expansion{} solution exponent: 0 0 2
@expansion{} solution exponent: 0 0 4
@expansion{} solution exponent: 0 0 6
@expansion{} solution exponent: 0 1 0
@expansion{} solution exponent: 0 3 0
@expansion{} solution exponent: 0 4 0
@expansion{} solution exponent: 0 4 4
@expansion{} solution exponent: 0 4 5
@expansion{} solution exponent: 0 4 7
@expansion{} solution exponent: 1 1 3
@expansion{} solution exponent: 1 1 5
@expansion{} solution exponent: 1 1 7
@expansion{} solution exponent: 1 2 1
@expansion{} solution exponent: 1 4 1
@expansion{} solution exponent: 1 5 0
@expansion{} solution exponent: 1 5 1
@expansion{} solution exponent: 1 5 5
@expansion{} solution exponent: 1 5 6
@expansion{} solution exponent: 2 2 0
@expansion{} solution exponent: 2 2 4
@expansion{} solution exponent: 2 2 6
@expansion{} solution exponent: 2 3 2
@expansion{} solution exponent: 2 5 2
@expansion{} solution exponent: 2 6 1
@expansion{} solution exponent: 2 6 2
@expansion{} solution exponent: 2 6 6
@expansion{} solution exponent: 2 6 7
@expansion{} solution exponent: 3 3 1
@expansion{} solution exponent: 3 3 5
@expansion{} solution exponent: 3 3 7
@expansion{} solution exponent: 3 4 3
@expansion{} solution exponent: 3 6 3
@expansion{} solution exponent: 3 7 0
@expansion{} solution exponent: 3 7 2
@expansion{} solution exponent: 3 7 3
@expansion{} solution exponent: 3 7 7
@expansion{} solution exponent: 4 0 0
@expansion{} solution exponent: 4 0 1
@expansion{} solution exponent: 4 0 3
@expansion{} solution exponent: 4 0 4
@expansion{} solution exponent: 4 4 0
@expansion{} solution exponent: 4 4 2
@expansion{} solution exponent: 4 4 6
@expansion{} solution exponent: 4 5 4
@expansion{} solution exponent: 4 7 4
@expansion{} solution exponent: 5 0 5
@expansion{} solution exponent: 5 1 1
@expansion{} solution exponent: 5 1 2
@expansion{} solution exponent: 5 1 4
@expansion{} solution exponent: 5 1 5
@expansion{} solution exponent: 5 5 1
@expansion{} solution exponent: 5 5 3
@expansion{} solution exponent: 5 5 7
@expansion{} solution exponent: 5 6 5
@expansion{} solution exponent: 6 1 6
@expansion{} solution exponent: 6 2 2
@expansion{} solution exponent: 6 2 3
@expansion{} solution exponent: 6 2 5
@expansion{} solution exponent: 6 2 6
@expansion{} solution exponent: 6 6 0
@expansion{} solution exponent: 6 6 2
@expansion{} solution exponent: 6 6 4
@expansion{} solution exponent: 6 7 6
@expansion{} solution exponent: 7 0 7
@expansion{} solution exponent: 7 2 7
@expansion{} solution exponent: 7 3 3
@expansion{} solution exponent: 7 3 4
@expansion{} solution exponent: 7 3 6
@expansion{} solution exponent: 7 3 7
@expansion{} solution exponent: 7 7 1
@expansion{} solution exponent: 7 7 3
@expansion{} solution exponent: 7 7 5
  "//",s,"solutions over GF("+string(p^k)+")";
@expansion{} // 72 solutions over GF(9)
@c end example Finite_fields examples.doc:860
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Elimination, Free resolution, Finite fields, Examples
@end ifset
@ifclear singularmanual
@node Elimination, Free resolution, Deformations, Examples
@end ifclear
@section Elimination
@cindex Elimination

Elimination is the algebraic counterpart of the geometric concept of
projection. If
@tex
$f=(f_1,\ldots,f_n):k^r\rightarrow k^n$
@end tex
@ifinfo
f=(f1,...,fn) : k^r --> k^n
@end ifinfo
is a polynomial map,
the Zariski-closure of the image is the zero-set of the ideal
@tex
$$
\displaylines{
j=J \cap k[x_1,\ldots,x_n], \;\quad\hbox{\rm where}\cr
J=(x_1-f_1(t_1,\ldots,t_r),\ldots,x_n-f_n(t_1,\ldots,t_r))\subseteq
k[t_1,\ldots,t_r,x_1,\ldots,x_n]
}
$$
@end tex
@ifinfo

@smallexample
        j = J intersected with K[x1,...,xn]
J=(x1-f1(t1,...,tr),...,xn-fn(t1,...,tr)) in k[t1,...tr,x1,...,xn]
@end smallexample

@end ifinfo
i.e, of the ideal j obtained from J by eliminating the variables
@tex
$t_1,\ldots,t_r$.
@end tex
@ifinfo
t1,...,tr.
@end ifinfo
This can be done by computing a standard basis of J with respect to a product
ordering where the block of t-variables precedes the block of
x-variables and then selecting those polynomials which do not contain
any t. In @sc{Singular} the most convenient way is to use the
@code{eliminate} command.
In contrast to the first method, with @code{eliminate} the result needs not be a
standard basis in the given ordering.
Hence, there may be cases where the first method is the preferred one.

@strong{WARNING:} In the case of a local or a mixed ordering, elimination needs special
care. f may be considered as a map of germs
@tex
$f:(k^r,0)\rightarrow(k^n,0)$,
@end tex
@ifinfo
f : (k^r,0) --> (k^n,0),
@end ifinfo
but even
if this map germ is finite, we are in general not able to compute the image
germ because for this we would need an implementation of the Weierstrass
preparation theorem. What we can compute, and what @code{eliminate} actually does,
is the following: let V(J) be the zero-set of J in
@tex
$k^r\times(k^n,0)$,
@end tex
@ifinfo
k^r x (k^n,0),
@end ifinfo
then the
closure of the image of V(J) under the projection
@tex
$$\hbox{pr}:k^r\times(k^n,0)\rightarrow(k^n,0)$$
can be computed.
@end tex
@ifinfo
@*           pr:  k^r x (k^n,0) --> (k^n,0)
@*can be computed.
@end ifinfo
Note that this germ contains also those components
of V(J) which meet the fiber of pr outside the origin.
This is achieved by an ordering with the block of t-variables having a
global ordering (and preceding the x-variables) and the x-variables having
a local ordering. In a local situation we propose @code{eliminate} with
ordering ls.

In any case, if the input is weighted homogeneous (=quasihomogeneous),
the weights given to the variables should be chosen accordingly.
@sc{Singular} offers a function @code{weight} which proposes,
given an ideal or module, integer weights for the variables, such that
the ideal, resp.@: module, is as homogeneous as possible with respect to these weights.
The function finds correct weights, if the input is weighted homogeneous
(but is rather slow for many variables). In order to check, whether the
input is quasihomogeneous, use the function @code{qhweight}, which returns
an intvec of correct weights if the input is quasihomogeneous and an intvec
of zeros otherwise.

Let us give two examples:
@enumerate
@item
First we compute the equations of the simple space curve
@tex
$\hbox{T}[7]^\prime$
@end tex
@ifinfo
T[7]'
@end ifinfo
   consisting of two tangential cusps given in parametric form.
@item
We compute weights for the equations such that the
   equations are quasihomogeneous w.r.t. these weights.
@item
Then we compute the tangent developable of the rational
   normal curve in
@tex
$P^4$.
@end tex
@ifinfo
P^4.
@end ifinfo
@end enumerate

@smallexample
@c computed example Elimination examples.doc:1058 
  // 1. Compute equations of curve given in parametric form:
  // Two transversal cusps in (k^3,0):
  ring r1 = 0,(t,x,y,z),ls;
  ideal i1 = x-t2,y-t3,z;        // parametrization of the first branch
  ideal i2 = y-t2,z-t3,x;        // parametrization of the second branch
  ideal j1 = eliminate(i1,t);
  j1;                            // equations of the first branch
@expansion{} j1[1]=z
@expansion{} j1[2]=y2-x3
  ideal j2 = eliminate(i2,t);
  j2;                            // equations of the second branch
@expansion{} j2[1]=x
@expansion{} j2[2]=z2-y3
  // Now map to a ring with only x,y,z as variables and compute the
  // intersection of j1 and j2 there:
  ring r2 = 0,(x,y,z),ds;
  ideal j1= imap(r1,j1);         // imap is a convenient ringmap for
  ideal j2= imap(r1,j2);         // inclusions and projections of rings
  ideal i = intersect(j1,j2);
  i;                             // equations of both branches
@expansion{} i[1]=z2-y3+x3y
@expansion{} i[2]=xz
@expansion{} i[3]=xy2-x4
@expansion{} i[4]=x3z
  //
  // 2. Compute the weights:
  intvec v= qhweight(i);         // compute weights
  v;
@expansion{} 4,6,9
  //
  // 3. Compute the tangent developable
  // The tangent developable of a projective variety given parametrically
  // by F=(f1,...,fn) : P^r --> P^n is the union of all tangent spaces
  // of the image. The tangent space at a smooth point F(t1,...,tr)
  // is given as the image of the tangent space at (t1,...,tr) under
  // the tangent map (affine coordinates)
  //   T(t1,...,tr): (y1,...,yr) --> jacob(f)*transpose((y1,...,yr))
  // where jacob(f) denotes the jacobian matrix of f with respect to the
  // t's evaluated at the point (t1,...,tr).
  // Hence we have to create the graph of this map and then to eliminate
  // the t's and y's.
  // The rational normal curve in P^4 is given as the image of
  //        F(s,t) = (s4,s3t,s2t2,st3,t4)
  // each component being homogeneous of degree 4.
  ring P = 0,(s,t,x,y,a,b,c,d,e),dp;
  ideal M = maxideal(1);
  ideal F = M[1..2];     // take the 1st two generators of M
  F=F^4;
  // simplify(...,2); deletes 0-columns
  matrix jac = simplify(jacob(F),2);
  ideal T = x,y;
  ideal J = jac*transpose(T);
  ideal H = M[5..9];
  ideal i = H-J;         // this is tricky: difference between two
                         // ideals is not defined, but between two
                         // matrices. By automatic type conversion
                         // the ideals are converted to matrices,
                         // subtracted and afterwards converted
                         // to an ideal. Note that '+' is defined
                         // and adds (concatenates) two ideals
  i;
@expansion{} i[1]=-4s3x+a
@expansion{} i[2]=-3s2tx-s3y+b
@expansion{} i[3]=-2st2x-2s2ty+c
@expansion{} i[4]=-t3x-3st2y+d
@expansion{} i[5]=-4t3y+e
  // Now we define a ring with product ordering and weights 4
  // for the variables a,...,e.
  // Then we map i from P to P1 and eliminate s,t,x,y from i.
  ring P1 = 0,(s,t,x,y,a,b,c,d,e),(dp(4),wp(4,4,4,4,4));
  ideal i = fetch(P,i);
  ideal j= eliminate(i,stxy);    // equations of tangent developable
  j;
@expansion{} j[1]=3c2-4bd+ae
@expansion{} j[2]=2bcd-3ad2-3b2e+4ace
@expansion{} j[3]=8b2d2-9acd2-9b2ce+12ac2e-2abde
  // We can use the product ordering to eliminate s,t,x,y from i
  // by a std-basis computation.
  // We need proc 'nselect' from elim.lib.
  LIB "elim.lib";
  j = std(i);                    // compute a std basis j
  j = nselect(j,1,4);            // select generators from j not
  j;                             // containing variable 1,...,4
@expansion{} j[1]=3c2-4bd+ae
@expansion{} j[2]=2bcd-3ad2-3b2e+4ace
@expansion{} j[3]=8b2d2-9acd2-9b2ce+12ac2e-2abde
@c end example Elimination examples.doc:1058
@end smallexample
@c  killall();


