1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
|
%% The following copyright notice and licensing information was added
%% by Clea F. Rees on behalf of Alexander Berdnikov on 2008/11/03.
%%
%% Copyright 1996 Alexander Berdnikov, Olga Grineva
%%
%% This file is part of pmgraph.
%%
%% pmgraph is free software: you can redistribute it and/or modify
%% it under the terms of the GNU General Public License as published by
%% the Free Software Foundation, either version 3 of the License, or
%% (at your option) any later version.
%%
%% pmgraph is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%% See the GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with pmgraph. If not, see <http://www.gnu.org/licenses/>.
\documentstyle[12pt,a4,pmgraph]{article}
\title{{\sc pmgraph.sty}: some useful macros which extends
the \LaTeX{} environment {\tt picture}\\[0.5\baselineskip]
\Large Version 1.0}
\author{
\begin{minipage}{0.4\textwidth}
\begin{center} A.S.Berdnikov\\{\tt berd{\sl @}ianin.spb.su} \end{center}
\end{minipage}
\hfill
\begin{minipage}{0.4\textwidth}
\begin{center} O.A.Grineva\\{\tt olga{\sl @}ianin.spb.su} \end{center}
\end{minipage}
}
\date{}
\def\PiC{P\kern-.12em\lower.5ex\hbox{I}\kern-.075emC\spacefactor1000 }
\font\manual=logo10 at 12pt
\def\MF{{\manual META}\-{\manual FONT}\spacefactor1000 }
\def\AW{Addison\kern.1em-\penalty 0pt \hskip 0pt Wesley}
\def\CandT{{\sl Computers \& Typesetting}}
\def\TUB{{\sl TUGboat\/}}
\newcommand{\bs}{\char '134 } % char \
\newcommand{\lb}{\char '173 } % char {
\newcommand{\rb}{\char '175 } % char }
\makeatletter
\def\hackersmile{\@ifnextchar[{\@hackersmile}{\@hackersmile[10]}}
\def\@hackersmile[#1]{\hbox{%
\unitlength=1pt\relax
\unitlength=#1\unitlength
\divide\unitlength by 10\relax
\thicklines
\raise -3\unitlength \hbox{%
\begin{picture}(12,12)(-6,-6)
\put(0,0){\circle{10}}
\put(-2,1.75){\circle*{1}}
\put(2,1.75){\circle*{1}}
\thicklines
\put(-2.75,3){\line(1,0){1.5}}
\put(2.75,3){\line(-1,0){1.5}}
\put(0,-1){\line(0,1){3}}
\put(-2.5,-2.5){\line(1,0){5}}
\put(-2.5,-2.5){\line(0,1){1}}
\put(2.5,-2.5){\line(0,1){1}}
\end{picture}%
}}}
\makeatother
\newcommand{\pmg}{{\sc pmgraph}}
\newcommand{\pmgs}{{\sc pmgraph.sty}}
\begin{document}
\maketitle
The original \TeX/\LaTeX{} possibilities to create
pictures are relatively poor, and there are
many extensions ({\tt epic/eepic}, {\tt pictex}, {\tt drawtex},
{\tt xypic}, {\tt mfpic}, etc.) which were created to extend
its possibilities to a higher level. The macro \pmgs{}
({\em poor-man-graphics}) which are
described here are not so general as the ones cited
above. They manupulate with the pseudo-graphical
fonts which are used by generic \LaTeX{} without additional
extensions --- mainly because the variations of
\PiC\TeX{}, \MF{} and new graphical font
themes are already realized by other authors
and on sufficiently higher level.
To some extend the purpose of our work was to see
how far it is possible to move in the development of new
useful graphical primitives for \LaTeX{} {\em without}
the investment of the external graphical tools.
The style file \pmgs{} includes the following features:
\begin{itemize}
\item
the vectors with a set of slopes which is
as general as the line slopes implemented in \LaTeX;
\item
the vectors with an arrow at the beginning,
at the middle or at the end of vector with various orientations
of the arrow;
\item
the circles and circular arcs with nearly arbitrary diameter
using magnified {\tt circle} and {\tt circlew} \LaTeX{} fonts;
\item
the 1/4 circular arcs correctly positioned
at the centrum or at the corner;
\item
extended set of frames which include various
corner style and the optional multiple frame shadows
with a variety of styles;
\item
tools which enable the user to extend the variety of
frame styles and the shadow styles as far as his/her
fantasy allows it;
\item
automatic calculation of the picture size in terms
of the current text width --- including the {\tt picture}
inserted inside list environments.
\end{itemize}
Even not very complicated, these macros appears to
be useful in our work, and it seems that they can be
useful for other \TeX-users too.
\section*{Vectors}
The number of angles for inclined lines which can be used
in \LaTeX{} is limited to great extend, but the number of
angles for {\em vectors} is limited even more.
The variety of vectors can be extended if instead of the
{\em strictly} inclined arrows at the end of the inclined
line the arrow with the {\em approximate} inclination is added.
Corresponding changes are incorporated in \pmg{} where
the relation between strict inclinations and approximate
inclinations are shown in Table~\ref{Tab1}. The corrections require
the modifications of the internal \LaTeX{} commands
{\tt\bs{}@svector}, {\tt\bs{}@getlarrow}, {\tt\bs{}@getrarrow}
and the command {\tt\bs{}vector} itself. As a result the command
{\tt\bs{}vector} starts to draw the vectors for all inclinations
valid for \LaTeX{} lines as it is shown on Fig.~\ref{FigA}.
