1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
@c ---content LibInfo---
@comment This file was generated by doc2tex.pl from d2t_singular/algebra_lib.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/algebra_lib.doc INSTEAD
@c library version: (1.9.2.3,2002/04/11)
@c library file: ../Singular/LIB/algebra.lib
@cindex algebra.lib
@cindex algebra_lib
@table @asis
@item @strong{Library:}
algebra.lib
@item @strong{Purpose:}
Compute with Algebras and Algebra Maps
@item @strong{Authors:}
Gert-Martin Greuel, greuel@@mathematik.uni-kl.de,
@* Agnes Eileen Heydtmann, agnes@@math.uni-sb.de,
@* Gerhard Pfister, pfister@@mathematik.uni-kl.de
@end table
@strong{Procedures:}
@menu
* algebra_containment:: query of algebra containment
* module_containment:: query of module containment over a subalgebra
* inSubring:: test whether poly p is in subring generated by I
* algDependent:: computes algebraic relations between generators of I
* alg_kernel:: computes the kernel of the ring map phi
* is_injective:: test for injectivity of ring map phi
* is_surjective:: test for surjectivity of ring map phi
* is_bijective:: test for bijectivity of ring map phi
* noetherNormal:: noether normalization of ideal id
* mapIsFinite:: query for finiteness of map phi:R --> basering/I
* finitenessTest:: find variables which occur as pure power in lead(i)
@end menu
@c ---end content LibInfo---
@c ------------------- algebra_containment -------------
@node algebra_containment, module_containment,, algebra_lib
@subsubsection algebra_containment
@cindex algebra_containment
@c ---content algebra_containment---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
algebra_containment(p,A[,k]); p poly, A ideal, k integer.
@* A = A[1],...,A[m] generators of subalgebra of the basering
@item @strong{Return:}
@format
- k=0 (or if k is not given) an integer:
1 : if p is contained in the subalgebra K[A[1],...,A[m]]
0 : if p is not contained in K[A[1],...,A[m]]
- k=1 : a list, say l, of size 2, l[1] integer, l[2] ring, satisfying
l[1]=1 if p is in the subalgebra K[A[1],...,A[m]] and then the ring
l[2] contains poly check = h(y(1),...,y(m)) if p=h(A[1],...,A[m])
l[1]=0 if p is in not the subalgebra K[A[1],...,A[m]] and then
l[2] contains the poly check = h(x,y(1),...,y(m)) if p satisfies
the nonlinear relation p = h(x,A[1],...,A[m]) where
x = x(1),...,x(n) denote the variables of the basering
@end format
@item @strong{Display:}
if k=0 and printlevel >= voice+1 (default) display the poly check
@item @strong{Note:}
The proc inSubring uses a different algorithm which is sometimes
faster.
@item @strong{Theory:}
The ideal of algebraic relations of the algebra generators A[1],...,
A[m] is computed introducing new variables y(i) and the product
order with x(i) >> y(i).
@*p reduces to a polynomial only in the y(i) <=> p is contained in the
subring generated by the polynomials A[1],...,A[m].
@end table
@strong{Example:}
@smallexample
@c computed example algebra_containment d2t_singular/algebra_lib.doc:77
LIB "algebra.lib";
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z),dp;
ideal A=x2+y2,z2,x4+y4,1,x2z-1y2z,xyz,x3y-1xy3;
poly p1=z;
poly p2=
x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4;
algebra_containment(p1,A);
@expansion{} // x(3)
@expansion{} 0
algebra_containment(p2,A);
@expansion{} // y(1)*y(2)*y(5)^2+y(3)*y(5)^3+4*y(1)*y(2)*y(6)^2+4*y(6)^3*y(7)+2*y(2)*y\
(5)*y(7)^2
@expansion{} 1
list L = algebra_containment(p2,A,1);
@expansion{}
@expansion{} // 'algebra_containment' created a ring as 2nd element of the list.
@expansion{} // The ring contains the poly check which defines the algebraic relation.