@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Free resolution, Computation of Ext, Elimination, Examples
@end ifset
@ifclear singularmanual
@node Free resolution, Formatting output, Elimination, Examples
@end ifclear
@section  Free resolution
@cindex  Free resolution

In @sc{Singular} a free resolution of a module or ideal has its own type:
@code{resolution}. It is a structure that stores all information related to
free resolutions. This allows partial computations of resolutions via
the command @code{res}. After applying @code{res}, only a pre-format of the
resolution is computed which allows to determine invariants like
Betti-numbers or homological dimension. To see the differentials
of the complex, a resolution must be converted into the type list which
yields a list of modules: the k-th module in this
list is the first syzygy-module (module of relations) of the (k-1)st module.
There are the following commands to compute a resolution:
@table @code
@item res
@ifset singularmanual
@ref{res}@*
@end ifset
computes a free resolution of an ideal or module using a heuristically
chosen method.
This is the preferred method to compute free resolutions of ideals or
modules.
@item lres
@ifset singularmanual
@ref{lres}@*
@end ifset
computes a free resolution of an ideal or module with La Scala's
method. The input needs to be homogeneous.
@item mres
@ifset singularmanual
@ref{mres}@*
@end ifset
computes a minimal free resolution of an ideal or module with the syzygy
method.
@item sres
@ifset singularmanual
@ref{sres}@*
@end ifset
computes a free resolution of an ideal or module with Schreyer's
method. The input has to be a standard basis.
@item nres
@ifset singularmanual
@ref{nres}@*
@end ifset
computes a free resolution of an ideal or module with the standard basis
method.
@item minres
@ifset singularmanual
@ref{minres}@*
@end ifset
minimizes a free resolution of an ideal or module.
@item syz
@ifset singularmanual
@ref{syz}@*
@end ifset
computes the first syzygy module.
@end table
@code{res(i,r)}, @code{lres(i,r)}, @code{sres(i,r)}, @code{mres(i,r)},
@code{nres(i,r)} compute the first r modules of the resolution
of i, resp.@: the full resolution if r=0 and the basering is not a qring.
See the manual for a precise description of these commands.
@*Note: The command @code{betti} does not require a minimal
resolution for the minimal betti numbers.

Now let's look at an example which uses resolutions: The Hilbert-Burch
theorem says that the ideal i of a reduced curve in
@tex
$K^3$
@end tex
@ifinfo
K^3
@end ifinfo
has a free resolution of length 2 and that i is given by the 2x2 minors
of the 2nd matrix in the resolution.
We test this for two transversal cusps in
@tex
$K^3$.
@end tex
@ifinfo
K^3.
@end ifinfo
Afterwards we compute the resolution of the ideal j of the tangent developable
of the rational normal curve in
@tex
$P^4$
@end tex
@ifinfo
P^4
@end ifinfo
from above.
Finally we demonstrate the use of the type @code{resolution} in connection with
the @code{lres} command.

@smallexample
@c computed example Free_resolution examples.doc:1231 
  // Two transversal cusps in (k^3,0):
  ring r2 =0,(x,y,z),ds;
  ideal i =z2-1y3+x3y,xz,-1xy2+x4,x3z;
  resolution rs=mres(i,0);   // computes a minimal resolution
  rs;                        // the standard representation of complexes
@expansion{}   1       3       2       
@expansion{} r2 <--  r2 <--  r2
@expansion{} 
@expansion{} 0       1       2       
@expansion{} 
    list resi=rs;            // convertion to a list
  print(resi[1]);            // the 1st module is i minimized
@expansion{} xz,
@expansion{} z2-y3+x3y,
@expansion{} xy2-x4
  print(resi[2]);            // the 1st syzygy module of i
@expansion{} -z,-y2+x3,
@expansion{} x, 0,     
@expansion{} y, z      
  resi[3];                   // the 2nd syzygy module of i
@expansion{} _[1]=0
  ideal j=minor(resi[2],2);
  reduce(j,std(i));          // check whether j is contained in i
@expansion{} _[1]=0
@expansion{} _[2]=0
@expansion{} _[3]=0
  size(reduce(i,std(j)));    // check whether i is contained in j
@expansion{} 0
  // size(<ideal>) counts the non-zero generators
  // ---------------------------------------------
  // The tangent developable of the rational normal curve in P^4:
  ring P = 0,(a,b,c,d,e),dp;
  ideal j= 3c2-4bd+ae, -2bcd+3ad2+3b2e-4ace,
           8b2d2-9acd2-9b2ce+9ac2e+2abde-1a2e2;
  resolution rs=mres(j,0);
  rs;
@expansion{}  1      2      1      
@expansion{} P <--  P <--  P
@expansion{} 
@expansion{} 0      1      2      
@expansion{} 
  list L=rs;
  print(L[2]);
@expansion{} 2bcd-3ad2-3b2e+4ace,
@expansion{} -3c2+4bd-ae         
  // create an intmat with graded betti numbers
  intmat B=betti(rs);
  // this gives a nice output of betti numbers
  print(B,"betti");
@expansion{}            0     1     2
@expansion{} ------------------------
@expansion{}     0:     1     -     -
@expansion{}     1:     -     1     -
@expansion{}     2:     -     1     -
@expansion{}     3:     -     -     1
@expansion{} ------------------------
@expansion{} total:     1     2     1
  // the user has access to all betti numbers
  // the 2-nd column of B:
  B[1..4,2];
@expansion{} 0 1 1 0
  ring cyc5=32003,(a,b,c,d,e,h),dp;
  ideal i=
  a+b+c+d+e,
  ab+bc+cd+de+ea,
  abc+bcd+cde+dea+eab,
  abcd+bcde+cdea+deab+eabc,
  h5-abcde;
  resolution rs=lres(i,0);   //computes the resolution according La Scala
  rs;                        //the shape of the minimal resolution
@expansion{}     1         5         10         10         5         1         
@expansion{} cyc5 <--  cyc5 <--  cyc5 <--   cyc5 <--   cyc5 <--  cyc5
@expansion{} 
@expansion{} 0         1         2          3          4         5         
@expansion{} resolution not minimized yet
@expansion{} 
  print(betti(rs),"betti");  //shows the Betti-numbers of cyclic 5
@expansion{}            0     1     2     3     4     5
@expansion{} ------------------------------------------
@expansion{}     0:     1     1     -     -     -     -
@expansion{}     1:     -     1     1     -     -     -
@expansion{}     2:     -     1     1     -     -     -
@expansion{}     3:     -     1     2     1     -     -
@expansion{}     4:     -     1     2     1     -     -
@expansion{}     5:     -     -     2     2     -     -
@expansion{}     6:     -     -     1     2     1     -
@expansion{}     7:     -     -     1     2     1     -
@expansion{}     8:     -     -     -     1     1     -
@expansion{}     9:     -     -     -     1     1     -
@expansion{}    10:     -     -     -     -     1     1
@expansion{} ------------------------------------------
@expansion{} total:     1     5    10    10     5     1
  dim(rs);                   //the homological dimension
@expansion{} 4
  size(list(rs));            //gets the full (non-reduced) resolution
@expansion{} 6
  minres(rs);                //minimizes the resolution
@expansion{}     1         5         10         10         5         1         
@expansion{} cyc5 <--  cyc5 <--  cyc5 <--   cyc5 <--   cyc5 <--  cyc5
@expansion{} 
@expansion{} 0         1         2          3          4         5         
@expansion{} 
  size(list(rs));            //gets the minimized resolution
@expansion{} 6
@c end example Free_resolution examples.doc:1231
@end smallexample


@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Computation of Ext, Polar curves, Free resolution, Examples
@section  Computation of Ext
@cindex  Ext

We start by showing how to calculate the 
@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
-th Ext group of an
ideal. The ingredients to do this are by the definition of Ext the
following: calculate a (minimal) resolution at least up to length

@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
, apply the Hom-functor, and calculate the 
@ifinfo
@math{n}
@end ifinfo
@tex
$n$
@end tex
-th homology
group, that is form the quotient
@tex
$\hbox{\rm ker} / \hbox{\rm Im}$
@end tex
@ifinfo
ker/Im
@end ifinfo
in the resolution sequence.

The Hom functor is given simply by transposing (hence dualizing) the
module or the corresponding matrix with the command @code{transpose}.
The image of the 
@ifinfo
@math{(n-1)}
@end ifinfo
@tex
$(n-1)$
@end tex
-st map is generated by the columns of the
corresponding matrix. To calculate the kernel apply the command
@code{syz} at the 
@ifinfo
@math{(n-1)}
@end ifinfo
@tex
$(n-1)$
@end tex
-st transposed entry of the resolution.
Finally, the quotient is obtained by the command @code{modulo}, which
gives for two modules A = ker, B = Im the module of relations of
@tex
$A/(A \cap B)$
@end tex
@ifinfo
A/(A intersect B)
@end ifinfo
in the usual way. As we have a chain complex this is obviously the same
as ker/Im.

We collect these statements in the following short procedure:

@smallexample
proc ext(int n, ideal I)
@{
  resolution rs = mres(I,n+1);
  module tAn    = transpose(rs[n+1]);
  module tAn_1  = transpose(rs[n]);
  module ext_n  = modulo(syz(tAn),tAn_1);
  return(ext_n);
@}
@end smallexample

Now consider the following example:

@smallexample
ring r5 = 32003,(a,b,c,d,e),dp;
ideal I = a2b2+ab2c+b2cd, a2c2+ac2d+c2de,a2d2+ad2e+bd2e,a2e2+abe2+bce2;
print(ext(2,I));
@expansion{} 1,0,0,0,0,0,0,
@expansion{} 0,1,0,0,0,0,0,
@expansion{} 0,0,1,0,0,0,0,
@expansion{} 0,0,0,1,0,0,0,
@expansion{} 0,0,0,0,1,0,0,
@expansion{} 0,0,0,0,0,1,0,
@expansion{} 0,0,0,0,0,0,1
ext(3,I);   // too big to be displayed here
@end smallexample

The library @code{homolog.lib} contains several procedures for computing
Ext-modules and related modules, which are much more general and
sophisticated then the above one. They are used in the following
example.

