1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
|
% \iffalse meta-comment
%
%% File: l3seq.dtx Copyright (C) 1990-2014 The LaTeX3 Project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the "l3kernel bundle" (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX3 Project.
%%
%% -----------------------------------------------------------------------
%
%<*driver>
\documentclass[full]{l3doc}
%</driver>
%<*driver|package>
\GetIdInfo$Id: l3seq.dtx 5354 2014-08-23 01:35:39Z bruno $
{L3 Sequences and stacks}
%</driver|package>
%<*driver>
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3seq} package\\ Sequences and stacks^^A
% \thanks{This file describes v\ExplFileVersion,
% last revised \ExplFileDate.}^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% \LaTeX3 implements a \enquote{sequence} data type, which contain
% an ordered list of entries which may contain any \meta{balanced text}.
% It is possible to map functions to sequences such that the function
% is applied to every item in the sequence.
%
% Sequences are also used to implement stack functions in \LaTeX3. This
% is achieved using a number of dedicated stack functions.
%
% \section{Creating and initialising sequences}
%
% \begin{function}{\seq_new:N, \seq_new:c}
% \begin{syntax}
% \cs{seq_new:N} \meta{sequence}
% \end{syntax}
% Creates a new \meta{sequence} or raises an error if the name is
% already taken. The declaration is global. The \meta{sequence} will
% initially contain no items.
% \end{function}
%
% \begin{function}{\seq_clear:N, \seq_clear:c, \seq_gclear:N, \seq_gclear:c}
% \begin{syntax}
% \cs{seq_clear:N} \meta{sequence}
% \end{syntax}
% Clears all items from the \meta{sequence}.
% \end{function}
%
% \begin{function}
% {\seq_clear_new:N, \seq_clear_new:c, \seq_gclear_new:N, \seq_gclear_new:c}
% \begin{syntax}
% \cs{seq_clear_new:N} \meta{sequence}
% \end{syntax}
% Ensures that the \meta{sequence} exists globally by applying
% \cs{seq_new:N} if necessary, then applies \cs{seq_(g)clear:N} to leave
% the \meta{sequence} empty.
% \end{function}
%
% \begin{function}
% {
% \seq_set_eq:NN, \seq_set_eq:cN, \seq_set_eq:Nc, \seq_set_eq:cc,
% \seq_gset_eq:NN, \seq_gset_eq:cN, \seq_gset_eq:Nc, \seq_gset_eq:cc
% }
% \begin{syntax}
% \cs{seq_set_eq:NN} \meta{sequence_1} \meta{sequence_2}
% \end{syntax}
% Sets the content of \meta{sequence_1} equal to that of
% \meta{sequence_2}.
% \end{function}
%
% \begin{function}[added = 2014-07-17]
% {
% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
% \seq_set_from_clist:Nn, \seq_set_from_clist:cn,
% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
% }
% \begin{syntax}
% \cs{seq_set_from_clist:NN} \meta{sequence} \meta{comma-list}
% \end{syntax}
% Converts the data in the \meta{comma list} into a \meta{sequence}:
% the original \meta{comma list} is unchanged.
% \end{function}
%
% \begin{function}[added = 2011-08-15, updated = 2012-07-02]
% {
% \seq_set_split:Nnn , \seq_set_split:NnV ,
% \seq_gset_split:Nnn, \seq_gset_split:NnV
% }
% \begin{syntax}
% \cs{seq_set_split:Nnn} \meta{sequence} \Arg{delimiter} \Arg{token list}
% \end{syntax}
% Splits the \meta{token list} into \meta{items} separated
% by \meta{delimiter}, and assigns the result to the \meta{sequence}.
% Spaces on both sides of each \meta{item} are ignored,
% then one set of outer braces is removed (if any);
% this space trimming behaviour is identical to that of
% \pkg{l3clist} functions. Empty \meta{items} are preserved by
% \cs{seq_set_split:Nnn}, and can be removed afterwards using
% \cs{seq_remove_all:Nn} \meta{sequence} \Arg{}.
% The \meta{delimiter} may not contain |{|, |}| or |#|
% (assuming \TeX{}'s normal category code r\'egime).
% If the \meta{delimiter} is empty, the \meta{token list} is split
% into \meta{items} as a \meta{token list}.
