File: usercard.tex

package info (click to toggle)
texi2html 1.82%2Bdfsg1-3
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,848 kB
  • ctags: 16,527
  • sloc: perl: 15,888; xml: 6,075; sh: 3,977; makefile: 545
file content (502 lines) | stat: -rw-r--r-- 18,340 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
% Id: usercard.tex,v 1.1 2003/08/08 14:27:06 pertusus Exp $

%
% usercard.tex - Singular user quick reference card.
%

\input singcard.tex

\centerline{\hbf SINGULAR Quick Reference}

\centerline{\srm {\ssc Singular} Version 1.2.0}

\bigskip

Do not forget to terminate all commands with a {\tt ;} (semicolon)!

In particular if \Singular\ prints the continuation prompt {\tt .}
(peri\-od) instead of the regular command prompt {\tt >}, then it
waits for a command to be terminated by a {\tt ;}.  If that does
not help, try one or more {\tt "} or {\tt \char`}} to close an
opened string or block.

Comments start with {\tt //} and extend to end of line.

\smallskip
Some of the topics concerning interactive use are system dependent.

\sec Starting SINGULAR(2.5cm)
Singular& 			start \Singular\cr
Singular {\it file} \rep&	read {\it files\/} and prompt for further commands\cr
Singular --help&		print help on command line options and exit\cr
\endsec

\sec Stopping SINGULAR()
quit;&				exit \Singular; also {\tt exit;} or {\tt \$}\cr
\ctl c&				interrupt \Singular\cr
\endsec

\sec Getting help()
help;&				enter online help system\cr
help {\it topic\/};&		describe {\it topic\/}; also {\tt? {\it topic\/};}\cr
\subsec{Inside the online help system:}
\ctl h&				get help on help system\cr
q&				exit from help system\cr
n\rmslash p\rmslash u&		go to next/previous/upper node\cr
m&				pick menu item by name\cr
l&				go to last visited node/exit from help on help\cr
SPC\rmslash DEL&		scroll forward/backward one page\cr
\endsec

\sec Commandline editing()
\sectext
Commandline editing is similar to that of, e.g., {\tt bash} or {\tt tcsh}:\cr
BS\rmslash\ctl d&		remove character on the left/right of cursor\cr
\ctl p\rmslash\ctl n&		get previous/next line from history\cr
\ctl b\rmslash\ctl f&		move cursor left/right\cr
\ctl a\rmslash\ctl e&		go to beginning/end of line\cr
\ctl u\rmslash\ctl k&		delete to beginning/end of line\cr
\endsec

\sec Names and objects()
\sectext
Names (= identifiers) have to be declared before they are used:\cr
\entryskip
\longentry {\it type\/} {\it name\/} \opt{= {\it expression\/}};&
				declare variable {\it name}\cr
kill({\it name\/})&		delete variable {\it name}\cr
\entryskip
\sectext
\parskip=\verysmallskipamount
Names of type {\tt number}, {\tt poly}, {\tt ideal}, {\tt vector}, {\tt
module}, {\tt matrix}, {\tt map}, and {\tt resolution} may be declared
only inside a ring.  They are local to that ring.  The same holds for a {\tt
list} if it contains an object of the above types.  All other types may be
declared at any time.  They are globally visible.

Names may consist of alphanumeric characters including {\tt \_}
(underscore) and have to start with a letter.  Capital and small letters
are distinguished.  Names may be followed by an integer expression in
parentheses, resulting in so-called {\it indexed names}.\cr
\entryskip
{\it name\/}({\it n}..{\it m\/})&
				shortcut for {\tt {\it name\/}({\it
				n\/}), $\ldots$, {\it name\/}({\it
				m\/})}\hfil\break
				(\eg {\tt ring r = 0, x(1..3), dp;})\cr
\_ {\rm (underscore)}&		refers to the value of the last expression
				printed\cr
\endsec

