File: algebra_lib.tex

package info (click to toggle)
texi2html 1.82%2Bdfsg1-5
  • links: PTS
  • area: main
  • in suites: buster, stretch
  • size: 34,700 kB
  • ctags: 16,893
  • sloc: perl: 15,902; xml: 6,075; sh: 3,977; makefile: 501
file content (655 lines) | stat: -rw-r--r-- 23,196 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
@c ---content LibInfo---
@comment This file was generated by doc2tex.pl from d2t_singular/algebra_lib.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/algebra_lib.doc INSTEAD
@c library version: (1.9.2.3,2002/04/11)
@c library file: ../Singular/LIB/algebra.lib
@cindex algebra.lib
@cindex algebra_lib
@table @asis
@item @strong{Library:}
algebra.lib
@item @strong{Purpose:}
   Compute with Algebras and Algebra Maps
@item @strong{Authors:}
Gert-Martin Greuel, greuel@@mathematik.uni-kl.de,
@* Agnes Eileen Heydtmann, agnes@@math.uni-sb.de,
@* Gerhard Pfister, pfister@@mathematik.uni-kl.de

@end table

@strong{Procedures:}
@menu
* algebra_containment:: query of algebra containment
* module_containment:: query of module containment over a subalgebra
* inSubring:: test whether poly p is in subring generated by I
* algDependent:: computes algebraic relations between generators of I
* alg_kernel:: computes the kernel of the ring map phi
* is_injective:: test for injectivity of ring map phi
* is_surjective:: test for surjectivity of ring map phi
* is_bijective:: test for bijectivity of ring map phi
* noetherNormal:: noether normalization of ideal id
* mapIsFinite:: query for finiteness of map phi:R --> basering/I
* finitenessTest:: find variables which occur as pure power in lead(i)
@end menu
@c ---end content LibInfo---

@c ------------------- algebra_containment -------------
@node algebra_containment, module_containment,, algebra_lib
@subsubsection algebra_containment
@cindex algebra_containment
@c ---content algebra_containment---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
algebra_containment(p,A[,k]); p poly, A ideal, k integer.
@* A = A[1],...,A[m] generators of subalgebra of the basering

@item @strong{Return:}
@format
         - k=0 (or if k is not given) an integer:
           1  : if p is contained in the subalgebra K[A[1],...,A[m]]
           0  : if p is not contained in K[A[1],...,A[m]]
         - k=1 : a list, say l, of size 2, l[1] integer, l[2] ring, satisfying
           l[1]=1 if p is in the subalgebra K[A[1],...,A[m]] and then the ring
           l[2] contains poly check = h(y(1),...,y(m)) if p=h(A[1],...,A[m])
           l[1]=0 if p is in not the subalgebra K[A[1],...,A[m]] and then
           l[2] contains the poly check = h(x,y(1),...,y(m)) if p satisfies
           the nonlinear relation p = h(x,A[1],...,A[m]) where
           x = x(1),...,x(n) denote the variables of the basering
@end format

@item @strong{Display:}
if k=0 and printlevel >= voice+1 (default) display the poly check

@item @strong{Note:}
The proc inSubring uses a different algorithm which is sometimes
faster.

@item @strong{Theory:}
The ideal of algebraic relations of the algebra generators A[1],...,
A[m] is computed introducing new variables y(i) and the product
order with x(i) >> y(i).
@*p reduces to a polynomial only in the y(i) <=> p is contained in the
subring generated by the polynomials A[1],...,A[m].

@end table
@strong{Example:}
@smallexample
@c computed example algebra_containment d2t_singular/algebra_lib.doc:77 
LIB "algebra.lib";
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z),dp;
ideal A=x2+y2,z2,x4+y4,1,x2z-1y2z,xyz,x3y-1xy3;
poly p1=z;
poly p2=
x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4;
algebra_containment(p1,A);
@expansion{} // x(3)
@expansion{} 0
algebra_containment(p2,A);
@expansion{} // y(1)*y(2)*y(5)^2+y(3)*y(5)^3+4*y(1)*y(2)*y(6)^2+4*y(6)^3*y(7)+2*y(2)*y\
   (5)*y(7)^2
@expansion{} 1
list L = algebra_containment(p2,A,1);
@expansion{} 
@expansion{} // 'algebra_containment' created a ring as 2nd element of the list.
@expansion{} // The ring contains the poly check which defines the algebraic relation.
@expansion{} // To access to the ring and see check you must give the ring a name,
@expansion{} // e.g.:
@expansion{}                def S = l[2]; setring S; check;
@expansion{} 	
L[1];
@expansion{} 1
def S = L[2]; setring S;
check;
@expansion{} y(1)*y(2)*y(5)^2+y(3)*y(5)^3+4*y(1)*y(2)*y(6)^2+4*y(6)^3*y(7)+2*y(2)*y(5)\
   *y(7)^2
printlevel = p;
@c end example algebra_containment d2t_singular/algebra_lib.doc:77
@end smallexample
@c ---end content algebra_containment---