The vectors are not so ideal as it is required by \TeX{} standards,
but the results are acceptable for all inclinations except $(6,1)$.
\begin{figure}
\centerline{%
\hfill
\begin{Picture}[23](600,600)
\put(300,300){\vector(1,0){300}}
\put(300,300){\vector(-1,0){300}}
\put(300,300){\vector(0,1){300}}
\put(300,300){\vector(0,-1){300}}
\put(300,300){\vector(1,1){300}}
\put(300,300){\vector(1,2){150}}
\put(300,300){\vector(1,3){100}}
\put(300,300){\vector(1,4){75}}
\put(300,300){\line(1,5){60}}
\put(300,300){\line(1,6){50}}
\put(300,300){\vector(2,1){300}}
\put(300,300){\vector(2,3){200}}
\put(300,300){\line(2,5){120}}
\put(300,300){\vector(3,1){300}}
\put(300,300){\vector(3,2){300}}
\put(300,300){\vector(3,4){225}}
\put(300,300){\line(3,5){180}}
\put(300,300){\vector(4,1){300}}
\put(300,300){\vector(4,3){300}}
\put(300,300){\line(4,5){240}}
\put(300,300){\line(5,1){300}}
\put(300,300){\line(5,2){300}}
\put(300,300){\line(5,3){300}}
\put(300,300){\line(5,4){300}}
\put(300,300){\line(5,6){250}}
\put(300,300){\line(6,1){300}}
\put(300,300){\line(6,5){300}}
\put(300,300){\vector(1,-1){300}}
\put(300,300){\vector(1,-2){150}}
\put(300,300){\vector(1,-3){100}}
\put(300,300){\vector(1,-4){75}}
\put(300,300){\line(1,-5){60}}
\put(300,300){\line(1,-6){50}}
\put(300,300){\vector(2,-1){300}}
\put(300,300){\vector(2,-3){200}}
\put(300,300){\line(2,-5){120}}
\put(300,300){\vector(3,-1){300}}
\put(300,300){\vector(3,-2){300}}
\put(300,300){\vector(3,-4){225}}
\put(300,300){\line(3,-5){180}}
\put(300,300){\vector(4,-1){300}}
\put(300,300){\vector(4,-3){300}}
\put(300,300){\line(4,-5){240}}
\put(300,300){\line(5,-1){300}}
\put(300,300){\line(5,-2){300}}
\put(300,300){\line(5,-3){300}}
\put(300,300){\line(5,-4){300}}
\put(300,300){\line(5,-6){250}}
\put(300,300){\line(6,-1){300}}
\put(300,300){\line(6,-5){300}}
\put(300,300){\vector(-1,1){300}}
\put(300,300){\vector(-1,2){150}}
\put(300,300){\vector(-1,3){100}}
\put(300,300){\vector(-1,4){75}}
\put(300,300){\line(-1,5){60}}
\put(300,300){\line(-1,6){50}}
\put(300,300){\vector(-2,1){300}}
\put(300,300){\vector(-2,3){200}}
\put(300,300){\line(-2,5){120}}
\put(300,300){\vector(-3,1){300}}
\put(300,300){\vector(-3,2){300}}
\put(300,300){\vector(-3,4){225}}
\put(300,300){\line(-3,5){180}}
\put(300,300){\vector(-4,1){300}}
\put(300,300){\vector(-4,3){300}}
\put(300,300){\line(-4,5){240}}
\put(300,300){\line(-5,1){300}}
\put(300,300){\line(-5,2){300}}
\put(300,300){\line(-5,3){300}}
\put(300,300){\line(-5,4){300}}
\put(300,300){\line(-5,6){250}}
\put(300,300){\line(-6,1){300}}
\put(300,300){\line(-6,5){300}}
\put(300,300){\vector(-1,-1){300}}
\put(300,300){\vector(-1,-2){150}}
\put(300,300){\vector(-1,-3){100}}
\put(300,300){\vector(-1,-4){75}}
\put(300,300){\line(-1,-5){60}}
\put(300,300){\line(-1,-6){50}}
\put(300,300){\vector(-2,-1){300}}
\put(300,300){\vector(-2,-3){200}}
\put(300,300){\line(-2,-5){120}}
\put(300,300){\vector(-3,-1){300}}
\put(300,300){\vector(-3,-2){300}}
\put(300,300){\vector(-3,-4){225}}
\put(300,300){\line(-3,-5){180}}
\put(300,300){\vector(-4,-1){300}}
\put(300,300){\vector(-4,-3){300}}
\put(300,300){\line(-4,-5){240}}
\put(300,300){\line(-5,-1){300}}
\put(300,300){\line(-5,-2){300}}
\put(300,300){\line(-5,-3){300}}
\put(300,300){\line(-5,-4){300}}
\put(300,300){\line(-5,-6){250}}
\put(300,300){\line(-6,-1){300}}
\put(300,300){\line(-6,-5){300}}
\end{Picture}
\hfill
\begin{Picture}[23](600,600)
\put(300,300){\vector(1,0){300}}
\put(300,300){\vector(-1,0){300}}
\put(300,300){\vector(0,1){300}}
\put(300,300){\vector(0,-1){300}}
\put(300,300){\vector(1,1){300}}
\put(300,300){\vector(1,2){150}}
\put(300,300){\vector(1,3){100}}