\vfill
\centerline{\srm \copyright 1998 \qquad Permissions on back}

\eject

\sec Ring declaration()
\longentry ring {\it name\/} = {\it basefield}, ({\it ringvars\/}), {\it ordering\/};&
				\hyphenpenalty=50 \tolerance=200 declare ring
				{\it name\/} and make it the new base\-ring.
				{\it ringvars\/} has to be a list of names, the
				other items are described below.  Example:\par
				{\tt ring r = 32003, (x, y, z), dp;}\cr
\longentry qring {\it name\/} = {\it ideal\/};&
				declare quotient ring {\it name\/} of the
				current base\-ring with respect to {\it
				ideal\/}.  {\it ideal\/} has to be a standard
				basis.  Make {\it name\/} the new basering.\cr
\subsec{Available {\bit basefields\/}:}
0&				the rational numbers\cr
\it p&				the finite field $Z_p$ with {\it p\/}
				elements,\par
				$2 \le p \le 32003$ a prime\cr
({\it p\/}\^{}{\it n}, {\it gen\/})&
				the finite field with $p^n$ elements, {\it p\/}
				a prime and\par $4 \le p^n \le 32671$. The name
				{\it gen\/} refers to some generator of the
				cyclic group of unities.\cr
({\it p}, {\it alpha\/})&	algebraic extension of $Q$ or $Z_p$ ($p =
				0$ or as above) by {\it alpha}.  The minpoly
				$\mu_{\hbox{\tit alpha}}$ for {\it alpha\/} has
				to be specified with an assignment to {\tt
				minpoly} (\eg {\tt minpoly=a\^{}2+1;}, for
				$\hbox{\it alpha}=\hbox{\tt a}$).  {\it
				alpha\/} has to be a name.\cr
({\it p}, $t_1$, $\ldots$)&	transcendental extension of $Q$ or $Z_p$
				($p = 0$ or as above) by~$t_i$.  The $t_i$ have
				to be names.\cr
real&				the real numbers represented by floating point
				numbers\cr
\endsec

\sec Term orderings()
\sectext
An {\it ordering\/} as referred to in the ring declaration may either be
a global, local, or matrix ordering or a list of these resulting in a
pro\-duct ordering.  The list may include extra weight vectors and may be
preceded or followed by a module ordering specification.\cr
\subsec{Global orderings}
lp&				lexicographical ordering\cr
dp&				degree reverse lexicographical ordering\cr
Dp&				degree lexicographical ordering\cr
wp($w_1$, $\ldots$)&		weighted reverse lexicographical ordering\cr
Wp($w_1$, $\ldots$)&		weighted lexicographical ordering\cr
&				The $w_i$ have to be positive integers.\cr
\subsec{Local orderings}
ls&				negative lexicographical ordering\cr
ds&				negative degree reverse lexicographical ordering\cr
Ds&				negative degree lexicographical ordering\cr
ws($w_1$, $\ldots$)&		general weighted reverse lexicographical ordering\cr
Ws($w_1$, $\ldots$)&		general weighted lexicographical ordering\cr
&				$w_1$ has to be a non-zero integer, every other
				$w_i$ may be any integer\cr
\subsec{Matrix orderings}
\longentry M($m_{11}$, $m_{12}$, $\ldots$, $m_{nn}$)&
				{\it m\/} has to be an invertible matrix with
				integer coeffi\-cients.  Coefficients have to be
				specified row-wise.\cr
\subsec{Product orderings}
\longentry($o_1$\opt{($k_1$)}, $o_2$\opt{($k_2$)}, $\ldots$, $o_n$\opt{($k_n$)})&
				the $o_i$ have to be any of the above orderings.
				{\tt lp}, {\tt dp}, {\tt Dp}, {\tt ls}, {\tt
				ds}, {\tt Ds} may be followed by an integer
				expression $k_i$ in parentheses specifying the
				number of variables $o_i$ refers to (\eg {\tt
				(lp(3), dp(2))}).\cr
\subsec{Extra weight vector}
a($w_1$, $\ldots$)&		any of the above degree orderings may be
				preceded by an extra weight vector\cr
\noalign{\eject}
\subsec{Module orderings}
({\it c}, $o_1$, $\ldots$)&	sort by components first\cr
($o_1$, $\ldots$, {\it c\/})&	sort by variables first\cr
&				$o_i$ may be any of the above orderings or an
				extra weight vector, {\it c\/} may be one of
				{\tt C} or {\tt c}:\cr
C&				sort generators in ascending order (\ie {\tt
				gen({\it i\/})} $<$ {\tt gen({\it j\/})} iff $i <
				j$)\cr
c&				sort generators in descending order\cr
\endsec