@c ------------------- module_containment -------------
@node module_containment, inSubring, algebra_containment, algebra_lib
@subsubsection module_containment
@cindex module_containment
@c ---content module_containment---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
module_containment(p,P,M[,k]); p poly, P ideal, M ideal, k int
@* P = P[1],...,P[n] generators of a subalgebra of the basering,
@* M = M[1],...,M[m] generators of a module over the subalgebra K[P]

@item @strong{Assume:}
ncols(P) = nvars(basering), the P[i] are algebraically independent

@item @strong{Return:}
@format
         - k=0 (or if k is not given), an integer:
           1    : if p is contained in the module <M[1],...,M[m]> over K[P]
           0    : if p is not contained in <M[1],...,M[m]>
         - k=1, a list, say l, of size 2, l[1] integer, l[2] ring:
           l[1]=1 : if p is in <M[1],...,M[m]> and then the ring l[2] contains
             the polynomial check = h(y(1),...,y(m),z(1),...,z(n)) if
             p = h(M[1],...,M[m],P[1],...,P[n])
           l[1]=0 : if p is in not in <M[1],...,M[m]>, then l[2] contains the
             poly check = h(x,y(1),...,y(m),z(1),...,z(n)) if p satisfies
             the nonlinear relation p = h(x,M[1],...,M[m],P[1],...,P[n]) where
             x = x(1),...,x(n) denote the variables of the basering
@end format

@item @strong{Display:}
the polynomial h(y(1),...,y(m),z(1),...,z(n)) if k=0, resp.
a comment how to access the relation check if k=1, provided
printlevel >= voice+1 (default).

@item @strong{Theory:}
The ideal of algebraic relations of all the generators p1,...,pn,
s1,...,st given by P and S is computed introducing new variables y(j),
z(i) and the product order: x^a*y^b*z^c > x^d*y^e*z^f if x^a > x^d
with respect to the lp ordering or else if z^c > z^f with respect to
the dp ordering or else if y^b > y^e with respect to the lp ordering
again. p reduces to a polynomial only in the y(j) and z(i), linear in
the z(i) <=> p is contained in the module.

@end table
@strong{Example:}
@smallexample
@c computed example module_containment d2t_singular/algebra_lib.doc:144 
LIB "algebra.lib";
int p = printlevel; printlevel = 1;
ring R=0,(x,y,z),dp;
ideal P = x2+y2,z2,x4+y4;           //algebra generators
ideal M = 1,x2z-1y2z,xyz,x3y-1xy3;  //module generators
poly p1=
x10z3-x8y2z3+2x6y4z3-2x4y6z3+x2y8z3-y10z3+x6z4+3x4y2z4+3x2y4z4+y6z4;
module_containment(p1,P,M);
@expansion{} // y(2)*z(2)*z(3)^2+z(1)^3*z(2)^2
@expansion{} 1
poly p2=z;
list l = module_containment(p2,P,M,1);
@expansion{} 
@expansion{} // 'module_containment' created a ring as 2nd element of the list. The
@expansion{} // ring contains the poly check which defines the algebraic relation
@expansion{} // for p. To access to the ring and see check you must give the ring
@expansion{} // a name, e.g.:
@expansion{}      def S = l[2]; setring S; check;
@expansion{}       
l[1];
@expansion{} 0
def S = l[2]; setring S; check;
@expansion{} x(3)
printlevel=p;
@c end example module_containment d2t_singular/algebra_lib.doc:144
@end smallexample
@c ---end content module_containment---

