File: zeroset_lib.tex

package info (click to toggle)
texi2html 1.82%2Bdfsg1-5
  • links: PTS
  • area: main
  • in suites: buster, stretch
  • size: 34,700 kB
  • ctags: 16,893
  • sloc: perl: 15,902; xml: 6,075; sh: 3,977; makefile: 501
file content (662 lines) | stat: -rw-r--r-- 18,143 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
@c ---content LibInfo---
@comment This file was generated by doc2tex.pl from d2t_singular/zeroset_lib.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT d2t_singular/zeroset_lib.doc INSTEAD
@c library version: (1.7.2.2,2002/02/20)
@c library file: ../Singular/LIB/zeroset.lib
@cindex zeroset.lib
@cindex zeroset_lib
@table @asis
@item @strong{Library:}
zeroset.lib
@item @strong{Purpose:}
      Procedures For Roots and Factorization
@item @strong{Author:}
Thomas Bayer, email: tbayer@@mathematik.uni-kl.de
@*http://wwwmayr.informatik.tu-muenchen.de/personen/bayert/
Current Adress: Institut fuer Informatik, TU Muenchen

@item @strong{Overview:}
Algorithms for finding the zero-set of a zero-dim. ideal in Q(a)[x_1,..,x_n],
Roots and Factorization of univariate polynomials over Q(a)[t]
where a is an algebraic number. Written in the frame of the
diploma thesis (advisor: Prof. Gert-Martin Greuel) 'Computations of moduli
spaces of semiquasihomogeneous singularities and an implementation in Singular'.
This library is meant as a preliminary extension of the functionality
of Singular for univariate factorization of polynomials over simple algebraic
extensions in characteristic 0.
@*Subprocedures with postfix 'Main' require that the ring contains a variable
'a' and no parameters, and the ideal 'mpoly', where 'minpoly' from the
basering is stored.

@end table

@strong{Procedures:}
@menu
* EGCD:: gcd over an algebraic extension field of Q
* Factor:: factorization of f over an algebraic extension field
* Quotient:: quotient q of f w.r.t. g (in f = q*g + remainder)
* Remainder:: remainder of the division of f by g
* Roots:: computes all roots of f in an extension field of Q
* SQFRNorm:: norm of f (f must be squarefree)
* ZeroSet:: zero-set of the 0-dim. ideal I
@end menu
@strong{Auxiliary procedures:}
@menu
* EGCDMain:: gcd over an algebraic extension field of Q
* FactorMain:: factorization of f over an algebraic extension field
* InvertNumberMain:: inverts an element of an algebraic extension field
* QuotientMain:: quotient of f w.r.t. g
* RemainderMain:: remainder of the division of f by g
* RootsMain:: computes all roots of f, might extend the ground field
* SQFRNormMain:: norm of f (f must be squarefree)
* ContainedQ:: f in data ?
* SameQ:: a == b (list a,b)
@end menu
@c ---end content LibInfo---

@c ------------------- EGCD -------------
@node EGCD, Factor,, zeroset_lib
@subsubsection EGCD
@cindex EGCD
@c ---content EGCD---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
EGCD(f, g); where f,g are polynomials

@item @strong{Purpose:}
compute the polynomial gcd of f and g over Q(a)[x]

@item @strong{Return:}
polynomial h s.t. h is a greatest common divisor of f and g (not nec.
monic)

@item @strong{Assume:}
basering = Q(a)[t]

@end table
@strong{Example:}
@smallexample
@c computed example EGCD d2t_singular/zeroset_lib.doc:79 
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f =  x4 - 1;
poly g = x2 - 2*a*x - 1;
EGCD(f, g);
@expansion{} (-4a)*x-4
@c end example EGCD d2t_singular/zeroset_lib.doc:79
@end smallexample
@c ---end content EGCD---

@c ------------------- Factor -------------
@node Factor, Quotient, EGCD, zeroset_lib
@subsubsection Factor
@cindex Factor
@c ---content Factor---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
Factor(f); where f is a polynomial

@item @strong{Purpose:}
compute the factorization of the squarefree poly f over Q(a)[t]

@item @strong{Return:}
list with two entries
  @format
  _[1] = factors (monic), first entry is the leading coefficient
  _[2] = multiplicities (not yet implemented)
  @end format

@item @strong{Assume:}
basering must be the univariate polynomial ring over a field, which
is Q or a simple extension of Q given by a minpoly.