\sec Data types(1.5cm)
\sectext
Examples of ring-independent types:\cr
\entryskip
\longitem
int i1 = 101; int i2 = 13 div 3;\cr
\entryskip
\longitem
intvec iv = 13 div 3, -4, i1;\cr
\entryskip
\longentry
intmat im[2][2] = 13 div 3, -4, i1;&
				a $2\times 2$ matrix.  Entries are filled
				row-wise, missing entries are set to zero, extra
				entries are ignored.  vector/matrix elements are
				accessed using the {\tt[$\ldots$]} operator,
				where the first element has index one (\eg {\tt
				iv[3]; im[1, 2];}).\cr
\entryskip
\longitem
string s1 = "a quote \char"5C " and a backslash \char"5C \char"5C";\par
string s2 = "con" + "catenation";\cr
\entryskip
\sectext
Basering in the following is {\tt ring r = 0, (x, y, z, mu, nu), dp;}\cr
\entryskip
\longitem
number n = 5/3;\cr
\entryskip
\longentry
poly p(1) = 3/4x3yz4+2xy2;\par
poly p(2) = (5/3)*mu\^{}2*nu\^{}3+n*yz2;&
				{\tt p(1)} equals $3/4x^3yz^4+2xy^2$.  Short
				format of mono\-mials is valid for one-character
				ring variables only.\cr
\entryskip
\longentry
ideal i = p(1..2), x+y;&	note the use of indexed names\cr
\entryskip
\longentry
vector v = [p(1), p(2), x+y];\par
vector w = 2*p(1)*gen(6)+n*nu*gen(1);&
				vectors may be written in brackets ({\tt
				[$\ldots$]}) or expressed as linear
				combinations of the canonical generators {\tt
				gen({\it i\/})}\cr
\entryskip
\longitem
module mo = v, w, x+y*gen(1);\cr
\entryskip
\longitem
resolution r = sres(std(mo), 0);\cr
\entryskip
\longentry
matrix ma[2][2] = 5/3, p(1), 101;&
				the rules for declaring, filling, and accessing
				integer matrices apply to types {\tt matrix}
				and {\tt vector}, too\cr
\entryskip
\longentry
list l = iv, v, p(1..2), mo;&
				lists may collect objects of any type.  They are
				ring-dependent iff one of the entries is.\cr
\entryskip
\longentry
def d = read("MPfile:r example.mp");&
				a name of type {\tt def} inherits the type of
				the object assigned first to it.  Useful if the
				actual type of an object is unknown.\cr
\endsec

\sec Monitoring and debugging tools()
timer = 1;&			print time used for commands to execute\cr
\longentry int t = timer; {\it command\/}; \rep; timer-t;&
				print time used for {\it commands\/} to execute\cr
memory(1);&			print number of bytes allocated from system\cr
option(prot);&			show algorithm protocol\cr
option(mem);&			show algorithm memory usage\cr
\entryskip
TRACE = 1;&			print protocol on execution of procedures\cr
listvar(all);&			list all (user-)defined names\cr
\longentry listvar({\it ringname\/});&
				list all names belonging to {\it ringname}\cr
\endsec

\eject

\sec Options()
option();&			show current option settings\cr
\longentry option($option_1$, no$option_2$, $\ldots$);&
				switch $option_1$ on and $option_2$ off, resp.\cr
option(none);&			reset all options to default values\cr
\sectext
Type {\tt help option;} for a list of all options.\cr
\subsec{Monitoring}
debugLib&			show loading of procedures from libraries\cr
mem&				show algorithm memory usage\cr
prot&				show algorithm protocol\cr
\subsec{Standard bases}
fastHC&				try to find highest corner as fast as possible\cr
intStrategy&			avoid divisions\cr
morePairs&			create additional pairs\cr
notSugar&			disable sugar strategy\cr
redSB&				compute reduced standard bases\cr
redTail&			reduce tails\cr
sugarCrit&			use sugar criteria\cr
weightM&			automatically compute weights\cr
\subsec{Resolutions}
minRes&				do additional minimizing\cr
notRegularity&			disable regularity bound\cr
\subsec{Miscellany}
returnSB&			let some functions return standard bases\cr
\endsec

