1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
% Id: usercard.tex,v 1.1 2003/08/08 14:27:06 pertusus Exp $
%
% usercard.tex - Singular user quick reference card.
%
\input singcard.tex
\centerline{\hbf SINGULAR Quick Reference}
\centerline{\srm {\ssc Singular} Version 1.2.0}
\bigskip
Do not forget to terminate all commands with a {\tt ;} (semicolon)!
In particular if \Singular\ prints the continuation prompt {\tt .}
(peri\-od) instead of the regular command prompt {\tt >}, then it
waits for a command to be terminated by a {\tt ;}. If that does
not help, try one or more {\tt "} or {\tt \char`}} to close an
opened string or block.
Comments start with {\tt //} and extend to end of line.
\smallskip
Some of the topics concerning interactive use are system dependent.
\sec Starting SINGULAR(2.5cm)
Singular& start \Singular\cr
Singular {\it file} \rep& read {\it files\/} and prompt for further commands\cr
Singular --help& print help on command line options and exit\cr
\endsec
\sec Stopping SINGULAR()
quit;& exit \Singular; also {\tt exit;} or {\tt \$}\cr
\ctl c& interrupt \Singular\cr
\endsec
\sec Getting help()
help;& enter online help system\cr
help {\it topic\/};& describe {\it topic\/}; also {\tt? {\it topic\/};}\cr
\subsec{Inside the online help system:}
\ctl h& get help on help system\cr
q& exit from help system\cr
n\rmslash p\rmslash u& go to next/previous/upper node\cr
m& pick menu item by name\cr
l& go to last visited node/exit from help on help\cr
SPC\rmslash DEL& scroll forward/backward one page\cr
\endsec
\sec Commandline editing()
\sectext
Commandline editing is similar to that of, e.g., {\tt bash} or {\tt tcsh}:\cr
BS\rmslash\ctl d& remove character on the left/right of cursor\cr
\ctl p\rmslash\ctl n& get previous/next line from history\cr
\ctl b\rmslash\ctl f& move cursor left/right\cr
\ctl a\rmslash\ctl e& go to beginning/end of line\cr
\ctl u\rmslash\ctl k& delete to beginning/end of line\cr
\endsec
\sec Names and objects()
\sectext
Names (= identifiers) have to be declared before they are used:\cr
\entryskip
\longentry {\it type\/} {\it name\/} \opt{= {\it expression\/}};&
declare variable {\it name}\cr
kill({\it name\/})& delete variable {\it name}\cr
\entryskip
\sectext
\parskip=\verysmallskipamount
Names of type {\tt number}, {\tt poly}, {\tt ideal}, {\tt vector}, {\tt
module}, {\tt matrix}, {\tt map}, and {\tt resolution} may be declared
only inside a ring. They are local to that ring. The same holds for a {\tt
list} if it contains an object of the above types. All other types may be
declared at any time. They are globally visible.
Names may consist of alphanumeric characters including {\tt \_}
(underscore) and have to start with a letter. Capital and small letters
are distinguished. Names may be followed by an integer expression in
parentheses, resulting in so-called {\it indexed names}.\cr
\entryskip
{\it name\/}({\it n}..{\it m\/})&
shortcut for {\tt {\it name\/}({\it
n\/}), $\ldots$, {\it name\/}({\it
m\/})}\hfil\break
(\eg {\tt ring r = 0, x(1..3), dp;})\cr
\_ {\rm (underscore)}& refers to the value of the last expression
printed\cr
\endsec
\vfill
\centerline{\srm \copyright 1998 \qquad Permissions on back}
\eject
\sec Ring declaration()
\longentry ring {\it name\/} = {\it basefield}, ({\it ringvars\/}), {\it ordering\/};&
\hyphenpenalty=50 \tolerance=200 declare ring
{\it name\/} and make it the new base\-ring.