If 
@ifinfo
@math{M}
@end ifinfo
@tex
$M$
@end tex
 is a module, then
@tex
$\hbox{Ext}^1(M,M)$, resp.\ $\hbox{Ext}^2(M,M)$,
@end tex
@ifinfo
Ext^1(M,M), resp.@: Ext^2(M,M),
@end ifinfo
are the modules of infinitesimal deformations, resp.@: of obstructions, of

@ifinfo
@math{M}
@end ifinfo
@tex
$M$
@end tex
 (like T1 and T2 for a singularity).  Similar to the treatment
for singularities, the semiuniversal deformation of 
@ifinfo
@math{M}
@end ifinfo
@tex
$M$
@end tex
 can be
computed (if
@tex
$\hbox{Ext}^1$
@end tex
@ifinfo
Ext^1
@end ifinfo
is finite dimensional) with the help of
@tex
$\hbox{Ext}^1$, $\hbox{Ext}^2$
@end tex
@ifinfo
Ext^1, Ext^2
@end ifinfo
and the cup product. There is an extra procedure for
@tex
$\hbox{Ext}^k(R/J,R)$
@end tex
@ifinfo
Ext^k(R/J,R)
@end ifinfo
if 
@ifinfo
@math{J}
@end ifinfo
@tex
$J$
@end tex
 is an ideal in 
@ifinfo
@math{R}
@end ifinfo
@tex
$R$
@end tex
 since this is faster than the
general Ext.

We compute
@itemize @bullet
@item
the infinitesimal deformations
@tex
($=\hbox{Ext}^1(K,K)$)
@end tex
@ifinfo
(=Ext^1(K,K))
@end ifinfo
and obstructions
@tex
($=\hbox{Ext}^2(K,K)$)
@end tex
@ifinfo
(=Ext^2(K,K))
@end ifinfo
of the residue field 
@ifinfo
@math{K=R/m}
@end ifinfo
@tex
$K=R/m$
@end tex
 of an ordinary cusp,
@tex
$R=Loc_m K[x,y]/(x^2-y^3)$, $m=(x,y)$.
@end tex
@ifinfo
R=Loc_m K[x,y]/(x^2-y^3), m=(x,y).
@end ifinfo
To compute
@tex
$\hbox{Ext}^1(m,m)$
@end tex
@ifinfo
Ext^1(m,m),
@end ifinfo
we have to apply @code{Ext(1,syz(m),syz(m))} with
@code{syz(m)} the first syzygy module of 
@ifinfo
@math{m}
@end ifinfo
@tex
$m$
@end tex
, which is isomorphic to
@tex
$\hbox{Ext}^2(K,K)$.
@end tex
@ifinfo
Ext^2(K,K).
@end ifinfo
@item
@tex
$\hbox{Ext}^k(R/i,R)$
@end tex
@ifinfo
Ext^k(R/i,R)
@end ifinfo
for some ideal 
@ifinfo
@math{i}
@end ifinfo
@tex
$i$
@end tex
 and with an extra option.
@end itemize

@smallexample
@c computed example Computation_of_Ext examples.doc:1432 
  LIB "homolog.lib";
  ring R=0,(x,y),ds;
  ideal i=x2-y3;
  qring q = std(i);      // defines the quotient ring Loc_m k[x,y]/(x2-y3)
  ideal m = maxideal(1);
  module T1K = Ext(1,m,m);  // computes Ext^1(R/m,R/m)
@expansion{} // dimension of Ext^1:  0
@expansion{} // vdim of Ext^1:       2
@expansion{} 
  print(T1K);
@expansion{} 0,  0,y,x,0,y,0,    x2-y3,
@expansion{} -y2,x,x,0,y,0,x2-y3,0,    
@expansion{} 1,  0,0,0,0,0,0,    0     
  printlevel=2;             // gives more explanation
  module T2K=Ext(2,m,m);    // computes Ext^2(R/m,R/m)
@expansion{} // Computing Ext^2 (help Ext; gives an explanation):
@expansion{} // Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),
@expansion{} // and 0<--coker(N)<--G0<--G1 a presentation of coker(N),
@expansion{} // then Hom(F2,G0)-->Hom(F3,G0) is given by:
@expansion{} y2,x,
@expansion{} x, y 
@expansion{} // and Hom(F1,G0) + Hom(F2,G1)-->Hom(F2,G0) is given by:
@expansion{} -y,x,  x,0,y,0,
@expansion{} x, -y2,0,x,0,y 
@expansion{} 
@expansion{} // dimension of Ext^2:  0
@expansion{} // vdim of Ext^2:       2
@expansion{} 
  print(std(T2K));
@expansion{} -y2,0,x,0,y,
@expansion{} 0,  x,0,y,0,
@expansion{} 1,  0,0,0,0 
  printlevel=0;
  module E = Ext(1,syz(m),syz(m));
@expansion{} // dimension of Ext^1:  0
@expansion{} // vdim of Ext^1:       2
@expansion{} 
  print(std(E));
@expansion{} -y,x, 0, 0,0,x,0,y,
@expansion{} 0, -y,-y,0,x,0,y,0,
@expansion{} 0, 0, 0, 1,0,0,0,0,
@expansion{} 0, 0, 1, 0,0,0,0,0,
@expansion{} 0, 1, 0, 0,0,0,0,0,
@expansion{} 1, 0, 0, 0,0,0,0,0 
  //The matrices which we have just computed are presentation matrices
  //of the modules T2K and E. Hence we may ignore those columns
  //containing 1 as an entry and see that T2K and E are isomorphic
  //as expected, but differently presented.
  //-------------------------------------------
  ring S=0,(x,y,z),dp;
  ideal  i = x2y,y2z,z3x;
  module E = Ext_R(2,i);
@expansion{} // dimension of Ext^2:  1
@expansion{} 
  print(E);
@expansion{} 0,y,0,z2,
@expansion{} z,0,0,-x,
@expansion{} 0,0,x,-y 
  // if a 3-rd argument is given (of any type)
  // a list of Ext^k(R/i,R), a SB of Ext^k(R/i,R) and a vector space basis
  // is returned:
  list LE = Ext_R(3,i,"");
@expansion{} // dimension of Ext^3:  0
@expansion{} // vdim of Ext^3:       2
@expansion{} 
  LE;
@expansion{} [1]:
@expansion{}    _[1]=y*gen(1)
@expansion{}    _[2]=x*gen(1)
@expansion{}    _[3]=z2*gen(1)
@expansion{} [2]:
@expansion{}    _[1]=y*gen(1)
@expansion{}    _[2]=x*gen(1)
@expansion{}    _[3]=z2*gen(1)
@expansion{} [3]:
@expansion{}    _[1,1]=z
@expansion{}    _[1,2]=1
  print(LE[2]);
@expansion{} y,x,z2
  print(kbase(LE[2]));
@expansion{} z,1
@c end example Computation_of_Ext examples.doc:1432
@end smallexample
@c  killall();
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Polar curves, Depth, Computation of Ext, Examples
@section   Polar curves
@cindex Polar curves

The polar curve of a hypersurface given by a polynomial
@tex
$f\in k[x_1,\ldots,x_n,t]$
@end tex
@ifinfo
f in k[x1,...,xn,t]
@end ifinfo
with respect to 
@ifinfo
@math{t}
@end ifinfo
@tex
$t$
@end tex
 (we may consider 
@ifinfo
@math{f=0}
@end ifinfo
@tex
$f=0$
@end tex
 as a family of
hypersurfaces parametrized by 
@ifinfo
@math{t}
@end ifinfo
@tex
$t$
@end tex
) is defined as the Zariski
closure of
@tex
$V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n) \setminus V(f)$
@end tex
@ifinfo
V(diff(f,x1),...,diff(f,xn)) \ V(f)
@end ifinfo
if this happens to be a curve.  Some authors consider
@tex
$V(\partial f/\partial x_1,\ldots,\partial f/\partial x_n)$
@end tex
@ifinfo
V(diff(f,x1),...,diff(f,xn))
@end ifinfo
itself as polar curve.

We may consider projective hypersurfaces
@tex
(in $P^n$),
@end tex
@ifinfo
(in P^n),
@end ifinfo
affine hypersurfaces
@tex
(in $k^n$)
@end tex
@ifinfo
(in k^n)
@end ifinfo
or germs of hypersurfaces
@tex
(in $(k^n,0)$),
@end tex
@ifinfo
(in (k^n,0)),
@end ifinfo
getting in this way
projective, affine or local polar curves.

Now let us compute this for a family of curves.  We need the library
@code{elim.lib} for saturation and @code{sing.lib} for the singular
locus.