% \end{function}
%
% \begin{function}
% {\seq_concat:NNN, \seq_concat:ccc, \seq_gconcat:NNN, \seq_gconcat:ccc}
% \begin{syntax}
% \cs{seq_concat:NNN} \meta{sequence_1} \meta{sequence_2} \meta{sequence_3}
% \end{syntax}
% Concatenates the content of \meta{sequence_2} and \meta{sequence_3}
% together and saves the result in \meta{sequence_1}. The items in
% \meta{sequence_2} will be placed at the left side of the new sequence.
% \end{function}
%
% \begin{function}[EXP, pTF, added=2012-03-03]
% {\seq_if_exist:N, \seq_if_exist:c}
% \begin{syntax}
% \cs{seq_if_exist_p:N} \meta{sequence}
% \cs{seq_if_exist:NTF} \meta{sequence} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests whether the \meta{sequence} is currently defined. This does not
% check that the \meta{sequence} really is a sequence variable.
% \end{function}
%
% \section{Appending data to sequences}
%
% \begin{function}{
% \seq_put_left:Nn, \seq_put_left:NV, \seq_put_left:Nv,
% \seq_put_left:No, \seq_put_left:Nx,
% \seq_put_left:cn, \seq_put_left:cV, \seq_put_left:cv,
% \seq_put_left:co, \seq_put_left:cx,
% \seq_gput_left:Nn, \seq_gput_left:NV, \seq_gput_left:Nv,
% \seq_gput_left:No, \seq_gput_left:Nx,
% \seq_gput_left:cn, \seq_gput_left:cV, \seq_gput_left:cv,
% \seq_gput_left:co, \seq_gput_left:cx
% }
% \begin{syntax}
% \cs{seq_put_left:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Appends the \meta{item} to the left of the \meta{sequence}.
% \end{function}
%
% \begin{function}{
% \seq_put_right:Nn, \seq_put_right:NV, \seq_put_right:Nv,
% \seq_put_right:No, \seq_put_right:Nx,
% \seq_put_right:cn, \seq_put_right:cV, \seq_put_right:cv,
% \seq_put_right:co, \seq_put_right:cx,
% \seq_gput_right:Nn, \seq_gput_right:NV, \seq_gput_right:Nv,
% \seq_gput_right:No, \seq_gput_right:Nx,
% \seq_gput_right:cn, \seq_gput_right:cV, \seq_gput_right:cv,
% \seq_gput_right:co, \seq_gput_right:cx
% }
% \begin{syntax}
% \cs{seq_put_right:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Appends the \meta{item} to the right of the \meta{sequence}.
% \end{function}
%
% \section{Recovering items from sequences}
%
% Items can be recovered from either the left or the right of sequences.
% For implementation reasons, the actions at the left of the sequence are
% faster than those acting on the right. These functions all assign the
% recovered material locally, \emph{i.e.}~setting the
% \meta{token list variable} used with \cs{tl_set:Nn} and \emph{never}
% \cs{tl_gset:Nn}.
%
% \begin{function}[updated = 2012-05-14]{\seq_get_left:NN, \seq_get_left:cN}
% \begin{syntax}
% \cs{seq_get_left:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Stores the left-most item from a \meta{sequence} in the
% \meta{token list variable} without removing it from the
% \meta{sequence}. The \meta{token list variable} is assigned locally.
% If \meta{sequence} is empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[updated = 2012-05-19]{\seq_get_right:NN, \seq_get_right:cN}
% \begin{syntax}
% \cs{seq_get_right:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Stores the right-most item from a \meta{sequence} in the
% \meta{token list variable} without removing it from the
% \meta{sequence}. The \meta{token list variable} is assigned locally.
% If \meta{sequence} is empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[updated = 2012-05-14]{\seq_pop_left:NN, \seq_pop_left:cN}
% \begin{syntax}
% \cs{seq_pop_left:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the left-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in the \meta{token list variable}.
% Both of the variables are assigned locally. If \meta{sequence} is
% empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[updated = 2012-05-14]{\seq_gpop_left:NN, \seq_gpop_left:cN}
% \begin{syntax}
% \cs{seq_gpop_left:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the left-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in the \meta{token list variable}.
