1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
|
\subsection{Tick Options}
\subsubsection{Tick Coordinates and Label Texts}
\begin{pgfplotsxykey}{\x tick=\mchoice{\textbackslash empty,data,\normalfont\marg{coordinate list}} (initially \marg{})}
These options assign a list of \emph{positions} where ticks shall be placed. The argument is either the empty string (which is the initial value), the command |\empty|, the special string `|data|' or a list of coordinates. The initial configuration of an empty string means to generate these positions automatically. The choice |\empty| will result in no tick at all. The special value `|data|' will produce tick marks at every coordinate of the first plot. Otherwise, tick marks will be placed at every coordinate in \meta{coordinate list}.
The \meta{coordinate list} will be used inside of a |\foreach \x in |\marg{coordinate list} statement. The format is as follows:
\begin{itemize}
\item |{0,1,2,5,8,1e1,1.5e1}| (a series of coordinates),
\item |{0,...,5}| (the same as |{0,1,2,3,4,5}|),
\item |{0,2,...,10}| (the same as |{0,2,4,6,8,10}|),
\item |{9,...,3.5}| (the same as |{9, 8, 7, 6, 5, 4}|),
\item See \cite[Section~34]{tikz} for a more detailed definition of the options.
\item Please be careful with white spaces inside of \meta{coordinate list} (at least around the dots).
\end{itemize}
For logplots, \PGFPlots\ will apply $\log(\cdot)$ to each element in `\meta{coordinate list}' (similarly, any custom transformations are applied to the argument list).
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[xtick={12,9897,1468864}]
% see above for this macro:
\plotcoords
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
xtick=\empty,
ytick={-2,0.3,3,3.7,4.5}]
\addplot+[smooth] coordinates {
(-2,3) (-1.5,2) (-0.3,-0.2)
(1,1.2) (2,2) (3,5)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\paragraph{Attention:} You can't use the `|...|' syntax if the elements are too large for \TeX! For example, `|xtick=1.5e5,2e7,3e8|' will work (because the elements are interpreted as strings, not as numbers), but `|xtick=1.5,3e5,...,1e10|' will fail because it involves real number arithmetics beyond \TeX's capacities.
\vspace*{0.3cm}
\noindent
The default choice for tick \emph{positions} in normal plots is to place a tick at each coordinate~$i\cdot h$. The step size~$h$ depends on the axis scaling and the axis limits. It is chosen from a list of ``feasible'' step sizes such that neither too much nor too few ticks will be generated. The default for logplots is to place ticks at positions $10^i$ in the axis' range. The positions depend on the axis scaling and the dimensions of the picture. If log plots contain just one (or two) positions $10^i$ in their limits, ticks will be placed at positions $10^{i\cdot h}$ with ``feasible'' step sizes $h$ as in the case of linear axis.
\noindent
The tick \emph{appearance} can be (re)configured with
\begin{codeexample}[code only]
\pgfplotsset{tick style={very thin,gray}}% modifies the style `every tick'
\pgfplotsset{minor tick style={black}} % modifies the style `every minor tick'
\end{codeexample}
These style commands can be used at any time. The tick line width can be configured with `|major tick length|' and `|minor tick length|'.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[xtick=data,xmajorgrids]
\addplot coordinates {
(1,2)
(2,5)
(4,6.5)
(6,8)
(10,9)
};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[
title=A log plot with small axis range]
\addplot coordinates {
(10,1e-4)
(17,8.3176e-05)
(25,7.0794e-05)
(50,5e-5)
};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}
\begin{pgfplotsxykeylist}{minor \x\ tick num=\marg{number} (initially 0),minor tick num=\marg{number}}
Sets the number of minor tick lines used either for single axes or for all of them.
Minor ticks will be disabled if the major ticks don't have the same distance and they are currently only available for linear axes (not for logarithmic ones).
