1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
@c ---content LibInfo---
@comment This file was generated by doc2tex.pl from d2t_singular/mondromy_lib.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/mondromy_lib.doc INSTEAD
@c library version: (1.22.2.2,2002/02/20)
@c library file: ../Singular/LIB/mondromy.lib
@cindex mondromy.lib
@cindex mondromy_lib
@table @asis
@item @strong{Library:}
mondromy.lib
@item @strong{Purpose:}
Monodromy of an Isolated Hypersurface Singularity
@item @strong{Author:}
Mathias Schulze, email: mschulze@@mathematik.uni-kl.de
@item @strong{Overview:}
A library to compute the monodromy of an isolated hypersurface singularity.
It uses an algorithm by Brieskorn (manuscripta math. 2 (1970), 103-161) to
compute a connection matrix of the meromorphic Gauss-Manin connection up to
arbitrarily high order, and an algorithm of Gerard and Levelt (Ann. Inst.
Fourier, Grenoble 23,1 (1973), pp. 157-195) to transform it to a simple pole.
@end table
@strong{Procedures:}
@menu
* detadj:: determinant and adjoint matrix of square matrix U
* invunit:: series inverse of polynomial u up to order n
* jacoblift:: lifts f^kappa in jacob(f) with minimal kappa
* monodromyB:: monodromy of isolated hypersurface singularity f
* H2basis:: basis of Brieskorn lattice H''
@end menu
@cindex Monodromy
@cindex hypersurface singularity
@cindex Gauss-Manin connection
@cindex Brieskorn lattice
@c inserted refs from d2t_singular/mondromy_lib.doc:35
@ifinfo
@menu
See also:
* gaussman_lib::
@end menu
@end ifinfo
@iftex
@strong{See also:}
@ref{gaussman_lib}.
@end iftex
@c end inserted refs from d2t_singular/mondromy_lib.doc:35
@c ---end content LibInfo---
@c ------------------- detadj -------------
@node detadj, invunit,, mondromy_lib
@subsubsection detadj
@cindex detadj
@c ---content detadj---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
@table @asis
@item @strong{Usage:}
detadj(U); U matrix
@item @strong{Assume:}
U is a square matrix with non zero determinant.
@item @strong{Return:}
The procedure returns a list with at most 2 entries.
@*If U is not a square matrix, the list is empty.
@*If U is a square matrix, then the first entry is the determinant of U.
If U is a square matrix and the determinant of U not zero,
then the second entry is the adjoint matrix of U.
@item @strong{Display:}
The procedure displays comments if printlevel>=1.
@end table
@strong{Example:}
@smallexample
@c computed example detadj d2t_singular/mondromy_lib.doc:68
LIB "mondromy.lib";
ring R=0,x,dp;
matrix U[2][2]=1,1+x,1+x2,1+x3;
list daU=detadj(U);
daU[1];
@expansion{} -x2-x
print(daU[2]);
@expansion{} x3+1, -x-1,
@expansion{} -x2-1,1
@c end example detadj d2t_singular/mondromy_lib.doc:68
@end smallexample
@c ---end content detadj---
@c ------------------- invunit -------------
@node invunit, jacoblift, detadj, mondromy_lib
@subsubsection invunit
@cindex invunit
@c ---content invunit---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
@table @asis
@item @strong{Usage:}
invunit(u,n); u poly, n int
@item @strong{Assume:}
The polynomial u is a series unit.
@item @strong{Return:}
The procedure returns the series inverse of u up to order n
or a zero polynomial if u is no series unit.
@item @strong{Display:}
The procedure displays comments if printlevel>=1.
@end table
@strong{Example:}
@smallexample
@c computed example invunit d2t_singular/mondromy_lib.doc:103
LIB "mondromy.lib";
ring R=0,(x,y),dp;
invunit(2+x3+xy4,10);
@expansion{} 1/8x2y8-1/16x9+1/4x4y4+1/8x6-1/4xy4-1/4x3+1/2
@c end example invunit d2t_singular/mondromy_lib.doc:103
@end smallexample
@c ---end content invunit---
@c ------------------- jacoblift -------------
@node jacoblift, monodromyB, invunit, mondromy_lib
@subsubsection jacoblift
@cindex jacoblift
@c ---content jacoblift---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
@table @asis
@item @strong{Usage:}
jacoblift(f); f poly
@item @strong{Assume:}
The polynomial f in a series ring (local ordering) defines
an isolated hypersurface singularity.
@item @strong{Return:}
The procedure returns a list with entries kappa, xi, u of type
int, vector, poly such that kappa is minimal with f^kappa in jacob(f),
u is a unit, and u*f^kappa=(matrix(jacob(f))*xi)[1,1].
@item @strong{Display:}
The procedure displays comments if printlevel>=1.