@expansion{} // To access to the ring and see check you must give the ring a name,
@expansion{} // e.g.:
@expansion{} def S = l[2]; setring S; check;
@expansion{}
L[1];
@expansion{} 1
def S = L[2]; setring S;
check;
@expansion{} y(1)*y(2)*y(5)^2+y(3)*y(5)^3+4*y(1)*y(2)*y(6)^2+4*y(6)^3*y(7)+2*y(2)*y(5)\
*y(7)^2
printlevel = p;
@c end example algebra_containment d2t_singular/algebra_lib.doc:77
@end smallexample
@c ---end content algebra_containment---
@c ------------------- module_containment -------------
@node module_containment, inSubring, algebra_containment, algebra_lib
@subsubsection module_containment
@cindex module_containment
@c ---content module_containment---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
module_containment(p,P,M[,k]); p poly, P ideal, M ideal, k int
@* P = P[1],...,P[n] generators of a subalgebra of the basering,
@* M = M[1],...,M[m] generators of a module over the subalgebra K[P]
@item @strong{Assume:}
ncols(P) = nvars(basering), the P[i] are algebraically independent
@item @strong{Return:}
@format
- k=0 (or if k is not given), an integer:
1 : if p is contained in the module <M[1],...,M[m]> over K[P]
0 : if p is not contained in <M[1],...,M[m]>
- k=1, a list, say l, of size 2, l[1] integer, l[2] ring:
l[1]=1 : if p is in <M[1],...,M[m]> and then the ring l[2] contains
the polynomial check = h(y(1),...,y(m),z(1),...,z(n)) if
p = h(M[1],...,M[m],P[1],...,P[n])
l[1]=0 : if p is in not in <M[1],...,M[m]>, then l[2] contains the
poly check = h(x,y(1),...,y(m),z(1),...,z(n)) if p satisfies
the nonlinear relation p = h(x,M[1],...,M[m],P[1],...,P[n]) where
x = x(1),...,x(n) denote the variables of the basering
@end format
@item @strong{Display:}
the polynomial h(y(1),...,y(m),z(1),...,z(n)) if k=0, resp.
a comment how to access the relation check if k=1, provided
printlevel >= voice+1 (default).
@item @strong{Theory:}
The ideal of algebraic relations of all the generators p1,...,pn,
s1,...,st given by P and S is computed introducing new variables y(j),
z(i) and the product order: x^a*y^b*z^c > x^d*y^e*z^f if x^a > x^d
with respect to the lp ordering or else if z^c > z^f with respect to
the dp ordering or else if y^b > y^e with respect to the lp ordering
again. p reduces to a polynomial only in the y(j) and z(i), linear in
the z(i) <=> p is contained in the module.
@end table
@strong{Example:}
@smallexample
@c computed example module_containment d2t_singular/algebra_lib.doc:144
LIB "algebra.lib";
int p = printlevel; printlevel = 1;
ring R=0,(x,y,z),dp;
ideal P = x2+y2,z2,x4+y4; //algebra generators
ideal M = 1,x2z-1y2z,xyz,x3y-1xy3; //module generators
poly p1=
x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4;
module_containment(p1,P,M);
@expansion{} // y(2)*z(2)*z(3)^2+z(1)^3*z(2)^2
@expansion{} 1
poly p2=z;
list l = module_containment(p2,P,M,1);
@expansion{}
@expansion{} // 'module_containment' created a ring as 2nd element of the list. The
@expansion{} // ring contains the poly check which defines the algebraic relation
@expansion{} // for p. To access to the ring and see check you must give the ring
@expansion{} // a name, e.g.:
@expansion{} def S = l[2]; setring S; check;
@expansion{}
l[1];
@expansion{} 0
def S = l[2]; setring S; check;
@expansion{} x(3)
printlevel=p;
@c end example module_containment d2t_singular/algebra_lib.doc:144
@end smallexample
@c ---end content module_containment---
@c ------------------- inSubring -------------
@node inSubring, algDependent, module_containment, algebra_lib
@subsubsection inSubring
@cindex inSubring
@c ---content inSubring---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
inSubring(p,i); p poly, i ideal
@item @strong{Return:}
@format
a list l of size 2, l[1] integer, l[2] string
l[1]=1 iff p is in the subring generated by i=i[1],...,i[k],
and then l[2] = y(0)-h(y(1),...,y(k)) if p = h(i[1],...,i[k])
l[1]=0 iff p is in not the subring generated by i,
and then l[2] = h(y(0),y(1),...,y(k) where p satisfies the
nonlinear relation h(p,i[1],...,i[k])=0.