{\it ringvars\/} has to be a list of names, the
other items are described below. Example:\par
{\tt ring r = 32003, (x, y, z), dp;}\cr
\longentry qring {\it name\/} = {\it ideal\/};&
declare quotient ring {\it name\/} of the
current base\-ring with respect to {\it
ideal\/}. {\it ideal\/} has to be a standard
basis. Make {\it name\/} the new basering.\cr
\subsec{Available {\bit basefields\/}:}
0& the rational numbers\cr
\it p& the finite field $Z_p$ with {\it p\/}
elements,\par
$2 \le p \le 32003$ a prime\cr
({\it p\/}\^{}{\it n}, {\it gen\/})&
the finite field with $p^n$ elements, {\it p\/}
a prime and\par $4 \le p^n \le 32671$. The name
{\it gen\/} refers to some generator of the
cyclic group of unities.\cr
({\it p}, {\it alpha\/})& algebraic extension of $Q$ or $Z_p$ ($p =
0$ or as above) by {\it alpha}. The minpoly
$\mu_{\hbox{\tit alpha}}$ for {\it alpha\/} has
to be specified with an assignment to {\tt
minpoly} (\eg {\tt minpoly=a\^{}2+1;}, for
$\hbox{\it alpha}=\hbox{\tt a}$). {\it
alpha\/} has to be a name.\cr
({\it p}, $t_1$, $\ldots$)& transcendental extension of $Q$ or $Z_p$
($p = 0$ or as above) by~$t_i$. The $t_i$ have
to be names.\cr
real& the real numbers represented by floating point
numbers\cr
\endsec
\sec Term orderings()
\sectext
An {\it ordering\/} as referred to in the ring declaration may either be
a global, local, or matrix ordering or a list of these resulting in a
pro\-duct ordering. The list may include extra weight vectors and may be
preceded or followed by a module ordering specification.\cr
\subsec{Global orderings}
lp& lexicographical ordering\cr
dp& degree reverse lexicographical ordering\cr
Dp& degree lexicographical ordering\cr
wp($w_1$, $\ldots$)& weighted reverse lexicographical ordering\cr
Wp($w_1$, $\ldots$)& weighted lexicographical ordering\cr
& The $w_i$ have to be positive integers.\cr
\subsec{Local orderings}
ls& negative lexicographical ordering\cr
ds& negative degree reverse lexicographical ordering\cr
Ds& negative degree lexicographical ordering\cr
ws($w_1$, $\ldots$)& general weighted reverse lexicographical ordering\cr
Ws($w_1$, $\ldots$)& general weighted lexicographical ordering\cr
& $w_1$ has to be a non-zero integer, every other
$w_i$ may be any integer\cr
\subsec{Matrix orderings}
\longentry M($m_{11}$, $m_{12}$, $\ldots$, $m_{nn}$)&
{\it m\/} has to be an invertible matrix with
integer coeffi\-cients. Coefficients have to be
specified row-wise.\cr
\subsec{Product orderings}
\longentry($o_1$\opt{($k_1$)}, $o_2$\opt{($k_2$)}, $\ldots$, $o_n$\opt{($k_n$)})&
the $o_i$ have to be any of the above orderings.
{\tt lp}, {\tt dp}, {\tt Dp}, {\tt ls}, {\tt
ds}, {\tt Ds} may be followed by an integer
expression $k_i$ in parentheses specifying the
number of variables $o_i$ refers to (\eg {\tt
(lp(3), dp(2))}).\cr
\subsec{Extra weight vector}
a($w_1$, $\ldots$)& any of the above degree orderings may be
preceded by an extra weight vector\cr
\noalign{\eject}
\subsec{Module orderings}
({\it c}, $o_1$, $\ldots$)& sort by components first\cr
($o_1$, $\ldots$, {\it c\/})& sort by variables first\cr
& $o_i$ may be any of the above orderings or an
extra weight vector, {\it c\/} may be one of
{\tt C} or {\tt c}:\cr
C& sort generators in ascending order (\ie {\tt
gen({\it i\/})} $<$ {\tt gen({\it j\/})} iff $i <
j$)\cr
c& sort generators in descending order\cr
\endsec
\sec Data types(1.5cm)
\sectext
Examples of ring-independent types:\cr
\entryskip
\longitem
int i1 = 101; int i2 = 13 div 3;\cr
\entryskip
\longitem
intvec iv = 13 div 3, -4, i1;\cr
\entryskip
\longentry
intmat im[2][2] = 13 div 3, -4, i1;&
a $2\times 2$ matrix. Entries are filled
row-wise, missing entries are set to zero, extra
