File: pdata.tex

package info (click to toggle)
texi2html 1.82%2Bdfsg1-5
  • links: PTS
  • area: main
  • in suites: buster, stretch
  • size: 34,700 kB
  • ctags: 16,893
  • sloc: perl: 15,902; xml: 6,075; sh: 3,977; makefile: 501
file content (1381 lines) | stat: -rw-r--r-- 33,625 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
@comment -*-texinfo-*-
@comment This file was generated by doc2tex.pl from pdata.doc
@comment DO NOT EDIT DIRECTLY, BUT EDIT pdata.doc INSTEAD
@comment Id: pdata.tex,v 1.1 2003/08/08 14:27:06 pertusus Exp $
@comment this file contains the "Polynomial data" appendix.

@c The following directives are necessary for proper compilation
@c with emacs (C-c C-e C-r).  Please keep it as it is.  Since it
@c is wrapped in `@ignore' and `@end ignore' it does not harm `tex' or
@c `makeinfo' but is a great help in editing this file (emacs
@c ignores the `@ignore').
@ignore
%**start
\input texinfo.tex
@setfilename pdata.hlp
@node Top, Polynomial data
@menu
* Polynomial data::
@end menu
@node Polynomial data, Examples, Mathematical background, Top
@chapter Polynomial data
%**end
@end ignore

@menu
* Representation of mathematical objects::
* Monomial orderings::
@end menu

@c -----------------------------------------------------------------
@node Representation of mathematical objects,Monomial orderings,,Polynomial data
@section Representation of mathematical objects
@cindex mathematical objects
@cindex representation, math objects

@sc{Singular} distinguishes between objects which do not belong to a ring
and those which belong to a specific ring (see @ref{Rings and orderings}).
We comment only on the latter ones.

Internally all ring-dependent objects are polynomials or structures built from
polynomials (and some additional information).
Note that @sc{Singular} stores (and hence prints) a polynomial automatically
w.r.t@:. the monomial ordering.

Hence, in order to define such an object in @sc{Singular},
one has to give a list of polynomials in a specific format.

For ideals, resp.@: matrices, this is straight forward:
The user gives a list of polynomials
which generate the ideal, resp.@: which are the entries of the matrix.
(The number of rows and columns has to be given when creating the matrix.)

A vector  in @sc{Singular} is always an element of a free module over the
basering. It is given as a list of polynomials in one of the following
formats
@tex
$[f_1,...,f_n]$ or $f_1*gen(1)+...+f_n*gen(n)$, where $gen(i)$
@end tex
@ifinfo
[f_1,...,f_n] or f_1*gen(1)+...+f_n*gen(n), where gen(i)
@end ifinfo
denotes the i-th canonical generator of a free module (with 1 at place i and
0 everywhere else).
Both forms are equivalent. A vector is internally represented in
the second form with the
@tex
$gen(i)$
@end tex
@ifinfo
gen(i)
@end ifinfo
being "special" ring variables, ordered accordingly to the monomial ordering.
Therefore, the form
@tex
$[f_1,...,f_n]$
@end tex
@ifinfo
[f_1,...,f_n]
@end ifinfo
is given as output only if the monomial ordering gives priority to the
component, i.e@:., is of the form @code{(c,...)} (see @ref{Module
orderings}).  However, in any case the procedure @code{show} from the
library @code{inout.lib} displays the bracket format.

A vector
@tex
$v=[f_1,...,f_n]$
@end tex
@ifinfo
v=[f_1,...,f_n]
@end ifinfo
should always be considered as a column vector in a free module
of rank equal to
@tex
nrows($v$)
@end tex
@ifinfo
nrows(v)
@end ifinfo
where 
@tex
nrows($v$)
@end tex
@ifinfo
nrows(v) 
@end ifinfo
is equal to the maximal index 
@tex
$r$
@end tex
@ifinfo
r
@end ifinfo
such that
@tex
$f_r \not= 0$.
@end tex
@ifinfo
f_r<>0.
@end ifinfo
This is due to the fact, that internally 
@tex
$v$
@end tex
@ifinfo
v
@end ifinfo
is a polynomial in a sparse representation, i.e.,
@tex
$f_i*gen(i)$
@end tex
@ifinfo
f_i*gen(i)
@end ifinfo
is not stored if
@tex
$f_i=0$
@end tex
@ifinfo
f_i=0
@end ifinfo
(for reasons of efficiency), hence the last 0-entries of 
@tex
$v$
@end tex
@ifinfo
v
@end ifinfo
are lost.
Only more complex structures are able to keep the rank.

A module 
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
in @sc{Singular} is given by a list of vectors
@tex
$v_1,...,v_k$
@end tex
@ifinfo
v_1,....v_k
@end ifinfo
which generate the module as a submodule of the free module of rank
equal to 
@tex
nrows($M$)
@end tex
@ifinfo
nrows(M)
@end ifinfo
which is the maximum of
@tex
nrows($v_i$).
@end tex
@ifinfo
nrows(v_i).
@end ifinfo

If one wants to create a module with a larger rank than given by its
generators, one has to use the command @code{attrib(M,"rank",r)} (see
@ref{attrib}, @ref{nrows}) or to define a matrix first, then converting it
into a module.  Modules in @sc{Singular} are almost the same as
matrices, they may be considered as sparse representations of matrices.
A module of a matrix is generated by the columns of the matrix and a
matrix of a module has as columns the generators of the module.  These
conversions preserve the rank and the number of generators, resp@:. the
number of rows and columns.