@end format
@item @strong{Note:}
the proc algebra_containment tests the same with a different
algorithm, which is often faster
@end table
@strong{Example:}
@smallexample
@c computed example inSubring d2t_singular/algebra_lib.doc:190
LIB "algebra.lib";
ring q=0,(x,y,z,u,v,w),dp;
poly p=xyzu2w-1yzu2w2+u4w2-1xu2vw+u2vw2+xyz-1yzw+2u2w-1xv+vw+2;
ideal I =x-w,u2w+1,yz-v;
inSubring(p,I);
@expansion{} [1]:
@expansion{} 1
@expansion{} [2]:
@expansion{} y(1)*y(2)*y(3)+y(2)^2-y(0)+1
@c end example inSubring d2t_singular/algebra_lib.doc:190
@end smallexample
@c ---end content inSubring---
@c ------------------- algDependent -------------
@node algDependent, alg_kernel, inSubring, algebra_lib
@subsubsection algDependent
@cindex algDependent
@c ---content algDependent---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
algDependent(f[,c]); f ideal (say, f = f1,...,fm), c integer
@item @strong{Return:}
@format
a list l of size 2, l[1] integer, l[2] ring:
- l[1] = 1 if f1,...,fm are algebraic dependent, 0 if not
- l[2] is a ring with variables x(1),...,x(n),y(1),...,y(m) if the
basering has n variables. It contains the ideal 'ker', depending
only on the y(i) and generating the algebraic relations between the
f[i], i.e. substituting y(i) by fi yields 0. Of course, ker is
nothing but the kernel of the ring map
K[y(1),...,y(m)] ---> basering, y(i) --> fi.
@end format
@item @strong{Note:}
Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
The basering may be a quotient ring.
@*To access to the ring l[2] and see ker you must give the ring a name,
e.g. def S=l[2]; setring S; ker;
@item @strong{Display:}
The above comment is displayed if printlevel >= 0 (default).
@end table
@strong{Example:}
@smallexample
@c computed example algDependent d2t_singular/algebra_lib.doc:236
LIB "algebra.lib";
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z,u,v,w),dp;
ideal I = xyzu2w-1yzu2w2+u4w2-1xu2vw+u2vw2+xyz-1yzw+2u2w-1xv+vw+2,
x-w, u2w+1, yz-v;
list l = algDependent(I);
@expansion{}
@expansion{} // The 2nd element of the list l is a ring with variables x(1),...,x(n),
@expansion{} // and y(1),...,y(m) if the basering has n variables and if the ideal
@expansion{} // is f[1],...,f[m]. The ring contains the ideal ker which depends only
@expansion{} // on the y(i) and generates the relations between the f[i].
@expansion{} // I.e. substituting y(i) by f[i] yields 0.
@expansion{} // To access to the ring and see ker you must give the ring a name,
@expansion{} // e.g.:
@expansion{} def S = l[2]; setring S; ker;
@expansion{}
l[1];
@expansion{} 1
def S = l[2]; setring S;
ker;
@expansion{} ker[1]=y(2)*y(3)*y(4)+y(3)^2-y(1)+1
printlevel = p;
@c end example algDependent d2t_singular/algebra_lib.doc:236
@end smallexample
@c ---end content algDependent---
@c ------------------- alg_kernel -------------
@node alg_kernel, is_injective, algDependent, algebra_lib
@subsubsection alg_kernel
@cindex alg_kernel
@c ---content alg_kernel---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
alg_kernel(phi,pr[,s,c]); phi map to basering, pr preimage ring,
s string (name of kernel in pr), c integer.
@item @strong{Return:}
a string, the kernel of phi as string.
