1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html401/loose.dtd">
<html>
<!-- Copyright (C) 2004, 2005, 2006, 2007 Alain Lahellec
Copyright (C) 2004, 2005, 2006, 2007 Patrice Dumas
Copyright (C) 2004, Ste'phane Hallegatte
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover text and with no Back-Cover Text.
A copy of the license is included in the section entitled "GNU Free
Documentation License."
-->
<!-- Created on a sunny day by texi2html
texi2html was written by:
Lionel Cons <Lionel.Cons@cern.ch> (original author)
Karl Berry <karl@freefriends.org>
Olaf Bachmann <obachman@mathematik.uni-kl.de>
and many others.
Maintained by: Many creative people.
Send bugs and suggestions to <texi2html-bug@nongnu.org>
-->
<head>
<title>Miniker 102 manual: 1.2 Linearization and discretization in the TEF</title>
<meta name="description" content="Miniker 102 manual: 1.2 Linearization and discretization in the TEF">
<meta name="keywords" content="Miniker 102 manual: 1.2 Linearization and discretization in the TEF">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2html">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<style type="text/css">
<!--
@import "mini_ker_tex4ht_math.css";
@import "mini_ker_tex4ht_tex.css";
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
pre.display {font-family: serif}
pre.format {font-family: serif}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: serif; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: serif; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.roman {font-family:serif; font-weight:normal;}
span.sansserif {font-family:sans-serif; font-weight:normal;}
ul.toc {list-style: none}
-->
</style>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Linearization-and-discretization"></a>
<ul class="toc"><li><a href="mini_ker.html#Top">Miniker 102 manual</a> </li>
<li><ul class="toc"><li><a href="TEF-overview.html#TEF-overview">1. An overview of the <acronym>TEF</acronym> formalism</a> </li>
</ul></li>
</ul>
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="Cell-and-Transfer.html#Cell-and-Transfer" title="Previous section in reading order"> < </a>]</td>
<td valign="middle" align="left">[<a href="A-model-with-Miniker.html#A-model-with-Miniker" title="Next section in reading order"> > </a>]</td>
<td valign="middle" align="left"> </td>
<td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<a name="Linearization-and-discretization-in-the-TEF"></a>
<h2 class="section"> 1.2 Linearization and discretization in the <acronym>TEF</acronym> </h2>
<p>The relations between sub-systems is excessively difficult to exhibit when
having to cope with non-linear system. In the <acronym title="Transfer Evolution Formalism">TEF</acronym>, the
<acronym title="Tangent Linear System">TLS</acronym> (Tangent Linear System) is constructed along the trajectory.
One considers the system over a small portion along the trajectory, say
between t and t + δt. The variation δη
of η and δφ of φ is obtained
through a Padé approximation of the state-transition matrix. The final
form of the algebraic system is closed to the classical Crank-Nicolson scheme:
</p>
<p>
<center class="math-display" >
<img
src="mini_ker_tex4ht_tex2x.png" alt="( )( ) ( )
A B δη Γ
- C+ I - D δφ = Ω " class="math-display" ></center>
</p>
<p>The blocks appearing in the Jacobian matrix are constructed with partial derivative
of f and g, and with δt. From this system the
elimination of δη leads to another formulation giving
the coupling between transfers, and allows for the δφ
computation. The δφ value is then substitued in
δη to complete the time-step solving process.
</p>
<hr size="2">
<table cellpadding="1" cellspacing="1" border="0">
<tr><td valign="middle" align="left">[<a href="mini_ker.html#SEC_Contents" title="Table of contents">Contents</a>]</td>
<td valign="middle" align="left">[<a href="Concepts-index.html#Concepts-index" title="Index">Index</a>]</td>
<td valign="middle" align="left">[<a href="mini_ker_abt.html#SEC_About" title="About (help)"> ? </a>]</td>
</tr></table>
<p>
<font size="-1">
This document was generated by <em>a tester</em> on <em>a sunny day</em> using <a href="http://www.nongnu.org/texi2html/"><em>texi2html</em></a>.
</font>
<br>
</p>
</body>
</html>
|