% The \meta{sequence} is modified globally, while the assignment of
% the \meta{token list variable} is local.
% If \meta{sequence} is empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[updated = 2012-05-19]{\seq_pop_right:NN, \seq_pop_right:cN}
% \begin{syntax}
% \cs{seq_pop_right:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the right-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in the \meta{token list variable}.
% Both of the variables are assigned locally. If \meta{sequence} is
% empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[updated = 2012-05-19]{\seq_gpop_right:NN, \seq_gpop_right:cN}
% \begin{syntax}
% \cs{seq_gpop_right:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the right-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in the \meta{token list variable}.
% The \meta{sequence} is modified globally, while the assignment of
% the \meta{token list variable} is local.
% If \meta{sequence} is empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[added = 2014-07-17, EXP]{\seq_item:Nn, \seq_item:cn}
% \begin{syntax}
% \cs{seq_item:Nn} \meta{sequence} \Arg{integer expression}
% \end{syntax}
% Indexing items in the \meta{sequence} from~$1$ at the top (left), this
% function will evaluate the \meta{integer expression} and leave the
% appropriate item from the sequence in the input stream. If the
% \meta{integer expression} is negative, indexing occurs from the
% bottom (right) of the sequence. When the \meta{integer expression}
% is larger than the number of items in the \meta{sequence} (as
% calculated by \cs{seq_count:N}) then the function will expand to
% nothing.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \section{Recovering values from sequences with branching}
%
% The functions in this section combine tests for non-empty sequences
% with recovery of an item from the sequence. They offer increased readability
% and performance over separate testing and recovery phases.
%
% \begin{function}[TF, added = 2012-05-14, updated = 2012-05-19]
% {\seq_get_left:NN, \seq_get_left:cN}
% \begin{syntax}
% \cs{seq_get_left:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, stores the left-most item from a
% \meta{sequence}
% in the \meta{token list variable} without removing it from a
% \meta{sequence}.
% The \meta{token list variable} is assigned locally.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-19]
% {\seq_get_right:NN, \seq_get_right:cN}
% \begin{syntax}
% \cs{seq_get_right:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, stores the right-most item from a
% \meta{sequence}
% in the \meta{token list variable} without removing it from a
% \meta{sequence}.
% The \meta{token list variable} is assigned locally.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-14, updated = 2012-05-19]
% {\seq_pop_left:NN, \seq_pop_left:cN}
% \begin{syntax}
% \cs{seq_pop_left:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, pops the left-most item from a
% \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}.
% Both the \meta{sequence} and the \meta{token list variable} are assigned
% locally.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-14, updated = 2012-05-19]
% {\seq_gpop_left:NN, \seq_gpop_left:cN}
% \begin{syntax}
% \cs{seq_gpop_left:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, pops the left-most item from a \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}.
% The \meta{sequence} is modified globally, while the \meta{token list variable}
% is assigned locally.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-19]
% {\seq_pop_right:NN, \seq_pop_right:cN}
% \begin{syntax}
% \cs{seq_pop_right:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, pops the right-most item from a \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}.
% Both the \meta{sequence} and the \meta{token list variable} are assigned
% locally.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-19]
% {\seq_gpop_right:NN, \seq_gpop_right:cN}
% \begin{syntax}
% \cs{seq_gpop_right:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, pops the right-most item from a \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}. The \meta{sequence} is modified globally, while the
% \meta{token list variable} is assigned locally.
% \end{function}
%
% \section{Modifying sequences}
%
% While sequences are normally used as ordered lists, it may be
% necessary to modify the content. The functions here may be used
% to update sequences, while retaining the order of the unaffected
% entries.
%
% \begin{function}
% {
% \seq_remove_duplicates:N, \seq_remove_duplicates:c,
% \seq_gremove_duplicates:N, \seq_gremove_duplicates:c
% }
% \begin{syntax}
% \cs{seq_remove_duplicates:N} \meta{sequence}
% \end{syntax}
% Removes duplicate items from the \meta{sequence}, leaving the
% left most copy of each item in the \meta{sequence}. The \meta{item}
% comparison takes place on a token basis, as for \cs{tl_if_eq:nn(TF)}.
