1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
@c ---content LibInfo---
@comment This file was generated by doc2tex.pl from d2t_singular/reesclos_lib.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/reesclos_lib.doc INSTEAD
@c library version: (1.50,2001/08/06)
@c library file: ../Singular/LIB/reesclos.lib
@cindex reesclos.lib
@cindex reesclos_lib
@table @asis
@item @strong{Library:}
reesclos.lib
@item @strong{Purpose:}
procedures to compute the int. closure of an ideal
@item @strong{Author:}
Tobias Hirsch, email: hirsch@@math.tu-cottbus.de
@item @strong{Overview:}
A library to compute the integral closure of an ideal I in a polynomial ring
R=K[x(1),...,x(n)] using the Rees Algebra R[It] of I. It computes the integral
closure of R[It] (in the same manner as done in the library 'normal.lib'),
which is a graded subalgebra of R[t]. The degree-k-component is the integral
closure of the k-th power of I.
@*These procedures can also be used to compute the integral closure R^ of an
integral domain R=k[x(1),...,x(n)]/ker, ker a prime ideal, in its quotient
field K=Q(R), as an affine ring R^=k[T(1),...,T(s)]]/J and to get
representations of elements of R^ as fractions of elements of R.
@end table
@strong{Procedures:}
@menu
* ReesAlgebra:: computes the Rees Algebra of an ideal I
* normalI:: computes the integral closure of an ideal I using R[It]
* primeClosure:: computes the integral closure of the int. domain R
* closureRingtower:: defines the rings in the list L as global objects R(i)
* closureFrac:: computes fractions representing elements of R^=L[n]
@end menu
@c ---end content LibInfo---
@c ------------------- ReesAlgebra -------------
@node ReesAlgebra, normalI,, reesclos_lib
@subsubsection ReesAlgebra
@cindex ReesAlgebra
@c ---content ReesAlgebra---
Procedure from library @code{reesclos.lib} (@pxref{reesclos_lib}).
@table @asis
@item @strong{Usage:}
ReesAlgebra (I); I = ideal
@item @strong{Return:}
The Rees algebra R[It] as an affine ring, where I is an ideal in R.
The procedure returns a list containing two rings:
@*[1]: a ring, say RR; in the ring an ideal ker such that R[It]=RR/ker
[2]: a ring, say Kxt; the basering with additional variable t
containing an ideal mapI that defines the map RR-->Kxt
@end table
@strong{Example:}
@smallexample
@c computed example ReesAlgebra d2t_singular/reesclos_lib.doc:59
LIB "reesclos.lib";
ring R = 0,(x,y),dp;
ideal I = x2,xy4,y5;
list L = ReesAlgebra(I);
def Rees = L[1]; // defines the ring Rees, containing the ideal ker
setring Rees; // passes to the ring Rees
Rees;
@expansion{} // characteristic : 0
@expansion{} // number of vars : 5
@expansion{} // block 1 : ordering dp
@expansion{} // : names x y U(1) U(2) U(3)
@expansion{} // block 2 : ordering C
ker; // R[It] is isomorphic to Rees/ker
@expansion{} ker[1]=y*U(2)-x*U(3)
@expansion{} ker[2]=y^3*U(1)*U(3)-U(2)^2
@expansion{} ker[3]=y^4*U(1)-x*U(2)
@expansion{} ker[4]=x*y^2*U(1)*U(3)^2-U(2)^3
@expansion{} ker[5]=x^2*y*U(1)*U(3)^3-U(2)^4
@expansion{} ker[6]=x^3*U(1)*U(3)^4-U(2)^5
@c end example ReesAlgebra d2t_singular/reesclos_lib.doc:59
@end smallexample
@c ---end content ReesAlgebra---
@c ------------------- normalI -------------
@node normalI, primeClosure, ReesAlgebra, reesclos_lib
@subsubsection normalI
@cindex normalI
@c ---content normalI---
Procedure from library @code{reesclos.lib} (@pxref{reesclos_lib}).