entries are ignored. vector/matrix elements are
accessed using the {\tt[$\ldots$]} operator,
where the first element has index one (\eg {\tt
iv[3]; im[1, 2];}).\cr
\entryskip
\longitem
string s1 = "a quote \char"5C " and a backslash \char"5C \char"5C";\par
string s2 = "con" + "catenation";\cr
\entryskip
\sectext
Basering in the following is {\tt ring r = 0, (x, y, z, mu, nu), dp;}\cr
\entryskip
\longitem
number n = 5/3;\cr
\entryskip
\longentry
poly p(1) = 3/4x3yz4+2xy2;\par
poly p(2) = (5/3)*mu\^{}2*nu\^{}3+n*yz2;&
{\tt p(1)} equals $3/4x^3yz^4+2xy^2$. Short
format of mono\-mials is valid for one-character
ring variables only.\cr
\entryskip
\longentry
ideal i = p(1..2), x+y;& note the use of indexed names\cr
\entryskip
\longentry
vector v = [p(1), p(2), x+y];\par
vector w = 2*p(1)*gen(6)+n*nu*gen(1);&
vectors may be written in brackets ({\tt
[$\ldots$]}) or expressed as linear
combinations of the canonical generators {\tt
gen({\it i\/})}\cr
\entryskip
\longitem
module mo = v, w, x+y*gen(1);\cr
\entryskip
\longitem
resolution r = sres(std(mo), 0);\cr
\entryskip
\longentry
matrix ma[2][2] = 5/3, p(1), 101;&
the rules for declaring, filling, and accessing
integer matrices apply to types {\tt matrix}
and {\tt vector}, too\cr
\entryskip
\longentry
list l = iv, v, p(1..2), mo;&
lists may collect objects of any type. They are
ring-dependent iff one of the entries is.\cr
\entryskip
\longentry
def d = read("MPfile:r example.mp");&
a name of type {\tt def} inherits the type of
the object assigned first to it. Useful if the
actual type of an object is unknown.\cr
\endsec
\sec Monitoring and debugging tools()
timer = 1;& print time used for commands to execute\cr
\longentry int t = timer; {\it command\/}; \rep; timer-t;&
print time used for {\it commands\/} to execute\cr
memory(1);& print number of bytes allocated from system\cr
option(prot);& show algorithm protocol\cr
option(mem);& show algorithm memory usage\cr
\entryskip
TRACE = 1;& print protocol on execution of procedures\cr
listvar(all);& list all (user-)defined names\cr
\longentry listvar({\it ringname\/});&
list all names belonging to {\it ringname}\cr
\endsec
\eject
\sec Options()
option();& show current option settings\cr
\longentry option($option_1$, no$option_2$, $\ldots$);&
switch $option_1$ on and $option_2$ off, resp.\cr
option(none);& reset all options to default values\cr
\sectext
Type {\tt help option;} for a list of all options.\cr
\subsec{Monitoring}
debugLib& show loading of procedures from libraries\cr
mem& show algorithm memory usage\cr
prot& show algorithm protocol\cr
\subsec{Standard bases}
fastHC& try to find highest corner as fast as possible\cr
intStrategy& avoid divisions\cr
morePairs& create additional pairs\cr
notSugar& disable sugar strategy\cr
redSB& compute reduced standard bases\cr
redTail& reduce tails\cr
sugarCrit& use sugar criteria\cr
weightM& automatically compute weights\cr
\subsec{Resolutions}
minRes& do additional minimizing\cr
notRegularity& disable regularity bound\cr
\subsec{Miscellany}
returnSB& let some functions return standard bases\cr
\endsec
\sec System variables()
\sectext
Type {\tt help System variables;} for a list of all system variables.\cr
\subsec{Standard bases}
degBound& stop if (weighted) total degree exceeds {\tt
degBound}\cr
multBound& stop if multiplicity gets smaller than {\tt
multBound}\cr
noether& cut off all monomials above monomial {\tt
noether}\cr
\subsec{Miscellany}
basering& current basering\cr
minpoly& minimal polynomial for algebraic extensions\cr
short& do not print monomials in short format if zero\cr
timer& on assignment of a non-zero value show time
used for execution of executed commands. On