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[minor tick num=1]
\addplot {x^3};
\addplot {-20*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[minor tick num=3]
\addplot {x^3};
\addplot {-20*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[minor x tick num=1,
minor y tick num=3]
\addplot {x^3};
\addplot {-20*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykeylist}
\begin{pgfplotsxykeylist}{minor \x tick=\mchoice{data,\normalfont\marg{coordinate list}} (initially empty),%
minor tick=\mchoice{data,\normalfont\marg{coordinate list}}}
Allows to provide a list of minor tick positions manually. The syntax is almost the same as for |xtick| or |ytick|: simply provide either a comma--separated list of tick positions or the special value |data|. An empty argument argument disables the |minor tick| feature (in contrast to |xtick| where the special value |\empty| clears the list and an empty argument causes \PGFPlots\ to compute a default tick list).
In contrast to |minor x tick num|, this key allows to provide \emph{non--uniform} minor tick positions.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[minor xtick={-3,1},grid=minor]
\addplot {x^3};
\addplot {-20*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[minor ytick=data]
\addplot {x^2};
\end{axis}
\end{tikzpicture}
\end{codeexample}
This key has precedence over |minor x tick num| and its variants; if both of them are given, |minor xtick| is preferred and |minor x tick num| is ignored.
\end{pgfplotsxykeylist}
\begin{pgfplotsxykey}{extra \x\ ticks=\marg{coordinate list}}
Adds \emph{additional} tick positions and tick labels to the $x$~or~$y$ axis. `Additional' tick positions do not affect the normal tick placement algorithms, they are drawn after the normal ticks. This has two benefits: first, you can add single, important tick positions without disabling the default tick label generation and second, you can draw tick labels `on top' of others, possibly using different style flags.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
xmin=0,xmax=3,ymin=0,ymax=15,
extra y ticks={2.71828},
extra y tick labels={$e$},
extra x ticks={2.2},
extra x tick style={grid=major,
tick label style={
rotate=90,anchor=east}},
extra x tick labels={Cut},
]
\addplot {exp(x)};
\addlegendentry{$e^x$}
\end{axis}
\end{tikzpicture}
\end{codeexample}
\message{Overfull hbox is ok.}%
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={width=5.3cm}}
\begin{tikzpicture}
\begin{loglogaxis}[
title=Explicitly Provided Limits,
xtickten={1,2},
ytickten={-5,-6}]
\addplot coordinates
{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{loglogaxis}[
title=With Extra Ticks,
xtickten={1,2},
ytickten={-5,-6},
extra x ticks={20,40},
extra y ticks={5e-6,2.5e-6}]
\addplot coordinates
{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
\begin{tikzpicture}
\begin{loglogaxis}[
title=With Extra Ticks; $10^e$ format,
extra tick style={log identify minor tick positions=false},
xtickten={1,2},
ytickten={-5,-6},
extra x ticks={20,40},
extra y ticks={5e-6,2.5e-6}]
\addplot coordinates
{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
Remarks:
\begin{itemize}
\item Use |extra x ticks| to highlight special tick positions. The use of |extra x ticks| does not affect minor tick/grid line generation, so you can place extra ticks at positions $j\cdot 10^i$ in log--plots.
\item Extra ticks are always typeset as major ticks.
They are affected by |major tick length| or options like |grid=major|.
\item Use the style |every extra x tick| (|every extra y tick|) to configure the appearance.
\item You can also use `|extra x tick style=|\marg{...}' which has the same effect.
\end{itemize}
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{\x tickten=\marg{exponent base 10 list}}
These options allow to place ticks at selected positions $10^k, k \in \text{\marg{exponent base 10 list}}$. They are only used for logplots. The syntax for \marg{exponent base 10 list} is the same as above for |xtick=|\marg{list} or |ytick=|\marg{list}.
Using `|xtickten={1,2,3,4}|' is equivalent to `|xtick={1e1,1e2,1e3,1e4}|', but it requires fewer computational time and it allows to use the short syntax `|xtickten={1,...,4}|'.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}[
samples=8,
ytickten={-6,-4,...,4},
domain=0:10]
\addplot {2^(-2*x + 6)};
\addlegendentry{$2^{-2x + 6}$}
% or invoke gnuplot to generate coordinates:
\addplot gnuplot[id=pow2]
{2**(-1.5*x -3)};
\addlegendentry{$2^{-1.5x -3}$}
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
In case |log basis x|$\neq 10$, the meaning of |xtickten| changes. In such a case, |xtickten| will still assign the exponent, but for the chosen |log basis x| instead of base $10$.
