File: mondromy_lib.tex

package info (click to toggle)
texi2html 1.82%2Bdfsg1-5
  • links: PTS
  • area: main
  • in suites: buster, stretch
  • size: 34,700 kB
  • ctags: 16,893
  • sloc: perl: 15,902; xml: 6,075; sh: 3,977; makefile: 501
file content (281 lines) | stat: -rw-r--r-- 8,449 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
@c ---content LibInfo---
@comment This file was generated by doc2tex.pl from d2t_singular/mondromy_lib.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/mondromy_lib.doc INSTEAD
@c library version: (1.22.2.2,2002/02/20)
@c library file: ../Singular/LIB/mondromy.lib
@cindex mondromy.lib
@cindex mondromy_lib
@table @asis
@item @strong{Library:}
mondromy.lib
@item @strong{Purpose:}
  Monodromy of an Isolated Hypersurface Singularity
@item @strong{Author:}
Mathias Schulze, email: mschulze@@mathematik.uni-kl.de

@item @strong{Overview:}
A library to compute the monodromy of an isolated hypersurface singularity.
It uses an algorithm by Brieskorn (manuscripta math. 2 (1970), 103-161) to
compute a connection matrix of the meromorphic Gauss-Manin connection up to
arbitrarily high order, and an algorithm of Gerard and Levelt (Ann. Inst.
Fourier, Grenoble 23,1 (1973), pp. 157-195) to transform it to a simple pole.

@end table

@strong{Procedures:}
@menu
* detadj:: determinant and adjoint matrix of square matrix U
* invunit:: series inverse of polynomial u up to order n
* jacoblift:: lifts f^kappa in jacob(f) with minimal kappa
* monodromyB:: monodromy of isolated hypersurface singularity f
* H2basis:: basis of Brieskorn lattice H''
@end menu
@cindex Monodromy
@cindex hypersurface singularity
@cindex Gauss-Manin connection
@cindex Brieskorn lattice
@c inserted refs from d2t_singular/mondromy_lib.doc:35
@ifinfo
@menu
See also:
* gaussman_lib::
@end menu
@end ifinfo
@iftex
@strong{See also:}
@ref{gaussman_lib}.
@end iftex
@c end inserted refs from d2t_singular/mondromy_lib.doc:35

@c ---end content LibInfo---

@c ------------------- detadj -------------
@node detadj, invunit,, mondromy_lib
@subsubsection detadj
@cindex detadj
@c ---content detadj---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).

@table @asis
@item @strong{Usage:}
detadj(U); U matrix

@item @strong{Assume:}
U is a square matrix with non zero determinant.

@item @strong{Return:}
The procedure returns a list with at most 2 entries.
@*If U is not a square matrix, the list is empty.
@*If U is a square matrix, then the first entry is the determinant of U.
If U is a square matrix and the determinant of U not zero,
then the second entry is the adjoint matrix of U.

@item @strong{Display:}
The procedure displays comments if printlevel>=1.

@end table
@strong{Example:}
@smallexample
@c computed example detadj d2t_singular/mondromy_lib.doc:68 
LIB "mondromy.lib";
ring R=0,x,dp;
matrix U[2][2]=1,1+x,1+x2,1+x3;
list daU=detadj(U);
daU[1];
@expansion{} -x2-x
print(daU[2]);
@expansion{} x3+1, -x-1,
@expansion{} -x2-1,1    
@c end example detadj d2t_singular/mondromy_lib.doc:68
@end smallexample
@c ---end content detadj---

@c ------------------- invunit -------------
@node invunit, jacoblift, detadj, mondromy_lib
@subsubsection invunit
@cindex invunit
@c ---content invunit---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).

@table @asis
@item @strong{Usage:}
invunit(u,n); u poly, n int

@item @strong{Assume:}
The polynomial u is a series unit.

@item @strong{Return:}
The procedure returns the series inverse of u up to order n
or a zero polynomial if u is no series unit.

@item @strong{Display:}
The procedure displays comments if printlevel>=1.

@end table
@strong{Example:}
@smallexample
@c computed example invunit d2t_singular/mondromy_lib.doc:103 
LIB "mondromy.lib";
ring R=0,(x,y),dp;
invunit(2+x3+xy4,10);
@expansion{} 1/8x2y8-1/16x9+1/4x4y4+1/8x6-1/4xy4-1/4x3+1/2
@c end example invunit d2t_singular/mondromy_lib.doc:103
@end smallexample
@c ---end content invunit---

@c ------------------- jacoblift -------------
@node jacoblift, monodromyB, invunit, mondromy_lib
@subsubsection jacoblift
@cindex jacoblift
@c ---content jacoblift---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).

@table @asis
@item @strong{Usage:}
jacoblift(f); f poly

@item @strong{Assume:}
The polynomial f in a series ring (local ordering) defines
an isolated hypersurface singularity.

@item @strong{Return:}
The procedure returns a list with entries kappa, xi, u of type
int, vector, poly such that kappa is minimal with f^kappa in jacob(f),
u is a unit, and u*f^kappa=(matrix(jacob(f))*xi)[1,1].

@item @strong{Display:}
The procedure displays comments if printlevel>=1.