By the above remarks it might appear that @sc{Singular} is only able to handle
submodules of a free module. However, this is not true. @sc{Singular}
can compute with any finitely generated module over the basering 
@tex
$R$.
@end tex 
@ifinfo
R.
@end ifinfo
Such a module, say 
@tex
$N$,
@end tex
@ifinfo
N,
@end ifinfo
is not represented by its generators but by its
(generators and) relations. This means that
@tex
$N = R^n/M$ where $n$ 
@end tex
@ifinfo
N = R^n/M where n
@end ifinfo
is the number of generators of 
@tex
$N$ and $M \subseteq R^n$
@end tex
@ifinfo
N and M in R^n
@end ifinfo
is the module of relations.
In other words, defining  a module 
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
as a submodule of a free module
@tex
$R^n$
@end tex
@ifinfo
R^n
@end ifinfo
can also be considered as the definition of
@tex
$N = R^n/M$.
@end tex
@ifinfo
N=R^n/M.
@end ifinfo

Note that most functions, when applied to a module 
@tex
$M$,
@end tex
@ifinfo
M,
@end ifinfo
really deal with
@tex
$M$.
@end tex
@ifinfo
M.
@end ifinfo
However, there are some functions which deal with 
@tex
$N = R^n/M$ instead of $M$.
@end tex
@ifinfo
N=R^n/M instead of M.
@end ifinfo

For example, @code{std(M)} computes a standard basis of 
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
(and thus gives another representation of 
@tex
$N$ as $N = R^n/$std($M$)).
@end tex
@ifinfo
N as N=R^n/std(M)).
@end ifinfo
However, @code{dim(M)}, resp.@: @code{vdim(M)}, returns
@tex
dim$(R^n/M)$, resp.@: dim$_k(R^n/M)$
@end tex
@ifinfo
dim(R^n/M), resp.@: dim_k(R^n/M)
@end ifinfo
(if M is given by a standard basis).

The function @code{syz(M)}  returns the first syzygy module of 
@tex
$M$,
@end tex
@ifinfo
M,
@end ifinfo
i.e@:., the module 
of relations of the given generators of 
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
which is equal to the second syzygy module of 
@tex
$N$.
@end tex
@ifinfo
N.
@end ifinfo
Refer to the description of each function in
@ref{Functions} to get information which module the function deals with.

The numbering in @code{res} and other commands for computing resolutions
refers to a resolution of
@tex
$N = R^n/M$
@end tex
@ifinfo
N=R^n/M
@end ifinfo
(see @ref{res}; @ref{Syzygies and resolutions}).

It is possible to compute in any field which is a valid ground field in
@sc{Singular}.  For doing so, one has to define a ring with the desired
ground field and at least one variable. The elements of the field are of
type number, but may also be considered as polynomials (of degree
0). Large computations should be faster if the elements of the field are
defined as numbers.

The above remarks do also apply to quotient rings. Polynomial data are
stored internally in the same manner, the only difference is that this
polynomial representation is in general not unique. @code{reduce(f,std(0))}
computes a normal form of a polynomial f in a quotient ring (cf.@:
@ref{reduce}).

@c -----------------------------------------------------------------
@node Monomial orderings,,Representation of mathematical objects,Polynomial data
@section Monomial orderings
@cindex Monomial orderings

@menu
* Introduction to orderings::
* General definitions for orderings::
* Global orderings::
* Local orderings::
* Module orderings::
* Matrix orderings::
* Product orderings::
* Extra weight vector::
@end menu

@c --------------------------------------------------------------------------
@node Introduction to orderings, General definitions for orderings, , Monomial orderings
@subsection Introduction to orderings
@cindex orderings introduction
@cindex term orderings introduction
@cindex monomial orderings introduction

@sc{Singular} offers a great variety of monomial orderings which provide
an enormous functionality, if used diligently. However, this
flexibility might also be confusing for the novice user.  Therefore, we
recommend to those not familiar with monomial orderings to generally use
the ordering @code{dp} for computations in the polynomial ring
@tex
$K[x_1,\ldots,x_n]$, 
@end tex
@ifinfo
K[x1,...,xn], 
@end ifinfo
resp.@:  @code{ds} for computations in the localization 
@tex
$\hbox{Loc}_{(x)}K[x_1,\ldots,x_n]$.
@end tex
@ifinfo
Loc_(x)K[x1,...,xn].
@end ifinfo

For inhomogeneous input ideals,  standard (resp.@: groebner) bases
computations are generally faster 
with the orderings 
@tex
$\hbox{Wp}(w_1, \ldots, w_n)$
@end tex
@ifinfo
Wp(w_1, ..., w_n)
@end ifinfo
(resp.@: 
@tex
$\hbox{Ws}(w_1, \ldots, w_n)$)
@end tex
@ifinfo
Ws(w_1, ..., w_n))
@end ifinfo
if the input is quasihomogeneous w.r.t. the weights 
@tex
$w_1$, $\ldots$, $w_n$ of $x_1$, $\ldots$, $x_n$. 
@end tex
@ifinfo
w_1, ..., w_n of x_1, ..., x_n. 
@end ifinfo

If the output needs to be "triangular" (resp.@: "block-triangular"), the
lexicographical ordering @code{lp} (resp.@: lexicographical
block-orderings) need to be used. However, these orderings usually
result in much less efficient computations.