\sec System variables()
\sectext
Type {\tt help System variables;} for a list of all system variables.\cr
\subsec{Standard bases}
degBound&			stop if (weighted) total degree exceeds {\tt
				degBound}\cr
multBound&			stop if multiplicity gets smaller than {\tt
				multBound}\cr
noether&			cut off all monomials above monomial {\tt
				noether}\cr
\subsec{Miscellany}
basering&			current basering\cr
minpoly&			minimal polynomial for algebraic extensions\cr
short&				do not print monomials in short format if zero\cr
timer&				on assignment of a non-zero value show time
				used for execution of executed commands.  On
				evaluation, return system time in seconds used
				by \Singular\ since start\cr
TRACE&				print information on procedures being executed
				if larger than one\cr
\endsec

\sec Input and output()
< "{\it filename\/}";&		load and execute {\it filename\/}\cr
\longentry write("{\it filename\/}", {\it expression}, \rep)&
				write {\it expressions\/} to ASCII file {\it
				filename}\cr
\longentry read("{\it filename\/}");&
				read ASCII file {\it filename\/} and return
				content as a string.  See also example below.\cr
\longentry
dump("MPfile: {\it filename\/}");\par
getdump("MPfile: {\it filename\/}");&
				dump current state of {\sc Singular} to {\it
				filename} and retrieve it, resp.\cr
\entryskip
\sectext
An example how to write one single expression (in this case the
ideal {\tt i}) to a file and read it back from there:

{\tt
write("i.save", i);\par
execute("ideal i=" + read("i.save") + ";");
}\cr
\endsec

\eject
				
\sec Libraries()
LIB "{\it library\/}";&		load {\it library}\cr
help {\it library\/};&		show help on {\it library}\cr
help all.lib;&			show list of all libraries\cr
\endsec

\sec Mapping(1.5cm)
\longentry map {\it name\/} = {\it ringname}, {\it ideal\/};&
				declare a map {\it name\/} from {\it ringname\/}
				to current basering.  The $i$-th ring variable
				from {\it ringname\/} is mapped to the $i$-th
				generator of {\it ideal}.\cr
\longentry {\it mapname\/}({\it expression\/})&
				apply map {\it mapname\/} to {\it expression}\cr
\entryskip
\sectext
Coefficients between rings with different basefields are mapped in the following
way (non-canonical maps only):\strut
\abovedisplayskip=0pt
\belowdisplayskip=0pt
$$
\eqalign{Z_p \rightarrow Q&  :[i]_p \mapsto i \in [-p/2,p/2] \subset Z\cr
	 Z_p \rightarrow Z_q&:[i]_p \mapsto i \in [-p/2,p/2] \subset Z, i \mapsto [i]_q}
$$
\cr
\noalign{\vskip -9pt} % dirty trick, gobbles the trailing \strut from \sectext
\entryskip
\longentry fetch({\it ringname}, {\it name\/})&
				map from ring {\it ringname\/} to current
				base\-ring.  The rings have to be identical up
				to names of ring variables\cr
\longentry imap({\it ringname}, {\it name\/})&
				map from subring {\it ringname\/} to current
				basering\cr
\longentry subst({\it expression}, {\it ringvar}, {\it monomial\/})&
				substitute {\it ringvar\/} by {\it monomial\/}
				in {\it expression}\cr
\endsec

\sec Miscellany(1.5cm)
\longentry setring({\it ringname\/})&
				make {\it ringname\/} the current basering\cr
\subsec{Data on polynomials}
\longentry ord({\it poly\/\alt vector\/})&
				return (weighted) degree of initial term\cr
\longentry deg({\it poly\/\alt vector\/})&
				return maximal (weighted) degree\cr
\longentry
size({\it ideal\/\alt module\/})\par
size({\it poly\/\alt vector\/})\par
size({\it string\/\alt intvec\/\alt list\/})&
				return (1) number of non-zero generators;
				(2) number of monomials; (3) length\cr
\longentry lead({\it expression\/})&
				return initial term(s)\cr
\subsec{Operations on polynomials}
\longentry gcd({\it $\hbox{poly}_1$}, {\it $\hbox{poly}_2$\/})&
				return greatest common divisor\cr
\longentry factorize({\it poly\/}\opt{, {\it int\/}})&
				return irreducible factors.  Return constant
				factor and multiplicities in dependency on {\it
				int}.\cr
\endsec