@smallexample
@c computed example Polar_curves examples.doc:1526 
  LIB "elim.lib";
  LIB "sing.lib";
  // Affine polar curve:
  ring R = 0,(x,z,t),dp;              // global ordering dp
  poly f = z5+xz3+x2-tz6;
  dim_slocus(f);                      // dimension of singular locus
@expansion{} 1
  ideal j = diff(f,x),diff(f,z);
  dim(std(j));                        // dim V(j)
@expansion{} 1
  dim(std(j+ideal(f)));               // V(j,f) also 1-dimensional
@expansion{} 1
  // j defines a curve, but to get the polar curve we must remove the
  // branches contained in f=0 (they exist since dim V(j,f) = 1). This
  // gives the polar curve set theoretically. But for the structure we
  // may take either j:f or j:f^k for k sufficiently large. The first is
  // just the ideal quotient, the second the iterated ideal quotient
  // or saturation. In our case both coincide.
  ideal q = quotient(j,ideal(f));     // ideal quotient
  ideal qsat = sat(j,f)[1];           // saturation, proc from elim.lib
  ideal sq = std(q);
  dim(sq);
@expansion{} 1
  // 1-dimensional, hence q defines the affine polar curve
  //
  // to check that q and qsat are the same, we show both inclusions, i.e.,
  // both reductions must give the 0-ideal
  size(reduce(qsat,sq));
@expansion{} 0
  size(reduce(q,std(qsat)));
@expansion{} 0
  qsat;
@expansion{} qsat[1]=12zt+3z-10
@expansion{} qsat[2]=5z2+12xt+3x
@expansion{} qsat[3]=144xt2+72xt+9x+50z
  // We see that the affine polar curve does not pass through the origin,
  // hence we expect the local polar "curve" to be empty
  // ------------------------------------------------
  // Local polar curve:
  ring r = 0,(x,z,t),ds;              // local ordering ds
  poly f = z5+xz3+x2-tz6;
  ideal j = diff(f,x),diff(f,z);
  dim(std(j));                        // V(j) 1-dimensional
@expansion{} 1
  dim(std(j+ideal(f)));               // V(j,f) also 1-dimensional
@expansion{} 1
  ideal q = quotient(j,ideal(f));     // ideal quotient
  q;
@expansion{} q[1]=1
  // The local polar "curve" is empty, i.e., V(j) is contained in V(f)
  // ------------------------------------------------
  // Projective polar curve: (we need "sing.lib" and "elim.lib")
  ring P = 0,(x,z,t,y),dp;            // global ordering dp
  poly f = z5y+xz3y2+x2y4-tz6;
                                      // but consider t as parameter
  dim_slocus(f);              // projective 1-dimensional singular locus
@expansion{} 2
  ideal j = diff(f,x),diff(f,z);
  dim(std(j));                        // V(j), projective 1-dimensional
@expansion{} 2
  dim(std(j+ideal(f)));               // V(j,f) also projective 1-dimensional
@expansion{} 2
  ideal q = quotient(j,ideal(f));
  ideal qsat = sat(j,f)[1];           // saturation, proc from elim.lib
  dim(std(qsat));
@expansion{} 2
  // projective 1-dimensional, hence q and/or qsat define the projective
  // polar curve. In this case, q and qsat are not the same, we needed
  // 2 quotients.
  // Let us check both reductions:
  size(reduce(qsat,std(q)));
@expansion{} 4
  size(reduce(q,std(qsat)));
@expansion{} 0
  // Hence q is contained in qsat but not conversely
  q;
@expansion{} q[1]=12zty+3zy-10y2
@expansion{} q[2]=60z2t-36xty-9xy-50zy
  qsat;
@expansion{} qsat[1]=12zt+3z-10y
@expansion{} qsat[2]=12xty+5z2+3xy
@expansion{} qsat[3]=144xt2+72xt+9x+50z
@expansion{} qsat[4]=z3+2xy2
  //
  // Now consider again the affine polar curve,
  // homogenize it with respect to y (deg t=0) and compare:
  // affine polar curve:
  ideal qa = 12zt+3z-10,5z2+12xt+3x,-144xt2-72xt-9x-50z;
  // homogenized:
  ideal qh = 12zt+3z-10y,5z2+12xyt+3xy,-144xt2-72xt-9x-50z;
  size(reduce(qh,std(qsat)));
@expansion{} 0
  size(reduce(qsat,std(qh)));
@expansion{} 0
  // both ideals coincide
@c end example Polar_curves examples.doc:1526
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Depth, Formatting output, Polar curves, Examples
@section Depth
@cindex Depth

We compute the depth of the module of Kaehler differentials
@tex
D$_k$(R)
@end tex
@ifinfo
D_k(R)
@end ifinfo
of the variety defined by the 
@ifinfo
@math{(m+1)}
@end ifinfo
@tex
$(m+1)$
@end tex
-minors of a generic symmetric
@tex
$(n \times n)$-matrix.
@end tex
@ifinfo
(n x n)-matrix.
@end ifinfo
We do this by computing the resolution over the polynomial
ring.  Then, by the Auslander-Buchsbaum formula, the depth is equal to
the number of variables minus the length of a minimal resolution.  This
example was suggested by U.@: Vetter in order to check whether his bound
@tex
$\hbox{depth}(\hbox{D}_k(R))\geq m(m+1)/2 + m-1$
@end tex
@ifinfo
depth(D_k(R)) >= m(m+1)/2 + m-1
@end ifinfo
could be improved.

@smallexample
@c computed example Depth examples.doc:1632 
  LIB "matrix.lib"; LIB "sing.lib";
  int n = 4;
  int m = 3;
  int N = n*(n+1)/2;           // will become number of variables
  ring R = 32003,x(1..N),dp;
  matrix X = symmat(n);        // proc from matrix.lib
                               // creates the symmetric generic nxn matrix
  print(X);
@expansion{} x(1),x(2),x(3),x(4),
@expansion{} x(2),x(5),x(6),x(7),
@expansion{} x(3),x(6),x(8),x(9),
@expansion{} x(4),x(7),x(9),x(10)
  ideal J = minor(X,m);
  J=std(J);
  // Kaehler differentials D_k(R)
  // of R=k[x1..xn]/J:
  module D = J*freemodule(N)+transpose(jacob(J));
  ncols(D);
@expansion{} 110
  nrows(D);
@expansion{} 10
  //
  // Note: D is a submodule with 110 generators of a free module
  // of rank 10 over a polynomial ring in 10 variables.
  // Compute a full resolution of D with sres.
  // This takes about 17 sec on a Mac PB 520c and 2 sec an a HP 735
  int time = timer;
  module sD = std(D);
  list Dres = sres(sD,0);                // the full resolution
  timer-time;                            // time used for std + sres
@expansion{} 0
  intmat B = betti(Dres);
  print(B,"betti");
@expansion{}            0     1     2     3     4     5     6
@expansion{} ------------------------------------------------
@expansion{}     0:    10     -     -     -     -     -     -
@expansion{}     1:     -    10     -     -     -     -     -
@expansion{}     2:     -    84   144    60     -     -     -
@expansion{}     3:     -     -    35    80    60    16     1
@expansion{} ------------------------------------------------
@expansion{} total:    10    94   179   140    60    16     1
  N-ncols(B)+1;                          // the desired depth
@expansion{} 4
@c end example Depth examples.doc:1632
@end smallexample
@c  killall();
@end ifset

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Formatting output, Cyclic roots, Depth, Examples
@end ifset
@ifclear singularmanual
@node Formatting output, Factorization, Free resolution, Examples
@end ifclear
@section Formatting output
@cindex Formatting output

We show how to insert the result of a computation inside a text
by using strings.
First we compute the powers of 2 and comment the result with some text.
Then we do the same and give the output a nice format by computing and
adding appropriate space.

@smallexample
@c computed example Formatting_output examples.doc:1682 
  // The powers of 2:
  int  n;
  for (n = 2; n <= 128; n = n * 2)
  @{"n = " + string (n);@}
@expansion{} n = 2
@expansion{} n = 4
@expansion{} n = 8
@expansion{} n = 16
@expansion{} n = 32
@expansion{} n = 64
@expansion{} n = 128
  // The powers of 2 in a nice format
  int j;
  string space = "";
  for (n = 2; n <= 128; n = n * 2)
  @{
    space = "";
    for (j = 1; j <= 5 - size (string (n)); j = j+1)
    @{ space = space + " "; @}
    "n =" + space + string (n);
  @}
@expansion{} n =    2
@expansion{} n =    4
@expansion{} n =    8
@expansion{} n =   16
@expansion{} n =   32
@expansion{} n =   64
@expansion{} n =  128
@c end example Formatting_output examples.doc:1682
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Cyclic roots, G_a -Invariants, Formatting output, Examples
@section Cyclic roots
@cindex Cyclic roots

We write a procedure returning a string that enables us to create
automatically the ideal of cyclic roots over the basering with n
variables. The procedure assumes that the variables consist of a single
letter each (hence no indexed variables are allowed; the procedure
@code{cyclic} in @code{poly.lib} does not have this restriction). Then
we compute a standard basis of this ideal and some numerical
information.  (This ideal is used as a classical benchmark for standard
basis computations).

@smallexample
// We call the procedure 'cyclic':
proc cyclic (int n)
@{
   string vs = varstr(basering)+varstr(basering);
   int c=find(vs,",");
   while ( c!=0 )
   @{
      vs=vs[1,c-1]+vs[c+1,size(vs)];
      c=find(vs,",");
   @}
   string t,s;
   int i,j;
   for ( j=1; j<=n-1; j=j+1 )
   @{
      t="";
      for ( i=1; i <=n; i=i+1 )
      @{
         t = t + vs[i,j] + "+";
      @}
      t = t[1,size(t)-1] + ","+newline;
      s=s+t;
   @}
   s=s+vs[1,n]+"-1";
   return (s);
@}

ring r=0,(a,b,c,d,e),lp;         // basering, char 0, lex ordering
string sc=cyclic(nvars(basering));
sc;                              // the string of the ideal
@expansion{} a+b+c+d+e,
@expansion{} ab+bc+cd+de+ea,
@expansion{} abc+bcd+cde+dea+eab,
@expansion{} abcd+bcde+cdea+deab+eabc,
@expansion{} abcde-1
execute("ideal i="+sc+";");      // this defines the ideal of cyclic roots
i;
@expansion{} i[1]=a+b+c+d+e
@expansion{} i[2]=ab+bc+cd+ae+de
@expansion{} i[3]=abc+bcd+abe+ade+cde
@expansion{} i[4]=abcd+abce+abde+acde+bcde
@expansion{} i[5]=abcde-1
timer=1;
ideal j=std(i);
@expansion{} //used time: 7.5 sec
size(j);                         // number of elements in the std basis
@expansion{} 11
degree(j);
@expansion{} // codimension = 5
@expansion{} // dimension   = 0
@expansion{} // degree      = 70
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node G_a -Invariants, Invariants of a finite group, Cyclic roots, Examples
@section G_a -Invariants
@cindex G_a -Invariants

We work in characteristic 0 and use the Lie algebra generated by one
vector field of the form
@tex
$\sum x_i \partial /\partial x_{i+1}$.
@end tex
@ifinfo
sum x(i)*d/dx(i+1).
@end ifinfo
@smallexample
@c computed example G_a_-Invariants examples.doc:1783 
  LIB "ainvar.lib";
  int n=5;
  int i;
  ring s=32003,(x(1..n)),wp(1,2,3,4,5);
  // definition of the vector field m=sum m[i,1]*d/dx(i)
  matrix m[n][1];
  for (i=1;i<=n-1;i=i+1)
  @{
     m[i+1,1]=x(i);
  @}
  // computation of the ring of invariants
  ideal in=invariantRing(m,x(2),x(1),0);
  in;   //invariant ring is generated by 5 invariants
@expansion{} in[1]=x(1)
@expansion{} in[2]=x(2)^2-2*x(1)*x(3)
@expansion{} in[3]=x(3)^2-2*x(2)*x(4)+2*x(1)*x(5)
@expansion{} in[4]=x(2)^3-3*x(1)*x(2)*x(3)+3*x(1)^2*x(4)
@expansion{} in[5]=x(3)^3-3*x(2)*x(3)*x(4)-15997*x(1)*x(4)^2+3*x(2)^2*x(5)-6*x(1)*x(3)\
   *x(5)
  ring q=32003,(x,y,z,u,v,w),dp;
  matrix m[6][1];
  m[2,1]=x;
  m[3,1]=y;
  m[5,1]=u;
  m[6,1]=v;
  // the vector field is: xd/dy+yd/dz+ud/dv+vd/dw
  ideal in=invariantRing(m,y,x,0);
  in; //invariant ring is generated by 6 invariants
@expansion{} in[1]=x
@expansion{} in[2]=u
@expansion{} in[3]=v2-2uw
@expansion{} in[4]=zu-yv+xw
@expansion{} in[5]=yu-xv
@expansion{} in[6]=y2-2xz
@c end example G_a_-Invariants examples.doc:1783
@end smallexample
@c kill n,i,s,q;
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Invariants of a finite group, Factorization, G_a -Invariants, Examples
@section Invariants of a finite group
@cindex Invariants of a finite group

Two algorithms to compute the invariant ring are implemented in
@sc{Singular}, @code{invariant_ring} and @code{invariant_ring_random},
both by Agnes E. Heydtmann (@code{agnes@@math.uni-sb.de}).