@*If, moreover, a string s is given, the algorithm creates, in the
preimage ring pr the kernel of phi with name s.
@*Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
(algorithm 1 uses the preimage command)
@item @strong{Note:}
Since the kernel of phi lives in pr, it cannot be returned to the
basering. If s is given, the user has access to it in pr via s.
The basering may be a quotient ring.
@end table
@strong{Example:}
@smallexample
@c computed example alg_kernel d2t_singular/algebra_lib.doc:279
LIB "algebra.lib";
ring r = 0,(a,b,c),ds;
ring s = 0,(x,y,z,u,v,w),dp;
ideal I = x-w,u2w+1,yz-v;
map phi = r,I; // a map from r to s:
alg_kernel(phi,r); // a,b,c ---> x-w,u2w+1,yz-v
@expansion{} 0
ring S = 0,(a,b,c),ds;
ring R = 0,(x,y,z),dp;
qring Q = std(x-y);
ideal i = x, y, x2-y3;
map phi = S,i; // a map to a quotient ring
alg_kernel(phi,S,"ker",3); // uses algorithm 3
@expansion{} a-b,b^3-b^2+c
setring S; // you have access to kernel in preimage
ker;
@expansion{} ker[1]=a-b
@expansion{} ker[2]=c-b2+b3
@c end example alg_kernel d2t_singular/algebra_lib.doc:279
@end smallexample
@c ---end content alg_kernel---
@c ------------------- is_injective -------------
@node is_injective, is_surjective, alg_kernel, algebra_lib
@subsubsection is_injective
@cindex is_injective
@c ---content is_injective---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
is_injective(phi,pr[,c,s]); phi map, pr preimage ring, c int, s string
@item @strong{Return:}
@format
- 1 (type int) if phi is injective, 0 if not (if s is not given).
- If s is given, return a list l of size 2, l[1] int, l[2] ring:
l[1] is 1 if phi is injective, 0 if not
l[2] is a ring with variables x(1),...,x(n),y(1),...,y(m) if the
basering has n variables and the map m components, it contains the
ideal 'ker', depending only on the y(i), the kernel of the given map
@end format
@item @strong{Note:}
Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
The basering may be a quotient ring. However, if the preimage ring is
a quotient ring, say pr = P/I, consider phi as a map from P and then
the algorithm returns 1 if the kernel of phi is 0 mod I.
To access to the ring l[2] and see ker you must give the ring a name,
e.g. def S=l[2]; setring S; ker;
@item @strong{Display:}
The above comment is displayed if printlevel >= 0 (default).
@end table
@strong{Example:}
@smallexample
@c computed example is_injective d2t_singular/algebra_lib.doc:334
LIB "algebra.lib";
int p = printlevel;
ring r = 0,(a,b,c),ds;
ring s = 0,(x,y,z,u,v,w),dp;
ideal I = x-w,u2w+1,yz-v;
map phi = r,I; // a map from r to s:
is_injective(phi,r); // a,b,c ---> x-w,u2w+1,yz-v
@expansion{} 1
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i; // a map from R to itself, z --> x2-y3
list l = is_injective(phi,R,"");
@expansion{}
@expansion{} // The 2nd element of the list is a ring with variables x(1),...,x(n),
@expansion{} // y(1),...,y(m) if the basering has n variables and the map is
@expansion{} // F[1],...,F[m].
@expansion{} // It contains the ideal ker, the kernel of the given map y(i) --> F[i].
@expansion{} // To access to the ring and see ker you must give the ring a name,
@expansion{} // e.g.:
@expansion{} def S = l[2]; setring S; ker;
@expansion{}
l[1];
@expansion{} 0
def S = l[2]; setring S;
ker;
@expansion{} ker[1]=y(2)^3-y(1)^2+y(3)
@c end example is_injective d2t_singular/algebra_lib.doc:334
@end smallexample
@c ---end content is_injective---
@c ------------------- is_surjective -------------
@node is_surjective, is_bijective, is_injective, algebra_lib
@subsubsection is_surjective
@cindex is_surjective
@c ---content is_surjective---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
is_surjective(phi); phi map to basering, or ideal defining it
@item @strong{Return:}
an integer, 1 if phi is surjective, 0 if not
@item @strong{Note:}
The algorithm returns 1 iff all the variables of the basering are
contained in the polynomial subalgebra generated by the polynomials
defining phi. Hence, if the basering has local or mixed ordering
or if the preimage ring is a quotient ring (in which case the map
may not be well defined) then the return value 1 means
@*"surjectivity" in this sense.
