1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
|
@comment -*-texinfo-*-
@comment This file was generated by doc2tex.pl from pdata.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT pdata.doc INSTEAD
@comment Id: pdata.tex,v 1.1 2003/08/08 14:27:06 pertusus Exp $
@comment this file contains the "Polynomial data" appendix.
@c The following directives are necessary for proper compilation
@c with emacs (C-c C-e C-r). Please keep it as it is. Since it
@c is wrapped in `@ignore' and `@end ignore' it does not harm `tex' or
@c `makeinfo' but is a great help in editing this file (emacs
@c ignores the `@ignore').
@ignore
%**start
\input texinfo.tex
@setfilename pdata.hlp
@node Top, Polynomial data
@menu
* Polynomial data::
@end menu
@node Polynomial data, Examples, Mathematical background, Top
@chapter Polynomial data
%**end
@end ignore
@menu
* Representation of mathematical objects::
* Monomial orderings::
@end menu
@c -----------------------------------------------------------------
@node Representation of mathematical objects,Monomial orderings,,Polynomial data
@section Representation of mathematical objects
@cindex mathematical objects
@cindex representation, math objects
@sc{Singular} distinguishes between objects which do not belong to a ring
and those which belong to a specific ring (see @ref{Rings and orderings}).
We comment only on the latter ones.
Internally all ring-dependent objects are polynomials or structures built from
polynomials (and some additional information).
Note that @sc{Singular} stores (and hence prints) a polynomial automatically
w.r.t@:. the monomial ordering.
Hence, in order to define such an object in @sc{Singular},
one has to give a list of polynomials in a specific format.
For ideals, resp.@: matrices, this is straight forward:
The user gives a list of polynomials
which generate the ideal, resp.@: which are the entries of the matrix.
(The number of rows and columns has to be given when creating the matrix.)
A vector in @sc{Singular} is always an element of a free module over the
basering. It is given as a list of polynomials in one of the following
formats
@tex
$[f_1,...,f_n]$ or $f_1*gen(1)+...+f_n*gen(n)$, where $gen(i)$
@end tex
@ifinfo
[f_1,...,f_n] or f_1*gen(1)+...+f_n*gen(n), where gen(i)
@end ifinfo
denotes the i-th canonical generator of a free module (with 1 at place i and
0 everywhere else).
Both forms are equivalent. A vector is internally represented in
the second form with the
@tex
$gen(i)$
@end tex
@ifinfo
gen(i)
@end ifinfo
being "special" ring variables, ordered accordingly to the monomial ordering.
Therefore, the form
@tex
$[f_1,...,f_n]$
@end tex
@ifinfo
[f_1,...,f_n]
@end ifinfo
is given as output only if the monomial ordering gives priority to the
component, i.e@:., is of the form @code{(c,...)} (see @ref{Module
orderings}). However, in any case the procedure @code{show} from the
library @code{inout.lib} displays the bracket format.
A vector
@tex
$v=[f_1,...,f_n]$
@end tex
@ifinfo
v=[f_1,...,f_n]
@end ifinfo
should always be considered as a column vector in a free module
of rank equal to
@tex
nrows($v$)
@end tex
@ifinfo
nrows(v)
@end ifinfo
where
@tex
nrows($v$)
@end tex
@ifinfo
nrows(v)
@end ifinfo
is equal to the maximal index
@tex
$r$
@end tex
@ifinfo
r
@end ifinfo
such that
@tex
$f_r \not= 0$.
@end tex
@ifinfo
f_r<>0.
@end ifinfo
This is due to the fact, that internally
@tex
$v$
@end tex
@ifinfo
v
@end ifinfo
is a polynomial in a sparse representation, i.e.,
@tex
$f_i*gen(i)$
@end tex
@ifinfo
f_i*gen(i)
@end ifinfo
is not stored if
@tex
$f_i=0$
@end tex
@ifinfo
f_i=0
@end ifinfo
(for reasons of efficiency), hence the last 0-entries of
@tex
$v$
@end tex
@ifinfo
v
@end ifinfo
are lost.
Only more complex structures are able to keep the rank.
A module
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
in @sc{Singular} is given by a list of vectors
@tex
$v_1,...,v_k$
@end tex
@ifinfo
v_1,....v_k
@end ifinfo
which generate the module as a submodule of the free module of rank
equal to
@tex
nrows($M$)
@end tex
@ifinfo
nrows(M)
@end ifinfo
which is the maximum of
@tex
nrows($v_i$).
@end tex
@ifinfo
nrows(v_i).
@end ifinfo
If one wants to create a module with a larger rank than given by its
generators, one has to use the command @code{attrib(M,"rank",r)} (see
@ref{attrib}, @ref{nrows}) or to define a matrix first, then converting it
into a module. Modules in @sc{Singular} are almost the same as
matrices, they may be considered as sparse representations of matrices.