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{\x ticklabels=\marg{label list}}
\label{pgfplots:key:xticklabels}%
Assigns a \emph{list} of tick \emph{labels} to each tick position. Tick \emph{positions} are assigned using the |xtick| and |ytick|-options.
This is one of two options to assign tick labels directly. The other option is |xticklabel=|\marg{command} (or |yticklabel=|\marg{command}).
The option `|xticklabel|' offers higher flexibility while `|xticklabels|' is easier to use. See also the variant |xticklabels from table|.
The argument \meta{label list} has the same format as for ticks, that means
\begin{codeexample}[code only]
xticklabels={$\frac{1}{2}$,$e$}
\end{codeexample}
denotes the two--element--list $\{\frac 12, e\}$. The list indices match the indices of the tick positions. If you need commas inside of list elements, use
\begin{codeexample}[code only]
xticklabels={{0,5}, $e$}.
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
xtick={-1.5,-1,...,1.5},
xticklabels={%
$-1\frac 12$,
$-1$,
$-\frac 12$,
$0$,
$\frac 12$,
$1$},
% note: \frac can be done automatically:
% xticklabel style={/pgf/number format/frac},
]
\addplot[smooth,blue,mark=*]
coordinates {
(-1, 1)
(-0.75, 0.5625)
(-0.5, 0.25)
(-0.25, 0.0625)
(0, 0)
(0.25, 0.0625)
(0.5, 0.25)
(0.75, 0.5625)
(1, 1)
};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}[
ytickten={-2,-1,0,1,2},
yticklabels={$\frac{1}{100}$,%
$\frac{1}{10}$,%
1,10,100},
]
\addplot {exp(x)};
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
Note that it is also possible to terminate list entries with two backslashes, |\\|. In that case, the last entry needs to be terminated by |\\| as well (it is the same alternative syntax which is also accepted for |\legend| and |cycle list|).
Please keep in mind that the arguments \emph{always} refer the a list of tick positions, although it does not alter or define the list of positions. Consequently, you should also provide the list of positions. Note that a list of positions might be longer than what is actually displayed (in case the axis limits clip some of the value away), but the index mapping into \meta{label list} still includes the clipped values.
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{\x ticklabel=\marg{command}}
These keys change the \TeX-command which creates the tick \emph{labels} assigned to each tick position (see options |xtick| and |ytick|).
This is one of the two options to assign tick labels directly. The other option is `|xticklabels=|\marg{label list}' (or |yticklabels=|\marg{label list}). The option `|xticklabel|' offers higher flexibility while `|xticklabels|' is easier to use.
The argument \meta{command} can be any \TeX-text. The following commands are valid inside of \meta{command}:
\begin{description}
\item[] \declareandlabel{\tick} The current element of option |xtick| (or |ytick|).
\item[] \declareandlabel{\ticknum} The current tick number, starting with~0 (it is a macro containing a number).
\item[] \declareandlabel{\nexttick} This command is only valid if the |x tick label as interval| option is set (or the corresponding variable for~$y$). It will contain the position of the next tick position, that means the right boundary of the tick interval.
\end{description}
The default argument is
\begin{itemize}
\item \declareandlabel{\axisdefaultticklabel} for normal plots:
\begin{codeexample}[code only]
\def\axisdefaultticklabel{$\pgfmathprintnumber{\tick}$}
\end{codeexample}
\item \declareandlabel{\axisdefaultticklabellog} for logplots:
\begin{codeexample}[code only]
\def\axisdefaultticklabellog{%
\pgfkeysgetvalue{/pgfplots/log number format code/.@cmd}\pgfplots@log@label@style
\expandafter\pgfplots@log@label@style\tick\pgfeov
}
\end{codeexample}
\end{itemize}
That means you can configure the appearance of linear axis with the number formatting options described in Section~\ref{sec:number:printing} and logarithmic axis with |log number format code|, see below.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}[
yticklabel style={/pgf/number format/fixed},
% changes tick labels to a number instead
% of exponential notation:
yticklabel={%
\pgfmathfloatparsenumber{\tick}%
\pgfmathfloatexp{\pgfmathresult}%
\pgfmathprintnumber{\pgfmathresult}%
},
]
\addplot {exp(x)};
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
The following example uses explicitly formatted $x$ tick labels and a small \TeX\ script to format $y$ tick labels as fractions in the form \meta{sign}\meta{number}|/10| (note that the |/pgf/number format/frac| style can do similar things automatically, see \PGFPlotstable\ and the documentation therein).