Bases of homogeneous invariants are generated successively and those are
chosen as primary invariants that lower the dimension of the ideal
generated by the previously found invariants (see paper "Generating a
Noetherian Normalization of the Invariant Ring of a Finite Group" by
Decker, Heydtmann, Schreyer (1997) to appear in JSC).  In the
non-modular case secondary invariants are calculated by finding a basis
(in terms of monomials) of the basering modulo the primary invariants,
mapping to invariants with the Reynolds operator and using those or
their power products such that they are linearly independent modulo the
primary invariants (see paper "Some Algorithms in Invariant Theory of
Finite Groups" by Kemper and Steel (1997)).  In the modular case they
are generated according to "Generating Invariant Rings of Finite Groups
over Arbitrary Fields" by Kemper (1996, to appear in JSC).

We calculate now an example from Sturmfels: "Algorithms in Invariant
Theory 2.3.7":

@smallexample
@c computed example Invariants_of_a_finite_group examples.doc:1838 
  LIB "finvar.lib";
  ring R=0,(x,y,z),dp;
  matrix A[3][3]=0,1,0,-1,0,0,0,0,-1;
  // the group G is generated by A in Gl(3,Q);
  print(A);
@expansion{} 0, 1,0,
@expansion{} -1,0,0,
@expansion{} 0, 0,-1
  print(A*A*A*A); // the fourth power of A is 1
@expansion{} 1,0,0,
@expansion{} 0,1,0,
@expansion{} 0,0,1 
  // Use the first method to compute the invariants of G:
  matrix B(1..3);
  B(1..3)=invariant_ring(A);
  // SINGULAR returns 2 matrices, the first containing
  // primary invariants and the second secondary
  // invariants, i.e., module generators over a Noetherian
  // normalization
  // the third result are the irreducible secondary invariants
  // if the Molien series was available
  print(B(1));
@expansion{} z2,x2+y2,x2y2
  print(B(2));
@expansion{} 1,xyz,x2z-y2z,x3y-xy3
  print(B(3));
@expansion{} xyz,x2z-y2z,x3y-xy3
  // Use the second method,
  // with random numbers between -1 and 1:
  B(1..3)=invariant_ring_random(A,1);
  print(B(1..3));
@expansion{} z2,x2+y2,x4+y4-z4
@expansion{} 1,xyz,x2z-y2z,x3y-xy3
@expansion{} xyz,x2z-y2z,x3y-xy3
@c end example Invariants_of_a_finite_group examples.doc:1838
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Factorization, Puiseux pairs, Invariants of a finite group, Examples
@end ifset
@ifclear singularmanual
@node Factorization, Kernel of module homomorphisms, Formatting output, Examples
@end ifclear
@section Factorization
@cindex Factorization

The factorization of polynomials is implemented in the C++ libraries
Factory (written mainly by Ruediger Stobbe) and libfac (written by
Michael Messollen) which are part of the @sc{Singular} system.

@smallexample
@c computed example Factorization examples.doc:1879 
  ring r = 0,(x,y),dp;
  poly f = 9x16-18x13y2-9x12y3+9x10y4-18x11y2+36x8y4
         +18x7y5-18x5y6+9x6y4-18x3y6-9x2y7+9y8;
  // = 9 * (x5-1y2)^2 * (x6-2x3y2-1x2y3+y4)
  factorize(f);
@expansion{} [1]:
@expansion{}    _[1]=9
@expansion{}    _[2]=x6-2x3y2-x2y3+y4
@expansion{}    _[3]=-x5+y2
@expansion{} [2]:
@expansion{}    1,1,2
  // returns factors and multiplicities,
  // first factor is a constant.
  poly g = (y4+x8)*(x2+y2);
  factorize(g);
@expansion{} [1]:
@expansion{}    _[1]=1
@expansion{}    _[2]=x8+y4
@expansion{}    _[3]=x2+y2
@expansion{} [2]:
@expansion{}    1,1,1
  // The same in characteristic 2:
  ring s =2,(x,y),dp;
  poly g = (y4+x8)*(x2+y2);
  factorize(g);
@expansion{} [1]:
@expansion{}    _[1]=1
@expansion{}    _[2]=x+y
@expansion{}    _[3]=x2+y
@expansion{} [2]:
@expansion{}    1,2,4
@c end example Factorization examples.doc:1879
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Puiseux pairs, Primary decomposition, Factorization, Examples
@section Puiseux pairs
@cindex Puiseux pairs

The Puiseux pairs of an irreducible and reduced curve singularity are
its most important invariants.  They can be computed from its
Hamburger-Noether expansion.  The library @code{hnoether.lib} written by
Martin Lamm uses the algorithm of Antonio Campillo "Algebroid curves in
positive characteristic" SLN 813, 1980.  This algorithm has the
advantage that it needs least possible field extensions and, moreover,
works in any characteristic. This fact can be used to compute the
invariants over a field of finite characteristic, say 32003, which will
then most probably be the same in characteristic 0.

We compute the Hamburger-Noether expansion of a plane curve
singularity given by a polynomial 
@ifinfo
@math{f}
@end ifinfo
@tex
$f$
@end tex
 in two variables. This is a
matrix which allows to compute the parametrization (up to a given order)
and all numerical invariants like the
@itemize @bullet
@item
    characteristic exponents,
@item
    Puiseux pairs (of a complex model),
@item
    degree of the conductor,
@item
    delta invariant,
@item
    generators of the semigroup.
@end itemize
Besides this, the library contains procedures to compute the Newton
polygon of 
@ifinfo
@math{f}
@end ifinfo
@tex
$f$
@end tex
, the squarefree part of 
@ifinfo
@math{f}
@end ifinfo
@tex
$f$
@end tex
 and a procedure to
convert one set of invariants to another.


@smallexample
@c computed example Puiseux_pairs examples.doc:1934 
  LIB "hnoether.lib";
  // ======== The irreducible case ========
  ring s = 0,(x,y),ds;
  poly f = y4-2x3y2-4x5y+x6-x7;
  list hn = develop(f);
  show(hn[1]);     // Hamburger-Noether matrix
@expansion{} // matrix, 3x3
@expansion{} 0,x,  0,  
@expansion{} 0,1,  x,  
@expansion{} 0,1/4,-1/2
  displayHNE(hn);  // Hamburger-Noether development
@expansion{} HNE[1]=-y+z(0)*z(1)
@expansion{} HNE[2]=-x+z(1)^2+z(1)^2*z(2)
@expansion{} HNE[3]=1/4*z(2)^2-1/2*z(2)^3
  setring s;
  displayInvariants(hn);
@expansion{}  characteristic exponents  : 4,6,7
@expansion{}  generators of semigroup   : 4,6,13
@expansion{}  Puiseux pairs             : (3,2)(7,2)
@expansion{}  degree of the conductor   : 16
@expansion{}  delta invariant           : 8
@expansion{}  sequence of multiplicities: 4,2,2,1,1
  // invariants(hn);  returns the invariants as list
  // partial parametrization of f: param takes the first variable
  // as infinite except the ring has more than 2 variables. Then
  // the 3rd variable is chosen.
  param(hn);
@expansion{} // ** Warning: result is exact up to order 5 in x and 7 in y !
@expansion{} _[1]=1/16x4-3/16x5+1/4x7
@expansion{} _[2]=1/64x6-5/64x7+3/32x8+1/16x9-1/8x10
  ring extring=0,(x,y,t),ds;
  poly f=x3+2xy2+y2;
  list hn=develop(f,-1);
  param(hn);       // partial parametrization of f
@expansion{} // ** Warning: result is exact up to order 2 in x and 3 in y !
@expansion{} _[1]=-t2
@expansion{} _[2]=-t3
  list hn1=develop(f,6);
  param(hn1);     // a better parametrization
@expansion{} // ** Warning: result is exact up to order 6 in x and 7 in y !
@expansion{} _[1]=-t2+2t4-4t6
@expansion{} _[2]=-t3+2t5-4t7
  // instead of recomputing you may extend the development:
  list hn2=extdevelop(hn,12);
  param(hn2);     // a still better parametrization
@expansion{} // ** Warning: result is exact up to order 12 in x and 13 in y !
@expansion{} _[1]=-t2+2t4-4t6+8t8-16t10+32t12
@expansion{} _[2]=-t3+2t5-4t7+8t9-16t11+32t13
  //
  // ======== The reducible case ========
  ring r = 0,(x,y),dp;
  poly f=x11-2y2x8-y3x7-y2x6+y4x5+2y4x3+y5x2-y6;
  // = (x5-1y2) * (x6-2x3y2-1x2y3+y4)
  list hn=reddevelop(f);
  show(hn[1][1]);     // Hamburger-Noether matrix of 1st branch
@expansion{} // matrix, 3x3
@expansion{} 0,x,0,
@expansion{} 0,1,x,
@expansion{} 0,1,-1
  displayInvariants(hn);
@expansion{}  --- invariants of branch number 1 : ---
@expansion{}  characteristic exponents  : 4,6,7
@expansion{}  generators of semigroup   : 4,6,13
@expansion{}  Puiseux pairs             : (3,2)(7,2)
@expansion{}  degree of the conductor   : 16
@expansion{}  delta invariant           : 8
@expansion{}  sequence of multiplicities: 4,2,2,1,1
@expansion{} 
@expansion{}  --- invariants of branch number 2 : ---
@expansion{}  characteristic exponents  : 2,5
@expansion{}  generators of semigroup   : 2,5
@expansion{}  Puiseux pairs             : (5,2)
@expansion{}  degree of the conductor   : 4
@expansion{}  delta invariant           : 2
@expansion{}  sequence of multiplicities: 2,2,1,1
@expansion{} 
@expansion{}  -------------- contact numbers : -------------- 
@expansion{} 
@expansion{} branch |    2    
@expansion{} -------+-----
@expansion{}     1  |    2
@expansion{} 
@expansion{}  -------------- intersection multiplicities : -------------- 
@expansion{} 
@expansion{} branch |    2    
@expansion{} -------+-----
@expansion{}     1  |   12
@expansion{} 
@expansion{}  -------------- delta invariant of the curve :  22
  param(hn[2]);      // parametrization of 2nd branch
@expansion{} _[1]=x2
@expansion{} _[2]=x5
@c end example Puiseux_pairs examples.doc:1934
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Primary decomposition, Normalization, Puiseux pairs, Examples
@section Primary decomposition
@cindex Primary decomposition

There are two algorithms implemented in @sc{Singular} which provide
primary decomposition: @code{primdecGTZ}, based on
Gianni/Trager/Zacharias (written by Gerhard Pfister) and
@code{primdecSY}, based on Shimoyama/Yokoyama (written by Wolfram Decker
and Hans Schoenemann).