A module of a matrix is generated by the columns of the matrix and a
matrix of a module has as columns the generators of the module. These
conversions preserve the rank and the number of generators, resp@:. the
number of rows and columns.
By the above remarks it might appear that @sc{Singular} is only able to handle
submodules of a free module. However, this is not true. @sc{Singular}
can compute with any finitely generated module over the basering
@tex
$R$.
@end tex
@ifinfo
R.
@end ifinfo
Such a module, say
@tex
$N$,
@end tex
@ifinfo
N,
@end ifinfo
is not represented by its generators but by its
(generators and) relations. This means that
@tex
$N = R^n/M$ where $n$
@end tex
@ifinfo
N = R^n/M where n
@end ifinfo
is the number of generators of
@tex
$N$ and $M \subseteq R^n$
@end tex
@ifinfo
N and M in R^n
@end ifinfo
is the module of relations.
In other words, defining a module
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
as a submodule of a free module
@tex
$R^n$
@end tex
@ifinfo
R^n
@end ifinfo
can also be considered as the definition of
@tex
$N = R^n/M$.
@end tex
@ifinfo
N=R^n/M.
@end ifinfo
Note that most functions, when applied to a module
@tex
$M$,
@end tex
@ifinfo
M,
@end ifinfo
really deal with
@tex
$M$.
@end tex
@ifinfo
M.
@end ifinfo
However, there are some functions which deal with
@tex
$N = R^n/M$ instead of $M$.
@end tex
@ifinfo
N=R^n/M instead of M.
@end ifinfo
For example, @code{std(M)} computes a standard basis of
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
(and thus gives another representation of
@tex
$N$ as $N = R^n/$std($M$)).
@end tex
@ifinfo
N as N=R^n/std(M)).
@end ifinfo
However, @code{dim(M)}, resp.@: @code{vdim(M)}, returns
@tex
dim$(R^n/M)$, resp.@: dim$_k(R^n/M)$
@end tex
@ifinfo
dim(R^n/M), resp.@: dim_k(R^n/M)
@end ifinfo
(if M is given by a standard basis).
The function @code{syz(M)} returns the first syzygy module of
@tex
$M$,
@end tex
@ifinfo
M,
@end ifinfo
i.e@:., the module
of relations of the given generators of
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
which is equal to the second syzygy module of
@tex
$N$.
@end tex
@ifinfo
N.
@end ifinfo
Refer to the description of each function in
@ref{Functions} to get information which module the function deals with.
The numbering in @code{res} and other commands for computing resolutions
refers to a resolution of
@tex
$N = R^n/M$
@end tex
@ifinfo
N=R^n/M
@end ifinfo
(see @ref{res}; @ref{Syzygies and resolutions}).
It is possible to compute in any field which is a valid ground field in
@sc{Singular}. For doing so, one has to define a ring with the desired
ground field and at least one variable. The elements of the field are of
type number, but may also be considered as polynomials (of degree
0). Large computations should be faster if the elements of the field are
defined as numbers.
The above remarks do also apply to quotient rings. Polynomial data are
stored internally in the same manner, the only difference is that this
polynomial representation is in general not unique. @code{reduce(f,std(0))}
computes a normal form of a polynomial f in a quotient ring (cf.@:
@ref{reduce}).
@c -----------------------------------------------------------------
@node Monomial orderings,,Representation of mathematical objects,Polynomial data
@section Monomial orderings
@cindex Monomial orderings
@menu
* Introduction to orderings::
* General definitions for orderings::
* Global orderings::
* Local orderings::
* Module orderings::
* Matrix orderings::
* Product orderings::
* Extra weight vector::
@end menu
@c --------------------------------------------------------------------------
@node Introduction to orderings, General definitions for orderings, , Monomial orderings
@subsection Introduction to orderings
@cindex orderings introduction
@cindex term orderings introduction
@cindex monomial orderings introduction
@sc{Singular} offers a great variety of monomial orderings which provide
an enormous functionality, if used diligently. However, this
flexibility might also be confusing for the novice user. Therefore, we
recommend to those not familiar with monomial orderings to generally use
the ordering @code{dp} for computations in the polynomial ring
@tex
$K[x_1,\ldots,x_n]$,
@end tex
@ifinfo
K[x1,...,xn],
@end ifinfo
resp.@: @code{ds} for computations in the localization
@tex
$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$.
@end tex
@ifinfo
Loc_(x)K[x1,...,xn].
@end ifinfo
For inhomogeneous input ideals, standard (resp.@: groebner) bases
computations are generally faster
with the orderings
@tex
$\hbox{Wp}(w_1, \ldots, w_n)$
@end tex
@ifinfo
Wp(w_1, ..., w_n)
@end ifinfo
(resp.@:
@tex
$\hbox{Ws}(w_1, \ldots, w_n)$)
@end tex
@ifinfo
Ws(w_1, ..., w_n))
@end ifinfo
if the input is quasihomogeneous w.r.t. the weights
@tex
$w_1$, $\ldots$, $w_n$ of $x_1$, $\ldots$, $x_n$.