% \usepackage{nicefrac}
\begin{codeexample}[width=4cm]
% \usepackage{nicefrace}% required
\begin{tikzpicture}
\begin{axis}[
% x ticks explicitly formatted:
xtick={0,1,0.5,0.25,0.75},
xticklabels={$0$,$1$,$\frac12$,$\frac14$,$\frac34$},
% y ticks automatically by some code fragment:
ytick=data,
yticklabel={%
\scriptsize
\ifdim\tick pt<0pt % a TeX \if -- see TeX Book
\pgfmathparse{-10*\tick}%
$-\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$%
\else
\ifdim\tick pt=0pt
\else
\pgfmathparse{10*\tick}%
$\nicefrac{\pgfmathprintnumber{\pgfmathresult}}{10}$%
\fi
\fi
},
% NOTE: this here does the same:
% yticklabel style={/pgf/number format/.cd,frac,
% frac TeX=\nicefrac,frac whole=false,frac denom=10},
ymajorgrids,
title=A special Prewavelet,
axis x line=center,
axis y line=left,
]
\addplot coordinates {(0,-1.2) (0.25,1.1)
(0.5,-0.6) (0.75,0.1) (1,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent The \TeX\ script takes the |\tick| macro as input and applies some logic. The |\ifdim\tick pt<0pt| means ``if dimension |\tick pt| $ < $ |0pt|''. The |\ifdim| is \TeX's only way to compare real fixed point numbers and the author did not want to invoke |\pgfmath| for this simple task. Since |\ifdim| expects a dimension, we have to use the |pt| suffix which is compatible with |\pgfmath|. The result is that negative numbers, zero and positive numbers are typeset differently.
You can change the appearance of tick labels with
\begin{codeexample}[code only]
\pgfplotsset{tick label style={
font=\tiny,
/pgf/number format/sci}}% this modifies the `every tick label' style
\end{codeexample}
and/or
\begin{codeexample}[code only]
\pgfplotsset{x tick label style={
above,
/pgf/number format/fixed zerofill}}% this modifies the `every x tick label' style
\end{codeexample}
and
\begin{codeexample}[code only]
\pgfplotsset{y tick label style={font=\bfseries}}% modifies `every y tick label'
\end{codeexample}
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{\x ticklabels from table=\marg{\textbackslash table or filename}\marg{colname}}
A variant of |xticklabels=|\marg{list} which uses each entry in the column named \meta{colname} from a table as tick labels.
The first argument \meta{\textbackslash table or filename} can be either a loaded table macro (i.e.\ the result of |\pgfplotstableread|\marg{file name}\marg{\textbackslash table}) or just a file name.
The second argument can be a column name, a column alias or a |create on use| specification (see \PGFPlotstable\ for the latter two). Furthermore, it can be |[index]|\meta{integer} in which case \meta{integer} is a column index.
The behavior of |xticklabels from table| is the same as if the column \meta{colname} would have been provided as comma separated list to |xticklabels|. This means the column can contain text, \TeX\ macros or even math mode.
If you have white spaces in your cells, enclose the complete cell in curly braces, |{example cell}|. The detailed input format for tables is discussed in \verbpdfref{\addplot table} and in the documentation for \PGFPlotstable.
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{extra \x\ tick label=\marg{\TeX\ code}}
As |xticklabel| provides code to generate tick labels for each |xtick|, the key |extra x tick label| provides code to generate tick labels for every element in |extra x ticks|.