@table @asis
@item @strong{Usage:}
normalI(I [,p[,c]]); I an ideal, p and c optional integers
@item @strong{Return:}
the integral closure of I,...,I^p. If p is not given, or p==0,
compute the closure of all powers up to the maximum degree in t
occurring in the generators of the closure of R[It] (so this is the
last one that is not just the sum/product of the above ones).
c is transferred to the procedure primeClosure and toggles its
behavior in computing the integral closure of R[It].
@*The result is a list containing the closure of the desired powers of
I as ideals of the basering.
@end table
@strong{Example:}
@smallexample
@c computed example normalI d2t_singular/reesclos_lib.doc:96
LIB "reesclos.lib";
ring R=0,(x,y),dp;
ideal I = x2,xy4,y5;
list J = normalI(I);
I;
@expansion{} I[1]=x2
@expansion{} I[2]=xy4
@expansion{} I[3]=y5
J; // J[1] is the integral closure of I
@expansion{} [1]:
@expansion{} _[1]=x2
@expansion{} _[2]=y5
@expansion{} _[3]=-xy3
@c end example normalI d2t_singular/reesclos_lib.doc:96
@end smallexample
@c ---end content normalI---
@c ------------------- primeClosure -------------
@node primeClosure, closureRingtower, normalI, reesclos_lib
@subsubsection primeClosure
@cindex primeClosure
@c ---content primeClosure---
Procedure from library @code{reesclos.lib} (@pxref{reesclos_lib}).
@table @asis
@item @strong{Usage:}
primeClosure(L [,c]); L a list of a ring containing a prime ideal
ker, c an optional integer
@item @strong{Return:}
a list L consisting of rings L[1],...,L[n] such that
@*- L[1] is a copy of (not a reference to!) the input ring L[1]
- all rings L[i] contain ideals ker, L[2],...,L[n] contain ideals phi
such that
@*L[1]/ker --> ... --> L[n]/ker
@*are injections given by the corresponding ideals phi, and L[n]/ker
is the integral closure of L[1]/ker in its quotient field.
- all rings L[i] contain a polynomial nzd such that elements of
L[i]/ker are quotients of elements of L[i-1]/ker with denominator
nzd via the injection phi.
@item @strong{Note:}
- L is constructed by recursive calls of primeClosure itself.
- c determines the choice of nzd:
@*- c not given or equal to 0: first generator of the ideal SL,
the singular locus of Spec(L[i]/ker)
@*- c<>0: the generator of SL with least number of monomials.
@end table
@strong{Example:}
@smallexample
@c computed example primeClosure d2t_singular/reesclos_lib.doc:141
LIB "reesclos.lib";
ring R=0,(x,y),dp;
ideal I=x4,y4;
def K=ReesAlgebra(I)[1]; // K contains ker such that K/ker=R[It]
list L=primeClosure(K);
def R(1)=L[1]; // L[4] contains ker, L[4]/ker is the
def R(4)=L[4]; // integral closure of L[1]/ker
setring R(1);
R(1);
@expansion{} // characteristic : 0
@expansion{} // number of vars : 4
@expansion{} // block 1 : ordering dp
@expansion{} // : names x y U(1) U(2)
@expansion{} // block 2 : ordering C
ker;
@expansion{} ker[1]=y^4*U(1)-x^4*U(2)
setring R(4);
R(4);
@expansion{} // characteristic : 0
@expansion{} // number of vars : 7
@expansion{} // block 1 : ordering a
@expansion{} // : names T(1) T(2) T(3) T(4) T(5) T(6) T(7)
@expansion{} // : weights 1 1 1 1 1 1 1
@expansion{} // block 2 : ordering dp
@expansion{} // : names T(1) T(2) T(3) T(4) T(5) T(6) T(7)
@expansion{} // block 3 : ordering C
ker;
@expansion{} ker[1]=T(2)*T(5)-T(1)*T(7)
@expansion{} ker[2]=T(1)*T(5)-T(2)*T(6)
@expansion{} ker[3]=T(5)*T(6)-T(3)*T(7)
@expansion{} ker[4]=T(4)*T(6)-T(5)*T(7)
@expansion{} ker[5]=T(5)^2-T(6)*T(7)
@expansion{} ker[6]=T(4)*T(5)-T(7)^2
@expansion{} ker[7]=T(3)*T(5)-T(6)^2
@expansion{} ker[8]=T(2)^2*T(6)-T(1)^2*T(7)
@expansion{} ker[9]=T(3)*T(4)-T(6)*T(7)
@expansion{} ker[10]=T(1)*T(4)-T(2)*T(7)
@expansion{} ker[11]=T(2)*T(3)-T(1)*T(6)
@expansion{} ker[12]=T(2)^2*T(6)^2-T(1)^2*T(6)*T(7)
@c end example primeClosure d2t_singular/reesclos_lib.doc:141
@end smallexample
@c ---end content primeClosure---
@c ------------------- closureRingtower -------------
@node closureRingtower, closureFrac, primeClosure, reesclos_lib
@subsubsection closureRingtower
@cindex closureRingtower
@c ---content closureRingtower---
Procedure from library @code{reesclos.lib} (@pxref{reesclos_lib}).