@end tex
@ifinfo
w_1, ..., w_n of x_1, ..., x_n.
@end ifinfo
If the output needs to be "triangular" (resp.@: "block-triangular"), the
lexicographical ordering @code{lp} (resp.@: lexicographical
block-orderings) need to be used. However, these orderings usually
result in much less efficient computations.
@c --------------------------------------------------------------------------
@node General definitions for orderings, Global orderings, Introduction to orderings, Monomial orderings
@subsection General definitions for orderings
@cindex orderings
@cindex term orderings
@cindex monomial orderings
@tex
A monomial ordering (term ordering) on $K[x_1, \ldots, x_n]$ is
a total ordering $<$ on the
set of monomials (power products) $\{x^\alpha \mid \alpha \in \bf{N}^n\}$
which is compatible with the
natural semigroup structure, i.e., $x^\alpha < x^\beta$ implies $x^\gamma
x^\alpha < x^\gamma x^\beta$ for any $\gamma \in \bf{N}^n$.
We do not require
$<$ to be a well ordering.
@end tex
@ifinfo
A monomial ordering (term ordering) on K[x_1, ..., x_n] is
a total ordering < on the
set of monomials (power products) @{x^a | a in N^n@}
which is compatible with the
natural semigroup structure, i.e., x^a < x^b implies x^c*x^a < x^c*x^b for any
c in N^n.
We do not require
< to be a well ordering.
@end ifinfo
@ifset singularmanual
See the literature cited in @ref{References}.
@end ifset
It is known that any monomial ordering can be represented by a matrix
@tex
$M$ in $GL(n,R)$,
@end tex
@ifinfo
M in GL(n,R),
@end ifinfo
but, of course, only integer coefficients are of relevance in
practice.
@tex
Global orderings are well orderings (i.e., \hbox{$1 < x_i$} for each variable
$x_i$), local orderings satisfy $1 > x_i$ for each variable. If some variables are ordered globally and others locally we
call it a mixed ordering. Local or mixed orderings are not well orderings.
Let $K$ be the ground field, \hbox{$x = (x_1, \ldots, x_n)$} the
variables and $<$ a monomial ordering, then Loc $K[x]$ denotes the
localization of $K[x]$ with respect to the multiplicatively closed set $$\{1 +
g \mid g = 0 \hbox{ or } g \in K[x]\backslash \{0\} \hbox{ and }L(g) <
1\}.$$ Here, $L(g)$
denotes the leading monomial of $g$, i.e., the biggest monomial of $g$ with
respect to $<$. The result of any computation which uses standard basis
computations has to be interpreted in Loc $K[x]$.
@end tex
@ifinfo
Global orderings are well orderings (i.e., 1 < x_i for each variable
x_i), local orderings satisfy 1 > x_i for each variable.
If some variables are ordered globally and others locally we
call it a mixed ordering. Local or mixed orderings are not well orderings.
If K is the ground field, x = (x_1, @dots{}, x_n) the
variables and < a monomial ordering, then Loc K[x] denotes the
localization of K[x] with respect to the multiplicatively closed set @{1 +
g | g = 0 or g in K[x]\@{0@} and L(g) < 1@}. L(g)
denotes the leading monomial of g, i.e., the biggest monomial of g with
respect to <. The result of any computation which uses standard basis
computations has to be interpreted in Loc K[x].
@end ifinfo
Note that the definition of a ring includes the definition of its
monomial ordering (see
@ref{Rings and orderings}). @sc{Singular} offers the monomial orderings
described in the following sections.
@c --------------------------------------------------------------------------
@node Global orderings, Local orderings, General definitions for orderings, Monomial orderings
@subsection Global orderings
@cindex Global orderings
@cindex orderings, global
@tex
For all these orderings: Loc $K[x]$ = $K[x]$
@end tex
@ifinfo
For all these orderings: Loc K[x] = K[x]
@end ifinfo
@table @asis
@item lp:
lexicographical ordering:
@cindex lp, global ordering
@cindex lexicographical ordering
@*
@ifinfo
x^a < x^b <==> there is an i, 1 <= i <= n :
@* a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i < b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta \Leftrightarrow \exists\; 1 \le i \le n :
\alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i <
\beta_i$.