@c --------------------------------------------------------------------------
@node General definitions for orderings, Global orderings, Introduction to orderings, Monomial orderings
@subsection General definitions for orderings
@cindex orderings
@cindex term orderings
@cindex monomial orderings

@tex
A monomial ordering (term ordering) on $K[x_1, \ldots, x_n]$ is
a total ordering $<$ on the
set of monomials (power products) $\{x^\alpha \mid \alpha \in \bf{N}^n\}$
which is compatible with the
natural semigroup structure, i.e., $x^\alpha < x^\beta$ implies $x^\gamma
x^\alpha < x^\gamma x^\beta$ for any $\gamma \in \bf{N}^n$.
We do not require
$<$ to be  a well ordering.
@end tex
@ifinfo
A monomial ordering (term ordering) on K[x_1, ..., x_n] is
a total ordering < on the
set of monomials (power products) @{x^a | a in N^n@}
which is compatible with the
natural semigroup structure, i.e., x^a < x^b implies x^c*x^a < x^c*x^b for any
c in N^n.
We do not require
< to be  a well ordering.
@end ifinfo
@ifset singularmanual
 See the literature cited in @ref{References}.
@end ifset

It is known that any monomial ordering can be represented by a matrix 
@tex
$M$ in $GL(n,R)$,
@end tex
@ifinfo
M in GL(n,R),
@end ifinfo
but, of course, only integer coefficients are of relevance in
practice.

@tex
Global orderings are well orderings (i.e.,  \hbox{$1 < x_i$} for each variable
$x_i$), local orderings satisfy $1 > x_i$ for each variable.   If some variables are ordered globally and others locally we
call it a mixed ordering.   Local or mixed orderings are not well orderings.

Let $K$ be the ground field, \hbox{$x = (x_1, \ldots, x_n)$} the
variables and $<$ a monomial ordering, then Loc $K[x]$ denotes the
localization of $K[x]$ with respect to the multiplicatively closed set $$\{1 +
g \mid g = 0 \hbox{ or } g \in K[x]\backslash \{0\} \hbox{ and }L(g) <
1\}.$$   Here, $L(g)$ 
denotes the leading monomial of $g$, i.e., the biggest monomial of $g$ with
respect to $<$.   The result of any computation which uses standard basis
computations has to be interpreted in Loc $K[x]$.
@end tex
@ifinfo
Global orderings are well orderings (i.e., 1 < x_i for each variable
x_i), local orderings satisfy 1 > x_i for each variable.
If some variables are ordered globally and others locally we
call it a mixed ordering.   Local or mixed orderings are not well orderings.

If K is the ground field, x = (x_1, @dots{}, x_n) the
variables and < a monomial ordering, then Loc K[x] denotes the
localization of K[x] with respect to the multiplicatively closed set @{1 +
g | g = 0 or g in K[x]\@{0@} and L(g) < 1@}.   L(g)
denotes the leading monomial of g, i.e., the biggest monomial of g with
respect to <.   The result of any computation which uses standard basis
computations has to be interpreted in Loc K[x].
@end ifinfo

Note that the definition of a ring includes the definition of its
monomial ordering (see 
@ref{Rings and orderings}). @sc{Singular} offers the monomial orderings
described in the following sections. 


@c --------------------------------------------------------------------------
@node Global orderings, Local orderings, General definitions for orderings, Monomial orderings
@subsection Global orderings
@cindex Global orderings
@cindex orderings, global

@tex
For all these orderings: Loc $K[x]$ = $K[x]$
@end tex
@ifinfo
For all these orderings: Loc K[x] = K[x]
@end ifinfo