@c ------------------- inSubring -------------
@node inSubring, algDependent, module_containment, algebra_lib
@subsubsection inSubring
@cindex inSubring
@c ---content inSubring---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
inSubring(p,i); p poly, i ideal

@item @strong{Return:}
@format
         a list l of size 2, l[1] integer, l[2] string
         l[1]=1 iff p is in the subring generated by i=i[1],...,i[k],
                and then l[2] = y(0)-h(y(1),...,y(k)) if p = h(i[1],...,i[k])
         l[1]=0 iff p is in not the subring generated by i,
                and then l[2] = h(y(0),y(1),...,y(k) where p satisfies the
                nonlinear relation h(p,i[1],...,i[k])=0.
@end format

@item @strong{Note:}
the proc algebra_containment tests the same with a different
algorithm, which is often faster

@end table
@strong{Example:}
@smallexample
@c computed example inSubring d2t_singular/algebra_lib.doc:190 
LIB "algebra.lib";
ring q=0,(x,y,z,u,v,w),dp;
poly p=xyzu2w-1yzu2w2+u4w2-1xu2vw+u2vw2+xyz-1yzw+2u2w-1xv+vw+2;
ideal I =x-w,u2w+1,yz-v;
inSubring(p,I);
@expansion{} [1]:
@expansion{}    1
@expansion{} [2]:
@expansion{}    y(1)*y(2)*y(3)+y(2)^2-y(0)+1
@c end example inSubring d2t_singular/algebra_lib.doc:190
@end smallexample
@c ---end content inSubring---

@c ------------------- algDependent -------------
@node algDependent, alg_kernel, inSubring, algebra_lib
@subsubsection algDependent
@cindex algDependent
@c ---content algDependent---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
algDependent(f[,c]); f ideal (say, f = f1,...,fm), c integer

@item @strong{Return:}
@format	
         a list l  of size 2, l[1] integer, l[2] ring:
         - l[1] = 1 if f1,...,fm are algebraic dependent, 0 if not
         - l[2] is a ring with variables x(1),...,x(n),y(1),...,y(m) if the
           basering has n variables. It contains the ideal 'ker', depending
           only on the y(i) and generating the algebraic relations between the
           f[i], i.e. substituting y(i) by fi yields 0. Of course, ker is
           nothing but the kernel of the ring map
              K[y(1),...,y(m)] ---> basering,  y(i) --> fi.
@end format

@item @strong{Note:}
Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
The basering may be a quotient ring.
@*To access to the ring l[2] and see ker you must give the ring a name,
e.g. def S=l[2]; setring S; ker;

@item @strong{Display:}
The above comment is displayed if printlevel >= 0 (default).

@end table
@strong{Example:}
@smallexample
@c computed example algDependent d2t_singular/algebra_lib.doc:236 
LIB "algebra.lib";
int p = printlevel; printlevel = 1;
ring R = 0,(x,y,z,u,v,w),dp;
ideal I = xyzu2w-1yzu2w2+u4w2-1xu2vw+u2vw2+xyz-1yzw+2u2w-1xv+vw+2,
x-w, u2w+1, yz-v;
list l = algDependent(I);
@expansion{} 
@expansion{} // The 2nd element of the list l is a ring with variables x(1),...,x(n),
@expansion{} // and y(1),...,y(m) if the basering has n variables and if the ideal
@expansion{} // is f[1],...,f[m]. The ring contains the ideal ker which depends only
@expansion{} // on the y(i) and generates the relations between the f[i].
@expansion{} // I.e. substituting y(i) by f[i] yields 0.
@expansion{} // To access to the ring and see ker you must give the ring a name,
@expansion{} // e.g.:
@expansion{}              def S = l[2]; setring S; ker;
@expansion{} 	
l[1];
@expansion{} 1
def S = l[2]; setring S;
ker;
@expansion{} ker[1]=y(2)*y(3)*y(4)+y(3)^2-y(1)+1
printlevel = p;
@c end example algDependent d2t_singular/algebra_lib.doc:236
@end smallexample
@c ---end content algDependent---

@c ------------------- alg_kernel -------------
@node alg_kernel, is_injective, algDependent, algebra_lib
@subsubsection alg_kernel
@cindex alg_kernel
@c ---content alg_kernel---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
alg_kernel(phi,pr[,s,c]); phi map to basering, pr preimage ring,
s string (name of kernel in pr), c integer.

