1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Copyright (C) 2004, 2005, 2006, 2007 Alain Lahellec
Copyright (C) 2004, 2005, 2006, 2007 Patrice Dumas
Copyright (C) 2004, Ste'phane Hallegatte
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover text and with no Back-Cover Text.
A copy of the license is included in the section entitled "GNU Free
Documentation License."
-->
<!-- Created on a sunny day by texi2html
texi2html was written by:
Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people.
Send bugs and suggestions to <texi2html-bug@nongnu.org>
-->
<head>
<title>Miniker 102 manual: 4.2 Adjoint model and optimisation with Miniker</title>
<meta name="description" content="Miniker 102 manual: 4.2 Adjoint model and optimisation with Miniker">
<meta name="keywords" content="Miniker 102 manual: 4.2 Adjoint model and optimisation with Miniker">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<style type="text/css">
<!--
@import "mini_ker_tex4ht_math.css";
@import "mini_ker_tex4ht_tex.css";
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.roman {font-family:serif; font-weight:normal;}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Adjoint-model-and-optimisation"></a>
<ul class="toc"><li><a href="mini_ker.html#Top">Miniker 102 manual</a> </li>
<li><ul class="toc"><li><a href="Dynamic-system-analysis.html#Dynamic-system-analysis">4. Dynamic analysis of systems in Miniker</a> </li>
</ul></li>
</ul>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="Sensitivities.html#Advance-matrix-sensitivity" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#Overview-of-optimisation-with-Miniker" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Adjoint-model-and-optimisation-with-Miniker"></a>
<h2 class="section"> 4.2 Adjoint model and optimisation with Miniker </h2>
<ul class="toc">
<li> <a href="#Overview-of-optimisation-with-Miniker">4.2.1 Overview of optimisation with Miniker</a> </li>
<li> <a href="#Control-laws">4.2.2 Control laws</a> </li>
<li> <a href="#Cost-function-coding-and-adjoint-modeling">4.2.3 Cost function coding and adjoint modeling</a> </li>
<li> <a href="#Sensitivity-of-cost-function-to-parameters">4.2.4 Sensitivity of cost function to parameters</a> </li>
</ul>
<p>In the following a possible use of Miniker for optimisation is discussed.
More precisely the use of adjoint and control laws in Miniker are presented.
Optimisation isn’t the only application of these tools, but it is the most
common one. In that case the adjoint may be used to determine the gradient of a
functional to perturbations in the control laws, and an optimisation process
can use this
information to search for the optimum.
Another application of the adjoint is to compute the sensitivity of a
cost function to parameters (the ones declared in the <code>free_parameters:</code>’ list.
Note that the cost function can be sensitive to probe’s variables, even if these are
uncoupled with standard variables in the forward calculations; this is the case
when minimizing a quadratic distance function between probes (from the model)
and the corresponding measurements.
</p>
<p>The code is close transcription of the mathematical calculus described
in<br> <a href="http://www.lmd.jussieu.fr/ZOOM/doc/Adjoint.pdf">http://www.lmd.jussieu.fr/ZOOM/doc/Adjoint.pdf</a> . It essentialy reverse time and
transpose the four Jacobian matrices: states and transfers are saved in array dimensionned
with <code>maxstep</code> Fortran parameter.
</p>
<hr size="2">
<a name="Overview-of-optimisation-with-Miniker"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Adjoint-model-and-optimisation" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#Control-laws" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Overview-of-optimisation-with-Miniker-1"></a>
<h3 class="subsection"> 4.2.1 Overview of optimisation with Miniker </h3>
<a name="index-adjoint"></a>
<a name="index-optimisation"></a>
<p>In the proposed method, Miniker is run twice, one time forward and then
backward to determine the trajectory and the adjoint model. After that the
control laws are modified by a program external to Miniker. The same steps
are repeated until convergence. More pecisely,
</p>
<dl compact="compact">
<dt> <strong>forward</strong></dt>
<dd><p>The command law h(t) is given (by an explicit law or taken from a file).
The trajectory is computed in a classical way, with the additionnal computation
of the functional to be optimised, J, prescribed with specific
<code>f_set</code> macros. The states, transfers and control laws are stored.
</p></dd>
<dt> <strong>backward</strong></dt>
<dd><p>The adjoint variable is computed from the last time T backward. The
time increment is re-read as it could have changed during the forward
simulation. The system is solved by using the same technics as in the forward
simulation, but with a negative time step.
</p></dd>
<dt> <strong>external phase</strong></dt>
<dd><p>Now the command should be corrected. This step isn’t covered here, but, for
example, minuit the optimisation tool from the CERN could be used.