@table @asis
@item lp:
lexicographical ordering:
@cindex lp, global ordering
@cindex lexicographical ordering
@*
@ifinfo
x^a < x^b  <==> there is an i,  1 <= i <= n :
@* a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i < b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
\alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i <
\beta_i$.
@end tex
@item rp:
reverse lexicographical ordering:
@cindex rp, global ordering
@cindex reverse lexicographical ordering
@*
@ifinfo
x^a < x^b  <==> there is an i,  1 <= i <= n :
@*     a_n = b_n, @dots{}, a_(i+1) = b_(i+1), a_i > b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
\alpha_n = \beta_n,
    \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
@end tex
@item dp:
degree reverse lexicographical ordering:
@cindex degree reverse lexicographical ordering
@cindex dp, global ordering
@*
@ifinfo 
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
@*x^a < x^b <==>
@* deg(x^a) < deg(x^b),
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@*     a_n = b_n, @dots{}, a_(i+1) = b_(i+1), a_i > b_i.
@end ifinfo
@tex
    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < \deg(x^\beta)$ or
@end tex
@iftex
@*
@end iftex
@tex
    \phantom{$x^\alpha < x^\beta \Leftrightarrow $}$ \deg(x^\alpha) =
    \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = \beta_n,
    \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
@end tex
@item Dp:
degree lexicographical ordering:
@cindex degree lexicographical ordering
@cindex Dp, global ordering
@*
@ifinfo 
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
@*x^a < x^b <==>
@* deg(x^a) < deg(x^b)
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@*     a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i < b_i.
@end ifinfo
@tex
    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) < \deg(x^\beta)$ or
@end tex
@iftex
@*
@end iftex
@tex
    \phantom{ $x^\alpha < x^\beta \Leftrightarrow $} $\deg(x^\alpha) =
    \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
    \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
@end tex
@item wp:
weighted reverse lexicographical ordering:
@cindex weighted reverse lexicographical ordering
@cindex wp, global ordering
@*
@ifinfo
 wp(w_1, @dots{}, w_n), w_i  positive integers,
@end ifinfo
@tex
let $w_1, \ldots, w_n$ be positive integers. Then ${\tt wp}(w_1, \ldots,
w_n)$ 
@end tex
 is defined as @code{dp}
 but with
@ifinfo
  deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@item Wp:
weighted lexicographical ordering:
@cindex weighted lexicographical ordering
@cindex WP, global ordering
@*
@ifinfo
 Wp(w_1, @dots{}, w_n), w_i  positive integers,
@end ifinfo
@tex
let $w_1, \ldots, w_n$ be positive integers. Then ${\tt Wp}(w_1, \ldots,
w_n)$ 
@end tex
 is defined as @code{Dp}
 but with
@ifinfo
  deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@end table
@c --------------------------------------------------------------------------
@node Local orderings, Module orderings, Global orderings, Monomial orderings
@subsection Local orderings
@cindex Local orderings
@cindex orderings, local

For ls, ds, Ds and, if the weights are positive integers, also for ws and
Ws,  we have
@ifinfo
Loc K[x] = K[x]_(x),
@end ifinfo
@tex
Loc $K[x]$ = $K[x]_{(x)}$,
@end tex
 the localization of 
@tex
$K[x]$
@end tex
@ifinfo
K[x]
@end ifinfo
at the maximal ideal
@ifinfo
 (x_1, @dots{}, x_n).
@end ifinfo
@tex
\ $(x_1, ..., x_n)$.
@end tex

@table @asis
@item ls:
negative lexicographical ordering:
@cindex negative lexicographical ordering
@cindex ls, local ordering
@*
@ifinfo
x^a < x^b  <==> there is an i,  1 <= i <= n :
@* a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i > b_i.
@end ifinfo
@tex
$x^\alpha < x^\beta  \Leftrightarrow  \exists\; 1 \le i \le n :
\alpha_1 = \beta_1, \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i >
\beta_i$.
@end tex
@item ds:
negative degree reverse lexicographical ordering:
@cindex negative degree reverse lexicographical ordering
@cindex ds, local ordering
@*
@ifinfo 
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
@*x^a < x^b <==>
@* deg(x^a) > deg(x^b)
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@*     a_n = b_n, @dots{}, a_(i+1) = b_(i+1), a_i > b_i.
@end ifinfo
@tex
    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > \deg(x^\beta)$ or
@end tex
@iftex
@*
@end iftex
@tex
    \phantom{ $x^\alpha < x^\beta \Leftrightarrow$}$ \deg(x^\alpha) =
    \deg(x^\beta)$ and $\exists\ 1 \le i \le n: \alpha_n = \beta_n,
    \ldots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.$
@end tex
@item Ds:
negative degree lexicographical ordering:
@cindex negative degree lexicographical ordering
@cindex Ds, local ordering
@*
@ifinfo
let deg(x^a) = a_1 + @dots{} + a_n, then
@end ifinfo
@tex
let $\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n,$ then
@end tex
@ifinfo
x^a < x^b <==>
@* deg(x^a) > deg(x^b)
@* or
@* deg(x^a) = deg(x^b) and there exist an i, 1 <= i <= n:
@*     a_1 = b_1, @dots{}, a_(i-1) = b_(i-1), a_i < b_i.
@end ifinfo
@tex
    $x^\alpha < x^\beta \Leftrightarrow \deg(x^\alpha) > \deg(x^\beta)$ or 
@end tex
@iftex
@*
@end iftex
@tex
    \phantom{ $ x^\alpha < x^\beta \Leftrightarrow$}$ \deg(x^\alpha) =
    \deg(x^\beta)$ and $\exists\ 1 \le i \le n:\alpha_1 = \beta_1,
    \ldots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.$
@end tex
@item ws:
(general) weighted reverse lexicographical ordering:
@cindex general weighted reverse lexicographical ordering
@cindex local weighted reverse lexicographical ordering
@cindex ws, local ordering
@*
@ifinfo
 ws(w_1, @dots{}, w_n), w_1
@end ifinfo
@tex
${\tt ws}(w_1, \ldots, w_n),\; w_1$
@end tex
 a nonzero integer,
@ifinfo
w_2,@dots{},w_n
@end ifinfo
@tex
$w_2,\ldots,w_n$
@end tex
 any integer (including 0),
 is defined as @code{ds}
 but with
@ifinfo
  deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@item Ws:
(general) weighted lexicographical ordering:
@cindex general weighted lexicographical ordering
@cindex local weighted lexicographical ordering
@cindex Ws, local ordering
@*
@ifinfo
 Ws(w_1, @dots{}, w_n), w_1
@end ifinfo
@tex
${\tt Ws}(w_1, \ldots, w_n),\; w_1$
@end tex
 a nonzero integer,
@ifinfo
w_2,@dots{},w_n
@end ifinfo
@tex
$w_2,\ldots,w_n$
@end tex
 any integer (including 0),
 is defined as @code{Ds}
 but with
@ifinfo
  deg(x^a) = w_1 a_1 + @dots{} + w_n a_n.
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n.$
@end tex
@end table