@item @strong{Return:}
a string, the kernel of phi as string.
@*If, moreover, a string s is given, the algorithm creates, in the
preimage ring pr the kernel of phi with name s.
@*Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
(algorithm 1 uses the preimage command)

@item @strong{Note:}
Since the kernel of phi lives in pr, it cannot be returned to the
basering. If s is given, the user has access to it in pr via s.
The basering may be a quotient ring.

@end table
@strong{Example:}
@smallexample
@c computed example alg_kernel d2t_singular/algebra_lib.doc:279 
LIB "algebra.lib";
ring r = 0,(a,b,c),ds;
ring s = 0,(x,y,z,u,v,w),dp;
ideal I = x-w,u2w+1,yz-v;
map phi = r,I;                // a map from r to s:
alg_kernel(phi,r);            // a,b,c ---> x-w,u2w+1,yz-v
@expansion{} 0
ring S = 0,(a,b,c),ds;
ring R = 0,(x,y,z),dp;
qring Q = std(x-y);
ideal i = x, y, x2-y3;
map phi = S,i;                 // a map to a quotient ring
alg_kernel(phi,S,"ker",3);     // uses algorithm 3
@expansion{} a-b,b^3-b^2+c
setring S;                     // you have access to kernel in preimage
ker;
@expansion{} ker[1]=a-b
@expansion{} ker[2]=c-b2+b3
@c end example alg_kernel d2t_singular/algebra_lib.doc:279
@end smallexample
@c ---end content alg_kernel---

@c ------------------- is_injective -------------
@node is_injective, is_surjective, alg_kernel, algebra_lib
@subsubsection is_injective
@cindex is_injective
@c ---content is_injective---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
is_injective(phi,pr[,c,s]); phi map, pr preimage ring, c int, s string

@item @strong{Return:}
@format	
         - 1 (type int) if phi is injective, 0 if not (if s is not given).
         - If s is given, return a list l of size 2, l[1] int, l[2] ring:
           l[1] is 1 if phi is injective, 0 if not
           l[2] is a ring with variables x(1),...,x(n),y(1),...,y(m) if the
           basering has n variables and the map m components, it contains the
           ideal 'ker', depending only on the y(i), the kernel of the given map
@end format

@item @strong{Note:}
Three different algorithms are used depending on c = 1,2,3.
If c is not given or c=0, a heuristically best method is chosen.
The basering may be a quotient ring. However, if the preimage ring is
a quotient ring, say pr = P/I, consider phi as a map from P and then
the algorithm returns 1 if the kernel of phi is 0 mod I.
To access to the ring l[2] and see ker you must give the ring a name,
e.g. def S=l[2]; setring S; ker;

@item @strong{Display:}
The above comment is displayed if printlevel >= 0 (default).

@end table
@strong{Example:}
@smallexample
@c computed example is_injective d2t_singular/algebra_lib.doc:334 
LIB "algebra.lib";
int p = printlevel;
ring r = 0,(a,b,c),ds;
ring s = 0,(x,y,z,u,v,w),dp;
ideal I = x-w,u2w+1,yz-v;
map phi = r,I;                    // a map from r to s:
is_injective(phi,r);              // a,b,c ---> x-w,u2w+1,yz-v
@expansion{} 1
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i;                    // a map from R to itself, z --> x2-y3
list l = is_injective(phi,R,"");
@expansion{} 
@expansion{} // The 2nd element of the list is a ring with variables x(1),...,x(n),
@expansion{} // y(1),...,y(m) if the basering has n variables and the map is
@expansion{} // F[1],...,F[m].
@expansion{} // It contains the ideal ker, the kernel of the given map y(i) --> F[i].
@expansion{} // To access to the ring and see ker you must give the ring a name,
@expansion{} // e.g.:
@expansion{}      def S = l[2]; setring S; ker;
@expansion{} 	
l[1];
@expansion{} 0
def S = l[2]; setring S;
ker;
@expansion{} ker[1]=y(2)^3-y(1)^2+y(3)
@c end example is_injective d2t_singular/algebra_lib.doc:334
@end smallexample
@c ---end content is_injective---

@c ------------------- is_surjective -------------
@node is_surjective, is_bijective, is_injective, algebra_lib
@subsubsection is_surjective
@cindex is_surjective
@c ---content is_surjective---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
is_surjective(phi); phi map to basering, or ideal defining it

@item @strong{Return:}
an integer, 1 if phi is surjective, 0 if not

@item @strong{Note:}
The algorithm returns 1 iff all the variables of the basering are
contained in the polynomial subalgebra generated by the polynomials
defining phi. Hence, if the basering has local or mixed ordering
or if the preimage ring is a quotient ring (in which case the map
may not be well defined) then the return value 1 means
@*"surjectivity" in this sense.