@end tex
@item rp:
reverse lexicographical ordering:
@cindex rp, global ordering
@cindex reverse lexicographical ordering
@*
@ifinfo
x^a < x^b <==> there is an i, 1 <= i <= n :
@* a_n = b_n, @dots{}, a_(i+1) = b_(i+1), a_i > b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta \Leftrightarrow \exists\; 1 \le i \le n :
\alpha_n = \beta_n,
\ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
@end tex
@item dp:
degree reverse lexicographical ordering:
@cindex degree reverse lexicographical ordering
@cindex dp, global ordering
@*
@ifinfo
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
@*x^a < x^b <==>
@* deg(x^a) < deg(x^b),
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@* a_n = b_n, @dots{}, a_(i+1) = b_(i+1), a_i > b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < \deg(x^\beta)$ or
@end tex
@iftex
@*
@end iftex
@tex
\phantom{$x^\alpha < x^\beta \Leftrightarrow $}$ \deg(x^\alpha) =
\deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = \beta_n,
\ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
@end tex
@item Dp:
degree lexicographical ordering:
@cindex degree lexicographical ordering
@cindex Dp, global ordering
@*
@ifinfo
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
@*x^a < x^b <==>
@* deg(x^a) < deg(x^b)
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@* a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i < b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < \deg(x^\beta)$ or
@end tex
@iftex
@*
@end iftex
@tex
\phantom{ $x^\alpha < x^\beta \Leftrightarrow $} $\deg(x^\alpha) =
\deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
\ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
@end tex
@item wp:
weighted reverse lexicographical ordering:
@cindex weighted reverse lexicographical ordering
@cindex wp, global ordering
@*
@ifinfo
wp(w_1, @dots{}, w_n), w_i positive integers,
@end ifinfo
@tex
let $w_1, \ldots, w_n$ be positive integers. Then ${\tt wp}(w_1, \ldots,
w_n)$
@end tex
is defined as @code{dp}
but with
@ifinfo
deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@item Wp:
weighted lexicographical ordering:
@cindex weighted lexicographical ordering
@cindex WP, global ordering
@*
@ifinfo
Wp(w_1, @dots{}, w_n), w_i positive integers,
@end ifinfo
@tex
let $w_1, \ldots, w_n$ be positive integers. Then ${\tt Wp}(w_1, \ldots,
w_n)$
@end tex
is defined as @code{Dp}
but with
@ifinfo
deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@end table
@c --------------------------------------------------------------------------
@node Local orderings, Module orderings, Global orderings, Monomial orderings
@subsection Local orderings
@cindex Local orderings
@cindex orderings, local
For ls, ds, Ds and, if the weights are positive integers, also for ws and
Ws, we have
@ifinfo
Loc K[x] = K[x]_(x),
@end ifinfo
@tex
Loc $K[x]$ = $K[x]_{(x)}$,
@end tex
the localization of
@tex
$K[x]$
@end tex
@ifinfo
K[x]
@end ifinfo
at the maximal ideal
@ifinfo
(x_1, @dots{}, x_n).
@end ifinfo
@tex
\ $(x_1, ..., x_n)$.
@end tex
@table @asis
@item ls:
negative lexicographical ordering:
@cindex negative lexicographical ordering
@cindex ls, local ordering
@*
@ifinfo
x^a < x^b <==> there is an i, 1 <= i <= n :
@* a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i > b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta \Leftrightarrow \exists\; 1 \le i \le n :
\alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i >
\beta_i$.
@end tex
@item ds:
negative degree reverse lexicographical ordering:
@cindex negative degree reverse lexicographical ordering
@cindex ds, local ordering
@*
@ifinfo
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
@*x^a < x^b <==>
@* deg(x^a) > deg(x^b)
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@* a_n = b_n, @dots{}, a_(i+1) = b_(i+1), a_i > b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > \deg(x^\beta)$ or
@end tex
@iftex
@*
@end iftex
@tex
\phantom{ $x^\alpha < x^\beta \Leftrightarrow$}$ \deg(x^\alpha) =
\deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = \beta_n,
\ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
@end tex
@item Ds:
negative degree lexicographical ordering:
@cindex negative degree lexicographical ordering
@cindex Ds, local ordering
@*
@ifinfo
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
x^a < x^b <==>
@* deg(x^a) > deg(x^b)
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@* a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i < b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > \deg(x^\beta)$ or
@end tex
@iftex
@*
@end iftex
@tex
\phantom{ $ x^\alpha < x^\beta \Leftrightarrow$}$ \deg(x^\alpha) =
\deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
\ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
@end tex
@item ws:
(general) weighted reverse lexicographical ordering:
@cindex general weighted reverse lexicographical ordering
@cindex local weighted reverse lexicographical ordering
@cindex ws, local ordering
@*
@ifinfo
ws(w_1, @dots{}, w_n), w_1
@end ifinfo
@tex
${\tt ws}(w_1, \ldots, w_n),\; w_1$
@end tex
a nonzero integer,
@ifinfo
w_2,@dots{},w_n
@end ifinfo
@tex
$w_2,\ldots,w_n$
@end tex
any integer (including 0),
is defined as @code{ds}
but with
@ifinfo
deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@item Ws:
(general) weighted lexicographical ordering:
@cindex general weighted lexicographical ordering
@cindex local weighted lexicographical ordering
@cindex Ws, local ordering
@*
@ifinfo
Ws(w_1, @dots{}, w_n), w_1
@end ifinfo
@tex
${\tt Ws}(w_1, \ldots, w_n),\; w_1$
@end tex
a nonzero integer,
@ifinfo
w_2,@dots{},w_n
@end ifinfo
@tex
$w_2,\ldots,w_n$
@end tex
any integer (including 0),
is defined as @code{Ds}
but with
@ifinfo
deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@end table
@c --------------------------------------------------------------------------
@node Module orderings, Matrix orderings, Local orderings, Monomial orderings
@subsection Module orderings
@cindex Module orderings
@sc{Singular} offers also orderings on the set of ``monomials''
@ifinfo
@{ x^a*gen(i) | a in N^n, 1 <= i <= r @} in Loc K[x]^r = Loc K[x]gen(1)
+ @dots{} + Loc K[x]gen(r), where gen(1), @dots{}, gen(r) denote the canonical
generators of Loc K[x]^r, the r-fold direct sum of Loc K[x].