% \begin{texnote}
% This function iterates through every item in the \meta{sequence} and
% does a comparison with the \meta{items} already checked. It is therefore
% relatively slow with large sequences.
% \end{texnote}
% \end{function}
%
% \begin{function}
% {
% \seq_remove_all:Nn , \seq_remove_all:cn,
% \seq_gremove_all:Nn, \seq_gremove_all:cn
% }
% \begin{syntax}
% \cs{seq_remove_all:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Removes every occurrence of \meta{item} from the \meta{sequence}.
% The \meta{item} comparison takes place on a token basis, as for
% \cs{tl_if_eq:nn(TF)}.
% \end{function}
%
%
% \begin{function}[added = 2014-07-18]^^A
% {^^A
% \seq_reverse:N, \seq_reverse:c,
% \seq_greverse:N, \seq_greverse:c
% }
% \begin{syntax}
% \cs{seq_reverse:N} \meta{sequence}
% \end{syntax}
% Reverses the order of the items stored in the \meta{sequence}.
% \end{function}
%
% \section{Sequence conditionals}
%
% \begin{function}[EXP,pTF]{\seq_if_empty:N, \seq_if_empty:c}
% \begin{syntax}
% \cs{seq_if_empty_p:N} \meta{sequence}
% \cs{seq_if_empty:NTF} \meta{sequence} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the \meta{sequence} is empty (containing no items).
% \end{function}
%
% \begin{function}[TF]
% {
% \seq_if_in:Nn, \seq_if_in:NV, \seq_if_in:Nv, \seq_if_in:No, \seq_if_in:Nx,
% \seq_if_in:cn, \seq_if_in:cV, \seq_if_in:cv, \seq_if_in:co, \seq_if_in:cx
% }
% \begin{syntax}
% \cs{seq_if_in:NnTF} \meta{sequence} \Arg{item} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the \meta{item} is present in the \meta{sequence}.
% \end{function}
%
% \section{Mapping to sequences}
%
% \begin{function}[rEXP, updated = 2012-06-29]
% {\seq_map_function:NN, \seq_map_function:cN}
% \begin{syntax}
% \cs{seq_map_function:NN} \meta{sequence} \meta{function}
% \end{syntax}
% Applies \meta{function} to every \meta{item} stored in the
% \meta{sequence}. The \meta{function} will receive one argument for
% each iteration. The \meta{items} are returned from left to right.
% The function \cs{seq_map_inline:Nn} is faster than
% \cs{seq_map_function:NN} for sequences with more than about~$10$
% items.
% One mapping may be nested inside another.
% \end{function}
%
% \begin{function}[updated = 2012-06-29]
% {\seq_map_inline:Nn, \seq_map_inline:cn}
% \begin{syntax}
% \cs{seq_map_inline:Nn} \meta{sequence} \Arg{inline function}
% \end{syntax}
% Applies \meta{inline function} to every \meta{item} stored
% within the \meta{sequence}. The \meta{inline function} should
% consist of code which will receive the \meta{item} as |#1|.
% One in line mapping can be nested inside another. The \meta{items}
% are returned from left to right.
% \end{function}
%
% \begin{function}[updated = 2012-06-29]
% {
% \seq_map_variable:NNn, \seq_map_variable:Ncn,
% \seq_map_variable:cNn, \seq_map_variable:ccn
% }
% \begin{syntax}
% \cs{seq_map_variable:NNn} \meta{sequence} \meta{tl~var.} \Arg{function using tl~var.}
% \end{syntax}
% Stores each entry in the \meta{sequence} in turn in the
% \meta{tl~var.}\ and applies the \meta{function using tl~var.}
% The \meta{function} will usually consist of code making use of
% the \meta{tl~var.}, but this is not enforced. One variable
% mapping can be nested inside another. The \meta{items}
% are returned from left to right.