\put(300,300){\vector(1,4){75}}
\put(300,300){\vector(1,5){60}}
\put(300,300){\vector(1,6){50}}
\put(300,300){\vector(2,1){300}}
\put(300,300){\vector(2,3){200}}
\put(300,300){\vector(2,5){120}}
\put(300,300){\vector(3,1){300}}
\put(300,300){\vector(3,2){300}}
\put(300,300){\vector(3,4){225}}
\put(300,300){\vector(3,5){180}}
\put(300,300){\vector(4,1){300}}
\put(300,300){\vector(4,3){300}}
\put(300,300){\vector(4,5){240}}
\put(300,300){\vector(5,1){300}}
\put(300,300){\vector(5,2){300}}
\put(300,300){\vector(5,3){300}}
\put(300,300){\vector(5,4){300}}
\put(300,300){\vector(5,6){250}}
\put(300,300){\vector(6,1){300}}
\put(300,300){\vector(6,5){300}}
\put(300,300){\vector(1,-1){300}}
\put(300,300){\vector(1,-2){150}}
\put(300,300){\vector(1,-3){100}}
\put(300,300){\vector(1,-4){75}}
\put(300,300){\vector(1,-5){60}}
\put(300,300){\vector(1,-6){50}}
\put(300,300){\vector(2,-1){300}}
\put(300,300){\vector(2,-3){200}}
\put(300,300){\vector(2,-5){120}}
\put(300,300){\vector(3,-1){300}}
\put(300,300){\vector(3,-2){300}}
\put(300,300){\vector(3,-4){225}}
\put(300,300){\vector(3,-5){180}}
\put(300,300){\vector(4,-1){300}}
\put(300,300){\vector(4,-3){300}}
\put(300,300){\vector(4,-5){240}}
\put(300,300){\vector(5,-1){300}}
\put(300,300){\vector(5,-2){300}}
\put(300,300){\vector(5,-3){300}}
\put(300,300){\vector(5,-4){300}}
\put(300,300){\vector(5,-6){250}}
\put(300,300){\vector(6,-1){300}}
\put(300,300){\vector(6,-5){300}}
\put(300,300){\vector(-1,1){300}}
\put(300,300){\vector(-1,2){150}}
\put(300,300){\vector(-1,3){100}}
\put(300,300){\vector(-1,4){75}}
\put(300,300){\vector(-1,5){60}}
\put(300,300){\vector(-1,6){50}}
\put(300,300){\vector(-2,1){300}}
\put(300,300){\vector(-2,3){200}}
\put(300,300){\vector(-2,5){120}}
\put(300,300){\vector(-3,1){300}}
\put(300,300){\vector(-3,2){300}}
\put(300,300){\vector(-3,4){225}}
\put(300,300){\vector(-3,5){180}}
\put(300,300){\vector(-4,1){300}}
\put(300,300){\vector(-4,3){300}}
\put(300,300){\vector(-4,5){240}}
\put(300,300){\vector(-5,1){300}}
\put(300,300){\vector(-5,2){300}}
\put(300,300){\vector(-5,3){300}}
\put(300,300){\vector(-5,4){300}}
\put(300,300){\vector(-5,6){250}}
\put(300,300){\vector(-6,1){300}}
\put(300,300){\vector(-6,5){300}}
\put(300,300){\vector(-1,-1){300}}
\put(300,300){\vector(-1,-2){150}}
\put(300,300){\vector(-1,-3){100}}
\put(300,300){\vector(-1,-4){75}}
\put(300,300){\vector(-1,-5){60}}
\put(300,300){\vector(-1,-6){50}}
\put(300,300){\vector(-2,-1){300}}
\put(300,300){\vector(-2,-3){200}}
\put(300,300){\vector(-2,-5){120}}
\put(300,300){\vector(-3,-1){300}}
\put(300,300){\vector(-3,-2){300}}
\put(300,300){\vector(-3,-4){225}}
\put(300,300){\vector(-3,-5){180}}
\put(300,300){\vector(-4,-1){300}}
\put(300,300){\vector(-4,-3){300}}
\put(300,300){\vector(-4,-5){240}}
\put(300,300){\vector(-5,-1){300}}
\put(300,300){\vector(-5,-2){300}}
\put(300,300){\vector(-5,-3){300}}
\put(300,300){\vector(-5,-4){300}}
\put(300,300){\vector(-5,-6){250}}
\put(300,300){\vector(-6,-1){300}}
\put(300,300){\vector(-6,-5){300}}
\end{Picture}
\hfill
}
\caption{\LaTeX{} and \pmg{} vectors\label{FigA}}
\end{figure}
\begin{table}
\begin{center}
\begin{tabular}{||c|c||c|c||c|c||}
\hline
$(1,1)$ & $(1,1)$ & $(4,1)$ & $(4,1)$ & $(5,3)$ & $(3,2)$ \\
\hline
$(2,1)$ & $(2,1)$ & $(4,3)$ & $(4,3)$ & $(5,4)$ & $(4,3)$ \\
\hline
$(3,1)$ & $(3,1)$ & $(5,1)$ & $(4,1)$ & $(6,1)$ & $(4,1)$ \\
\hline
$(3,2)$ & $(3,2)$ & $(5,2)$ & $(3,1)$ & $(6,5)$ & $(4,3)$ \\
\hline
\end{tabular}
\end{center}
\caption{Relation between line slopes
and approximate vector slopes\label{Tab1}}
\end{table}
\LaTeX{} allows to put an arrow just at the end of the vector.