@end ifinfo
@tex
$\{ x^a e_i \mid a \in N^n, 1 \leq i \leq r \}$ in Loc $K[x]^r$ = Loc
$K[x]e_1
+ \ldots +$Loc $K[x]e_r$, where $e_1, \ldots, e_r$ denote the canonical
generators of Loc $K[x]^r$, the r-fold direct sum of Loc $K[x]$.
(The function {\tt gen(i)} yields $e_i$).
@end tex
We have two possibilities: either to give priority to the component of a
vector in
@ifinfo
Loc K[x]^r
@end ifinfo
@tex
Loc $K[x]^r$
@end tex
or (which is the default in @sc{Singular}) to give priority
to the coefficients.
The orderings @code{(<,c)} and @code{(<,C)} give priority to the
coefficients; whereas
@code{(c,<)} and @code{(C,<)} give priority to the components.
@*Let < be any of the monomial orderings of
@tex
Loc $K[x]$
@end tex
@ifinfo
Loc K[x]
@end ifinfo
as above.
@table @asis
@item (<,C):
@cindex C, module ordering
@cindex module ordering C
@ifinfo
<_m = (<,C) denotes the module ordering (giving priority to the coefficients):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* x^a < x^b
@* or
@* x^a = x^b and i < j.
@end ifinfo
@tex
$<_m = (<,C)$ denotes the module ordering (giving priority to the coefficients):
@end tex
@*
@tex
\quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow x^\alpha <
x^\beta$ or ($x^\alpha = x^\beta $ and $ i < j$).
@end tex
@strong{Example:}
@smallexample
@c computed example Module_orderings pdata.doc:849
ring r = 0, (x,y,z), ds;
// the same as ring r = 0, (x,y,z), (ds, C);
[x+y2,z3+xy];
@expansion{} x*gen(1)+xy*gen(2)+y2*gen(1)+z3*gen(2)
[x,x,x];
@expansion{} x*gen(3)+x*gen(2)+x*gen(1)
@c end example Module_orderings pdata.doc:849
@end smallexample
@item (C,<):
@ifinfo
<_m = (C, <) denotes the module ordering (giving priority to the
component):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* i<j
@* or
@* i = j and x^a < x^b.
@end ifinfo
@tex
$<_m = (C, <)$ denotes the module ordering (giving priority to the component):
@end tex
@iftex
@*
@end iftex
@tex
\quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i < j$ or ($
i = j $ and $ x^\alpha < x^\beta $).
@end tex
@strong{Example:}
@smallexample
@c computed example Module_orderings_1 pdata.doc:879
ring r = 0, (x,y,z), (C,lp);
[x+y2,z3+xy];
@expansion{} xy*gen(2)+z3*gen(2)+x*gen(1)+y2*gen(1)
[x,x,x];
@expansion{} x*gen(3)+x*gen(2)+x*gen(1)
@c end example Module_orderings_1 pdata.doc:879
@end smallexample
@item (<,c):
@cindex c, module ordering
@cindex module ordering c
@ifinfo
<_m = (<,c) denotes the module ordering (giving priority to the coefficients):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* x^a < x^b
@* or
@* x^a = x^b and i > j.
@end ifinfo
@tex
$<_m = (<,c)$ denotes the module ordering (giving priority to the coefficients):
@end tex
@iftex
@*
@end iftex
@tex
\quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow x^\alpha <
x^\beta$ or ($x^\alpha = x^\beta $ and $ i > j$).