% \end{function}
%
% \begin{function}[rEXP, updated = 2012-06-29]{\seq_map_break:}
% \begin{syntax}
% \cs{seq_map_break:}
% \end{syntax}
% Used to terminate a \cs{seq_map_\ldots} function before all
% entries in the \meta{sequence} have been processed. This will
% normally take place within a conditional statement, for example
% \begin{verbatim}
% \seq_map_inline:Nn \l_my_seq
% {
% \str_if_eq:nnTF { #1 } { bingo }
% { \seq_map_break: }
% {
% % Do something useful
% }
% }
% \end{verbatim}
% Use outside of a \cs{seq_map_\ldots} scenario will lead to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted by the
% internal macro \cs{__prg_break_point:Nn} before further items are taken
% from the input stream. This will depend on the design of the mapping
% function.
% \end{texnote}
% \end{function}
%
% \begin{function}[rEXP, updated = 2012-06-29]{\seq_map_break:n}
% \begin{syntax}
% \cs{seq_map_break:n} \Arg{tokens}
% \end{syntax}
% Used to terminate a \cs{seq_map_\ldots} function before all
% entries in the \meta{sequence} have been processed, inserting
% the \meta{tokens} after the mapping has ended. This will
% normally take place within a conditional statement, for example
% \begin{verbatim}
% \seq_map_inline:Nn \l_my_seq
% {
% \str_if_eq:nnTF { #1 } { bingo }
% { \seq_map_break:n { <tokens> } }
% {
% % Do something useful
% }
% }
% \end{verbatim}
% Use outside of a \cs{seq_map_\ldots} scenario will lead to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted by the
% internal macro \cs{__prg_break_point:Nn} before the \meta{tokens} are
% inserted into the input stream.
% This will depend on the design of the mapping function.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP, added = 2012-07-13]{\seq_count:N, \seq_count:c}
% \begin{syntax}
% \cs{seq_count:N} \meta{sequence}
% \end{syntax}
% Leaves the number of items in the \meta{sequence} in the input
% stream as an \meta{integer denotation}. The total number of items
% in a \meta{sequence} will include those which are empty and duplicates,
% \emph{i.e.}~every item in a \meta{sequence} is unique.
% \end{function}
%
% \section{Using the content of sequences directly}
%
% \begin{function}[EXP, added = 2013-05-26]{\seq_use:Nnnn, \seq_use:cnnn}
% \begin{syntax}
% \cs{seq_use:Nnnn} \meta{seq~var} \Arg{separator~between~two} \Arg{separator~between~more~than~two} \Arg{separator~between~final~two}
% \end{syntax}
% Places the contents of the \meta{seq~var} in the input stream, with
% the appropriate \meta{separator} between the items. Namely, if the
% sequence has more than two items, the \meta{separator between more
% than two} is placed between each pair of items except the last,
% for which the \meta{separator between final two} is used. If the
% sequence has exactly two items, then they are placed in the input stream
% separated by the \meta{separator between two}. If the sequence has
% a single item, it is placed in the input stream, and an empty sequence
% produces no output. An error will be raised if the variable does
% not exist or if it is invalid.
%
% For example,
% \begin{verbatim}
% \seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
% \seq_use:Nnnn \l_tmpa_seq { ~and~ } { ,~ } { ,~and~ }
% \end{verbatim}
% will insert \enquote{\texttt{a, b, c, de, and f}} in the input
% stream. The first separator argument is not used in this case
% because the sequence has more than $2$ items.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{items}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP, added = 2013-05-26]{\seq_use:Nn, \seq_use:cn}
% \begin{syntax}
% \cs{seq_use:Nn} \meta{seq~var} \Arg{separator}
% \end{syntax}
% Places the contents of the \meta{seq~var} in the input stream, with
% the \meta{separator} between the items. If the sequence has
% a single item, it is placed in the input stream with no \meta{separator},
% and an empty sequence produces no output. An error will be raised if
% the variable does not exist or if it is invalid.
%
% For example,
% \begin{verbatim}
% \seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
% \seq_use:Nn \l_tmpa_seq { ~and~ }
% \end{verbatim}
% will insert \enquote{\texttt{a and b and c and de and f}} in the input
% stream.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{items}
% will not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \section{Sequences as stacks}
%
% Sequences can be used as stacks, where data is pushed to and popped
% from the top of the sequence. (The left of a sequence is the top, for
% performance reasons.) The stack functions for sequences are not
% intended to be mixed with the general ordered data functions detailed
% in the previous section: a sequence should either be used as an
% ordered data type or as a stack, but not in both ways.