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{extra \x\ tick labels=\marg{label list}}
As |xticklabels| provides explicit tick labels for each |xtick|, the key |extra x tick labels| provides explicit tick labels for every element in |extra x ticks|.
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{\x\ tick label as interval=\mchoice{true,false} (initially false)}
\label{key:pgfplots:ticklabelasinterval}
Allows to treat tick labels as intervals; that means the tick positions denote the interval boundaries. If there are $n$ positions, $(n-1)$ tick labels will be generated, one for each interval.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[x tick label as interval]
\addplot {3*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}
This mode enables the use of |\nexttick| inside of |xticklabel| (or |yticklabel|). A common application might be a bar plot.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
ybar interval=0.9,
x tick label as interval,
xmin=2003,xmax=2030,
ymin=0,ymax=140,
xticklabel={
$\pgfmathprintnumber{\tick}$
-- $\pgfmathprintnumber{\nexttick}$},
xtick=data,
x tick label style={
rotate=90,anchor=east,
/pgf/number format/1000 sep=}
]
\addplot[draw=blue,fill=blue!40!white]
coordinates
{(2003,40) (2005,100) (2006,15)
(2010,90) (2020,120) (2030,3)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}
\begin{pgfplotsxykeylist}{\x minorticks=\mchoice{true,false} (initially true),\x majorticks=\mchoice{true,false} (initially true),ticks=\mchoice{minor,major,both,none} (initially both)}
Enables/disables the small tick lines either for single axis or for all of them. Major ticks are those placed at the tick positions and minor ticks are between tick positions. Please note that minor ticks are automatically disabled if |xtick| is not a uniform range\footnote{A uniform list means the difference between all elements is the same for linear axis or, for logarithmic axes, $\log(10)$.}.
The key |minor tick length=|\marg{dimen} configures the tick length for minor ticks while the |major| variant applies to major ticks.
You can configure the appearance using the following styles:
\begin{codeexample}[code only]
\pgfplotsset{every tick/.append style={color=black}} % applies to major and minor ticks,
\pgfplotsset{every minor tick/.append style={thin}} % applies only to minor ticks,
\pgfplotsset{every major tick/.append style={thick}} % applies only to major ticks.
\end{codeexample}
There is also the style ``|every tick|'' which applies to both, major and minor ticks.
\end{pgfplotsxykeylist}
\begin{pgfplotsxykeylist}{\x tickmin=\marg{coord}, \x tickmax=\marg{coord}}
These keys can be used to modify minimum/maximum values before ticks are drawn. Because this applies to axis discontinuities, it is described on page~\pageref{key:xytickminmax} in Section~\ref{key:xytickminmax}, ``Axis Discontinuities"'.
\end{pgfplotsxykeylist}
\subsubsection{Tick Alignment: Positions and Shifts}
\begin{pgfplotsxykeylist}{\x tick pos=\mchoice{left,right,both} (initially both),tick pos=\mchoice{left,right,both}}
Allows to choose where to place the small tick lines. In the default configuration, this does also affect tick \emph{labels}, see below. The |tick pos| style sets all of them to the same value (aliased by |tickpos|\pgfmanualpdflabel{/pgfplots/tickpos}). This option is only useful for boxed axes.
For $x$, the additional choices |bottom| and |top| can be used which are equivalent to |left| and |right|, respectively. Both are accepted for $y$.
Changing |tick pos| will also affect the placement of tick labels.
Note that it can also affect the |axis lines| key, although not all combinations make sense. Make sure the settings are consistent.
\end{pgfplotsxykeylist}
\begin{pgfplotsxykeylist}{%
\x ticklabel pos=\mchoice{left,right,default} (initially default),
ticklabel pos=\mchoice{left,right,default} (initially default)}
Allows to choose where to place tick \emph{labels}. The choices |left| and |right| place tick labels either at the left or at the right side of the complete axis. The choice |default| uses the same setting as |xtick pos| (or |ytick pos|). This option is only useful for boxed axes -- keep it to |default| for non-boxed figures. The |ticklabel pos| style sets all three of them to the same value.