@c --------------------------------------------------------------------------
@node Module orderings, Matrix orderings, Local orderings, Monomial orderings
@subsection Module orderings
@cindex Module orderings

@sc{Singular} offers also orderings on the set of ``monomials''
@ifinfo
@{ x^a*gen(i) | a in N^n, 1 <= i <= r @} in Loc K[x]^r = Loc K[x]gen(1)
+ @dots{} + Loc K[x]gen(r), where gen(1), @dots{}, gen(r) denote the canonical
generators of Loc K[x]^r, the r-fold direct sum of Loc K[x].
@end ifinfo
@tex
$\{ x^a e_i  \mid  a \in N^n, 1 \leq i \leq r \}$ in Loc $K[x]^r$ = Loc
$K[x]e_1 
+ \ldots +$Loc $K[x]e_r$, where $e_1, \ldots, e_r$ denote the canonical
generators of Loc $K[x]^r$, the r-fold direct sum of Loc $K[x]$.
(The function {\tt gen(i)} yields $e_i$).
@end tex

We have two possibilities: either to give priority to the component of a
vector in 
@ifinfo
Loc K[x]^r
@end ifinfo
@tex
 Loc $K[x]^r$
@end tex
or (which is the default in @sc{Singular}) to give priority
to the coefficients.
The orderings @code{(<,c)} and @code{(<,C)} give priority to the
coefficients; whereas
@code{(c,<)} and @code{(C,<)} give priority to the components.
@*Let < be any of the monomial orderings of 
@tex
Loc $K[x]$
@end tex
@ifinfo
Loc K[x]
@end ifinfo
as above.

@table @asis
@item (<,C):
@cindex C, module ordering
@cindex module ordering C
@ifinfo
<_m = (<,C) denotes the module ordering (giving priority to the coefficients):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* x^a < x^b
@* or
@* x^a = x^b  and  i < j.
@end ifinfo
@tex
$<_m = (<,C)$ denotes the module ordering (giving priority to the coefficients):
@end tex
@*
@tex
\quad  \quad  $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow x^\alpha <
x^\beta$ or ($x^\alpha = x^\beta $ and $ i < j$).
@end tex

@strong{Example:}
@smallexample
@c computed example Module_orderings pdata.doc:849 
  ring r = 0, (x,y,z), ds;
  // the same as ring r = 0, (x,y,z), (ds, C);
  [x+y2,z3+xy];
@expansion{} x*gen(1)+xy*gen(2)+y2*gen(1)+z3*gen(2)
  [x,x,x];
@expansion{} x*gen(3)+x*gen(2)+x*gen(1)
@c end example Module_orderings pdata.doc:849
@end smallexample

@item (C,<):
@ifinfo
<_m = (C, <) denotes the module ordering (giving priority to the
component):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* i<j
@* or
@* i = j and x^a < x^b.
@end ifinfo
@tex
$<_m = (C, <)$ denotes the module ordering (giving priority to the component):
@end tex
@iftex
@*
@end iftex
@tex
\quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i < j$ or ($
i = j $ and $ x^\alpha < x^\beta $). 
@end tex

@strong{Example:}
@smallexample
@c computed example Module_orderings_1 pdata.doc:879 
  ring r = 0, (x,y,z), (C,lp);
  [x+y2,z3+xy];
@expansion{} xy*gen(2)+z3*gen(2)+x*gen(1)+y2*gen(1)
  [x,x,x];
@expansion{} x*gen(3)+x*gen(2)+x*gen(1)
@c end example Module_orderings_1 pdata.doc:879
@end smallexample

@item (<,c):
@cindex c, module ordering
@cindex module ordering c
@ifinfo
<_m = (<,c) denotes the module ordering (giving priority to the coefficients):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* x^a < x^b
@* or
@* x^a = x^b  and  i > j.
@end ifinfo
@tex
$<_m = (<,c)$ denotes the module ordering (giving priority to the coefficients):
@end tex
@iftex
@*
@end iftex
@tex
\quad \quad $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow x^\alpha <
x^\beta$ or ($x^\alpha = x^\beta $ and $ i > j$).
@end tex