@end table
@strong{Example:}
@smallexample
@c computed example is_surjective d2t_singular/algebra_lib.doc:378
LIB "algebra.lib";
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i; // a map from R to itself, z->x2-y3
is_surjective(phi);
@expansion{} 0
qring Q = std(ideal(z-x37));
map psi = R, x,y,x2-y3; // the same map to the quotient ring
is_surjective(psi);
@expansion{} 1
ring S = 0,(a,b,c),dp;
map psi = R,ideal(a,a+b,c-a2+b3); // a map from R to S,
is_surjective(psi); // x->a, y->a+b, z->c-a2+b3
@expansion{} 1
@c end example is_surjective d2t_singular/algebra_lib.doc:378
@end smallexample
@c ---end content is_surjective---
@c ------------------- is_bijective -------------
@node is_bijective, noetherNormal, is_surjective, algebra_lib
@subsubsection is_bijective
@cindex is_bijective
@c ---content is_bijective---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
is_bijective(phi,pr); phi map to basering, pr preimage ring
@item @strong{Return:}
an integer, 1 if phi is bijective, 0 if not
@item @strong{Note:}
The algorithm checks first injectivity and then surjectivity
To interpret this for local/mixed orderings, or for quotient rings
type help is_surjective; and help is_injective;
@item @strong{Display:}
A comment if printlevel >= voice-1 (default)
@end table
@strong{Example:}
@smallexample
@c computed example is_bijective d2t_singular/algebra_lib.doc:419
LIB "algebra.lib";
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i; // a map from R to itself, z->x2-y3
is_bijective(phi,R);
@expansion{} // map not injective
@expansion{} 0
qring Q = std(z-x2+y3);
is_bijective(ideal(x,y,x2-y3),Q);
@expansion{} 1
ring S = 0,(a,b,c,d),dp;
map psi = R,ideal(a,a+b,c-a2+b3,0); // a map from R to S,
is_bijective(psi,R); // x->a, y->a+b, z->c-a2+b3
@expansion{} // map injective, but not surjective
@expansion{} 0
qring T = std(d,c-a2+b3);
@expansion{} // ** _ is no standardbasis
map chi = Q,a,b,a2-b3; // amap between two quotient rings
is_bijective(chi,Q);
@expansion{} 1
printlevel = p;
@c end example is_bijective d2t_singular/algebra_lib.doc:419
@end smallexample
@c ---end content is_bijective---
@c ------------------- noetherNormal -------------
@node noetherNormal, mapIsFinite, is_bijective, algebra_lib
@subsubsection noetherNormal
@cindex noetherNormal
@c ---content noetherNormal---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
noetherNormal(id[,p]); id ideal, p integer
@item @strong{Return:}
@format
a list l two ideals, say I,J:
- I is generated by a subset of the variables with size(I) = dim(id)
- J defines a map (coordinate change in the basering), such that:
if we define map phi=basering,J;
then k[var(1),...,var(n)]/phi(id) is finite over k[I].