For $x$, the additional choices |bottom| and |top| can be used which are equivalent to |left| and |right|, respectively. Both are accepted for $x$.
\end{pgfplotsxykeylist}
\begin{pgfplotsxykeylist}{%
\x tick align=\mchoice{inside,center,outside} (initially inside),
tick align=\mchoice{inside,center,outside} (initially inside)}
Allows to change the location of the ticks relative to the axis lines. The |tick align| sets all of them to the same value.
Default is ``|inside|''.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
xtick=data,ytick=data,
xtick align=center]
\addplot coordinates
{(-3,0) (-2,0.1) (-1,-0.6)
(0,1)
(1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
xtick=data,ytick=data,
ytick align=outside]
\addplot coordinates
{(-3,0) (-2,0.1) (-1,-0.6)
(0,1)
(1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
These tick alignment options are set automatically by the |axis x line| and |axis y line| methods (unless one appends an asterisk `|*|'):
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
xtick=data,
axis x line=center,
xticklabels={,,},
ytick={-0.6,0,0.1,1},
yticklabels={
$-\frac{6}{10}$,,
$\frac{1}{10}$,$1$},
ymajorgrids,
axis y line=left,
enlargelimits=0.05]
\addplot coordinates
{(-3,0) (-2,0.1) (-1,-0.6)
(0,1)
(1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykeylist}
\begin{pgfplotsxykeylist}{%
\x ticklabel shift=\marg{dimension} (initially empty),%
ticklabel shift=\marg{dimension} (initially empty)}
Shifts tick labels in direction of the outer unit normal of the axis by an amount of \meta{dimension}. The |ticklabel shift| sets the same value for all axes.
This is usually unnecessary as the |anchor| of a tick label already yields enough spacing in most cases.
\end{pgfplotsxykeylist}
\subsubsection{Tick Scaling - Common Factors In Ticks}
\label{sec:scaled:ticks}%
\begin{pgfplotsxykeylist}{
scaled ticks=\mchoice{true,false,base 10:{\normalfont\meta{e}},real:{\normalfont\meta{num}},manual:{\normalfont\marg{label}\marg{code}}} (initially true),%
scaled \x\ ticks=\meta{one of the values} (initially true)%
}
Allows to factor out common exponents in tick labels for \emph{linear axes}. For example, if you have tick labels $20000,40000$ and $60000$, you may want to save some space and write $2,4,6$ with a separate factor `$\cdot 10^4$'. Use `|scaled ticks=true|' to enable this feature. In case of |true|, tick scaling will be triggered if the data range is either too large or too small (see below).
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scaled ticks=true]
\addplot coordinates {
(20000,0.0005)
(40000,0.0010)
(60000,0.0020)
};
\end{axis}
\end{tikzpicture}%
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scaled ticks=false]
\addplot coordinates {
(20000,0.0005)
(40000,0.0010)
(60000,0.0020)
};
\end{axis}
\end{tikzpicture}
\end{codeexample}
The |scaled ticks| key is a style which simply sets scaled ticks for both, $x$ and $y$.
The value |base 10:|\meta{e} allows to adjust the algorithm manually. For example, |base 10:3| will divide every tick label by $10^3$:
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scaled ticks=base 10:3,
/pgf/number format/sci subscript]
\addplot coordinates
{(-0.00001,2e12) (-0.00005,4e12) };
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent Here, the \texttt{sci subscript} option simply saves space.
In general, |base 10:|$e$ will divide every tick by $10^e$. The effect
is not limited by the ``too large or too small'' decisions mentioned
above.
The value |real:|\meta{num} allows to divide every tick by a fixed \meta{num}.
For example, the following plot is physically ranged from $0$ to $2\pi$, but the tick scaling algorithm is configured to divide every tick label by $\pi$.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
xtick={0,1.5708,...,10},
domain=0:2*pi,
scaled x ticks={real:3.1415},
xtick scale label code/.code={$\cdot \pi$}]
\addplot {sin(deg(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent Setting |scaled ticks=real:|\meta{num} also changes the |tick scale label code| to
\begin{codeexample}[code only]
\pgfkeys{/pgfplots/xtick scale label code/.code=
{$\pgfkeysvalueof{/pgfplots/tick scale binop} \pgfmathprintnumber{#1}$}}.