@strong{Example:}
@smallexample
@c computed example Module_orderings_2 pdata.doc:909 
  ring r = 0, (x,y,z), (lp,c);
  [x+y2,z3+xy];
@expansion{} xy*gen(2)+x*gen(1)+y2*gen(1)+z3*gen(2)
  [x,x,x];
@expansion{} x*gen(1)+x*gen(2)+x*gen(3)
@c end example Module_orderings_2 pdata.doc:909
@end smallexample

@item (c,<):
@ifinfo
<_m = (c, <) denotes the module ordering (giving priority to the
component):
@* x^a*gen(i) <_m x^b*gen(j) <==>
@* i>j
@* or
@* i = j and x^a < x^b.
@end ifinfo
@tex
$<_m = (c, <)$ denotes the module ordering (giving priority to the component):
@end tex
@iftex
@*
@end iftex
@tex
\quad \quad   $x^\alpha e_i <_m x^\beta e_j \Leftrightarrow i > j$ or ($
i = j $ and $ x^\alpha < x^\beta $). 
@end tex

@strong{Example:}
@smallexample
@c computed example Module_orderings_3 pdata.doc:938 
  ring r = 0, (x,y,z), (c,lp);
  [x+y2,z3+xy];
@expansion{} [x+y2,xy+z3]
  [x,x,x];
@expansion{} [x,x,x]
@c end example Module_orderings_3 pdata.doc:938
@end smallexample
@end table

@ifinfo
The output of a vector v in K[x]^r with components v_1,
@dots{}, v_r has the format v_1 * gen(1) + @dots{} + v_r * gen(r)
@end ifinfo
@tex
The output of a vector $v$ in $K[x]^r$ with components $v_1,
\ldots, v_r$ has the format $v_1 * gen(1) + \ldots + v_r * gen(r)$
@end tex
(up to permutation) unless the ordering starts with @code{c}.
@ifinfo
In this case a vector is written as [v_1, @dots{}, v_r].
@end ifinfo
@tex
In this case a vector is written as $[v_1, \ldots, v_r]$.
@end tex
In all cases @sc{Singular} can read input in both formats.

@c --------------------------------------------------------------------------
@node Matrix orderings, Product orderings, Module orderings, Monomial orderings
@subsection Matrix orderings
@cindex Matrix orderings
@cindex orderings, M
@cindex M, ordering

Let 
@tex
$M$
@end tex
@ifinfo
M
@end ifinfo
be an invertible 
@tex
$(n \times n)$-matrix
@end tex
@ifinfo
(n x n)-matrix
@end ifinfo
 with integer coefficients and
@ifinfo
M_1, @dots{}, M_n the rows of M.
@end ifinfo
@tex
$M_1, \ldots, M_n$ the rows of $M$.
@end tex

The M-ordering < is defined as follows:
@*
@ifinfo
x^a < x^b <==> there exists an i: 1 <= i <= n :
M_1*a = M_1*b, @dots{}, M_(i-1)*a = M_(i-1)*b, M_i*a < M_i*b.
@end ifinfo
@tex
\quad \quad $x^a < x^b \Leftrightarrow \exists\  1 \leq i \leq n :
M_1 a = \; M_1 b, \ldots, M_{i-1} a = \; M_{i-1} b$ and $M_i a < \; M_i b$.
@end tex

Thus,
@ifinfo
x^a < x^b
if and only if M*a is smaller than M*b
@end ifinfo
@tex
$x^a < x^b$
if and only if $M a$ is smaller than $M b$
@end tex
with respect to the lexicographical ordering.

The following matrices represent (for 3 variables) the global and
local orderings defined above (note that the matrix is not uniquely determined
by the ordering):

@ifinfo
@table @asis
@item lp:
 1   0   0
@* 0   1   0
@* 0   0   1
@item dp:
 1   1   1
@* 0   0  -1
@* 0  -1   0
@item Dp:
 1   1   1
@* 1   0   0
@* 0   1   0
@item wp(1,2,3):
 1   2   3
@* 0   0  -1
@* 0  -1   0
@item Wp(1,2,3):
 1   2   3
@* 1   0   0
@* 0   1   0
@item ls:
-1   0   0
@* 0  -1   0
@* 0   0  -1
@item ds:
-1  -1  -1
@* 0   0  -1
@* 0  -1   0
@item Ds:
-1  -1  -1
@* 1   0   0
@* 0   1   0
@item ws(1,2,3):
-1  -2  -3
@* 0   0  -1
@* 0  -1   0
@item Ws(1,2,3):
-1  -2  -3
@* 1   0   0
@* 0   1   0
@end table
@end ifinfo
@tex

$\quad$ lp:
$\left(\matrix{
 1 & 0 & 0 \cr
 0 & 1 & 0 \cr
 0 & 0 & 1 \cr
 }\right)$
\quad dp:
$\left(\matrix{
 1 & 1 & 1 \cr
 0 & 0 &-1 \cr
 0 &-1 & 0 \cr
 }\right)$
\quad Dp:
$\left(\matrix{
 1 & 1 & 1 \cr
 1 & 0 & 0 \cr
 0 & 1 & 0 \cr
 }\right)$