evaluation, return system time in seconds used
by \Singular\ since start\cr
TRACE& print information on procedures being executed
if larger than one\cr
\endsec
\sec Input and output()
< "{\it filename\/}";& load and execute {\it filename\/}\cr
\longentry write("{\it filename\/}", {\it expression}, \rep)&
write {\it expressions\/} to ASCII file {\it
filename}\cr
\longentry read("{\it filename\/}");&
read ASCII file {\it filename\/} and return
content as a string. See also example below.\cr
\longentry
dump("MPfile: {\it filename\/}");\par
getdump("MPfile: {\it filename\/}");&
dump current state of {\sc Singular} to {\it
filename} and retrieve it, resp.\cr
\entryskip
\sectext
An example how to write one single expression (in this case the
ideal {\tt i}) to a file and read it back from there:
{\tt
write("i.save", i);\par
execute("ideal i=" + read("i.save") + ";");
}\cr
\endsec
\eject
\sec Libraries()
LIB "{\it library\/}";& load {\it library}\cr
help {\it library\/};& show help on {\it library}\cr
help all.lib;& show list of all libraries\cr
\endsec
\sec Mapping(1.5cm)
\longentry map {\it name\/} = {\it ringname}, {\it ideal\/};&
declare a map {\it name\/} from {\it ringname\/}
to current basering. The $i$-th ring variable
from {\it ringname\/} is mapped to the $i$-th
generator of {\it ideal}.\cr
\longentry {\it mapname\/}({\it expression\/})&
apply map {\it mapname\/} to {\it expression}\cr
\entryskip
\sectext
Coefficients between rings with different basefields are mapped in the following
way (non-canonical maps only):\strut
\abovedisplayskip=0pt
\belowdisplayskip=0pt
$$
\eqalign{Z_p \rightarrow Q& :[i]_p \mapsto i \in [-p/2,p/2] \subset Z\cr
Z_p \rightarrow Z_q&:[i]_p \mapsto i \in [-p/2,p/2] \subset Z, i \mapsto [i]_q}
$$
\cr
\noalign{\vskip -9pt} % dirty trick, gobbles the trailing \strut from \sectext
\entryskip
\longentry fetch({\it ringname}, {\it name\/})&
map from ring {\it ringname\/} to current
base\-ring. The rings have to be identical up
to names of ring variables\cr
\longentry imap({\it ringname}, {\it name\/})&
map from subring {\it ringname\/} to current
basering\cr
\longentry subst({\it expression}, {\it ringvar}, {\it monomial\/})&
substitute {\it ringvar\/} by {\it monomial\/}
in {\it expression}\cr
\endsec
\sec Miscellany(1.5cm)
\longentry setring({\it ringname\/})&
make {\it ringname\/} the current basering\cr
\subsec{Data on polynomials}
\longentry ord({\it poly\/\alt vector\/})&
return (weighted) degree of initial term\cr
\longentry deg({\it poly\/\alt vector\/})&
return maximal (weighted) degree\cr
\longentry
size({\it ideal\/\alt module\/})\par
size({\it poly\/\alt vector\/})\par
size({\it string\/\alt intvec\/\alt list\/})&
return (1) number of non-zero generators;
(2) number of monomials; (3) length\cr
\longentry lead({\it expression\/})&
return initial term(s)\cr
\subsec{Operations on polynomials}
\longentry gcd({\it $\hbox{poly}_1$}, {\it $\hbox{poly}_2$\/})&
return greatest common divisor\cr
\longentry factorize({\it poly\/}\opt{, {\it int\/}})&
return irreducible factors. Return constant
factor and multiplicities in dependency on {\it
int}.\cr
\endsec
\sec Differentiation and jets(1.5cm)
\longentry
diff({\it expression}, {\it ringvar\/})\par
diff({\it $\hbox{ideal}_1$}, {\it $\hbox{ideal}_2$\/})&
(1) return partial derivation by {\it
ringvar\/}; (2) differentiate each elt.\ of {\it
$\hbox{ideal}_2$\/} by the differential
operators corres\-pon\-ding to the elements of {\it
$\hbox{ideal}_1$}\cr
\longentry jacob({\it poly\/\alt ideal\/})&
return jacobi ideal or matrix, resp.\cr
\longentry jet({\it expression}, {\it int\/}\opt{, {\it intvec\/}})&
return {\it int\/}-jet of {\it expression}.