\end{codeexample}
\noindent The key |tick scale binop| is described below, it is set initially to |\cdot|.
A further -- not very useful -- example is shown below. Every $x$ tick label has been divided by $2$, every $y$ tick label by $3$.
\nobreak
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
scaled x ticks=real:2,
scaled y ticks=real:3]
\addplot {x^3};
\node[pin=135:{$(3,9)$}] at (axis cs:3,9) {};
\end{axis}
\end{tikzpicture}
\end{codeexample}
The last option, |scaled ticks=manual:|\marg{label}\marg{code} allows even more customization. It allows \emph{full control} over the displayed scaling label \emph{and} the scaling code: \meta{label} is used as-is inside of the tick scaling label while \meta{code} is supposed to be a one-argument-macro which scales each tick. Example:
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
% warning: the '%' signs are necessary (?)
scaled y ticks=manual:{$+65\,535$}{%
\pgfmathparse{#1-65535}%
},
yticklabel style={
/pgf/number format/fixed,
/pgf/number format/precision=1},
]
\addplot coordinates {
(0, 65535)
(13, 65535)
(14, 65536)
(15, 65537)
(30, 65537)
};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent The example uses |$+65\,535$| as tick scale label content. Furthermore, it defines the customized tick label formula $y - (+6.5535\cdot 10^4) = y - 65535$ to generate $y$ tick labels.
The \meta{label} can be arbitrary. It is completely in user control. The second argument, \meta{code} is supposed to be a one-argument-macro in which |#1| is the current tick position in floating point representation. The macro is expected to assign |\pgfmathresult| (as a number). The \PGF\ manual~\cite{tikz} contains detailed documentation about its math engine.
This feature may also be used do transform coordinates in case they can't be processed with \PGFPlots: transform them and supply a proper tick scaling method such that tick labels represent the original range.
If \meta{label} is empty, the tick scale label won't be drawn (and no space will be occupied).
Tick scaling does \emph{not} work for logarithmic axes.
\end{pgfplotsxykeylist}
\begin{pgfplotsxycodekeylist}{\x tick scale label code}
Allows to change the default code for scaled tick labels. The default is
\begin{codeexample}[code only]
\pgfplotsset{
xtick scale label code/.code={$\cdot 10^{#1}$}
}
\end{codeexample}
More precisely, it is
\begin{codeexample}[code only]
\pgfplotsset{
xtick scale label code/.code={$\pgfkeysvalueof{/pgfplots/tick scale binop} 10^{#1}$}
}
\end{codeexample}
\noindent and the initial value of |tick scale binop| is |\cdot|, but it can be changed to |\times| if desired.
If the code is empty, no tick scale label will be drawn (and no space is consumed).
\end{pgfplotsxycodekeylist}
\begin{pgfplotscodekey}{tick scale label code}
A style which sets |xtick scale label code| and those for $y$ and $z$.
\end{pgfplotscodekey}
\begin{pgfplotskey}{tick scale binop=\marg{\TeX\ math operator} (initially \textbackslash cdot)}
Sets the binary operator used to display tick scale labels.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
title=\texttt{tick scale
binop=\textbackslash cdot}]
\addplot
[mark=none,blue,samples=250,
domain=0:5]
{exp(10*x)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
title=\texttt{tick scale
binop=\textbackslash times},
tick scale binop=\times]
\addplot
[mark=none,blue,samples=250,
domain=0:5]
{exp(10*x)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}
\makeatletter
\let\itsinitial=\pgfplots@scale@ticks@below@exponent
\makeatother
\begin{pgfplotskey}{scale ticks below=\marg{exponent} (initially \itsinitial)}
Allows fine tuning of the `|scaled ticks|' algorithm: if the axis limits are of magnitude $10^e$ and $e<$\meta{exponent}, the common prefactor~$10^e$ will be factored out. The default is
\end{pgfplotskey}
\makeatletter
\let\itsinitial=\pgfplots@scale@ticks@above@exponent
\makeatother
\begin{pgfplotskey}{scale ticks above=\marg{exponent} (initially \itsinitial)}
Allows fine tuning of the '|scaled ticks|' algorithm: if the axis limits are of magnitude $10^e$ and $e>$\meta{exponent}, the common prefactor~$10^e$ will be factored out.