@end table
@strong{Example:}
@smallexample
@c computed example jacoblift d2t_singular/mondromy_lib.doc:137
LIB "mondromy.lib";
ring R=0,(x,y),ds;
poly f=x2y2+x6+y6;
jacoblift(f);
@expansion{} [1]:
@expansion{} 2
@expansion{} [2]:
@expansion{} 1/2x2y3*gen(2)+1/6x7*gen(1)+5/6x6y*gen(2)-2/3xy6*gen(1)+1/6y7*gen(2)-4\
x4y5*gen(2)-3/2x9y2*gen(1)-15/2x8y3*gen(2)+9/2x3y8*gen(1)-3/2x2y9*gen(2)
@expansion{} [3]:
@expansion{} 1-9x2y2
@c end example jacoblift d2t_singular/mondromy_lib.doc:137
@end smallexample
@c ---end content jacoblift---
@c ------------------- monodromyB -------------
@node monodromyB, H2basis, jacoblift, mondromy_lib
@subsubsection monodromyB
@cindex monodromyB
@c ---content monodromyB---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
@table @asis
@item @strong{Usage:}
monodromyB(f[,opt]); f poly, opt int
@item @strong{Assume:}
The polynomial f in a series ring (local ordering) defines
an isolated hypersurface singularity.
@item @strong{Return:}
The procedure returns a residue matrix M of the meromorphic
Gauss-Manin connection of the singularity defined by f
or an empty matrix if the assumptions are not fulfilled.
If opt=0 (default), exp(-2*pi*i*M) is a monodromy matrix of f,
else, only the characteristic polynomial of exp(-2*pi*i*M) coincides
with the characteristic polynomial of the monodromy of f.
@item @strong{Display:}
The procedure displays more comments for higher printlevel.
@end table
@strong{Example:}
@smallexample
@c computed example monodromyB d2t_singular/mondromy_lib.doc:175
LIB "mondromy.lib";
ring R=0,(x,y),ds;
poly f=x2y2+x6+y6;
matrix M=monodromyB(f);
print(M);
@expansion{} 7/6,0, 0,0, 0, 0,0, 0,-1/2,0, 0, 0, 0,
@expansion{} 0, 7/6,0,0, 0, 0,-1/2,0,0, 0, 0, 0, 0,
@expansion{} 0, 0, 1,0, 0, 0,0, 0,0, 0, 0, 0, 0,
@expansion{} 0, 0, 0,4/3,0, 0,0, 0,0, 0, 0, 0, 0,
@expansion{} 0, 0, 0,0, 4/3,0,0, 0,0, 0, 0, 0, 0,
@expansion{} 0, 0, 0,0, 0, 1,0, 0,0, 0, 0, 0, 0,
@expansion{} 0, 0, 0,0, 0, 0,5/6, 0,0, 0, 0, 0, 0,
@expansion{} 0, 0, 0,0, 0, 0,0, 1,0, 0, 0, 0, 0,
@expansion{} 0, 0, 0,0, 0, 0,0, 0,5/6, 0, 0, 0, 0,
@expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 2/3,0, 0, 0,
@expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 2/3,0, 0,
@expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 0, 47/44,-625/396,
@expansion{} 0, 0, 0,0, 0, 0,0, 0,0, 0, 0, 9/44, -3/44
@c end example monodromyB d2t_singular/mondromy_lib.doc:175
@end smallexample
@c ---end content monodromyB---
@c ------------------- H2basis -------------
@node H2basis,, monodromyB, mondromy_lib
@subsubsection H2basis
@cindex H2basis
@c ---content H2basis---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).
@table @asis
@item @strong{Usage:}
H2basis(f); f poly
@item @strong{Assume:}
The polynomial f in a series ring (local ordering) defines
an isolated hypersurface singularity.
@item @strong{Return:}
The procedure returns a list of representatives of a C@{f@}-basis of the
Brieskorn lattice H''=Omega^(n+1)/df^dOmega^(n-1).
@item @strong{Theory:}
H'' is a free C@{f@}-module of rank milnor(f).
@item @strong{Display:}
The procedure displays more comments for higher printlevel.
@end table
@strong{Example:}
@smallexample
@c computed example H2basis d2t_singular/mondromy_lib.doc:213
LIB "mondromy.lib";
ring R=0,(x,y),ds;
poly f=x2y2+x6+y6;
H2basis(f);
@expansion{} [1]:
@expansion{} x4
@expansion{} [2]:
@expansion{} x2y2
@expansion{} [3]:
@expansion{} y4
@expansion{} [4]:
@expansion{} x3
@expansion{} [5]:
@expansion{} x2y
@expansion{} [6]:
@expansion{} xy2
@expansion{} [7]:
@expansion{} y3
@expansion{} [8]:
@expansion{} x2
@expansion{} [9]:
@expansion{} xy
@expansion{} [10]:
@expansion{} y2
@expansion{} [11]:
@expansion{} x
@expansion{} [12]:
@expansion{} y
@expansion{} [13]:
@expansion{} 1
@c end example H2basis d2t_singular/mondromy_lib.doc:213
@end smallexample
@c ---end content H2basis---
|