The result of @code{primdecGTZ} and @code{primdecSY} is returned as
a list of pairs of ideals,
where the second ideal form the prime ideal and the first
ideal form the corresponding primary ideal.

@smallexample
@c computed example Primary_decomposition examples.doc:1988 
  LIB "primdec.lib";
  ring r = 0,(a,b,c,d,e,f),dp;
  ideal i= f3, ef2, e2f, bcf-adf, de+cf, be+af, e3;
  primdecGTZ(i);
@expansion{} [1]:
@expansion{}    [1]:
@expansion{}       _[1]=f
@expansion{}       _[2]=e
@expansion{}    [2]:
@expansion{}       _[1]=f
@expansion{}       _[2]=e
@expansion{} [2]:
@expansion{}    [1]:
@expansion{}       _[1]=f3
@expansion{}       _[2]=ef2
@expansion{}       _[3]=e2f
@expansion{}       _[4]=e3
@expansion{}       _[5]=de+cf
@expansion{}       _[6]=be+af
@expansion{}       _[7]=-bc+ad
@expansion{}    [2]:
@expansion{}       _[1]=f
@expansion{}       _[2]=e
@expansion{}       _[3]=-bc+ad
  // We consider now the ideal J of the base space of the
  // miniversal deformation of the cone over the rational
  // normal curve computed in section *8* and compute
  // its primary decomposition.
  ring R = 0,(A,B,C,D),dp;
  ideal J = CD, BD+D2, AD;
  primdecGTZ(J);
@expansion{} [1]:
@expansion{}    [1]:
@expansion{}       _[1]=D
@expansion{}    [2]:
@expansion{}       _[1]=D
@expansion{} [2]:
@expansion{}    [1]:
@expansion{}       _[1]=C
@expansion{}       _[2]=B+D
@expansion{}       _[3]=A
@expansion{}    [2]:
@expansion{}       _[1]=C
@expansion{}       _[2]=B+D
@expansion{}       _[3]=A
  // We see that there are two components which are both
  // prime, even linear subspaces, one 3-dimensional,
  // the other 1-dimensional.
  // (This is Pinkhams example and was the first known
  // surface singularity with two components of
  // different dimensions)
  //
  // Let us now produce an embedded component in the last
  // example, compute the minimal associated primes and
  // the radical. We use the Characteristic set methods
  // from prim_dec.lib.
  J = intersect(J,maxideal(3));
  // The following shows that the maximal ideal defines an embedded
  // (prime) component.
  primdecSY(J);
@expansion{} [1]:
@expansion{}    [1]:
@expansion{}       _[1]=D
@expansion{}    [2]:
@expansion{}       _[1]=D
@expansion{} [2]:
@expansion{}    [1]:
@expansion{}       _[1]=C
@expansion{}       _[2]=B+D
@expansion{}       _[3]=A
@expansion{}    [2]:
@expansion{}       _[1]=C
@expansion{}       _[2]=B+D
@expansion{}       _[3]=A
@expansion{} [3]:
@expansion{}    [1]:
@expansion{}       _[1]=D2
@expansion{}       _[2]=C2
@expansion{}       _[3]=B2
@expansion{}       _[4]=AB
@expansion{}       _[5]=A2
@expansion{}       _[6]=BCD
@expansion{}       _[7]=ACD
@expansion{}    [2]:
@expansion{}       _[1]=D
@expansion{}       _[2]=C
@expansion{}       _[3]=B
@expansion{}       _[4]=A
  minAssChar(J);
@expansion{} [1]:
@expansion{}    _[1]=C
@expansion{}    _[2]=B+D
@expansion{}    _[3]=A
@expansion{} [2]:
@expansion{}    _[1]=D
  radical(J);
@expansion{} _[1]=CD
@expansion{} _[2]=BD+D2
@expansion{} _[3]=AD
@c end example Primary_decomposition examples.doc:1988
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Normalization, Branches of an Isolated Space Curve Singularity, Primary decomposition, Examples
@section Normalization
@cindex Normalization
The normalization will be computed for a reduced ring 
@ifinfo
@math{R/I}
@end ifinfo
@tex
$R/I$
@end tex
. The
result is a list of rings; ideals are always called @code{norid} in the
rings of this list. The normalization of 
@ifinfo
@math{R/I}
@end ifinfo
@tex
$R/I$
@end tex
 is the product of
the factor rings of the rings in the list divided out by the ideals
@code{norid}.

@smallexample
@c computed example Normalization examples.doc:2032 
  LIB "normal.lib";
  // ----- first example: rational quadruple point -----
  ring R=32003,(x,y,z),wp(3,5,15);
  ideal I=z*(y3-x5)+x10;
  list pr=normal(I);
@expansion{} 
@expansion{} // 'normal' created a list of 1 ring(s).
@expansion{} // nor[1+1] is the delta-invariant in case of choose=wd.
@expansion{} // To see the rings, type (if the name of your list is nor):
@expansion{}      show( nor);
@expansion{} // To access the 1-st ring and map (similar for the others), type:
@expansion{}      def R = nor[1]; setring R;  norid; normap;
@expansion{} // R/norid is the 1-st ring of the normalization and
@expansion{} // normap the map from the original basering to R/norid
  def S=pr[1];
  setring S;
  norid;
@expansion{} norid[1]=T(2)*T(3)-T(1)*T(4)
@expansion{} norid[2]=T(1)^7-T(1)^2*T(3)+T(2)*T(5)
@expansion{} norid[3]=T(1)^2*T(5)-T(2)*T(4)
@expansion{} norid[4]=T(1)^5*T(4)-T(3)*T(4)+T(5)^2
@expansion{} norid[5]=T(1)^6*T(3)-T(1)*T(3)^2+T(4)*T(5)
@expansion{} norid[6]=T(1)*T(3)*T(5)-T(4)^2
  // ----- second example: union of straight lines -----
  ring R1=0,(x,y,z),dp;
  ideal I=(x-y)*(x-z)*(y-z);
  list qr=normal(I);
@expansion{} 
@expansion{} // 'normal' created a list of 3 ring(s).
@expansion{} // nor[3+1] is the delta-invariant in case of choose=wd.
@expansion{} // To see the rings, type (if the name of your list is nor):
@expansion{}      show( nor);
@expansion{} // To access the 1-st ring and map (similar for the others), type:
@expansion{}      def R = nor[1]; setring R;  norid; normap;
@expansion{} // R/norid is the 1-st ring of the normalization and
@expansion{} // normap the map from the original basering to R/norid
  def S1=qr[1]; def S2=qr[2];
  setring S1; norid;
@expansion{} norid[1]=0
  setring S2; norid;
@expansion{} norid[1]=0
@c end example Normalization examples.doc:2032
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Branches of an Isolated Space Curve Singularity, Kernel of module homomorphisms, Normalization,Examples
@section Branches of an Isolated Space Curve Singularity
@cindex Branches of an Isolated Space Curve Singularity