\sec Differentiation and jets(1.5cm)
\longentry
diff({\it expression}, {\it ringvar\/})\par
diff({\it $\hbox{ideal}_1$}, {\it $\hbox{ideal}_2$\/})&
				(1) return partial derivation by {\it
				ringvar\/}; (2) differentiate each elt.\ of {\it
				$\hbox{ideal}_2$\/} by the differential
				operators corres\-pon\-ding to the elements of {\it
				$\hbox{ideal}_1$}\cr
\longentry jacob({\it poly\/\alt ideal\/})&
				return jacobi ideal or matrix, resp.\cr
\longentry jet({\it expression}, {\it int\/}\opt{, {\it intvec\/}})&
				return {\it int\/}-jet of {\it expression}.
				Return weighted {\it int\/}-jet if {\it
				intvec\/} is specifified.\cr
\endsec

\eject

\sec Standard bases(1.5cm)
\longentry groebner({\it ideal\/\alt module\/}\opt{, {\it int\/}})&
				compute a standard basis (SB) of {\it ideal\/}
				resp.\ {\it module\/} using a heuristically
				chosen method.  Delimit com\-pu\-tation time to
				{\it int\/} seconds.\cr
\longentry std({\it ideal\/\alt module\/}\opt{, {\it intvec\/}})&
				compute a SB.  Use first Hilbert series {\it
				intvec\/} (result from {\tt hilb($\ldots$, 1)})
				for Hilbert-driven computation.\cr
\longentry stdfglm({\it ideal\/}\opt{, {\it string\/}})&
				use FGLM algorithm to compute a SB from a SB
				w.r.t.\ the ``simpler'' ordering {\it string\/}
				(de\-faults to {\tt dp})\cr
\longentry stdhilb({\it ideal\/}\opt{, {\it intvec\/}})&
				use Hilbert-driven algorithm to compute a SB.
				If Hil\-bert series {\it intvec\/} is not
				specified compute it first.\cr
\longentry fglm({\it ringname}, {\it idealname\/})&
				use FGLM algorithm to transform SB {\it
				idealname\/} from ring {\it ringname\/} to a SB
				w.r.t.\ the ordering of the current basering\cr
\longentry reduce({\it expression}, {\it ideal\/\alt module\/}\opt{, {\it int\/}})&
				reduce {\it expression\/} w.r.t.\ second
				argument which should be a SB.  Use lazy
				reduction if {\it int\/} equals one.\cr
\endsec

\sec Computation of invariants(1.5cm)
\sectext
Most of the results are meaningful only if the input ideal or module is
represented by a standard basis.\cr
\longentry degree({\it ideal\/\alt module\/})&
				display (Krull) dimension, codimension and
				multiplicity\cr
\longentry dim({\it ideal\/\alt module\/})&
				return (Krull) dimension\cr
\longentry hilb({\it ideal\/\alt module\/}\opt{, {\it int\/}})&
				display first and second Hilbert series with one
				argument.  Return {\it int}-th Hilber series
				otherwise (${\it \hbox{int}} = 1,2$).\cr
\longentry mult({\it ideal\/\alt module\/})&
				return multiplicity\cr
\longentry vdim({\it ideal\/\alt module\/})&
				return vector space dimension of current
				basering modulo {\it ideal\/} or {\it module},
				resp.\cr
\endsec

\sec Resolutions(1.5cm)
\sectext
An integer argument {\it length\/} in the following descriptions specifies the
length of the resolution to compute.  If {\it length\/} equals zero, the whole
resolution is computed.\cr
\longentry res({\it ideal\/\alt module}, {\it length\/}\opt{, {\it int\/}})&
				compute a free resolution (FR) of {\it ideal\/}
				resp.\ {\it module\/} using a heuristically
				chosen method.  Compute a minimal resolution if
				a third argument is given.\cr
\longentry mres({\it ideal\/\alt module}, {\it length\/})&
				compute a minimal FR using the standard basis
				method\cr
\longentry lres({\it ideal\/\alt module}, {\it length\/})&
				compute a FR using LaSacala's method\cr
\longentry sres({\it ideal\/\alt module}, {\it length\/})&
				compute a FR using Schreyer's method\cr
\longentry syz({\it ideal\/\alt module\/})&
				compute the first syzygy\cr
\longentry minres({\it resolution\/\alt list\/})&
				minimize a free resolution\cr
\longentry betty({\it resolution\/\alt list\/})&
				compute the graded Betti numbers of a module
				represented by a resolution\cr
\endsec

\bye