$\quad$ wp(1,2,3):
$\left(\matrix{
 1 & 2 & 3 \cr
 0 & 0 &-1 \cr
 0 &-1 & 0 \cr
 }\right)$
\quad Wp(1,2,3):
$\left(\matrix{
 1 & 2 & 3 \cr
 1 & 0 & 0 \cr
 0 & 1 & 0 \cr
 }\right)$

$\quad$ ls:
$\left(\matrix{
-1 & 0 & 0 \cr
 0 &-1 & 0 \cr
 0 & 0 &-1 \cr
 }\right)$
\quad ds:
$\left(\matrix{
-1 &-1 &-1 \cr
 0 & 0 &-1 \cr
 0 &-1 & 0 \cr
 }\right)$
\quad Ds:
$\left(\matrix{
-1 &-1 &-1 \cr
 1 & 0 & 0 \cr
 0 & 1 & 0 \cr
 }\right)$

$\quad$ ws(1,2,3):
$\left(\matrix{
-1 &-2 &-3 \cr
 0 & 0 &-1 \cr
 0 &-1 & 0 \cr
 }\right)$
\quad Ws(1,2,3):
$\left(\matrix{
-1 &-2 &-3 \cr
 1 & 0 & 0 \cr
 0 & 1 & 0 \cr
 }\right)$
@end tex

Product orderings (see next section) represented by  a matrix:

@ifinfo
@table @asis
@item (dp(3), wp(1,2,3)):
1  1  1  0  0  0
@*0  0  -1  0  0  0
@*0  -1  0  0  0  0
@*0  0  0  1  2  3
@*0  0  0  0  0  -1
@*0  0  0  0  -1  0
@item (Dp(3), ds(3)):
1  1  1  0  0  0
@*1  0  0  0  0  0
@*0  1  0  0  0  0
@*0  0  0  -1  -1  -1
@*0  0  0  0  0  -1
@*0  0  0  0  -1  0
@end table
@end ifinfo
@tex
$\quad$ (dp(3), wp(1,2,3)):
$\left(\matrix{
1&  1&  1&  0&  0&  0 \cr
0&  0&  -1&  0&  0&  0 \cr
0&  -1&  0&  0&  0&  0 \cr
0&  0&  0&  1&  2&  3 \cr
0&  0&  0&  0&  0&  -1 \cr
0&  0&  0&  0&  -1&  0 \cr
 }\right)$

$\quad$ (Dp(3), ds(3)):
$\left(\matrix{
1&  1&  1&  0&  0&  0 \cr
1&  0&  0&  0&  0&  0 \cr
0&  1&  0&  0&  0&  0 \cr
0&  0&  0&  -1&  -1&  -1 \cr
0&  0&  0&  0&  0&  -1 \cr
0&  0&  0&  0&  -1&  0 \cr
 }\right)$
@end tex

Orderings with extra weight vector (see below) represented by  a matrix:

@ifinfo
@table @asis
@item (dp(3), a(1,2,3),dp(3)):
1  1  1  0  0  0
@*0  0  -1  0  0  0
@*0  -1  0  0  0  0
@*0  0  0  1  2  3
@*0  0  0  1  1  1
@*0  0  0  0  0  -1
@*0  0  0  0  -1  0
@item (a(1,2,3,4,5),Dp(3), ds(3)):
1  2  3  4  5  0
@*1  1  1  0  0  0
@*1  0  0  0  0  0
@*0  1  0  0  0  0
@*0  0  0  -1  -1  -1
@*0  0  0  0  0  -1
@*0  0  0  0  -1  0
@end table
@end ifinfo
@tex
$\quad$ (dp(3), a(1,2,3),dp(3)):
$\left(\matrix{
1&  1&  1&  0&  0&  0 \cr
0&  0&  -1&  0&  0&  0 \cr
0&  -1&  0&  0&  0&  0 \cr
0&  0&  0&  1&  2&  3 \cr
0&  0&  0&  1&  1&  1 \cr
0&  0&  0&  0&  0&  -1 \cr
0&  0&  0&  0&  -1&  0 \cr
 }\right)$

$\quad$ (a(1,2,3,4,5),Dp(3), ds(3)):
$\left(\matrix{
1&  2&  3&  4&  5&  0 \cr
1&  1&  1&  0&  0&  0 \cr
1&  0&  0&  0&  0&  0 \cr
0&  1&  0&  0&  0&  0 \cr
0&  0&  0&  -1&  -1&  -1 \cr
0&  0&  0&  0&  0 & -1 \cr
0&  0&  0&  0&  -1&  0 \cr
 }\right)$
@end tex