@end tex
@strong{Example:}
@smallexample
@c computed example Module_orderings_2 pdata.doc:909
ring r = 0, (x,y,z), (lp,c);
[x+y2,z3+xy];
@expansion{} xy*gen(2)+x*gen(1)+y2*gen(1)+z3*gen(2)
[x,x,x];
@expansion{} x*gen(1)+x*gen(2)+x*gen(3)
@c end example Module_orderings_2 pdata.doc:909
@end smallexample
@item (c,<):
@ifinfo
<_m = (c, <) denotes the module ordering (giving priority to the
component):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* i>j
@* or
@* i = j and x^a < x^b.
@end ifinfo
@tex
$<_m = (c, <)$ denotes the module ordering (giving priority to the component):
@end tex
@iftex
@*
@end iftex
@tex
\quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i > j$ or ($
i = j $ and $ x^\alpha < x^\beta $).
@end tex
@strong{Example:}
@smallexample
@c computed example Module_orderings_3 pdata.doc:938
ring r = 0, (x,y,z), (c,lp);
[x+y2,z3+xy];
@expansion{} [x+y2,xy+z3]
[x,x,x];
@expansion{} [x,x,x]
@c end example Module_orderings_3 pdata.doc:938
@end smallexample
@end table
@ifinfo
The output of a vector v in K[x]^r with components v_1,
@dots{}, v_r has the format v_1 * gen(1) + @dots{} + v_r * gen(r)
@end ifinfo
@tex
The output of a vector $v$ in $K[x]^r$ with components $v_1,
\ldots, v_r$ has the format $v_1 * gen(1) + \ldots + v_r * gen(r)$
@end tex
(up to permutation) unless the ordering starts with @code{c}.
@ifinfo
In this case a vector is written as [v_1, @dots{}, v_r].
@end ifinfo
@tex
In this case a vector is written as $[v_1, \ldots, v_r]$.
@end tex
In all cases @sc{Singular} can read input in both formats.
@c --------------------------------------------------------------------------
@node Matrix orderings, Product orderings, Module orderings, Monomial orderings
@subsection Matrix orderings
@cindex Matrix orderings
@cindex orderings, M
@cindex M, ordering
Let
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
be an invertible
@tex
$(n \times n)$-matrix
@end tex
@ifinfo
(n x n)-matrix
@end ifinfo
with integer coefficients and
@ifinfo
M_1, @dots{}, M_n the rows of M.
@end ifinfo
@tex
$M_1, \ldots, M_n$ the rows of $M$.
@end tex
The M-ordering < is defined as follows:
@*
@ifinfo
x^a < x^b <==> there exists an i: 1 <= i <= n :
M_1*a = M_1*b, @dots{}, M_(i-1)*a = M_(i-1)*b, M_i*a < M_i*b.
@end ifinfo
@tex
\quad \quad $x^a < x^b \Leftrightarrow \exists\ 1 \leq i \leq n :
M_1 a = \; M_1 b, \ldots, M_{i-1} a = \; M_{i-1} b$ and $M_i a < \; M_i b$.
@end tex
Thus,
@ifinfo
x^a < x^b
if and only if M*a is smaller than M*b
@end ifinfo
@tex
$x^a < x^b$
if and only if $M a$ is smaller than $M b$
@end tex
with respect to the lexicographical ordering.
The following matrices represent (for 3 variables) the global and
local orderings defined above (note that the matrix is not uniquely determined
by the ordering):
@ifinfo
@table @asis
@item lp:
1 0 0
@* 0 1 0
@* 0 0 1
@item dp:
1 1 1
@* 0 0 -1
@* 0 -1 0
@item Dp:
1 1 1
@* 1 0 0
@* 0 1 0
@item wp(1,2,3):
1 2 3
@* 0 0 -1
@* 0 -1 0
@item Wp(1,2,3):
1 2 3
@* 1 0 0
@* 0 1 0
@item ls:
-1 0 0
@* 0 -1 0
@* 0 0 -1
@item ds:
-1 -1 -1
@* 0 0 -1
@* 0 -1 0
@item Ds:
-1 -1 -1
@* 1 0 0
@* 0 1 0
@item ws(1,2,3):
-1 -2 -3
@* 0 0 -1
@* 0 -1 0
@item Ws(1,2,3):
-1 -2 -3
@* 1 0 0
@* 0 1 0
@end table
@end ifinfo
@tex
$\quad$ lp:
$\left(\matrix{
1 & 0 & 0 \cr
0 & 1 & 0 \cr
0 & 0 & 1 \cr
}\right)$
