1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
@c ---content LibInfo---
@comment This file was generated by doc2tex.pl from d2t_singular/zeroset_lib.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/zeroset_lib.doc INSTEAD
@c library version: (1.7.2.2,2002/02/20)
@c library file: ../Singular/LIB/zeroset.lib
@cindex zeroset.lib
@cindex zeroset_lib
@table @asis
@item @strong{Library:}
zeroset.lib
@item @strong{Purpose:}
Procedures For Roots and Factorization
@item @strong{Author:}
Thomas Bayer, email: tbayer@@mathematik.uni-kl.de
@*http://wwwmayr.informatik.tu-muenchen.de/personen/bayert/
Current Adress: Institut fuer Informatik, TU Muenchen
@item @strong{Overview:}
Algorithms for finding the zero-set of a zero-dim. ideal in Q(a)[x_1,..,x_n],
Roots and Factorization of univariate polynomials over Q(a)[t]
where a is an algebraic number. Written in the frame of the
diploma thesis (advisor: Prof. Gert-Martin Greuel) 'Computations of moduli
spaces of semiquasihomogeneous singularities and an implementation in Singular'.
This library is meant as a preliminary extension of the functionality
of Singular for univariate factorization of polynomials over simple algebraic
extensions in characteristic 0.
@*Subprocedures with postfix 'Main' require that the ring contains a variable
'a' and no parameters, and the ideal 'mpoly', where 'minpoly' from the
basering is stored.
@end table
@strong{Procedures:}
@menu
* EGCD:: gcd over an algebraic extension field of Q
* Factor:: factorization of f over an algebraic extension field
* Quotient:: quotient q of f w.r.t. g (in f = q*g + remainder)
* Remainder:: remainder of the division of f by g
* Roots:: computes all roots of f in an extension field of Q
* SQFRNorm:: norm of f (f must be squarefree)
* ZeroSet:: zero-set of the 0-dim. ideal I
@end menu
@strong{Auxiliary procedures:}
@menu
* EGCDMain:: gcd over an algebraic extension field of Q
* FactorMain:: factorization of f over an algebraic extension field
* InvertNumberMain:: inverts an element of an algebraic extension field
* QuotientMain:: quotient of f w.r.t. g
* RemainderMain:: remainder of the division of f by g
* RootsMain:: computes all roots of f, might extend the ground field
* SQFRNormMain:: norm of f (f must be squarefree)
* ContainedQ:: f in data ?
* SameQ:: a == b (list a,b)
@end menu
@c ---end content LibInfo---
@c ------------------- EGCD -------------
@node EGCD, Factor,, zeroset_lib
@subsubsection EGCD
@cindex EGCD
@c ---content EGCD---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
EGCD(f, g); where f,g are polynomials
@item @strong{Purpose:}
compute the polynomial gcd of f and g over Q(a)[x]
@item @strong{Return:}
polynomial h s.t. h is a greatest common divisor of f and g (not nec.
monic)
@item @strong{Assume:}
basering = Q(a)[t]
@end table
@strong{Example:}
@smallexample
@c computed example EGCD d2t_singular/zeroset_lib.doc:79
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 1;
poly g = x2 - 2*a*x - 1;
EGCD(f, g);
@expansion{} (-4a)*x-4
@c end example EGCD d2t_singular/zeroset_lib.doc:79
@end smallexample
@c ---end content EGCD---
@c ------------------- Factor -------------
@node Factor, Quotient, EGCD, zeroset_lib
@subsubsection Factor
@cindex Factor
@c ---content Factor---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
Factor(f); where f is a polynomial
@item @strong{Purpose:}
compute the factorization of the squarefree poly f over Q(a)[t]
@item @strong{Return:}
list with two entries
@format
_[1] = factors (monic), first entry is the leading coefficient
_[2] = multiplicities (not yet implemented)
@end format
@item @strong{Assume:}
basering must be the univariate polynomial ring over a field, which
is Q or a simple extension of Q given by a minpoly.