In this example, the number of branches of a given quasihomogeneous isolated
space curve singularity will be computed as an example of the pitfalls
appearing in the use of primary decomposition. When dealing with singularities,
two situations are possible in which the primary decomposition algorithm
might not lead to a complete decomposition: first of all, one of the computed
components could be globally irreducible, but analytically reducible
(this is impossible for quasihomogeneous singularities) and,
as a second possibility, a component might be irreducible over the rational
numbers, but reducible over the complex numbers.
@smallexample
@c computed example Branches_of_an_Isolated_Space_Curve_Singularity examples.doc:2067 
  ring r=0,(x,y,z),ds;
  ideal i=x^4-y*z^2,x*y-z^3,y^2-x^3*z;  // the space curve singularity
  qhweight(i);
@expansion{} 1,2,1
  // The given space curve singularity is quasihomogeneous. Hence we can pass
  // to the polynomial ring.
  ring rr=0,(x,y,z),dp;
  ideal i=imap(r,i);
  resolution ires=mres(i,0);
  ires;
@expansion{}   1       3       2       
@expansion{} rr <--  rr <--  rr
@expansion{} 
@expansion{} 0       1       2       
@expansion{} 
  // From the structure of the resolution, we see that the Cohen-Macaulay
  // type of the given singularity is 2
  //
  // Let us now look for the branches using the primdec library.
  LIB "primdec.lib";
  primdecSY(i);
@expansion{} [1]:
@expansion{}    [1]:
@expansion{}       _[1]=z3-xy
@expansion{}       _[2]=x3+x2z+xz2+xy+yz
@expansion{}       _[3]=x2z2+x2y+xyz+yz2+y2
@expansion{}    [2]:
@expansion{}       _[1]=z3-xy
@expansion{}       _[2]=x3+x2z+xz2+xy+yz
@expansion{}       _[3]=x2z2+x2y+xyz+yz2+y2
@expansion{} [2]:
@expansion{}    [1]:
@expansion{}       _[1]=x-z
@expansion{}       _[2]=z2-y
@expansion{}    [2]:
@expansion{}       _[1]=x-z
@expansion{}       _[2]=z2-y
  def li=_[2];
  ideal i2=li[2];       // call the second ideal i2
  // The curve seems to have 2 branches by what we computed using the
  // algorithm of Shimoyama-Yokoyama.
  // Now the same computation by the Gianni-Trager-Zacharias algorithm:
  primdecGTZ(i);
@expansion{} [1]:
@expansion{}    [1]:
@expansion{}       _[1]=z8+yz6+y2z4+y3z2+y4
@expansion{}       _[2]=xz5+z6+yz4+y2z2+y3
@expansion{}       _[3]=-z3+xy
@expansion{}       _[4]=x2z2+xz3+xyz+yz2+y2
@expansion{}       _[5]=x3+x2z+xz2+xy+yz
@expansion{}    [2]:
@expansion{}       _[1]=z8+yz6+y2z4+y3z2+y4
@expansion{}       _[2]=xz5+z6+yz4+y2z2+y3
@expansion{}       _[3]=-z3+xy
@expansion{}       _[4]=x2z2+xz3+xyz+yz2+y2
@expansion{}       _[5]=x3+x2z+xz2+xy+yz
@expansion{} [2]:
@expansion{}    [1]:
@expansion{}       _[1]=-z2+y
@expansion{}       _[2]=x-z
@expansion{}    [2]:
@expansion{}       _[1]=-z2+y
@expansion{}       _[2]=x-z
  // Having computed the primary decomposition in 2 different ways and
  // having obtained the same number of branches, we might expect that the
  // number of branches is really 2, but we can check this by formulae
  // for the invariants of space curve singularities:
  //
  // mu = tau - t + 1 (for quasihomogeneous curve singularities)
  // where mu denotes the Milnor number, tau the Tjurina number and
  // t the Cohen-Macaulay type
  //
  // mu = 2 delta - r + 1
  // where delta denotes the delta-Invariant and r the number of branches
  //
  // tau can be computed by using the corresponding procedure T1 from
  // sing.lib.
  setring r;
  LIB "sing.lib";
  T_1(i);
@expansion{} // dim T_1 = 13
@expansion{} _[1]=gen(6)+2z*gen(5)
@expansion{} _[2]=gen(4)+3x2*gen(2)
@expansion{} _[3]=gen(3)+gen(1)
@expansion{} _[4]=x*gen(5)-y*gen(2)-z*gen(1)
@expansion{} _[5]=x*gen(1)-z2*gen(2)
@expansion{} _[6]=y*gen(5)+3x2z*gen(2)
@expansion{} _[7]=y*gen(2)-z*gen(1)
@expansion{} _[8]=2y*gen(1)-z2*gen(5)
@expansion{} _[9]=z2*gen(5)
@expansion{} _[10]=z2*gen(1)
@expansion{} _[11]=x3*gen(2)
@expansion{} _[12]=x2z2*gen(2)
@expansion{} _[13]=xz3*gen(2)
@expansion{} _[14]=z4*gen(2)
  setring rr;
  // Hence tau is 13 and therefore mu is 12. But then it is impossible that
  // the singularity has two branches, since mu is even and delta is an
  // integer!
  // So obviously, we did not decompose completely. Because the first branch
  // is smooth, only the second ideal can be the one which can be decomposed
  // further.
  // Let us now consider the normalization of this second ideal i2.
  LIB "normal.lib";
  normal(i2);
@expansion{} 
@expansion{} // 'normal' created a list of 1 ring(s).
@expansion{} // nor[1+1] is the delta-invariant in case of choose=wd.
@expansion{} // To see the rings, type (if the name of your list is nor):
@expansion{}      show( nor);
@expansion{} // To access the 1-st ring and map (similar for the others), type:
@expansion{}      def R = nor[1]; setring R;  norid; normap;
@expansion{} // R/norid is the 1-st ring of the normalization and
@expansion{} // normap the map from the original basering to R/norid
@expansion{} [1]:
@expansion{}    //   characteristic : 0
@expansion{} //   number of vars : 1
@expansion{} //        block   1 : ordering dp
@expansion{} //                  : names    T(1) 
@expansion{} //        block   2 : ordering C
  def rno=_[1];
  setring rno;
  norid;
@expansion{} norid[1]=0
  // The ideal is generated by a polynomial in one variable of degree 4 which
  // factors completely into 4 polynomials of type T(2)+a.
  // From this, we know that the ring of the normalization is the direct sum of 
  // 4 polynomial rings in one variable.
  // Hence our original curve has these 4 branches plus a smooth one
  // which we already determined by primary decomposition.
  // Our final result is therefore: 5 branches.
@c end example Branches_of_an_Isolated_Space_Curve_Singularity examples.doc:2067
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Kernel of module homomorphisms, Algebraic dependence, Branches of an Isolated Space Curve Singularity, Examples
@end ifset
@ifclear singularmanual
@node Kernel of module homomorphisms, Algebraic dependence, Factorization, Examples
@end ifclear
@section Kernel of module homomorphisms
@cindex Kernel of module homomorphisms
Let 
@ifinfo
@math{A}
@end ifinfo
@tex
$A$
@end tex
, 
@ifinfo
@math{B}
@end ifinfo
@tex
$B$
@end tex
 be two matrices of size
@tex
$m\times r$ and $m\times s$
@end tex
@ifinfo
m x r and m x s
@end ifinfo
over the ring 
@ifinfo
@math{R}
@end ifinfo
@tex
$R$
@end tex
 and consider the corresponding maps
@tex
$$
R^r \buildrel{A}\over{\longrightarrow}
R^m \buildrel{B}\over{\longleftarrow} R^s\;.
$$
@end tex
@ifinfo

@smallexample
   r   A     m
  R  -----> R
            ^
            |
            |
             s
            R  .
@end smallexample

@end ifinfo
We want to compute the kernel of the map
@tex
$R^r \buildrel{A}\over{\longrightarrow}
R^m\longrightarrow
R^m/\hbox{Im}(B) \;.$
@end tex
@ifinfo

@smallexample
   r   A     m         m
  R  -----> R  -----> R /Im(B) .
@end smallexample

@end ifinfo
This can be done using the @code{modulo} command:
@tex
$$
\hbox{\tt modulo}(A,B)=\hbox{ker}(R^r
\buildrel{A}\over{\longrightarrow}R^m/\hbox{Im}(B)) \; .
$$
@end tex
@ifinfo

@smallexample
                   r   A     m
  modulo(A,B)=ker(R  -----> R /Im(B))  .
@end smallexample

@end ifinfo

@smallexample
@c computed example Kernel_of_module_homomorphisms examples.doc:2196 
  ring r=0,(x,y,z),(c,dp);
  matrix A[2][2]=x,y,z,1;
  matrix B[2][2]=x2,y2,z2,xz;
  print(modulo(A,B));
@expansion{} yz2-x2, xyz-y2,  x2z-xy, x3-y2z,
@expansion{} x2z-xz2,-x2z+y2z,xyz-yz2,0      
@c end example Kernel_of_module_homomorphisms examples.doc:2196
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Algebraic dependence, Classification, Kernel of module homomorphisms, Examples
@end ifset
@ifclear singularmanual
@node Algebraic dependence,  , Kernel of module homomorphisms, Examples
@end ifclear
@section Algebraic dependence
@cindex Algebraic dependence
Let
@tex
$g$, $f_1$, \dots, $f_r\in K[x_1,\ldots,x_n]$.
@end tex
@ifinfo
g, f_1, @dots{}, f_r in K[x1,@dots{},xn].
@end ifinfo
We want to check whether
@enumerate
@item
@tex
$f_1$, \dots, $f_r$
@end tex
@ifinfo
f_1, @dots{}, f_r
@end ifinfo
are algebraically dependent.

Let
@tex
$I=\langle Y_1-f_1,\ldots,Y_r-f_r \rangle \subseteq
K[x_1,\ldots,x_n,Y_1,\ldots,Y_r]$.
@end tex
@ifinfo

@smallexample
I=<Y_1-f_1,@dots{},Y_r-f_r> subset K[x1,@dots{},xn,Y_1,@dots{},Y_r].
@end smallexample

@end ifinfo
Then
@tex
$I \cap K[Y_1,\ldots,Y_r]$
@end tex
@ifinfo
I intersected with K[Y_1,@dots{},Y_r]
@end ifinfo
are the algebraic relations between
@tex
$f_1$, \dots, $f_r$.
@end tex
@ifinfo
f_1, @dots{}, f_r.
@end ifinfo

@item
@tex
$g \in K [f_1,\ldots,f_r]$.
@end tex
@ifinfo
g in K[f_1,@dots{},f_r].
@end ifinfo

@tex
$g \in K[f_1,\ldots,f_r]$
@end tex
@ifinfo
g in K[f_1,@dots{},f_r]
@end ifinfo
if and only if the normal form of 
@ifinfo
@math{g}
@end ifinfo
@tex
$g$
@end tex
 with respect to 
@ifinfo
@math{I}
@end ifinfo
@tex
$I$
@end tex
 and a
block ordering with respect to
@tex
$X=(x_1,\ldots,x_n)$ and $Y=(Y_1,\ldots,Y_r)$ with $X>Y$
@end tex
@ifinfo
X=(x1,@dots{},xn) and Y=(Y_1,@dots{},Y_r) with X>Y
@end ifinfo
is in 
@ifinfo
@math{K[Y]}
@end ifinfo
@tex
$K[Y]$
@end tex
.
@end enumerate

Both questions can be answered using the following procedure. If the
second argument is zero, it checks for algebraic dependence and returns
the ideal of relations between the generators of the given ideal.
Otherwise it checks for subring membership and returns the normal form
of the second argument with respect to the ideal I.

@smallexample
@c computed example Algebraic_dependence examples.doc:2290 
  proc algebraicDep(ideal J, poly g)
  @{
    def R=basering;         // give a name to the basering
    int n=size(J);
    int k=nvars(R);
    int i;
    intvec v;

    // construction of the new ring:

    // construct a weight vector
    v[n+k]=0;         // gives a zero vector of length n+k
    for(i=1;i<=k;i++)
    @{
      v[i]=1;
    @}
    string orde="(a("+string(v)+"),dp);";
    string ri="ring Rhelp=("+charstr(R)+"),
                          ("+varstr(R)+",Y(1.."+string(n)+")),"+orde;
                            // ring definition as a string
    execute(ri);            // execution of the string

    // construction of the new ideal I=(J[1]-Y(1),...,J[n]-Y(n))
    ideal I=imap(R,J);
    for(i=1;i<=n;i++)
    @{
      I[i]=I[i]-var(k+i);
    @}
    poly g=imap(R,g);
    if(g==0)
    @{
      // construction of the ideal of relations by elimination
      poly el=var(1);
      for(i=2;i<=k;i++)
      @{
        el=el*var(i);
      @}
      ideal KK=eliminate(I,el);
      keepring(Rhelp);
      return(KK);
    @}
    // reduction of g with respect to I
    ideal KK=reduce(g,std(I));
    keepring(Rhelp);
    return(KK);
  @}

  // applications of the procedure
  ring r=0,(x,y,z),dp;
  ideal i=xz,yz;
  algebraicDep(i,0);
@expansion{} _[1]=0
  // Note: after call of algebraicDep(), the basering is Rhelp.
  setring r; kill Rhelp;
  ideal j=xy+z2,z2+y2,x2y2-2xy3+y4;
  algebraicDep(j,0);
@expansion{} _[1]=Y(1)^2-2*Y(1)*Y(2)+Y(2)^2-Y(3)
  setring r; kill Rhelp;
  poly g=y2z2-xz;
  algebraicDep(i,g);
@expansion{} _[1]=Y(2)^2-Y(1)
  // this shows that g is contained in i.
  setring r; kill Rhelp;
  algebraicDep(j,g);
@expansion{} _[1]=-z^4+z^2*Y(2)-x*z
  // this shows that g is contained in j.
@c end example Algebraic_dependence examples.doc:2290
@end smallexample

@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Classification, Fast lexicographical GB, Algebraic dependence, Examples
@section Classification
@cindex Classification

Classification of isolated hypersurface singularities with respect to
right equivalence is provided by the command @code{classify} of the
library @code{classify.lib}. The classification is done using the
algorithm of Arnold. Before entering this algorithm, a first guess based
on the Hilbert polynomial of the Milnor algebra is made.