\quad dp:
$\left(\matrix{
1 & 1 & 1 \cr
0 & 0 &-1 \cr
0 &-1 & 0 \cr
}\right)$
\quad Dp:
$\left(\matrix{
1 & 1 & 1 \cr
1 & 0 & 0 \cr
0 & 1 & 0 \cr
}\right)$
$\quad$ wp(1,2,3):
$\left(\matrix{
1 & 2 & 3 \cr
0 & 0 &-1 \cr
0 &-1 & 0 \cr
}\right)$
\quad Wp(1,2,3):
$\left(\matrix{
1 & 2 & 3 \cr
1 & 0 & 0 \cr
0 & 1 & 0 \cr
}\right)$
$\quad$ ls:
$\left(\matrix{
-1 & 0 & 0 \cr
0 &-1 & 0 \cr
0 & 0 &-1 \cr
}\right)$
\quad ds:
$\left(\matrix{
-1 &-1 &-1 \cr
0 & 0 &-1 \cr
0 &-1 & 0 \cr
}\right)$
\quad Ds:
$\left(\matrix{
-1 &-1 &-1 \cr
1 & 0 & 0 \cr
0 & 1 & 0 \cr
}\right)$
$\quad$ ws(1,2,3):
$\left(\matrix{
-1 &-2 &-3 \cr
0 & 0 &-1 \cr
0 &-1 & 0 \cr
}\right)$
\quad Ws(1,2,3):
$\left(\matrix{
-1 &-2 &-3 \cr
1 & 0 & 0 \cr
0 & 1 & 0 \cr
}\right)$
@end tex
Product orderings (see next section) represented by a matrix:
@ifinfo
@table @asis
@item (dp(3), wp(1,2,3)):
1 1 1 0 0 0
@*0 0 -1 0 0 0
@*0 -1 0 0 0 0
@*0 0 0 1 2 3
@*0 0 0 0 0 -1
@*0 0 0 0 -1 0
@item (Dp(3), ds(3)):
1 1 1 0 0 0
@*1 0 0 0 0 0
@*0 1 0 0 0 0
@*0 0 0 -1 -1 -1
@*0 0 0 0 0 -1
@*0 0 0 0 -1 0
@end table
@end ifinfo
@tex
$\quad$ (dp(3), wp(1,2,3)):
$\left(\matrix{
1& 1& 1& 0& 0& 0 \cr
0& 0& -1& 0& 0& 0 \cr
0& -1& 0& 0& 0& 0 \cr
0& 0& 0& 1& 2& 3 \cr
0& 0& 0& 0& 0& -1 \cr
0& 0& 0& 0& -1& 0 \cr
}\right)$
$\quad$ (Dp(3), ds(3)):
$\left(\matrix{
1& 1& 1& 0& 0& 0 \cr
1& 0& 0& 0& 0& 0 \cr
0& 1& 0& 0& 0& 0 \cr
0& 0& 0& -1& -1& -1 \cr
0& 0& 0& 0& 0& -1 \cr
0& 0& 0& 0& -1& 0 \cr
}\right)$
@end tex
Orderings with extra weight vector (see below) represented by a matrix:
@ifinfo
@table @asis
@item (dp(3), a(1,2,3),dp(3)):
1 1 1 0 0 0
@*0 0 -1 0 0 0
@*0 -1 0 0 0 0
@*0 0 0 1 2 3
@*0 0 0 1 1 1
@*0 0 0 0 0 -1
@*0 0 0 0 -1 0
@item (a(1,2,3,4,5),Dp(3), ds(3)):
1 2 3 4 5 0
@*1 1 1 0 0 0
@*1 0 0 0 0 0
@*0 1 0 0 0 0
@*0 0 0 -1 -1 -1
@*0 0 0 0 0 -1
@*0 0 0 0 -1 0
@end table
@end ifinfo
@tex
$\quad$ (dp(3), a(1,2,3),dp(3)):
$\left(\matrix{
1& 1& 1& 0& 0& 0 \cr
0& 0& -1& 0& 0& 0 \cr
0& -1& 0& 0& 0& 0 \cr
0& 0& 0& 1& 2& 3 \cr
0& 0& 0& 1& 1& 1 \cr
0& 0& 0& 0& 0& -1 \cr
0& 0& 0& 0& -1& 0 \cr
}\right)$
$\quad$ (a(1,2,3,4,5),Dp(3), ds(3)):
$\left(\matrix{
1& 2& 3& 4& 5& 0 \cr
1& 1& 1& 0& 0& 0 \cr
1& 0& 0& 0& 0& 0 \cr
0& 1& 0& 0& 0& 0 \cr
0& 0& 0& -1& -1& -1 \cr
0& 0& 0& 0& 0 & -1 \cr
0& 0& 0& 0& -1& 0 \cr
}\right)$
@end tex
@*@strong{Example}:
@smallexample
@c computed example Matrix_orderings pdata.doc:1219
ring r = 0, (x,y,z), M(1, 0, 0, 0, 1, 0, 0, 0, 1);
@c end example Matrix_orderings pdata.doc:1219
@end smallexample
@*which may also be written as:
@smallexample
@c computed example Matrix_orderings_1 pdata.doc:1225
intmat m[3][3]=1, 0, 0, 0, 1, 0, 0, 0, 1;
m;
@expansion{} 1,0,0,
@expansion{} 0,1,0,
@expansion{} 0,0,1
ring r = 0, (x,y,z), M(m);
r;
@expansion{} // characteristic : 0
@expansion{} // number of vars : 3
@expansion{} // block 1 : ordering M
@expansion{} // : names x y z
@expansion{} // : weights 1 0 0
@expansion{} // : weights 0 1 0
@expansion{} // : weights 0 0 1
@expansion{} // block 2 : ordering C
@c end example Matrix_orderings_1 pdata.doc:1225
@end smallexample
If the ring has
@tex
$n$
@end tex
@ifinfo
n
@end ifinfo
variables and the matrix contains less than
@tex
$n \times n$
@end tex
@ifinfo
n x n
@end ifinfo
entries an error message is given, if there are more entries,
the last ones are ignored.