@end table
@strong{Example:}
@smallexample
@c computed example is_surjective d2t_singular/algebra_lib.doc:378 
LIB "algebra.lib";
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i;                    // a map from R to itself, z->x2-y3
is_surjective(phi);
@expansion{} 0
qring Q = std(ideal(z-x37));
map psi = R, x,y,x2-y3;           // the same map to the quotient ring
is_surjective(psi);
@expansion{} 1
ring S = 0,(a,b,c),dp;
map psi = R,ideal(a,a+b,c-a2+b3); // a map from R to S,
is_surjective(psi);               // x->a, y->a+b, z->c-a2+b3
@expansion{} 1
@c end example is_surjective d2t_singular/algebra_lib.doc:378
@end smallexample
@c ---end content is_surjective---

@c ------------------- is_bijective -------------
@node is_bijective, noetherNormal, is_surjective, algebra_lib
@subsubsection is_bijective
@cindex is_bijective
@c ---content is_bijective---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
is_bijective(phi,pr); phi map to basering, pr preimage ring

@item @strong{Return:}
an integer, 1 if phi is bijective, 0 if not

@item @strong{Note:}
The algorithm checks first injectivity and then surjectivity
To interpret this for local/mixed orderings, or for quotient rings
type help is_surjective; and help is_injective;

@item @strong{Display:}
A comment if printlevel >= voice-1 (default)

@end table
@strong{Example:}
@smallexample
@c computed example is_bijective d2t_singular/algebra_lib.doc:419 
LIB "algebra.lib";
int p = printlevel;  printlevel = 1;
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = R,i;                      // a map from R to itself, z->x2-y3
is_bijective(phi,R);
@expansion{} // map not injective
@expansion{} 0
qring Q = std(z-x2+y3);
is_bijective(ideal(x,y,x2-y3),Q);
@expansion{} 1
ring S = 0,(a,b,c,d),dp;
map psi = R,ideal(a,a+b,c-a2+b3,0); // a map from R to S,
is_bijective(psi,R);                // x->a, y->a+b, z->c-a2+b3
@expansion{} // map injective, but not surjective
@expansion{} 0
qring T = std(d,c-a2+b3);
@expansion{} // ** _ is no standardbasis
map chi = Q,a,b,a2-b3;              // amap between two quotient rings
is_bijective(chi,Q);
@expansion{} 1
printlevel = p;
@c end example is_bijective d2t_singular/algebra_lib.doc:419
@end smallexample
@c ---end content is_bijective---

@c ------------------- noetherNormal -------------
@node noetherNormal, mapIsFinite, is_bijective, algebra_lib
@subsubsection noetherNormal
@cindex noetherNormal
@c ---content noetherNormal---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
noetherNormal(id[,p]); id ideal, p integer

@item @strong{Return:}
@format	
         a list l two ideals, say I,J:
         - I is generated by a subset of the variables with size(I) = dim(id)
         - J defines a map (coordinate change in the basering), such that:
           if we define  map phi=basering,J;
           then k[var(1),...,var(n)]/phi(id) is finite over k[I].
         If p is given, 0<=p<=100, a sparse coordinate change with p percent
         of the matrix entries being 0 (default: p=0 i.e. dense)
@end format

@item @strong{Note:}
Designed for characteristic 0.It works also in char k > 0 if it
terminates,but may result in an infinite loop in small characteristic

@end table
@strong{Example:}
@smallexample
@c computed example noetherNormal d2t_singular/algebra_lib.doc:468 
LIB "algebra.lib";
ring r=0,(x,y,z),dp;
ideal i= xy,xz;
noetherNormal(i);
@expansion{} [1]:
@expansion{}    _[1]=x
@expansion{}    _[2]=2x+y
@expansion{}    _[3]=3x+4y+z
@expansion{} [2]:
@expansion{}    _[1]=y
@expansion{}    _[2]=z
@c end example noetherNormal d2t_singular/algebra_lib.doc:468
@end smallexample
@c ---end content noetherNormal---