In order to ease such a use of Miniker, the principal program has to be
compiled as a subroutine to be driven by an external program
(see <a href="Calling-the-model-code.html#Calling-the-model-code">Calling the model code</a>).
</p></dd>
</dl>
<p>The functionnal J to be optimised is defined as
</p>
<p>
<center class="math-display" >
<img
src="mini_ker_tex4ht_tex15x.png" alt=" ∫ T
J = ψ [η(T),φ(T),h(T)]+ l[η(τ),φ (τ ),h(τ)]dτ
0 " class="math-display" ></center>
</p>
<a name="index-final-cost"></a>
<a name="index-integrand-cost"></a>
<p>Where ψ is the final cost function, l is the integrand
cost function and h represents the control laws variations.
</p>
<p>The general use of the adjoint model of a system is the determination of the
gradient of this J functional to be optimised, with respect to perturbations
of the original conditions of the reference trajectory, that is, along its
GTLS<a name="DOCF6" href="mini_ker_fot.html#FOOT6">(6)</a>.
</p>
<hr size="2">
<a name="Control-laws"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Overview-of-optimisation-with-Miniker" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#Cost-function-coding-and-adjoint-modeling" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Control-laws-1"></a>
<h3 class="subsection"> 4.2.2 Control laws </h3>
<a name="index-zcommand"></a>
<a name="index-command-law"></a>
<p>Each control law is associated with one cell or transfer equation, meaning that a command
associated with an equation does not appear in any other equation.
It is still possible
to add commands acting anywhere by defining a transfer equal to that command.
</p>
<p>The control laws associated with states are in the <code>ux_com(.)</code> array,
control laws associated with transfers are in the <code>uy_com(.)</code> array.
The control laws may be prescribed even when there is no adjoint computed,
nor any optimisation, and they are used during simulation, in which case they will
act as external sources. To enable
the use of commands, the logical flag <code>Zcommand</code> should be <code>.true.</code>.
</p>
<a name="index-uxcom_002edata"></a>
<a name="index-uycom_002edata"></a>
<p>The command can be given either as:
</p><ol>
<li> a table of numerical
values in the files ‘<tt>uxcom.data</tt>’ and ‘<tt>uycom.data</tt>’.
</li><li> a function
<a name="index-zlaw"></a>
<a name="index-zcmd_005flaw"></a>
<a name="index-zcmd_005flaw_002einc"></a>
of the problem variables. To turn that feature on the logical flag
<code>Zlaw</code> should be set to <code>.true.</code> in ‘<tt>zinit</tt>’. The sequence
‘<tt>zcmd_law</tt>’ should hold
the code filling the <code>ux_com(.)</code> and <code>uy_com(.)</code> arrays, as the code
from that sequence is used whenever the control laws are needed.
In that case the files ‘<tt>uxcom.data</tt>’ and ‘<tt>uycom.data</tt>’ will
be filled by the command values generated by the function along the trajectory.
</li></ol>
<p>For example in the Lotka-Volterra model, the parameter <code>apar</code> could
be a control variable.
In that case, <code>apar</code> would be defined as the variable <code>ux_com(1)</code>,
and either entered as a law
in the sequence ‘<tt>zcmd_law</tt>’ , either written in the file ‘<tt>uxcom.data</tt>’
step by step. In that case, there must be a perfect corresponodence between time
of the commands and time of the run.
</p>
<hr size="2">
<a name="Cost-function-coding-and-adjoint-modeling"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Control-laws" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="#Sensitivity-of-cost-function-to-parameters" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Cost-function-coding-and-adjoint-modeling-1"></a>
<h3 class="subsection"> 4.2.3 Cost function coding and adjoint modeling </h3>
<a name="index-zback"></a>
<a name="index-cout_005fPsi"></a>
<a name="index-cout_005fl"></a>
<p>First of all the flag <code>zback</code> should be set to <code>.true.</code> in order to
allow adjoint model computation:
</p>
<table><tr><td> </td><td><pre class="example">Zback=.true.;
</pre></td></tr></table>
<p>The two functions <code>cout_Psi</code> corresponding with the final cost and
<code>cout_l</code> corresponding with the integrand cost are set up with the
<code>f_set</code> macros.
</p>
<dl>
<dt><a name="index-f_005fset-2"></a><u>Macro:</u> <b>f_set</b><i> cout_Psi = f(eta(.),ff(.),ux_com(.),uy_com(.))</i></dt>
<dd><p>This macro defines the final cost function.