The command \verb?\Vector? enables to put
along the vector {\em arbitrary} arrows with different orientation
(see Fig.~\ref{TwoVec}). The predefined arrow styles
assign a letter to each position and orientation
of the arrow along the {\tt Vector}.
\begin{figure}
\centerline{\fbox{\begin{Picture}[50](300,40)
\put(20,5){\Vector[bme](1,0){100}}
\put(20,30){\Vector[BME](1,0){100}}
\put(170,5){\Vector[xZmM](1,0){100}}
\put(170,30){\Vector[XzmM](1,0){100}}
\end{Picture}}}
\caption{Multi-arrow vectors\label{TwoVec}}
\end{figure}
The arrows shown on Fig.~\ref{TwoVec} are drawn by the commands
\begin{quote}
\begin{verbatim}
\begin{picture}(300,40)
\put(20,5){\Vector[bme](1,0){100}}
\put(20,30){\Vector[BME](1,0){100}}
\put(170,5){\Vector[xmMZ](1,0){100}}
\put(170,30){\Vector[XmMz](1,0){100}}
. . . . . . . .
\end{verbatim}
\end{quote}
Letter {\tt e} corresponds to normally oriented arrow
at the end of vector, {\tt E} --- to reverse oriented arrow,
{\tt b} and {\tt B} --- to (normally and reverse oriented) arrows at the
beginning of the vector, {\tt m} and {\tt M} --- to the arrows
at the middle, etc.
The list of letters as the optional parameter produces
the set of arrows along the {\tt Vector}.
It is possible to create user-defined styles of arrows using the commands
\verb?\VectorStyle? and \verb?\VectorShiftStyle? (where the parameters
in square brackets are {\em obligatory}, not {\em optional}):
\begin{itemize}
\item[] {\tt\bs{}VectorStyle[{\em style-char}]\{{\em shift-char}\}\{{\em position}\}\{{\em orientation}\}}
\begin{itemize}
\item {\em style-char} is the character which is assigned to vector style;
\item {\em shift-char} is the character which defines the relative shift
of the arrow with respect to {\em position} --- see command
{\tt\bs{VectorShiftStyle}} below;
\item {\em position} is the real value which defines the relative position
of the arrow along the vector (0.0 means starting point of the vector,
1.0 means end point of the vector) which usually is in a range
$0..1$ but can be greater 1 or less 0 as well;
\item {\em orientation} is the character which defines the orientation
of the arrow with respect to the standard direction of the vecrtor:
{\tt b} means {\em backward} direction, {\tt f} (or any other
character) means forward direction.
\end{itemize}
\item[] {\tt\bs{}VectorShiftStyle[{\em style-char}]\{{\em shift}\}}
\begin{itemize}
\item {\em style-char} is the character which is assigned to vector-shift-style;
\item {\em shift} is the relative shift in {\tt pt} of the arrow along
the arrow direction with respect to the positioning point
(it is necessary to note that the length of the arrow body in \LaTeX{}
is equal to {\tt 4pt}).
\end{itemize}
\end{itemize}
Examples:
\begin{itemize}
\item standard {\em vector-shift-styles}:
\begin{description}
\item[\quad{\tt\bs{}VectorShiftStyle[e]\{0pt\}}]
--- style `{\tt e}' means that
the end of the arrow is positioned strictly at the point,
specified by the parameter {\em position};
\item[\quad{\tt\bs{}VectorShiftStyle[b]\{4pt\}}]
--- style `{\tt b}' means that
the backside of the arrow is positioned at the point,
specified by the parameter {\em position};
\item[\quad{\tt\bs{}VectorShiftStyle[m]\{3pt\}}]
--- style `{\tt m}' means that
the middle of the arrow body is positioned at the point,
specified by the parameter {\em position};
\item[\quad{\tt\bs{}VectorShiftStyle[E]\{-2pt\}}]
--- style `{\tt E}' means that
the end of the arrow is positioned a little bit before
(i.e., by {\tt 2pt}) the point,
specified by the parameter {\em position};
\item[\quad{\tt\bs{}VectorShiftStyle[B]\{6pt\}}]
--- style `{\tt B}' means that
the backside of the arrow is positioned a little bit after
(i.e., by {\tt 2pt}) the point,
specified by the parameter {\em position}.
\end{description}
\item standard {\em vector-styles}:
\begin{description}
\item[\quad{\tt\bs{}VectorStyle[e]\{e\}\{1.0\}\{f\}}]
--- style `{\tt e}' means that
the end of the arrow is positioned at the end of the vector,
and its orientation is along the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[E]\{b\}\{1.0\}\{b\}}]
--- style `{\tt E}' means that
the backside of the arrow is positioned at the end of the vector,
and its orientation is rotated by $180^{\circ}$ with
respect to the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[b]\{b\}\{0.0\}\{f\}}]
--- style `{\tt b}' means that
the backside of the arrow is positioned at the beginning of the vector,
and its orientation is along the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[B]\{e\}\{0.0\}\{b\}}]
--- style `{\tt B}' means that
the end of the arrow is positioned at the beginning of the vector,
and its orientation is rotated by $180^{\circ}$ with
respect to the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[m]\{m\}\{0.0\}\{f\}}]
--- style `{\tt m}' means that
the middle of the arrow body is positioned at the middle of the vector,
and its orientation is along the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[M]\{m\}\{0.0\}\{b\}}]
--- style `{\tt M}' means that
the middle of the arrow body is positioned at the middle of the vector,
and its orientation is rotated by $180^{\circ}$ with
respect to the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[x]\{E\}\{1.0\}\{f\}}]
--- style `{\tt x}' means that
the end of the arrow is positioned a little bit before
the end of the vector,
and its orientation is along the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[X]\{B\}\{1.0\}\{b\}}]
--- style `{\tt X}' means that
the backside of the arrow is positioned a little bit before
the end of the vector,
and its orientation is rotated by $180^{\circ}$ with
respect to the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[z]\{B\}\{0.0\}\{f\}}]
--- style `{\tt z}' means that
the backside of the arrow is positioned a little bit after
the beginning of the vector,
and its orientation is along the vector orientation;
\item[\quad{\tt\bs{}VectorStyle[Z]\{E\}\{0.0\}\{b\}}]
--- style `{\tt Z}' means that
the end of the arrow body is positioned a little bit after
the beginning of the vector,
and its orientation is rotated by $180^{\circ}$ with
respect to the vector orientation.