\end{pgfplotskey}
\subsubsection{Tick Fine-Tuning}
The tick placement algorithm depends on a number of parameters which can be tuned to get better results.
\begin{pgfplotskey}{max space between ticks=\marg{number} (initially \axisdefaulttickwidth)}
\label{maxspacebetweenticks}
Configures the maximum space between adjacent ticks in full points. The suffix ``|pt|'' has to be omitted and fractional numbers are not supported.
\end{pgfplotskey}
\begin{pgfplotskey}{try min ticks=\marg{number} (initially \axisdefaulttryminticks)}
Configures a loose lower bound on the number of ticks. It should be considered as a suggestion, not a tight limit. This number will increase the number of ticks if `|max space between ticks|' produces too few of them.
The total number of ticks may still vary because not all fractional numbers in the axis' range are valid tick positions.
\end{pgfplotskey}
\begin{pgfplotskey}{try min ticks log=\marg{number} (initially 3)}
The same as |try min ticks|, but for logarithmic axis.
\end{pgfplotskey}
\begin{pgfplotskeylist}{tickwidth=\marg{dimension} (initially 0.15cm),major tick length=\marg{dimension} (initially 0.15cm)}
Sets the length of major tick lines.
\end{pgfplotskeylist}
\begin{pgfplotskeylist}{subtickwidth=\marg{dimension} (initially 0.1cm),minor tick length=\marg{dimension} (initially 0.1cm)}
Sets the length of minor tick lines.
\end{pgfplotskeylist}
\begin{pgfplotsxykeylist}{\x tick placement tolerance (initially 0.05pt)}
Tick lines and labels will be placed if they are no more than this tolerance beyond the axis limits. This threshold should be chosen such that it does not produce visible differences while still providing fault tolerance.
The threshold is given in paper units of the final figure.
\end{pgfplotsxykeylist}
\begin{pgfplotsxykey}{log basis \x=\marg{number} (initially empty)}
Allows to change the logarithms used for logarithmic axes.
Changing to a different log basis is nothing but a scale. However, it also changes the way tick labels are displayed: they will also be shown in the new basis.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}[log basis y=2,grid=major,samples at={-4,...,4}]
\addplot {2^x};
\end{semilogyaxis}
\end{tikzpicture}
~
\begin{tikzpicture}
\begin{semilogyaxis}[log basis y=10,samples at={-4,...,4}]
\addplot {2^x};
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
The initial setting is `|log basis x=|' which defaults to: the natural logarithm for any coordinates (basis $\exp(1)$), and the logarithm base $10$ for the display of tick labels.
If the log basis is changed to something different than the empty string, the chosen logarithm will be applied to any input coordinate (if the axis scale is log as well) and tick labels will be displayed in this basis.
In other words: usually, you see log axes base $10$ and that's it. It is only interesting for coordinate filters:
the initial setting (with empty \meta{number}) uses coordinate lists basis $e$ although the display will use basis~$10$ (i.e.\ it is rescaled). Any non-empty value \meta{number} causes both, coordinate lists \emph{and} display to use \meta{number} as basis for the logarithm. The javascript code of the |clickable| library will always use the \emph{display} basis (which is usally $10$) when it computes slopes.
\paragraph{Technical remarks.} When |log basis x| is used, the style |log basis ticks=|\marg{axis char} will be installed (in this case |log basis ticks=x|). This style in turn will change |log number format code|.
Please note that |xtickten| will be used differently now: it will provide the desired ticks in the new basis! Despite the misleading name ``|ten|'', |xtickten={1,2,3,4}| will yield ticks at $2^1,2^2,2^3,2^4$ if |log basis x=2| has been set.
\end{pgfplotsxykey}
|