If p is given, 0<=p<=100, a sparse coordinate change with p percent
of the matrix entries being 0 (default: p=0 i.e. dense)
@end format
@item @strong{Note:}
Designed for characteristic 0.It works also in char k > 0 if it
terminates,but may result in an infinite loop in small characteristic
@end table
@strong{Example:}
@smallexample
@c computed example noetherNormal d2t_singular/algebra_lib.doc:468
LIB "algebra.lib";
ring r=0,(x,y,z),dp;
ideal i= xy,xz;
noetherNormal(i);
@expansion{} [1]:
@expansion{} _[1]=x
@expansion{} _[2]=2x+y
@expansion{} _[3]=3x+4y+z
@expansion{} [2]:
@expansion{} _[1]=y
@expansion{} _[2]=z
@c end example noetherNormal d2t_singular/algebra_lib.doc:468
@end smallexample
@c ---end content noetherNormal---
@c ------------------- mapIsFinite -------------
@node mapIsFinite, finitenessTest, noetherNormal, algebra_lib
@subsubsection mapIsFinite
@cindex mapIsFinite
@c ---content mapIsFinite---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
mapIsFinite(phi,R[,J]); R a ring, phi: R ---> basering a map
J an ideal in the basering, J = 0 if not given
@item @strong{Return:}
1 if R ---> basering/J is finite and 0 else
@end table
@strong{Example:}
@smallexample
@c computed example mapIsFinite d2t_singular/algebra_lib.doc:495
LIB "algebra.lib";
ring r = 0,(a,b,c),dp;
ring s = 0,(x,y,z),dp;
ideal i= xy;
map phi= r,(xy)^3+x2+z,y2-1,z3;
mapIsFinite(phi,r,i);
@expansion{} 1
@c end example mapIsFinite d2t_singular/algebra_lib.doc:495
@end smallexample
@c ---end content mapIsFinite---
@c ------------------- finitenessTest -------------
@node finitenessTest,, mapIsFinite, algebra_lib
@subsubsection finitenessTest
@cindex finitenessTest
@c ---content finitenessTest---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).
@table @asis
@item @strong{Usage:}
finitenessTest(J[,v]); J ideal, v intvec (say v1,...,vr with vi>0)
@item @strong{Return:}
@format
a list l with l[1] integer, l[2], l[3], l[4] ideals
- l[1] = 1 if var(v1),...,var(vr) are in l[2] and 0 else
- l[2] (resp. l[3]) contains those variables which occur,
(resp. occur not) as pure power in the leading term of one of the
generators of J,
- l[4] contains those J[i] for which the leading term is a pure power
of a variable (which is then in l[2])
(default: v = [1,2,..,nvars(basering)])
@end format
@item @strong{Theory:}
If J is a standard basis of an ideal generated by x_1 - f_1(y),...,
x_n - f_n with y_j ordered lexicographically and y_j >> x_i, then,
if y_i appears as pure power in the leading term of J[k]. J[k] defines
an integral relation for y_i over the y_(i+1),... and the f's.
Moreover, in this situation, if l[2] = y_1,...,y_r, then K[y_1,...y_r]
is finite over K[f_1..f_n]. If J contains furthermore polynomials
h_j(y), then K[y_1,...y_z]/<h_j> is finite over K[f_1..f_n].
@end table
@strong{Example:}
@smallexample
@c computed example finitenessTest d2t_singular/algebra_lib.doc:541
LIB "algebra.lib";
ring s = 0,(x,y,z,a,b,c),(lp(3),dp);
ideal i= a -(xy)^3+x2-z, b -y2-1, c -z3;
ideal j = a -(xy)^3+x2-z, b -y2-1, c -z3, xy;
finitenessTest(std(i),1..3);
@expansion{} [1]:
@expansion{} 0
@expansion{} [2]:
@expansion{} _[1]=y
@expansion{} _[2]=z
@expansion{} [3]:
@expansion{} _[1]=x
@expansion{} _[2]=a
@expansion{} _[3]=b
@expansion{} _[4]=c
@expansion{} [4]:
@expansion{} _[1]=z3-c
@expansion{} _[2]=y2-b+1
finitenessTest(std(j),1..3);
@expansion{} [1]:
@expansion{} 1
@expansion{} [2]:
@expansion{} _[1]=x
@expansion{} _[2]=y
@expansion{} _[3]=z
@expansion{} [3]:
@expansion{} _[1]=a
@expansion{} _[2]=b
@expansion{} _[3]=c
@expansion{} [4]:
@expansion{} _[1]=z3-c
@expansion{} _[2]=y2-b+1
@expansion{} _[3]=x2-z+a
@c end example finitenessTest d2t_singular/algebra_lib.doc:541
@end smallexample
@c ---end content finitenessTest---
|