@*@strong{Example}:
@smallexample
@c computed example Matrix_orderings pdata.doc:1219 
  ring r = 0, (x,y,z), M(1, 0, 0,   0, 1, 0,   0, 0, 1);
@c end example Matrix_orderings pdata.doc:1219
@end smallexample
@*which may also be written as:
@smallexample
@c computed example Matrix_orderings_1 pdata.doc:1225 
  intmat m[3][3]=1, 0, 0, 0, 1, 0, 0, 0, 1;
  m;
@expansion{} 1,0,0,
@expansion{} 0,1,0,
@expansion{} 0,0,1 
  ring r = 0, (x,y,z), M(m);
  r;
@expansion{} //   characteristic : 0
@expansion{} //   number of vars : 3
@expansion{} //        block   1 : ordering M
@expansion{} //                  : names    x y z 
@expansion{} //                  : weights  1 0 0 
@expansion{} //                  : weights  0 1 0 
@expansion{} //                  : weights  0 0 1 
@expansion{} //        block   2 : ordering C
@c end example Matrix_orderings_1 pdata.doc:1225
@end smallexample

If the ring has 
@tex
$n$
@end tex
@ifinfo
n
@end ifinfo
variables and the matrix contains less than 
@tex
$n \times n$
@end tex
@ifinfo
n x n 
@end ifinfo
entries an error message is given, if there are more entries,
the last ones are ignored.

@strong{WARNING:} @sc{Singular}
does not check whether the matrix has full rank.   In such a case some
computations might not terminate, others might give a nonsense result.

Having these matrix orderings @sc{Singular} can compute standard bases for
any monomial ordering which is compatible with the natural semigroup structure.
In practice the global and local orderings together with block orderings should be
sufficient in most cases. These orderings are faster than the corresponding
matrix orderings, since evaluating a matrix product is time consuming.

@c --------------------------------------------------------------------------
@node Product orderings, Extra weight vector, Matrix orderings, Monomial orderings
@subsection Product orderings
@cindex Product orderings
@cindex orderings, product

Let
@ifinfo
x = (x_1, @dots{}, x_n) = x(1..n) and y = (y_1, @dots{}, y_m) =
y(1..m)
@end ifinfo
@tex
$x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_m)$
@end tex
be two ordered sets of variables,
@ifinfo
<_1 a monomial
ordering on K[x] and <_2 a monomial ordering on K[y].   The product
ordering (or block ordering) < = (<_1,<_2) on K[x,y] is the following:
@*x^a y^b < x^A y^B <==>
@*x^a <_1 x^A
@*or
@*x^a = x^A  and  y^b <_2 y^B.
@end ifinfo
@iftex
@tex
$<_1$ a monomial
ordering on $K[x]$ and $<_2$ a monomial ordering on $K[y]$.   The product
ordering (or block ordering) $<\ := (<_1,<_2)$ on $K[x,y]$ is the following:
@end tex
@*
@tex
\quad \quad $x^a y^b < x^A y^B \Leftrightarrow x^a <_1 x^A $ or ($x^a =
x^A$ and $y^b <_2 y^B$). 
@end tex
@end iftex

Inductively one defines the product ordering of more than two monomial
orderings.

In @sc{Singular}, any of the above global orderings, local orderings or matrix
orderings may be combined (in an arbitrary manner and length) to a product
ordering.   E.g., @code{(lp(3), M(1, 2, 3, 1, 1, 1, 1, 0, 0), ds(4),
ws(1,2,3))} 
defines: @code{lp} on the first 3 variables, the matrix ordering
@code{M(1, 2, 3, 1, 1, 1, 1, 0, 0)} on the next 3 variables,
@code{ds} on the next 4 variables and
@code{ws(1,2,3)} on the last 3 variables.

@c --------------------------------------------------------------
@node Extra weight vector,  , Product orderings, Monomial orderings
@subsection Extra weight vector
@cindex Extra weight vector
@cindex a, ordering
@cindex orderings, a 

@ifinfo
a(w_1, @dots{}, w_n),
@end ifinfo
@tex
${\tt a}(w_1, \ldots, w_n),\; $
@end tex
@ifinfo
w_1,@dots{},w_n
@end ifinfo
@tex
$w_1,\ldots,w_n$
@end tex
any integers (including 0), defines
@ifinfo
  deg(x^a) = w_1 a_1 + @dots{} + w_n a_n
@end ifinfo
@tex
$\deg(x^\alpha) = w_1 \alpha_1 + \cdots + w_n\alpha_n$
@end tex
and
@*
@ifinfo
deg(x^a) < deg(x^b) ==> x^a < x^b 
@end ifinfo
@tex
    $$\deg(x^\alpha) < \deg(x^\beta) \Rightarrow x^\alpha < x^\beta,$$
@end tex
@ifinfo
@*
deg(x^a) > deg(x^b) ==> x^a > x^b.
@end ifinfo
@tex
    $$\deg(x^\alpha) > \deg(x^\beta) \Rightarrow x^\alpha > x^\beta. $$
@end tex
@*An extra weight vector does not define a monomial ordering by itself:
it can only be used in combination with other orderings
to insert an extra line of weights into the ordering
matrix.

@*@strong{Example}:
@smallexample
ring r = 0, (x,y,z),  (a(1,2,3),wp(4,5,2));
ring s = 0, (x,y,z),  (a(1,2,3),dp);
ring q = 0, (a,b,c,d),(lp(1),a(1,2,3),ds);
@end smallexample