@smallexample
@c computed example Classification examples.doc:2369 
  LIB "classify.lib";
  ring r=0,(x,y,z),ds;
  poly p=singularity("E[6k+2]",2)[1];
  p=p+z^2;
  p;
@expansion{} z2+x3+xy6+y8
  // We received an E_14 singularity in normal form
  // from the database of normal forms. Since only the residual
  // part is saved in the database, we added z^2 to get an E_14
  // of embedding dimension 3.
  //
  // Now we apply a coordinate change in order to deal with a
  // singularity which is not in normal form:
  map phi=r,x+y,y+z,x;
  poly q=phi(p);
  // Yes, q really looks ugly, now:
  q;
@expansion{} x2+x3+3x2y+3xy2+y3+xy6+y7+6xy5z+6y6z+15xy4z2+15y5z2+20xy3z3+20y4z3+15xy2z\
   4+15y3z4+6xyz5+6y2z5+xz6+yz6+y8+8y7z+28y6z2+56y5z3+70y4z4+56y3z5+28y2z6+8\
   yz7+z8
  // Classification
  classify(q);
@expansion{} About the singularity :
@expansion{}           Milnor number(f)   = 14
@expansion{}           Corank(f)          = 2
@expansion{}           Determinacy       <= 12
@expansion{} Guessing type via Milnorcode:   E[6k+2]=E[14]
@expansion{} 
@expansion{} Computing normal form ...
@expansion{} I have to apply the splitting lemma. This will take some time....:-)
@expansion{}    Arnold step number 9
@expansion{} The singularity
@expansion{}    x3-9/4x4+27/4x5-189/8x6+737/8x7+6x6y+15x5y2+20x4y3+15x3y4+6x2y5+xy6-24\
   089/64x8-x7y+11/2x6y2+26x5y3+95/2x4y4+47x3y5+53/2x2y6+8xy7+y8+104535/64x9\
   +27x8y+135/2x7y2+90x6y3+135/2x5y4+27x4y5+9/2x3y6-940383/128x10-405/4x9y-2\
   025/8x8y2-675/2x7y3-2025/8x6y4-405/4x5y5-135/8x4y6+4359015/128x11+1701/4x\
   10y+8505/8x9y2+2835/2x8y3+8505/8x7y4+1701/4x6y5+567/8x5y6-82812341/512x12\
   -15333/8x11y-76809/16x10y2-25735/4x9y3-78525/16x8y4-16893/8x7y5-8799/16x6\
   y6-198x5y7-495/4x4y8-55x3y9-33/2x2y10-3xy11-1/4y12
@expansion{} is R-equivalent to E[14].
@expansion{}    Milnor number = 14
@expansion{}    modality      = 1
@expansion{} 2z2+x3+xy6+y8
  // The library also provides routines to determine the corank of q
  // and its residual part without going through the whole
  // classification algorithm.
  corank(q);
@expansion{} 2
  morsesplit(q);
@expansion{} y3-9/4y4+27/4y5-189/8y6+737/8y7+6y6z+15y5z2+20y4z3+15y3z4+6y2z5+yz6-24089\
   /64y8-y7z+11/2y6z2+26y5z3+95/2y4z4+47y3z5+53/2y2z6+8yz7+z8+104535/64y9+27\
   y8z+135/2y7z2+90y6z3+135/2y5z4+27y4z5+9/2y3z6-940383/128y10-405/4y9z-2025\
   /8y8z2-675/2y7z3-2025/8y6z4-405/4y5z5-135/8y4z6+4359015/128y11+1701/4y10z\
   +8505/8y9z2+2835/2y8z3+8505/8y7z4+1701/4y6z5+567/8y5z6-82812341/512y12-15\
   333/8y11z-76809/16y10z2-25735/4y9z3-78525/16y8z4-16893/8y7z5-8799/16y6z6-\
   198y5z7-495/4y4z8-55y3z9-33/2y2z10-3yz11-1/4z12
@c end example Classification examples.doc:2369
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node Fast lexicographical GB, Parallelization with MPtcp links, Classification, Examples
@section Fast lexicographical GB
@cindex Fast lexicographical GB

Compute Groebner basis in lexicographical ordering
by using the FGLM algorithm (@code{stdfglm})
and Hilbert driven Groebner (@code{stdhilb}).

The command @code{stdfglm} applies only for zero-dimensional ideals and
returns a reduced Groebner basis.

For the ideal below, @code{stdfglm} is more than 100 times
and @code{stdhilb} about 10 times faster than @code{std}.

@smallexample
@c computed example Fast_lexicographical_GB examples.doc:2413 
  ring r =32003,(a,b,c,d,e),lp;
  ideal i=a+b+c+d, ab+bc+cd+ae+de, abc+bcd+abe+ade+cde,
          abc+abce+abde+acde+bcde, abcde-1;
  int t=timer;
  ideal j1=stdfglm(i);
  timer-t;
@expansion{} 0
  size(j1);   // size (no. of polys) in computed GB
@expansion{} 5
  t=timer;
  ideal j2=stdhilb(i);
  timer-t;
@expansion{} 0
  size(j2);   // size (no. of polys) in computed GB
@expansion{} 158
  // usual Groebner basis computation for lex ordering
  t=timer;
  ideal j0 =std(i);
  timer-t;
@expansion{} 1
@c end example Fast_lexicographical_GB examples.doc:2413
@end smallexample
@end ifset
@c ----------------------------------------------------------------------------
@ifset singularmanual
@node  Parallelization with MPtcp links,  , Fast lexicographical GB, Examples
@section Parallelization with MPtcp links
@cindex Parallelization
@cindex MPtcp
@cindex link
In this example, we demonstrate how MPtcp links can be used to
parallelize computations.

To compute a standard basis for a zero-dimensional ideal in the
lexicographical ordering, one of the two powerful routines
@code{stdhilb}
@ifset singularmanual
(see @ref{stdhilb})
@end ifset
and @code{stdfglm}
@ifset singularmanual
(see @ref{stdfglm})
@end ifset
should be used. However, a priory one can not predict
which one of the two commands is faster. This very much depends on the
(input) example. Therefore, we use MPtcp links to let both commands
work on the problem independently and in parallel, so that the one which
finishes first delivers the result.

The example we use is the so-called "omdi example". See @i{Tim
Wichmann; Der FGLM-Algorithmus: verallgemeinert und implementiert in
Singular; Diplomarbeit Fachbereich Mathematik, Universitaet
Kaiserslautern; 1997} for more details.

@smallexample
@c computed example Parallelization_with_MPtcp_links examples.doc:2464 
ring r=0,(a,b,c,u,v,w,x,y,z),lp;
ideal i=a+c+v+2x-1, ab+cu+2vw+2xy+2xz-2/3,  ab2+cu2+2vw2+2xy2+2xz2-2/5,
ab3+cu3+2vw3+2xy3+2xz3-2/7, ab4+cu4+2vw4+2xy4+2xz4-2/9, vw2+2xyz-1/9,
vw4+2xy2z2-1/25, vw3+xyz2+xy2z-1/15, vw4+xyz3+xy3z-1/21;

link l_hilb,l_fglm = "MPtcp:fork","MPtcp:fork";         // 1.

open(l_fglm); open(l_hilb);

write(l_hilb, quote(system("pid")));                    // 2.
write(l_fglm, quote(system("pid")));
int pid_hilb,pid_fglm = read(l_hilb),read(l_fglm);

write(l_hilb, quote(stdhilb(i)));                       // 3.
write(l_fglm, quote(stdfglm(eval(i))));

while ((! status(l_hilb, "read", "ready", 1)) &&        // 4.
       (! status(l_fglm, "read", "ready", 1))) @{@}

if (status(l_hilb, "read", "ready"))
@{
  "stdhilb won !!!!"; size(read(l_hilb));
  close(l_hilb); pid_fglm = system("sh","kill "+string(pid_fglm));
@}
else                                                    // 5.
@{
  "stdfglm won !!!!"; size(read(l_fglm));
  close(l_fglm); pid_hilb = system("sh","kill "+string(pid_hilb));
@}
@expansion{} stdfglm won !!!!
@expansion{} 9
@c end example Parallelization_with_MPtcp_links examples.doc:2464
@end smallexample
Some explanatory remarks are in order:
@enumerate
@item
Instead of using links of the type @code{MPtcp:fork}, we alternatively
could use @code{MPtcp:launch} links such that the two "competing"
@sc{Singular} processes run on different machines. This has the
advantage of "true" parallel computing since no resource sharing is
involved (as it usually is with forked processes).

@item
Unfortunately, MPtcp links do not offer means to (asynchronously)
interrupt or kill an attached (i.e., launched or forked)
process. Therefore, we explicitly need to get the process id numbers of
the competing @sc{Singular} processes, so that we can "kill" the
looser later.

@item
Notice how quoting is used in order to prevent local evaluation
(i.e., local computation of results). Since we "forked" the two
competing processes, the identifier @code{i} is defined and has
identical values in both child processes. Therefore, the innermost
@code{eval} can be omitted (as is done for the @code{l_hilb} link),
and only the identifier @code{i} needs to be communicated to the
children. However, when @code{MPtcp:launch} links are used, the inner
evaluation must be applied so that actual values, and not the
identifiers are communicated (as is done for the @code{l_fglm} link).

@item
We go into a "sleepy" loop and wait until one of the two children
finished the computation. That is, the current process checks approximately
once per second the status of one of the connecting links, and sleeps
(i.e., suspends its execution) in the intermediate time.

@item
The child which has won delivers the result and is terminated with the usual
@code{close} command. The other child which is still computing needs to
be terminated by an explicit (i.e., system) kill command, since it can
not be terminated through the link while it is still computing.
@end enumerate
@end ifset

@c --------------------------------------------------------------------
@ifclear singularmanual
@section Further smallexamples

The example section of the @sc{Singular} manual contains further examples,
e.g.:
@itemize @bullet
@item Long coefficients
@*how they arise in innocent smallexamples
@item T1 and T2
@*compute first order deformations and obstructions
@item Finite fields
@*compute in fields with
@tex
$q=p^n$
@end tex
@ifinfo
q=p^n
@end ifinfo
elements
@item Ext
@*compute Ext groups, derived from the Hom functor
@item Polar curves
@*compute local and global polar curves
@item Depth
@*various ways to compute the depth of a module
@item Cyclic roots
@*create and compute with this standard benchmark smallexample
@item Invariants of finite group
@*compute invariant rings for finite group
@item Puiseux pairs
@*compute Puiseux development and invariants with the
Hamburger-Noether method
@item Primary decomposition
@*compute primar decomposition of an ideal
@item Normalization
@*compute the normalization of a ring
@item Classification
@*determine type and normal form of a hypersurface singularity
after Arnold
@item Fast lexicographical GB
@*FGLM and Hilbert-driven Groebner
@item Parallelization with MPtcp links
@*use MP for distributed and parallel computation
@end itemize

In this list the names of the items are the names of the
examples in the online help system. So by the command
@code{help T1 and T2} the example about the computation of
first order deformations and obstructions is displayed.
@end ifclear