\end{description}
\end{itemize}
\section*{Circles}
The range of the diameters for circles and disks
(black circular blobs) available in \LaTeX{} is very restricted.
It can be enlarged by using the magnified pseudo-graphical \LaTeX{} fonts
if the User does not have something better at his/her disposal
like {\tt curves.sty}, \PiC\TeX{} or MF\PiC.
The disadvantage of this method is that the width
of the lines is magnified too which is inconsistent
with the rigorous \TeX{} accuracy requirements,
but for {\em poor man graphics} these circles
can be satisfactory.
The scaling of circular fonts is performed by the commands
\begin{quote}
{\tt\bs{}scaledcircle\lb{\em factor}\rb}
\\
{\tt\bs{}magcircle\lb{\em magstep}\rb}
\end{quote}
which are indentical to \TeX{} commands
\begin{quote}
{\tt\bs{}font ... scaled {\em factor}}
\\
{\tt\bs{}font ... scaled \bs{}magstep {\em magstep}}
\end{quote}
The valid {\em magstep} values are {\tt 0}, {\tt h},
{\tt 1}, {\tt 2}, {\tt 3}, {\tt 4}, {\tt 5}.
The values {\em factor}=1000 and {\em magstep}=0
correspond to {\em one-to-one} magnification.
The circle magnification
like other \TeX{} commands returns to its
previous value outside the group inside which it was changed.
\begin{figure}
\def\myframe#1{\begin{picture}(0,0)
\put(0,#1){\line(1,0){#1}}
\put(0,#1){\line(-1,0){#1}}
\put(0,-#1){\line(1,0){#1}}
\put(0,-#1){\line(-1,0){#1}}%
\put(#1,0){\line(0,1){#1}}%
\put(#1,0){\line(0,-1){#1}}%
\put(-#1,0){\line(0,1){#1}}%
\put(-#1,0){\line(0,-1){#1}}%
\end{picture}}
\begin{center}
\begin{Picture}[50](200,100)(-100,-50)
\unitlength=1pt
\put(-50,0){\thicklines\circle{80}}
\put(-50,0){\myframe{40}}
\put(50,0){\scaledcircle{2000}\circle{80}}
\put(50,0){\myframe{40}}
\end{Picture}
\end{center}
\caption{Magnified circles\label{Fig1}}
\end{figure}
To calculate properly the circle character code
after the magnification it was necessary to redefine
some internal \LaTeX{} commands like
{\tt\bs{}@getcirc} and {\tt\bs{}@circ}. To reflect
in magnified fonts the changes of the line thickness,
the commands {\tt\bs{}thinlines} and {\tt\bs{}thicklines}
are corrected also.
The example on Fig.~\ref{Fig1} is produced by
\begin{quote}
\begin{verbatim}
\setlength{\unitlength}{1pt}
\begin{picture}(200,100)(-100,-50)
\put(-50,0){\thicklines\circle{80}}
\put(-50,0){\squareframe{40}}
\magcircle{4}
\put(50,0){\thinlines\circle{80}}
\put(50,0){\squareframe{40}}
\end{picture}
\end{verbatim}
\end{quote}
where {\tt\bs{}squareframe} is the user-defined command which draws
the square with the specified side and the centrum at (0,0).
It shows how the usage of the magnified circles enables to overcome
the upper limit 40pt of the diameter of the \LaTeX{} cirles.
It is necessary to note that
the thickness of the {\tt\bs{}thinline} circles
after magnification with
{\tt\bs{}magcircle\lb{}4\rb}
corresponds approximately to the thickness
of the ordinary {\tt\bs{}thickline} circles
($\hbox{\tt\bs{}magstep4}\approx2000$).