@end table
@strong{Example:}
@smallexample
@c computed example jacoblift d2t_singular/mondromy_lib.doc:137 
LIB "mondromy.lib";
ring R=0,(x,y),ds;
poly f=x2y2+x6+y6;
jacoblift(f);
@expansion{} [1]:
@expansion{}    2
@expansion{} [2]:
@expansion{}    1/2x2y3*gen(2)+1/6x7*gen(1)+5/6x6y*gen(2)-2/3xy6*gen(1)+1/6y7*gen(2)-4\
   x4y5*gen(2)-3/2x9y2*gen(1)-15/2x8y3*gen(2)+9/2x3y8*gen(1)-3/2x2y9*gen(2)
@expansion{} [3]:
@expansion{}    1-9x2y2
@c end example jacoblift d2t_singular/mondromy_lib.doc:137
@end smallexample
@c ---end content jacoblift---

@c ------------------- monodromyB -------------
@node monodromyB, H2basis, jacoblift, mondromy_lib
@subsubsection monodromyB
@cindex monodromyB
@c ---content monodromyB---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).

@table @asis
@item @strong{Usage:}
monodromyB(f[,opt]); f poly, opt int

@item @strong{Assume:}
The polynomial f in a series ring (local ordering) defines
an isolated hypersurface singularity.

@item @strong{Return:}
The procedure returns a residue matrix M of the meromorphic
Gauss-Manin connection of the singularity defined by f
or an empty matrix if the assumptions are not fulfilled.
If opt=0 (default), exp(-2*pi*i*M) is a monodromy matrix of f,
else, only the characteristic polynomial of exp(-2*pi*i*M) coincides
with the characteristic polynomial of the monodromy of f.

@item @strong{Display:}
The procedure displays more comments for higher printlevel.

@end table
@strong{Example:}
@smallexample
@c computed example monodromyB d2t_singular/mondromy_lib.doc:175 
LIB "mondromy.lib";
ring R=0,(x,y),ds;
poly f=x2y2+x6+y6;
matrix M=monodromyB(f);
print(M);
@expansion{} 7/6,0,  0,0,  0,  0,0,   0,-1/2,0,  0,  0,    0,       
@expansion{} 0,  7/6,0,0,  0,  0,-1/2,0,0,   0,  0,  0,    0,       
@expansion{} 0,  0,  1,0,  0,  0,0,   0,0,   0,  0,  0,    0,       
@expansion{} 0,  0,  0,4/3,0,  0,0,   0,0,   0,  0,  0,    0,       
@expansion{} 0,  0,  0,0,  4/3,0,0,   0,0,   0,  0,  0,    0,       
@expansion{} 0,  0,  0,0,  0,  1,0,   0,0,   0,  0,  0,    0,       
@expansion{} 0,  0,  0,0,  0,  0,5/6, 0,0,   0,  0,  0,    0,       
@expansion{} 0,  0,  0,0,  0,  0,0,   1,0,   0,  0,  0,    0,       
@expansion{} 0,  0,  0,0,  0,  0,0,   0,5/6, 0,  0,  0,    0,       
@expansion{} 0,  0,  0,0,  0,  0,0,   0,0,   2/3,0,  0,    0,       
@expansion{} 0,  0,  0,0,  0,  0,0,   0,0,   0,  2/3,0,    0,       
@expansion{} 0,  0,  0,0,  0,  0,0,   0,0,   0,  0,  47/44,-625/396,
@expansion{} 0,  0,  0,0,  0,  0,0,   0,0,   0,  0,  9/44, -3/44    
@c end example monodromyB d2t_singular/mondromy_lib.doc:175
@end smallexample
@c ---end content monodromyB---

@c ------------------- H2basis -------------
@node H2basis,, monodromyB, mondromy_lib
@subsubsection H2basis
@cindex H2basis
@c ---content H2basis---
Procedure from library @code{mondromy.lib} (@pxref{mondromy_lib}).

@table @asis
@item @strong{Usage:}
H2basis(f); f poly

@item @strong{Assume:}
The polynomial f in a series ring (local ordering) defines
an isolated hypersurface singularity.

@item @strong{Return:}
The procedure returns a list of representatives of a C@{f@}-basis of the
Brieskorn lattice H''=Omega^(n+1)/df^dOmega^(n-1).

@item @strong{Theory:}
H'' is a free C@{f@}-module of rank milnor(f).

@item @strong{Display:}
The procedure displays more comments for higher printlevel.

@end table
@strong{Example:}
@smallexample
@c computed example H2basis d2t_singular/mondromy_lib.doc:213 
LIB "mondromy.lib";
ring R=0,(x,y),ds;
poly f=x2y2+x6+y6;
H2basis(f);
@expansion{} [1]:
@expansion{}    x4
@expansion{} [2]:
@expansion{}    x2y2
@expansion{} [3]:
@expansion{}    y4
@expansion{} [4]:
@expansion{}    x3
@expansion{} [5]:
@expansion{}    x2y
@expansion{} [6]:
@expansion{}    xy2
@expansion{} [7]:
@expansion{}    y3
@expansion{} [8]:
@expansion{}    x2
@expansion{} [9]:
@expansion{}    xy
@expansion{} [10]:
@expansion{}    y2
@expansion{} [11]:
@expansion{}    x
@expansion{} [12]:
@expansion{}    y
@expansion{} [13]:
@expansion{}    1
@c end example H2basis d2t_singular/mondromy_lib.doc:213
@end smallexample
@c ---end content H2basis---