Return weighted {\it int\/}-jet if {\it
intvec\/} is specifified.\cr
\endsec
\eject
\sec Standard bases(1.5cm)
\longentry groebner({\it ideal\/\alt module\/}\opt{, {\it int\/}})&
compute a standard basis (SB) of {\it ideal\/}
resp.\ {\it module\/} using a heuristically
chosen method. Delimit com\-pu\-tation time to
{\it int\/} seconds.\cr
\longentry std({\it ideal\/\alt module\/}\opt{, {\it intvec\/}})&
compute a SB. Use first Hilbert series {\it
intvec\/} (result from {\tt hilb($\ldots$, 1)})
for Hilbert-driven computation.\cr
\longentry stdfglm({\it ideal\/}\opt{, {\it string\/}})&
use FGLM algorithm to compute a SB from a SB
w.r.t.\ the ``simpler'' ordering {\it string\/}
(de\-faults to {\tt dp})\cr
\longentry stdhilb({\it ideal\/}\opt{, {\it intvec\/}})&
use Hilbert-driven algorithm to compute a SB.
If Hil\-bert series {\it intvec\/} is not
specified compute it first.\cr
\longentry fglm({\it ringname}, {\it idealname\/})&
use FGLM algorithm to transform SB {\it
idealname\/} from ring {\it ringname\/} to a SB
w.r.t.\ the ordering of the current basering\cr
\longentry reduce({\it expression}, {\it ideal\/\alt module\/}\opt{, {\it int\/}})&
reduce {\it expression\/} w.r.t.\ second
argument which should be a SB. Use lazy
reduction if {\it int\/} equals one.\cr
\endsec
\sec Computation of invariants(1.5cm)
\sectext
Most of the results are meaningful only if the input ideal or module is
represented by a standard basis.\cr
\longentry degree({\it ideal\/\alt module\/})&
display (Krull) dimension, codimension and
multiplicity\cr
\longentry dim({\it ideal\/\alt module\/})&
return (Krull) dimension\cr
\longentry hilb({\it ideal\/\alt module\/}\opt{, {\it int\/}})&
display first and second Hilbert series with one
argument. Return {\it int}-th Hilber series
otherwise (${\it \hbox{int}} = 1,2$).\cr
\longentry mult({\it ideal\/\alt module\/})&
return multiplicity\cr
\longentry vdim({\it ideal\/\alt module\/})&
return vector space dimension of current
basering modulo {\it ideal\/} or {\it module},
resp.\cr
\endsec
\sec Resolutions(1.5cm)
\sectext
An integer argument {\it length\/} in the following descriptions specifies the
length of the resolution to compute. If {\it length\/} equals zero, the whole
resolution is computed.\cr
\longentry res({\it ideal\/\alt module}, {\it length\/}\opt{, {\it int\/}})&
compute a free resolution (FR) of {\it ideal\/}
resp.\ {\it module\/} using a heuristically
chosen method. Compute a minimal resolution if
a third argument is given.\cr
\longentry mres({\it ideal\/\alt module}, {\it length\/})&
compute a minimal FR using the standard basis
method\cr
\longentry lres({\it ideal\/\alt module}, {\it length\/})&
compute a FR using LaSacala's method\cr
\longentry sres({\it ideal\/\alt module}, {\it length\/})&
compute a FR using Schreyer's method\cr
\longentry syz({\it ideal\/\alt module\/})&
compute the first syzygy\cr
\longentry minres({\it resolution\/\alt list\/})&
minimize a free resolution\cr
\longentry betty({\it resolution\/\alt list\/})&
compute the graded Betti numbers of a module
represented by a resolution\cr
\endsec
\bye
|