@strong{WARNING:} @sc{Singular}
does not check whether the matrix has full rank. In such a case some
computations might not terminate, others might give a nonsense result.
Having these matrix orderings @sc{Singular} can compute standard bases for
any monomial ordering which is compatible with the natural semigroup structure.
In practice the global and local orderings together with block orderings should be
sufficient in most cases. These orderings are faster than the corresponding
matrix orderings, since evaluating a matrix product is time consuming.
@c --------------------------------------------------------------------------
@node Product orderings, Extra weight vector, Matrix orderings, Monomial orderings
@subsection Product orderings
@cindex Product orderings
@cindex orderings, product
Let
@ifinfo
x = (x_1, @dots{}, x_n) = x(1..n) and y = (y_1, @dots{}, y_m) =
y(1..m)
@end ifinfo
@tex
$x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$
@end tex
be two ordered sets of variables,
@ifinfo
<_1 a monomial
ordering on K[x] and <_2 a monomial ordering on K[y]. The product
ordering (or block ordering) < = (<_1,<_2) on K[x,y] is the following:
@*x^a y^b < x^A y^B <==>
@*x^a <_1 x^A
@*or
@*x^a = x^A and y^b <_2 y^B.
@end ifinfo
@iftex
@tex
$<_1$ a monomial
ordering on $K[x]$ and $<_2$ a monomial ordering on $K[y]$. The product
ordering (or block ordering) $<\ := (<_1,<_2)$ on $K[x,y]$ is the following:
@end tex
@*
@tex
\quad \quad $x^a y^b < x^A y^B \Leftrightarrow x^a <_1 x^A $ or ($x^a =
x^A$ and $y^b <_2 y^B$).
@end tex
@end iftex
Inductively one defines the product ordering of more than two monomial
orderings.
In @sc{Singular}, any of the above global orderings, local orderings or matrix
orderings may be combined (in an arbitrary manner and length) to a product
ordering. E.g., @code{(lp(3), M(1, 2, 3, 1, 1, 1, 1, 0, 0), ds(4),
ws(1,2,3))}
defines: @code{lp} on the first 3 variables, the matrix ordering
@code{M(1, 2, 3, 1, 1, 1, 1, 0, 0)} on the next 3 variables,
@code{ds} on the next 4 variables and
@code{ws(1,2,3)} on the last 3 variables.
@c --------------------------------------------------------------
@node Extra weight vector, , Product orderings, Monomial orderings
@subsection Extra weight vector
@cindex Extra weight vector
@cindex a, ordering
@cindex orderings, a
@ifinfo
a(w_1, @dots{}, w_n),
@end ifinfo
@tex
${\tt a}(w_1, \ldots, w_n),\; $
@end tex
@ifinfo
w_1,@dots{},w_n
@end ifinfo
@tex
$w_1,\ldots,w_n$
@end tex
any integers (including 0), defines
@ifinfo
deg(x^a) = w_1 a_1 + @dots{} + w_n a_n
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n$
@end tex
and
@*
@ifinfo
deg(x^a) < deg(x^b) ==> x^a < x^b
@end ifinfo
@tex
$$\deg(x^\alpha) < \deg(x^\beta) \Rightarrow x^\alpha < x^\beta,$$
@end tex
@ifinfo
@*
deg(x^a) > deg(x^b) ==> x^a > x^b.
@end ifinfo
@tex
$$\deg(x^\alpha) > \deg(x^\beta) \Rightarrow x^\alpha > x^\beta. $$
@end tex
@*An extra weight vector does not define a monomial ordering by itself:
it can only be used in combination with other orderings
to insert an extra line of weights into the ordering
matrix.
@*@strong{Example}:
@smallexample
ring r = 0, (x,y,z), (a(1,2,3),wp(4,5,2));
ring s = 0, (x,y,z), (a(1,2,3),dp);
ring q = 0, (a,b,c,d),(lp(1),a(1,2,3),ds);
@end smallexample
|