<code>f</code> is a fortran
expression which may be function of cell state variables,
‘<samp>eta(1)</samp>’…‘<samp>eta(np)</samp>’, transfers
‘<samp>ff(1)</samp>’…‘<samp>ff(mp)</samp>’,
state control laws
‘<samp>ux_com(1)</samp>’…‘<samp>ux_com(np)</samp>’, and transfer control laws
‘<samp>uy_com(1)</samp>’…‘<samp>uy_com(mp)</samp>’.
</p></dd></dl>
<dl>
<dt><a name="index-f_005fset-3"></a><u>Macro:</u> <b>f_set</b><i> cout_l = f(eta(.),ff(.),ux_com(.),uy_com(.))</i></dt>
<dd><p>This macro defines the integrand cost function.
<code>f</code> is a fortran
expression which may be function of cell state variables,
‘<samp>eta(1)</samp>’…‘<samp>eta(np)</samp>’, transfers
‘<samp>ff(1)</samp>’…‘<samp>ff(mp)</samp>’,
state control laws
‘<samp>ux_com(1)</samp>’…‘<samp>ux_com(np)</samp>’, and transfer control laws
‘<samp>uy_com(1)</samp>’…‘<samp>uy_com(mp)</samp>’.
</p></dd></dl>
<p>For example, the following code sets a cost function for the masselottes
model:
</p>
<table><tr><td> </td><td><pre class="example">! Initialisation
F_set cout_Psi = eta_move(inode:1);
!and f_set cout_l integrand in the functionnal
F_set cout_l = 0.;
</pre></td></tr></table>
<p>In that example the functional is reduced to the final value
of the first state component.
Here, the adjoint vector will correspond to the final sensitivity
(at t = 0) of
that component (here the first masselotte position) to a perturbation in
all initial conditions<a name="DOCF7" href="mini_ker_fot.html#FOOT7">(7)</a>.
</p>
<p>The following variables are set during the backward phase, and output
in the associated files:
</p>
<table>
<thead><tr><th>var</th><th>file</th><th>explanation</th></tr></thead>
<tr><td><code>v_adj(.)</code></td><td>‘<tt>vadj.data</tt>’</td><td>adjoint to <code>eta(.)</code></td></tr>
<tr><td><code>w_adj(.)</code></td><td>‘<tt>wadj.data</tt>’</td><td>adjoint to <code>ff(.)</code></td></tr>
<tr><td><code>wadj(mp+.)</code></td><td>‘<tt>gradmuj.data</tt>’</td><td>adjoint to <code>ff(mp+.)</code></td></tr>
<tr><td><code>graduej(.)</code></td><td>‘<tt>gradxj.data</tt>’</td><td>adjoint to <code>ux_com(.)</code></td></tr>
<tr><td><code>gradufj(.)</code></td><td>‘<tt>gradyj.data</tt>’</td><td>adjoint to <code>uy_com(.)</code></td></tr>
<tr><td><code>hamilton</code></td><td>‘<tt>hamilton.data</tt>’</td><td>time increment, hamiltonian, cost function increment</td></tr>
</table>
<hr size="2">
<a name="Sensitivity-of-cost-function-to-parameters"></a>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="#Cost-function-coding-and-adjoint-modeling" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="Kalman-filter.html#Kalman-filter" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Sensitivity-of-cost-function-to-parameters-1"></a>
<h3 class="subsection"> 4.2.4 Sensitivity of cost function to parameters </h3>
<a name="index-gradpj_002edata"></a>
<p>The sensitivity of the cost function to all the parameters given as
arguments of <code>Free_parameters</code> is computed. For the
predator model the sensitivity of a cost function consisting in
the integral of the predator population with respect with
<code>apar</code> an <code>cpar</code> is obtained with a number of parameters
set to 2 in ‘<tt>dimetaphi</tt>’:
</p>
<table><tr><td> </td><td><pre class="example">parameter (lp=2);
</pre></td></tr></table>
<p>And the cost function and <code>Free_parameters</code> list in ‘<tt>zinit</tt>’:
</p>
<table><tr><td> </td><td><pre class="example">f_set cout_Psi = eta(2);
f_set cout_l = eta(2);
Free_parameters: apar,cpar;
</pre></td></tr></table>
<p><code>apar</code> and <code>cpar</code> also have to be given a value.
The result is output in ‘<tt>gradpj.data</tt>’.
</p>
<hr size="2">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>a tester</em> on <em>a sunny day</em> using <a href="http://www.nongnu.org/texi2html/"><em>texi2html</em></a>.
</font>
<br>
</p>
</body>
</html>
|