@item @strong{Note:}
if basering = Q[t] then this is the built-in @code{factorize}
@end table
@strong{Example:}
@smallexample
@c computed example Factor d2t_singular/zeroset_lib.doc:121
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 1;
list fl = Factor(f);
fl;
@expansion{} [1]:
@expansion{} _[1]=1
@expansion{} _[2]=(40a+60)*x+(40a+60)
@expansion{} _[3]=(1/65a-29/130)*x+(-1/65a+29/130)
@expansion{} _[4]=(4a)*x+4
@expansion{} _[5]=(7/520a+1/130)*x+(1/130a-7/520)
@expansion{} [2]:
@expansion{} _[1]=1
@expansion{} _[2]=1
@expansion{} _[3]=1
@expansion{} _[4]=1
@expansion{} _[5]=1
fl[1][1]*fl[1][2]*fl[1][3]*fl[1][4]*fl[1][5] - f;
@expansion{} 0
@c end example Factor d2t_singular/zeroset_lib.doc:121
@end smallexample
@c ---end content Factor---
@c ------------------- Quotient -------------
@node Quotient, Remainder, Factor, zeroset_lib
@subsubsection Quotient
@cindex Quotient
@c ---content Quotient---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
Quotient(f, g); where f,g are polynomials;
@item @strong{Purpose:}
compute the quotient q and remainder r s.t. f = g*q + r, deg(r) < deg(g)
@item @strong{Return:}
list of polynomials
@format
_[1] = quotient q
_[2] = remainder r
@end format
@item @strong{Assume:}
basering = Q[x] or Q(a)[x]
@end table
@strong{Example:}
@smallexample
@c computed example Quotient d2t_singular/zeroset_lib.doc:160
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 2;
poly g = x - a;
list qr = Quotient(f, g);
qr;
@expansion{} [1]:
@expansion{} x3+(a)*x2-x+(-a)
@expansion{} [2]:
@expansion{} 0
qr[1]*g + qr[2] - f;
@expansion{} 1
@c end example Quotient d2t_singular/zeroset_lib.doc:160
@end smallexample
@c ---end content Quotient---
@c ------------------- Remainder -------------
@node Remainder, Roots, Quotient, zeroset_lib
@subsubsection Remainder
@cindex Remainder
@c ---content Remainder---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
Remainder(f, g); where f,g are polynomials
@item @strong{Purpose:}
compute the remainder of the division of f by g, i.e. a polynomial r
s.t. f = g*q + r, deg(r) < deg(g).
@item @strong{Return:}
poly
@item @strong{Assume:}
basering = Q[x] or Q(a)[x]
@end table
@strong{Example:}
@smallexample
@c computed example Remainder d2t_singular/zeroset_lib.doc:197
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 1;
poly g = x3 - 1;
Remainder(f, g);
@expansion{} x-1
@c end example Remainder d2t_singular/zeroset_lib.doc:197
@end smallexample
@c ---end content Remainder---
@c ------------------- Roots -------------
@node Roots, SQFRNorm, Remainder, zeroset_lib
@subsubsection Roots
@cindex Roots
@c ---content Roots---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
Roots(f); where f is a polynomial
@item @strong{Purpose:}
compute all roots of f in a finite extension of the ground field
without multiplicities.
@item @strong{Return:}
ring, a polynomial ring over an extension field of the ground field,
containing a list 'roots' and polynomials 'newA' and 'f':
@format
- 'roots' is the list of roots of the polynomial f (no multiplicities)
- if the ground field is Q(a') and the extension field is Q(a), then
'newA' is the representation of a' in Q(a).
If the basering contains a parameter 'a' and the minpoly remains unchanged
then 'newA' = 'a'.
If the basering does not contain a parameter then 'newA' = 'a' (default).
- 'f' is the polynomial f in Q(a) (a' being substituted by 'newA')
@end format
@item @strong{Assume:}
ground field to be Q or a simple extension of Q given by a minpoly
@end table
@strong{Example:}
@smallexample
@c computed example Roots d2t_singular/zeroset_lib.doc:242
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x3 - a;
def R1 = Roots(f);
@expansion{}
@expansion{} // 'Roots' created a new ring which contains the list 'roots' and
@expansion{} // the polynomials 'f' and 'newA'
@expansion{} // To access the roots, newA and the new representation of f, type
@expansion{} def R = Roots(f); setring R; roots; newA; f;
@expansion{}
setring R1;
minpoly;
@expansion{} (a4-a2+1)
newA;
@expansion{} (a3)
f;
@expansion{} x3+(-a3)
roots;
@expansion{} [1]:
@expansion{} (-a3)
@expansion{} [2]:
@expansion{} (a3-a)
@expansion{} [3]:
@expansion{} (a)
map F;
F[1] = roots[1];
F(f);
@expansion{} 0
@c end example Roots d2t_singular/zeroset_lib.doc:242
@end smallexample
@c ---end content Roots---
@c ------------------- SQFRNorm -------------
@node SQFRNorm, ZeroSet, Roots, zeroset_lib
@subsubsection SQFRNorm
@cindex SQFRNorm
@c ---content SQFRNorm---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
SQFRNorm(f); where f is a polynomial
@item @strong{Purpose:}
compute the norm of the squarefree polynomial f in Q(a)[x].