@item @strong{Note:}
if basering = Q[t] then this is the built-in @code{factorize}

@end table
@strong{Example:}
@smallexample
@c computed example Factor d2t_singular/zeroset_lib.doc:121 
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f =  x4 - 1;
list fl = Factor(f);
fl;
@expansion{} [1]:
@expansion{}    _[1]=1
@expansion{}    _[2]=(40a+60)*x+(40a+60)
@expansion{}    _[3]=(1/65a-29/130)*x+(-1/65a+29/130)
@expansion{}    _[4]=(4a)*x+4
@expansion{}    _[5]=(7/520a+1/130)*x+(1/130a-7/520)
@expansion{} [2]:
@expansion{}    _[1]=1
@expansion{}    _[2]=1
@expansion{}    _[3]=1
@expansion{}    _[4]=1
@expansion{}    _[5]=1
fl[1][1]*fl[1][2]*fl[1][3]*fl[1][4]*fl[1][5] - f;
@expansion{} 0
@c end example Factor d2t_singular/zeroset_lib.doc:121
@end smallexample
@c ---end content Factor---

@c ------------------- Quotient -------------
@node Quotient, Remainder, Factor, zeroset_lib
@subsubsection Quotient
@cindex Quotient
@c ---content Quotient---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
Quotient(f, g); where f,g are polynomials;

@item @strong{Purpose:}
compute the quotient q and remainder r s.t. f = g*q + r, deg(r) < deg(g)

@item @strong{Return:}
list of polynomials
  @format
  _[1] = quotient  q
  _[2] = remainder r
  @end format

@item @strong{Assume:}
basering = Q[x] or Q(a)[x]

@end table
@strong{Example:}
@smallexample
@c computed example Quotient d2t_singular/zeroset_lib.doc:160 
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f =  x4 - 2;
poly g = x - a;
list qr = Quotient(f, g);
qr;
@expansion{} [1]:
@expansion{}    x3+(a)*x2-x+(-a)
@expansion{} [2]:
@expansion{}    0
qr[1]*g + qr[2] - f;
@expansion{} 1
@c end example Quotient d2t_singular/zeroset_lib.doc:160
@end smallexample
@c ---end content Quotient---

@c ------------------- Remainder -------------
@node Remainder, Roots, Quotient, zeroset_lib
@subsubsection Remainder
@cindex Remainder
@c ---content Remainder---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
Remainder(f, g); where f,g are polynomials

@item @strong{Purpose:}
compute the remainder of the division of f by g, i.e. a polynomial r
s.t. f = g*q + r, deg(r) < deg(g).

@item @strong{Return:}
poly

@item @strong{Assume:}
basering = Q[x] or Q(a)[x]

@end table
@strong{Example:}
@smallexample
@c computed example Remainder d2t_singular/zeroset_lib.doc:197 
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f =  x4 - 1;
poly g = x3 - 1;
Remainder(f, g);
@expansion{} x-1
@c end example Remainder d2t_singular/zeroset_lib.doc:197
@end smallexample
@c ---end content Remainder---

@c ------------------- Roots -------------
@node Roots, SQFRNorm, Remainder, zeroset_lib
@subsubsection Roots
@cindex Roots
@c ---content Roots---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
Roots(f); where f is a polynomial

@item @strong{Purpose:}
compute all roots of f in a finite extension of the ground field
without multiplicities.