\bigskip
\begin{figure}
\begin{center}
\begin{Picture}[50](200,60)(-100,-30)
\put(-60,10){\thicklines\tlcircle{50}}
\put(-60,10){\circle*{1}}
\put(-60,10){\line(-1,0){25}}
\put(-60,10){\line(0,1){25}}
\put(-60,-10){\thicklines\blcircle{50}}
\put(-60,-10){\circle*{1}}
\put(-60,-10){\line(-1,0){25}}
\put(-60,-10){\line(0,-1){25}}
\put(-40,10){\thicklines\trcircle{50}}
\put(-40,10){\circle*{1}}
\put(-40,10){\line(1,0){25}}
\put(-40,10){\line(0,1){25}}
\put(-40,-10){\thicklines\brcircle{50}}
\put(-40,-10){\circle*{1}}
\put(-40,-10){\line(1,0){25}}
\put(-40,-10){\line(0,-1){25}}
\put(40,10){\thicklines\BRcircle{50}}
\put(40,10){\circle*{1}}
\put(40,10){\line(-1,0){25}}
\put(40,10){\line(0,1){25}}
\put(40,-10){\thicklines\TRcircle{50}}
\put(40,-10){\circle*{1}}
\put(40,-10){\line(-1,0){25}}
\put(40,-10){\line(0,-1){25}}
\put(60,10){\thicklines\BLcircle{50}}
\put(60,10){\circle*{1}}
\put(60,10){\line(1,0){25}}
\put(60,10){\line(0,1){25}}
\put(60,-10){\thicklines\TLcircle{50}}
\put(60,-10){\circle*{1}}
\put(60,-10){\line(1,0){25}}
\put(60,-10){\line(0,-1){25}}
\end{Picture}
\end{center}
\caption{$90^{\circ}$ circular segments\label{Fig2}}
\end{figure}
Additional macro enable to
draw $90^{\circ}$ qu\-a\-ters of the circles explicitly without
tricky refinement of the parameters of the command {\tt\bs{}oval}:
\begin{quote}
{\tt\bs{}trcircle\lb{\em diam}\rb} $\longrightarrow$ {\tt\bs{}oval[tr]...}
\\
{\tt\bs{}brcircle\lb{\em diam}\rb} $\longrightarrow$ {\tt\bs{}oval[br]...}
\\
{\tt\bs{}tlcircle\lb{\em diam}\rb} $\longrightarrow$ {\tt\bs{}oval[tl]...}
\\
{\tt\bs{}blcircle\lb{\em diam}\rb} $\longrightarrow$ {\tt\bs{}oval[bl]...}
\end{quote}
The centrum of the circular arc is positioned strictly at the
point which is the argument of the corresponding {\tt\bs{}put}.
The commands {\tt\bs{}TRcircle}, {\tt\bs{}BRcircle}, {\tt\bs{}TLcircle},
{\tt\bs{}BLcircle} draw the $90^{\circ}$ circular quaters
with the reference point positioned at the corner
instead of the centrum.
Similarly, the commands
\begin{itemize}
\item[] {\tt\bs{}tlsector}, {\tt\bs{}TLsector},
{\tt\bs{}blsector}, {\tt\bs{}BLsector}, \dots
\end{itemize}
draw circular segments together with horizontal
and vertical radii. The proper positioning of the
circular segments requires special precausions
since it is necessary to take into account the
line thickness and the specific alignment of the
circular elements inside the character boxes.
The example on Fig~\ref{Fig2}
shows the usage of these commands:
\begin{quote}
\begin{verbatim}
\begin{picture}(200,60)(-100,-30)
\put(-60,10){\thicklines\tlcircle{50}}
\put(-60,10){\circle*{1}}
\put(-60,10){\line(-1,0){25}}
\put(-60,10){\line(0,1){25}}
\put(40,10){\thicklines\BRcircle{50}}
\put(40,10){\circle*{1}}
\put(40,10){\line(-1,0){25}}
\put(40,10){\line(0,1){25}}
... ... ...
\end{verbatim}
\end{quote}
The actual diameter of the circular segment
is adjusted like it is done with the circles.
The commands {\tt\bs{}scaledcircle} and {\tt\bs{}magcircle}
affect the thickness and the diameter of these circular segments also.
\section*{Frames}
\def\DiskCorner{8pt}
\def\RoundCorner{6pt}
\def\LineCorner{10pt}
\def\RectCorner{3pt}
\framesep{-2pt}
\shadowsep{1pt}
\shadowsize{8pt}
\shadowshrink{1}
The set of frames which are available in \LaTeX{} is
enhanced in \pmg{} --- except solid and dashed rectangular frames
it is possible to draw double and tripple frames in a variety
of styles (Fig.~\ref{ThrFr}). The commands
\verb?\frameBox?, \verb?\ovalBox?, \verb?\octalBox?,
\verb?\astroBox?, \verb?\parquetBox? have the same structure
as the command \verb?\framebox?, but they draw the
corresponding fancy frames:
\begin{quote}
\begin{verbatim}
\put(0,0){\ovalBox(100,50){oval}}
\put(70,0){\astroBox(100,50){astro}}
. . . . . . . . . . . . .
\end{verbatim}
\end{quote}
The ordinary solid frame is drawn by \verb?\frameBox?,
the double and triple frames are drawn by \verb?\frameBoX?
and \verb?\frameBOX?, respectively. Similar commands exist for
double and triple fancy frames.
The User can prepare the personal macro commands to draw frame corners
and extend the variety of fancy frames up to the limit of his/her fantasy.