@table @asis
@item @strong{Usage:}
closureRingtower(list L); L a list of rings
@item @strong{Create:}
rings R(1),...,R(n) such that R(i)=L[i] for all i
@end table
@strong{Example:}
@smallexample
@c computed example closureRingtower d2t_singular/reesclos_lib.doc:176
LIB "reesclos.lib";
ring R=0,(x,y),dp;
ideal I=x4,y4;
list L=primeClosure(ReesAlgebra(I)[1]);
closureRingtower(L);
R(1);
@expansion{} // characteristic : 0
@expansion{} // number of vars : 4
@expansion{} // block 1 : ordering dp
@expansion{} // : names x y U(1) U(2)
@expansion{} // block 2 : ordering C
R(4);
@expansion{} // characteristic : 0
@expansion{} // number of vars : 7
@expansion{} // block 1 : ordering a
@expansion{} // : names T(1) T(2) T(3) T(4) T(5) T(6) T(7)
@expansion{} // : weights 1 1 1 1 1 1 1
@expansion{} // block 2 : ordering dp
@expansion{} // : names T(1) T(2) T(3) T(4) T(5) T(6) T(7)
@expansion{} // block 3 : ordering C
@c end example closureRingtower d2t_singular/reesclos_lib.doc:176
@end smallexample
@c ---end content closureRingtower---
@c ------------------- closureFrac -------------
@node closureFrac,, closureRingtower, reesclos_lib
@subsubsection closureFrac
@cindex closureFrac
@c ---content closureFrac---
Procedure from library @code{reesclos.lib} (@pxref{reesclos_lib}).
@table @asis
@item @strong{Create:}
a list fraction of two elements of L[1], such that
@*f=fraction[1]/fraction[2] via the injections phi L[i]-->L[i+1].
@end table
@strong{Example:}
@smallexample
@c computed example closureFrac d2t_singular/reesclos_lib.doc:203
LIB "reesclos.lib";
ring R=0,(x,y),dp;
ideal ker=x2+y2;
export R;
@expansion{} // ** `R` is already global
list L=primeClosure(R); // We normalize R/ker
closureRingtower(L); // Now R/ker=R(1) with normalization R(2)
setring R(2);
kill(R);
phi; // The map R(1)-->R(2)
@expansion{} phi[1]=T(1)*T(2)
@expansion{} phi[2]=T(1)
poly f=T(1)*T(2); // We will get a representation of f
export R(2);
@expansion{} // ** `R(2)` is already global
closureFrac(L);
setring R(1);
kill (R(2));
fraction; // f=fraction[1]/fraction[2] via phi
@expansion{} [1]:
@expansion{} xy
@expansion{} [2]:
@expansion{} y
@c end example closureFrac d2t_singular/reesclos_lib.doc:203
@end smallexample
@c ---end content closureFrac---
|