@item @strong{Return:}
ring, a polynomial ring over an extension field of the ground field,
containing a list 'roots' and polynomials 'newA' and 'f':
  @format
  - 'roots' is the list of roots of the polynomial f (no multiplicities)
  - if the ground field is Q(a') and the extension field is Q(a), then
    'newA' is the representation of a' in Q(a). 
    If the basering contains a parameter 'a' and the minpoly remains unchanged
    then 'newA' = 'a'.
    If the basering does not contain a parameter then 'newA' = 'a' (default).
  - 'f' is the polynomial f in Q(a) (a' being substituted by 'newA')
  @end format

@item @strong{Assume:}
ground field to be Q or a simple extension of Q given by a minpoly

@end table
@strong{Example:}
@smallexample
@c computed example Roots d2t_singular/zeroset_lib.doc:242 
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f = x3 - a;
def R1 = Roots(f);
@expansion{} 
@expansion{} // 'Roots' created a new ring which contains the list 'roots' and
@expansion{} // the polynomials 'f' and 'newA'
@expansion{} // To access the roots, newA and the new representation of f, type
@expansion{}    def R = Roots(f); setring R; roots; newA; f;
@expansion{} 
setring R1;
minpoly;
@expansion{} (a4-a2+1)
newA;
@expansion{} (a3)
f;
@expansion{} x3+(-a3)
roots;
@expansion{} [1]:
@expansion{}    (-a3)
@expansion{} [2]:
@expansion{}    (a3-a)
@expansion{} [3]:
@expansion{}    (a)
map F;
F[1] = roots[1];
F(f);
@expansion{} 0
@c end example Roots d2t_singular/zeroset_lib.doc:242
@end smallexample
@c ---end content Roots---

@c ------------------- SQFRNorm -------------
@node SQFRNorm, ZeroSet, Roots, zeroset_lib
@subsubsection SQFRNorm
@cindex SQFRNorm
@c ---content SQFRNorm---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
SQFRNorm(f); where f is a polynomial

@item @strong{Purpose:}
compute the norm of the squarefree polynomial f in Q(a)[x].

@item @strong{Return:}
list with 3 entries
  @format
  _[1] = squarefree norm of g (poly)
  _[2] = g (= f(x - s*a)) (poly)
  _[3] = s (int)
  @end format

@item @strong{Assume:}
f must be squarefree, basering = Q(a)[x] and minpoly != 0.

@item @strong{Note:}
the norm is an element of Q[x]

@end table
@strong{Example:}
@smallexample
@c computed example SQFRNorm d2t_singular/zeroset_lib.doc:291 
LIB "zeroset.lib";
ring R = (0,a), x, lp;
minpoly = a2+1;
poly f =  x4 - 2*x + 1;
SQFRNorm(f);
@expansion{} [1]:
@expansion{}    x8+4*x6-4*x5+8*x4+8*x3-4*x2+8*x+8
@expansion{} [2]:
@expansion{}    x4+(-4a)*x3-6*x2+(4a-2)*x+(2a+2)
@expansion{} [3]:
@expansion{}    1
@c end example SQFRNorm d2t_singular/zeroset_lib.doc:291
@end smallexample
@c ---end content SQFRNorm---

@c ------------------- ZeroSet -------------
@node ZeroSet, EGCDMain, SQFRNorm, zeroset_lib
@subsubsection ZeroSet
@cindex ZeroSet
@c ---content ZeroSet---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
ZeroSet(I [,opt] ); I=ideal, opt=integer

@item @strong{Purpose:}
compute the zero-set of the zero-dim. ideal I, in a finite extension
of the ground field.

@item @strong{Return:}
ring, a polynomial ring over an extension field of the ground field,
containing a list 'zeroset', a polynomial 'newA', and an
ideal 'id':
  @format
  - 'zeroset' is the list of the zeros of the ideal I, each zero is an ideal.
  - if the ground field is Q(a') and the extension field is Q(a), then
    'newA' is the representation of a' in Q(a).
    If the basering contains a parameter 'a' and the minpoly remains unchanged
    then 'newA' = 'a'.
    If the basering does not contain a parameter then 'newA' = 'a' (default).    
  - 'id' is the ideal I in Q(a)[x_1,...] (a' substituted by 'newA')
  @end format

@item @strong{Assume:}
dim(I) = 0, and ground field to be Q or a simple extension of Q given
by a minpoly.