@item @strong{Return:}
list with 3 entries
@format
_[1] = squarefree norm of g (poly)
_[2] = g (= f(x - s*a)) (poly)
_[3] = s (int)
@end format
@item @strong{Assume:}
f must be squarefree, basering = Q(a)[x] and minpoly != 0.
@item @strong{Note:}
the norm is an element of Q[x]
@end table
@strong{Example:}
@smallexample
@c computed example SQFRNorm d2t_singular/zeroset_lib.doc:291
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x4 - 2*x + 1;
SQFRNorm(f);
@expansion{} [1]:
@expansion{} x8+4*x6-4*x5+8*x4+8*x3-4*x2+8*x+8
@expansion{} [2]:
@expansion{} x4+(-4a)*x3-6*x2+(4a-2)*x+(2a+2)
@expansion{} [3]:
@expansion{} 1
@c end example SQFRNorm d2t_singular/zeroset_lib.doc:291
@end smallexample
@c ---end content SQFRNorm---
@c ------------------- ZeroSet -------------
@node ZeroSet, EGCDMain, SQFRNorm, zeroset_lib
@subsubsection ZeroSet
@cindex ZeroSet
@c ---content ZeroSet---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
ZeroSet(I [,opt] ); I=ideal, opt=integer
@item @strong{Purpose:}
compute the zero-set of the zero-dim. ideal I, in a finite extension
of the ground field.
@item @strong{Return:}
ring, a polynomial ring over an extension field of the ground field,
containing a list 'zeroset', a polynomial 'newA', and an
ideal 'id':
@format
- 'zeroset' is the list of the zeros of the ideal I, each zero is an ideal.
- if the ground field is Q(a') and the extension field is Q(a), then
'newA' is the representation of a' in Q(a).
If the basering contains a parameter 'a' and the minpoly remains unchanged
then 'newA' = 'a'.
If the basering does not contain a parameter then 'newA' = 'a' (default).
- 'id' is the ideal I in Q(a)[x_1,...] (a' substituted by 'newA')
@end format
@item @strong{Assume:}
dim(I) = 0, and ground field to be Q or a simple extension of Q given
by a minpoly.
@item @strong{Options:}
opt = 0 no primary decomposition (default)
@*opt > 0 primary decomposition
@item @strong{Note:}
If I contains an algebraic number (parameter) then 'I' must be
transformed w.r.t. 'newA' in the new ring.
@end table
@strong{Example:}
@smallexample
@c computed example ZeroSet d2t_singular/zeroset_lib.doc:345
LIB "zeroset.lib";
ring R = (0,a), (x,y,z), lp;
minpoly = a2 + 1;
ideal I = x2 - 1/2, a*z - 1, y - 2;
def T = ZeroSet(I);
@expansion{} 1
setring T;
minpoly;
@expansion{} (4a4+4a2+9)
newA;
@expansion{} (1/3a3+5/6a)
id;
@expansion{} id[1]=(1/3a3+5/6a)*z-1
@expansion{} id[2]=y-2
@expansion{} id[3]=2*x2-1
zeroset;
@expansion{} [1]:
@expansion{} _[1]=(1/3a3-1/6a)
@expansion{} _[2]=2
@expansion{} _[3]=(-1/3a3-5/6a)
@expansion{} [2]:
@expansion{} _[1]=(-1/3a3+1/6a)
@expansion{} _[2]=2
@expansion{} _[3]=(-1/3a3-5/6a)
map F1 = basering, zeroset[1];
map F2 = basering, zeroset[2];
F1(id);
@expansion{} _[1]=0
@expansion{} _[2]=0
@expansion{} _[3]=0
F2(id);
@expansion{} _[1]=0
@expansion{} _[2]=0
@expansion{} _[3]=0
@c end example ZeroSet d2t_singular/zeroset_lib.doc:345
@end smallexample
@c ---end content ZeroSet---
@c ------------------- EGCDMain -------------
@node EGCDMain, FactorMain, ZeroSet, zeroset_lib
@subsubsection EGCDMain
@cindex EGCDMain
@c ---content EGCDMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Purpose:}
compute the polynomial gcd of f and g over Q(a)[x]
@item @strong{Return:}
poly
@item @strong{Assume:}
basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.
@end table
@c ---end content EGCDMain---
@c ------------------- FactorMain -------------
@node FactorMain, InvertNumberMain, EGCDMain, zeroset_lib
@subsubsection FactorMain
@cindex FactorMain
@c ---content FactorMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Purpose:}
compute the factorization of the squarefree poly f over Q(a)[t],
minpoly = p(a).
@item @strong{Return:}
list with 2 entries
@format
_[1] = factors, first is a constant
_[2] = multiplicities (not yet implemented)
@end format
@item @strong{Assume:}
basering = Q[x,a], representing Q(a)[x]. An ideal mpoly must
be defined, representing the minimal polynomial (it might be 0!).