@c ------------------- mapIsFinite -------------
@node mapIsFinite, finitenessTest, noetherNormal, algebra_lib
@subsubsection mapIsFinite
@cindex mapIsFinite
@c ---content mapIsFinite---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
mapIsFinite(phi,R[,J]); R a ring, phi: R ---> basering a map
J an ideal in the basering, J = 0 if not given

@item @strong{Return:}
1 if R ---> basering/J is finite and 0 else

@end table
@strong{Example:}
@smallexample
@c computed example mapIsFinite d2t_singular/algebra_lib.doc:495 
LIB "algebra.lib";
ring r = 0,(a,b,c),dp;
ring s = 0,(x,y,z),dp;
ideal i= xy;
map phi= r,(xy)^3+x2+z,y2-1,z3;
mapIsFinite(phi,r,i);
@expansion{} 1
@c end example mapIsFinite d2t_singular/algebra_lib.doc:495
@end smallexample
@c ---end content mapIsFinite---

@c ------------------- finitenessTest -------------
@node finitenessTest,, mapIsFinite, algebra_lib
@subsubsection finitenessTest
@cindex finitenessTest
@c ---content finitenessTest---
Procedure from library @code{algebra.lib} (@pxref{algebra_lib}).

@table @asis
@item @strong{Usage:}
finitenessTest(J[,v]); J ideal, v intvec (say v1,...,vr with vi>0)

@item @strong{Return:}
@format
         a list l with l[1] integer, l[2], l[3], l[4] ideals
         - l[1] = 1 if var(v1),...,var(vr) are in l[2] and 0 else
         - l[2] (resp. l[3]) contains those variables which occur,
           (resp. occur not) as pure power in the leading term of one of the
           generators of J,
         - l[4] contains those J[i] for which the leading term is a pure power
           of a variable (which is then in l[2])
         (default: v = [1,2,..,nvars(basering)])
@end format

@item @strong{Theory:}
If J is a standard basis of an ideal generated by x_1 - f_1(y),...,
x_n - f_n with y_j ordered lexicographically and y_j >> x_i, then,
if y_i appears as pure power in the leading term of J[k]. J[k] defines
an integral relation for y_i over the y_(i+1),... and the f's.
Moreover, in this situation, if l[2] = y_1,...,y_r, then K[y_1,...y_r]
is finite over K[f_1..f_n]. If J contains furthermore polynomials
h_j(y), then K[y_1,...y_z]/<h_j> is finite over K[f_1..f_n].

@end table
@strong{Example:}
@smallexample
@c computed example finitenessTest d2t_singular/algebra_lib.doc:541 
LIB "algebra.lib";
ring s = 0,(x,y,z,a,b,c),(lp(3),dp);
ideal i= a -(xy)^3+x2-z, b -y2-1, c -z3;
ideal j = a -(xy)^3+x2-z, b -y2-1, c -z3, xy;
finitenessTest(std(i),1..3);
@expansion{} [1]:
@expansion{}    0
@expansion{} [2]:
@expansion{}    _[1]=y
@expansion{}    _[2]=z
@expansion{} [3]:
@expansion{}    _[1]=x
@expansion{}    _[2]=a
@expansion{}    _[3]=b
@expansion{}    _[4]=c
@expansion{} [4]:
@expansion{}    _[1]=z3-c
@expansion{}    _[2]=y2-b+1
finitenessTest(std(j),1..3);
@expansion{} [1]:
@expansion{}    1
@expansion{} [2]:
@expansion{}    _[1]=x
@expansion{}    _[2]=y
@expansion{}    _[3]=z
@expansion{} [3]:
@expansion{}    _[1]=a
@expansion{}    _[2]=b
@expansion{}    _[3]=c
@expansion{} [4]:
@expansion{}    _[1]=z3-c
@expansion{}    _[2]=y2-b+1
@expansion{}    _[3]=x2-z+a
@c end example finitenessTest d2t_singular/algebra_lib.doc:541
@end smallexample
@c ---end content finitenessTest---