@item @strong{Options:}
opt = 0 no primary decomposition (default)
@*opt > 0 primary decomposition

@item @strong{Note:}
If I contains an algebraic number (parameter) then 'I' must be
transformed w.r.t. 'newA' in the new ring.

@end table
@strong{Example:}
@smallexample
@c computed example ZeroSet d2t_singular/zeroset_lib.doc:345 
LIB "zeroset.lib";
ring R = (0,a), (x,y,z), lp;
minpoly = a2 + 1;
ideal I = x2 - 1/2, a*z - 1, y - 2;
def T = ZeroSet(I);
@expansion{} 1
setring T;
minpoly;
@expansion{} (4a4+4a2+9)
newA;
@expansion{} (1/3a3+5/6a)
id;
@expansion{} id[1]=(1/3a3+5/6a)*z-1
@expansion{} id[2]=y-2
@expansion{} id[3]=2*x2-1
zeroset;
@expansion{} [1]:
@expansion{}    _[1]=(1/3a3-1/6a)
@expansion{}    _[2]=2
@expansion{}    _[3]=(-1/3a3-5/6a)
@expansion{} [2]:
@expansion{}    _[1]=(-1/3a3+1/6a)
@expansion{}    _[2]=2
@expansion{}    _[3]=(-1/3a3-5/6a)
map F1 = basering, zeroset[1];
map F2 = basering, zeroset[2];
F1(id);
@expansion{} _[1]=0
@expansion{} _[2]=0
@expansion{} _[3]=0
F2(id);
@expansion{} _[1]=0
@expansion{} _[2]=0
@expansion{} _[3]=0
@c end example ZeroSet d2t_singular/zeroset_lib.doc:345
@end smallexample
@c ---end content ZeroSet---

@c ------------------- EGCDMain -------------
@node EGCDMain, FactorMain, ZeroSet, zeroset_lib
@subsubsection EGCDMain
@cindex EGCDMain
@c ---content EGCDMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Purpose:}
compute the polynomial gcd of f and g over Q(a)[x]

@item @strong{Return:}
poly

@item @strong{Assume:}
basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.

@end table
@c ---end content EGCDMain---

@c ------------------- FactorMain -------------
@node FactorMain, InvertNumberMain, EGCDMain, zeroset_lib
@subsubsection FactorMain
@cindex FactorMain
@c ---content FactorMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Purpose:}
compute the factorization of the squarefree poly f over Q(a)[t],
minpoly = p(a).

@item @strong{Return:}
list with 2 entries
  @format
  _[1] = factors, first is a constant
  _[2] = multiplicities (not yet implemented)
  @end format

@item @strong{Assume:}
basering = Q[x,a], representing Q(a)[x]. An ideal mpoly must
be defined, representing the minimal polynomial (it might be 0!).

@end table
@c ---end content FactorMain---

@c ------------------- InvertNumberMain -------------
@node InvertNumberMain, QuotientMain, FactorMain, zeroset_lib
@subsubsection InvertNumberMain
@cindex InvertNumberMain
@c ---content InvertNumberMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
InvertNumberMain(f); where f is a polynomial

@item @strong{Purpose:}
compute 1/f if f is a number in Q(a) i.e., f is represented by a
polynomial in Q[a].

@item @strong{Return:}
poly 1/f

@item @strong{Assume:}
basering = Q[x_1,...,x_n,a], ideal mpoly must be defined and != 0 !