@end table
@c ---end content FactorMain---
@c ------------------- InvertNumberMain -------------
@node InvertNumberMain, QuotientMain, FactorMain, zeroset_lib
@subsubsection InvertNumberMain
@cindex InvertNumberMain
@c ---content InvertNumberMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
InvertNumberMain(f); where f is a polynomial
@item @strong{Purpose:}
compute 1/f if f is a number in Q(a) i.e., f is represented by a
polynomial in Q[a].
@item @strong{Return:}
poly 1/f
@item @strong{Assume:}
basering = Q[x_1,...,x_n,a], ideal mpoly must be defined and != 0 !
@end table
@c ---end content InvertNumberMain---
@c ------------------- QuotientMain -------------
@node QuotientMain, RemainderMain, InvertNumberMain, zeroset_lib
@subsubsection QuotientMain
@cindex QuotientMain
@c ---content QuotientMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
QuotientMain(f, g); where f,g are polynomials
@item @strong{Purpose:}
compute the quotient q and remainder r s.t. f = g*q + r, deg(r) < deg(g)
@item @strong{Return:}
list of polynomials
@format
_[1] = quotient q
_[2] = remainder r
@end format
@item @strong{Assume:}
basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.
@end table
@c ---end content QuotientMain---
@c ------------------- RemainderMain -------------
@node RemainderMain, RootsMain, QuotientMain, zeroset_lib
@subsubsection RemainderMain
@cindex RemainderMain
@c ---content RemainderMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
RemainderMain(f, g); where f,g are polynomials
@item @strong{Purpose:}
compute the remainder r s.t. f = g*q + r, deg(r) < deg(g)
@item @strong{Return:}
poly
@item @strong{Assume:}
basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.
@end table
@c ---end content RemainderMain---
@c ------------------- RootsMain -------------
@node RootsMain, SQFRNormMain, RemainderMain, zeroset_lib
@subsubsection RootsMain
@cindex RootsMain
@c ---content RootsMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
RootsMain(f); where f is a polynomial
@item @strong{Purpose:}
compute all roots of f in a finite extension of the ground field
without multiplicities.
@item @strong{Return:}
list, all entries are polynomials
@format
_[1] = roots of f, each entry is a polynomial
_[2] = 'newA' - if the ground field is Q(a') and the extension field
is Q(a), then 'newA' is the representation of a' in Q(a)
_[3] = minpoly of the algebraic extension of the ground field
@end format
@item @strong{Assume:}
basering = Q[x,a] ideal mpoly must be defined, it might be 0!
@item @strong{Note:}
might change the ideal mpoly !!
@end table
@c ---end content RootsMain---
@c ------------------- SQFRNormMain -------------
@node SQFRNormMain, ContainedQ, RootsMain, zeroset_lib
@subsubsection SQFRNormMain
@cindex SQFRNormMain
@c ---content SQFRNormMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
SQFRNorm(f); where f is a polynomial
@item @strong{Purpose:}
compute the norm of the squarefree polynomial f in Q(a)[x].
@item @strong{Return:}
list with 3 entries
@format
_[1] = squarefree norm of g (poly)
_[2] = g (= f(x - s*a)) (poly)
_[3] = s (int)
@end format
@item @strong{Assume:}
f must be squarefree, basering = Q[x,a] and ideal mpoly is equal to
'minpoly',this represents the ring Q(a)[x] together with 'minpoly'.
@item @strong{Note:}
the norm is an element of Q[x]
@end table
@c ---end content SQFRNormMain---
@c ------------------- ContainedQ -------------
@node ContainedQ, SameQ, SQFRNormMain, zeroset_lib
@subsubsection ContainedQ
@cindex ContainedQ
@c ---content ContainedQ---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
ContainedQ(data, f [, opt]); data=list; f=any type, opt=integer
@item @strong{Purpose:}
test if f is an element of data.
@item @strong{Return:}
int
@*0 if f not contained in data
@*1 if f contained in data
@item @strong{Options:}
opt = 0 : use '==' for comparing f with elements from data@*
opt = 1 : use @code{SameQ} for comparing f with elements from data
@end table
@c ---end content ContainedQ---
@c ------------------- SameQ -------------
@node SameQ,, ContainedQ, zeroset_lib
@subsubsection SameQ
@cindex SameQ
@c ---content SameQ---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).
@table @asis
@item @strong{Usage:}
SameQ(a, b); a,b=list/intvec
@item @strong{Purpose:}
test a == b elementwise, i.e., a[i] = b[i].
@item @strong{Return:}
int
@*0 if a != b
@*1 if a == b
@end table
@c ---end content SameQ---
|