\begin{figure}
\centerline{\begin{Picture}[50](2000,800)
\put(100,0){\parquetBox(500,300){parquet}}
\put(100,500){\octalBox(500,300){octal}}
\put(700,0){\ovalBoX(500,300){oval}}
\put(700,500){\astroBoX(500,300){astro}}
\put(1300,0){\dashBOX{10}(500,300){dash}}
\put(1300,500){\frameBOX(500,300){frame}}
\end{Picture}}
\caption{Examples of frame styles\label{ThrFr}}
\end{figure}
\begin{figure}
\centerline{\begin{Picture}[50](600,100)(-30,0)
\thicklines
\rombboxstyle(2,1,1pt)
\put(20,20){\rombBox[z](50,50){Box}}
\put(220,20){\rombBoX[z](50,50){BoX}}
\put(440,20){\rombBOX[z](50,50){BOX}}
\end{Picture}}
\caption{Romb-style frames\label{RombFram}}
\end{figure}
\begin{figure}
\centerline{\begin{Picture}[50](800,200)(-130,0)
\put(-100,20){\frameBox(100,100){}}
\put(220,20){\frameBox(100,100){}}
\put(540,20){\frameBox(100,100){}}
\thicklines
\rombboxstyle(2,1,1pt)
\put(-100,20){\rombBox[x](100,100){\tt x}}
\put(220,20){\rombBox[y](100,100){\tt y}}
\put(540,20){\rombBox[z](100,100){\tt z}}
\end{Picture}}
\caption{Alignment of romb boxes\label{FigRR}}
\end{figure}
More exotic variant of a frame can be created using
the commands {\tt\bs{}rombBox}, {\tt\bs{}rombBoX}
or {\tt\bs{}rombBOX} as it is shown on Fig.~\ref{RombFram}.
The style (i.e., inclination of the romb sides)
and the distance between multiple rombs
are set by the command {\tt\bs{}rombboxstyle}
\begin{description}
\item[\quad{\tt\bs{}rombboxstyle($\Delta x$,$\Delta y$,{\em len})}]
--- defines the inclination for the romb boxes and for the
corners of the {tt octal} frames and shadows.
Parameters $\Delta x$, $\Delta y$ specifies the inclination,
and the parameter {\em len} --- the length of the inclined
corners (for {\tt octal} frames and shadows only) in a style
similar to the command
{\tt\bs{}line($\Delta x$,$\Delta y$)\{{\em len}\}}.
\end{description}
with the default settings as
\begin{center}
{\tt\bs{}rombboxstyle(2,1,2pt)}
\end{center}
The alignment of the romb around the box specified
for these commands can be varied using
additional optional parameter(see Fig.~\ref{FigRR}. The full format of the
{\tt rombbox} commands is:
\begin{itemize}
\item[]
{\tt\bs{}rombBox[{\em char}]($\Delta X$,$\Delta Y$)\{{\em text}\}}
\end{itemize}
where
{\em char} -is one-character parameter which
defines the alignment of the romb frame with respect to
rectangle $(\Delta X,\Delta Y)$:
{\tt x} (default value) means that the $x$-axis coinsides with the
$x$-axis of the rectangle,
{\tt y} means that the $y$-axis coinsides with the
$y$-axis of the rectangle,
{\tt z} means that the corners of the rectangle are at the
sides of the romb frame.
\begin{figure}
\begin{center}
\begin{Picture}[50](2000,1100)(0,-500)
\put(0,50){\frameBox[r](500,200){r}}
\put(0,400){\frameBox[R](500,200){R}}
\put(700,50){\frameBox[p](500,200){p}}
\put(700,400){\frameBox[P](500,200){P}}
\put(1400,50){\frameBox[o](500,200){o}}
\put(1400,400){\frameBox[O](500,200){O}}
\shadowsize{12pt}
\put(100,-400){\frameBox[A](800,300){A}}
\put(1100,-400){\frameBox[L](800,300){L}}
\end{Picture}
\end{center}
\caption{Examples of shadows\label{TypShad}}
\end{figure}
\begin{figure}
\begin{center}
\begin{Picture}[35](2000,1500)
\shadowcorner{B}
\put(0,0){\frameBoX[oPRpAORr](1000,500){Shadows}}
\end{Picture}
\end{center}
\caption{Multiple shadows\label{TypShad2}}
\end{figure}
Each rectangular box has the optional parameter which enable to specify
the ``shadows'' around this box. Each shadow style has a special letter,
and the list of letters as the optional parameter draws a list of shadows.
The standard shodow types are shown on Fig.~\ref{TypShad}.
It is possible to draw several shadows of different types
and around arbitrary corner of the frame as it is shown
on Fig.~\ref{TypShad2}:
\begin{quote}
\begin{verbatim}
\unitlength=10pt
\begin{picture}(20,15)
\shadowcorner{B}
\put(0,0){\frameBoX[oPR...](10,5){...}}
\end{picture}
\end{verbatim}
\end{quote}
The parameter of the shadows --- thickness, corner size,
additional shift, etc., --- can be varied
by the following User commands:
\begin{description}
\item[\quad{\tt\bs{}framesep\{{\em dist}\}}]
--- set the distance between double and triple
frames. It can be negative as well as positive.
Default value: {\tt\framesep\{2pt\}}.
\item[\quad{\tt\bs{}shadowsep\{{\em dist}\}}]
--- set the gap distance between the frame and the shadow
or between multiple shadows.
Default value: {\tt\shadowsep\{1pt\}}.
\item[\quad{\tt\bs{}shadowsize\{{\em dist}\}}]
--- set the depth of the shadow.
Default value: {\tt\shadowsize\{5pt\}}.
\item[\quad{\tt\bs{}shadowshrink\{{\em factor}\}}]
--- set the contraction factor for the subsequent shadows.
Default value: {\tt\shadowshrink\{1\}}.
\item[\quad{\tt\bs{}shadowcorner\{{\em char}\}}]
--- set the corner for the shadows.
Valid values: {\tt A}, {\tt B}, {\tt C}, {\tt D}.
Default value: {\tt\bs{}shadowcorner\{A\}}.
\item[\quad{\tt\bs{}RoundCorner\{{\em radius}\}}]
--- set the {\em radius} for the circular arcs
at the corners of oval frames and shadows with rounded corners.