@end table
@c ---end content InvertNumberMain---

@c ------------------- QuotientMain -------------
@node QuotientMain, RemainderMain, InvertNumberMain, zeroset_lib
@subsubsection QuotientMain
@cindex QuotientMain
@c ---content QuotientMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
QuotientMain(f, g); where f,g are polynomials

@item @strong{Purpose:}
compute the quotient q and remainder r s.t. f = g*q + r, deg(r) < deg(g)

@item @strong{Return:}
list of polynomials
  @format
  _[1] = quotient  q
  _[2] = remainder r
  @end format

@item @strong{Assume:}
basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.

@end table
@c ---end content QuotientMain---

@c ------------------- RemainderMain -------------
@node RemainderMain, RootsMain, QuotientMain, zeroset_lib
@subsubsection RemainderMain
@cindex RemainderMain
@c ---content RemainderMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
RemainderMain(f, g); where f,g are polynomials

@item @strong{Purpose:}
compute the remainder r s.t. f = g*q + r, deg(r) < deg(g)

@item @strong{Return:}
poly

@item @strong{Assume:}
basering = Q[x,a] and ideal mpoly is defined (it might be 0),
this represents the ring Q(a)[x] together with its minimal polynomial.

@end table
@c ---end content RemainderMain---

@c ------------------- RootsMain -------------
@node RootsMain, SQFRNormMain, RemainderMain, zeroset_lib
@subsubsection RootsMain
@cindex RootsMain
@c ---content RootsMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
RootsMain(f); where f is a polynomial

@item @strong{Purpose:}
compute all roots of f in a finite extension of the ground field
without multiplicities.

@item @strong{Return:}
list, all entries are polynomials
  @format
  _[1] = roots of f, each entry is a polynomial
  _[2] = 'newA' - if the ground field is Q(a') and the extension field
         is Q(a), then 'newA' is the representation of a' in Q(a)
  _[3] = minpoly of the algebraic extension of the ground field
  @end format

@item @strong{Assume:}
basering = Q[x,a] ideal mpoly must be defined, it might be 0!

@item @strong{Note:}
might change the ideal mpoly !!

@end table
@c ---end content RootsMain---

@c ------------------- SQFRNormMain -------------
@node SQFRNormMain, ContainedQ, RootsMain, zeroset_lib
@subsubsection SQFRNormMain
@cindex SQFRNormMain
@c ---content SQFRNormMain---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
SQFRNorm(f); where f is a polynomial

@item @strong{Purpose:}
compute the norm of the squarefree polynomial f in Q(a)[x].

@item @strong{Return:}
list with 3 entries
  @format
  _[1] = squarefree norm of g (poly)
  _[2] = g (= f(x - s*a)) (poly)
  _[3] = s (int)
  @end format

@item @strong{Assume:}
f must be squarefree, basering = Q[x,a] and ideal mpoly is equal to
'minpoly',this represents the ring Q(a)[x] together with 'minpoly'.

@item @strong{Note:}
the norm is an element of Q[x]

@end table
@c ---end content SQFRNormMain---

@c ------------------- ContainedQ -------------
@node ContainedQ, SameQ, SQFRNormMain, zeroset_lib
@subsubsection ContainedQ
@cindex ContainedQ
@c ---content ContainedQ---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
ContainedQ(data, f [, opt]); data=list; f=any type, opt=integer

@item @strong{Purpose:}
test if f is an element of data.

@item @strong{Return:}
int
@*0 if f not contained in data
@*1 if f contained in data

@item @strong{Options:}
opt = 0 : use '==' for comparing f with elements from data@*
opt = 1 : use @code{SameQ} for comparing f with elements from data

@end table
@c ---end content ContainedQ---

@c ------------------- SameQ -------------
@node SameQ,, ContainedQ, zeroset_lib
@subsubsection SameQ
@cindex SameQ
@c ---content SameQ---
Procedure from library @code{zeroset.lib} (@pxref{zeroset_lib}).

@table @asis
@item @strong{Usage:}
SameQ(a, b); a,b=list/intvec

@item @strong{Purpose:}
test a == b elementwise, i.e., a[i] = b[i].

@item @strong{Return:}
int
@*0 if a != b
@*1 if a == b

@end table
@c ---end content SameQ---