Default value: {\tt\RoundCorner\{5pt\}}.
\item[\quad{\tt\bs{}DiskCorner\{{\em diam}\}}]
--- set the {\em diameter} for the bulbs
at the corners of black shadows with rounded corners.
Default value: {\tt\DiskCorner\{5pt\}}.
\item[\quad{\tt\bs{}LineCorner\{{\em len}\}}]
--- set the {\em length} for the inclined corners
of octal frames and shadows.
Default value: {\tt\LineCorner\{10pt\}}.
\item[\quad{\tt\bs{}RectCorner\{{\em size}\}}]
--- set the {\em size} for the parquette corners
of octal frames and shadows.
Default value: {\tt\RectCorner\{5pt\}}.
\end{description}
\section*{Rombs}
Special command enable to draw rombs (see Fig.~\ref{FigRomb}):
\begin{itemize}
\item[] {\tt \bs{}put({\em x})({\em y})
\{\bs{}romb[{\em pos}]($\Delta x$,$\Delta y$)\{{\em len}\}\}}
\end{itemize}
where:
\begin{itemize}
\item[] $(x,y)$ --- position of the romb inside {\tt picture};\\
{\em pos} --- one-character option which shows the alignment of romb
with respect to $(x,y)$: {\tt r} means right corner,
{\tt l} means left corner; {\tt c} means center (default);\\
$(\Delta x,\Delta y)$ and {\em len} are the parameters which
define the inclination and the length of the romb side
(similarly to {\tt\bs{}line}).
\end{itemize}
\begin{figure}
\centerline{\begin{Picture}[75](800,200)(-30,-100)
\thicklines
\put(20,20){\romb[c](2,1){90}}
\put(20,20){\circle*{10}}
\put(20,-60){\makebox(0,0){\tt c}}
\put(220,20){\romb[l](2,1){90}}
\put(220,20){\circle*{10}}
\put(220,-60){\makebox(0,0){\tt l}}
\put(640,20){\romb[r](2,1){90}}
\put(640,20){\circle*{10}}
\put(640,-60){\makebox(0,0){\tt r}}
\end{Picture}}
\caption{Alignment of rombes\label{FigRomb}}
\end{figure}
\section*{Automatically scaled pictures}
The idea of the macros which are responsible for these functions
is to calculate the {\tt \bs{}unitlength} va\-lue in terms of the
{\em relative fraction} of the page width instead of explicit
specifying its value in points, centimeters, inches, etc.
The command {\tt\bs{}pictureunit[{\em percent}]\lb{\em x-size}\rb}
selects the value of the variable {\tt\bs{}unitlength} so that the picture
which is {\em x-size} units in width occupies {\em percent}
width of the paper.
The environment {\tt Picture} combines the automatic calculation of
the {\tt\bs{}unitlength} with the {\tt\bs{}begin\lb{}picture\rb} --
{\tt\bs{}end\lb{}picture\rb}.
By default {\em percent}=100 is used which corresponds to 90\%
of the paper width. The default {\em percent} value can be redefined
by the command
\begin{center}
{\tt\bs{}def\bs{}defaultpercent\lb{\em percent}\rb}.
\end{center}
Examples:
\begin{center}
\begin{tabular}{l}
{\tt\bs{}pictureunit[75]\lb{}120\rb}\\
{\tt\bs{}begin\lb{}picture\rb(120,80)}\\
\dots\\
{\tt\bs{}end\lb{}picture\rb}\\
\phantom{.}\\
{\tt\bs{}begin\lb{}Picture\rb[75](120,80)}\\
\dots\\
{\tt\bs{}end\lb{}Picture\rb}
\end{tabular}
\end{center}
These macros are inspired by {\tt fullpict.sty} by Bruce Shawyer.
Carefull examination of the file {\tt fullpict.sty}
shows some bugs/warnings which require correction:
\begin{itemize}
\item
each automatic scaling of {\tt \bs{}unitlength}
allocates a new counter;
\item
automatic scaling uses {\tt\bs{}textwidth}
as the reference width which results to improper functioning
inside list and {\tt minipage} environments;
\item
the environments {\tt fullpicture}, {\tt halfpicture}
and {\tt scalepicture} are centered internally
with {\tt\bs{}begin\lb{}center\rb} --- {\tt\bs{}end\lb{}center\rb}
which prevents the proper positioning of the picture in most cases.
\end{itemize}
The \pmgs{} macros calculates the dimension
{\tt\bs{}unitlength}
using the value {\tt\bs{}hsize}, and as a result
it works corectly also for {\tt twocolumn} mode,
inside the {\em list} environments
{\tt itemize}, {\tt enumerate}, etc.
(for example, all the figures in this paper
are drawn using the environment {\tt Picture}).
The automatic centering and repeatedly allocation
of the registers are corrected as well.
\section*{Acknowledgements}
The authors are grateful to Dr.\ Kees van der Laan
for the possibility to present the results of our research
at the EURO\TeX'95 (Aarnhem, Netherland).
One of the authors (A.S.Berdnikov) would like to express his warmest
thanks to Dr.\ A.Compagner from the Delft University of Technology
who spent a lot of his time and efforts trying to transform two naive
students from Russia (namely, him and his co-worker Sergey Turtia)
into serious scientists.
This research was partially supported by a grant
from the Dutch Organization for Scientific Research
(NWO grant No 07--30--007).
\end{document}
|