%
% \begin{function}[updated = 2012-05-14]{\seq_get:NN, \seq_get:cN}
% \begin{syntax}
% \cs{seq_get:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Reads the top item from a \meta{sequence} into the
% \meta{token list variable} without removing it from the
% \meta{sequence}. The \meta{token list variable} is assigned locally.
% If \meta{sequence} is empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[updated = 2012-05-14]{\seq_pop:NN, \seq_pop:cN}
% \begin{syntax}
% \cs{seq_pop:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the top item from a \meta{sequence} into the
% \meta{token list variable}. Both of the variables are assigned
% locally. If \meta{sequence} is empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[updated = 2012-05-14]{\seq_gpop:NN, \seq_gpop:cN}
% \begin{syntax}
% \cs{seq_gpop:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the top item from a \meta{sequence} into the
% \meta{token list variable}. The \meta{sequence} is modified globally,
% while the \meta{token list variable} is assigned locally. If
% \meta{sequence} is empty the \meta{token list variable} will
% contain the special marker \cs{q_no_value}.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-14, updated = 2012-05-19]{\seq_get:NN, \seq_get:cN}
% \begin{syntax}
% \cs{seq_get:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, stores the top item from a
% \meta{sequence} in the \meta{token list variable} without removing it from
% the \meta{sequence}. The \meta{token list variable} is assigned locally.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-14, updated = 2012-05-19]{\seq_pop:NN, \seq_pop:cN}
% \begin{syntax}
% \cs{seq_pop:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, pops the top item from the
% \meta{sequence} in the \meta{token list variable}, \emph{i.e.}~removes the
% item from the \meta{sequence}. Both the \meta{sequence} and the
% \meta{token list variable} are assigned locally.
% \end{function}
%
% \begin{function}[TF, added = 2012-05-14, updated = 2012-05-19]{\seq_gpop:NN, \seq_gpop:cN}
% \begin{syntax}
% \cs{seq_gpop:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream. The value of the \meta{token list variable} is
% not defined in this case and should not be relied upon. If the
% \meta{sequence} is non-empty, pops the top item from the \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from the
% \meta{sequence}. The \meta{sequence} is modified globally, while the
% \meta{token list variable} is assigned locally.
% \end{function}
%
% \begin{function}
% {
% \seq_push:Nn, \seq_push:NV, \seq_push:Nv, \seq_push:No, \seq_push:Nx,
% \seq_push:cn, \seq_push:cV, \seq_push:cv, \seq_push:co, \seq_push:cx,
% \seq_gpush:Nn, \seq_gpush:NV, \seq_gpush:Nv,
% \seq_gpush:No, \seq_gpush:Nx,
% \seq_gpush:cn, \seq_gpush:cV, \seq_gpush:cv,
% \seq_gpush:co, \seq_gpush:cx
% }
% \begin{syntax}
% \cs{seq_push:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Adds the \Arg{item} to the top of the \meta{sequence}.
% \end{function}
%
% \section{Constant and scratch sequences}
%
% \begin{variable}[added = 2012-07-02]{\c_empty_seq}
% Constant that is always empty.
% \end{variable}
%
% \begin{variable}[added = 2012-04-26]{\l_tmpa_seq, \l_tmpb_seq}
% Scratch sequences for local assignment. These are never used by
% the kernel code, and so are safe for use with any \LaTeX3-defined
% function. However, they may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \begin{variable}[added = 2012-04-26]{\g_tmpa_seq, \g_tmpb_seq}
% Scratch sequences for global assignment. These are never used by
% the kernel code, and so are safe for use with any \LaTeX3-defined
% function. However, they may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \section{Viewing sequences}
%
% \begin{function}[updated = 2012-09-09]{\seq_show:N, \seq_show:c}
% \begin{syntax}
% \cs{seq_show:N} \meta{sequence}
% \end{syntax}
% Displays the entries in the \meta{sequence} in the terminal.
% \end{function}
%
% \section{Internal sequence functions}
%
% \begin{variable}{\s__seq}
% This scan mark (equal to \cs{scan_stop:}) marks the beginning of a
% sequence variable.
% \end{variable}
%
% \begin{function}[EXP]{\__seq_item:n}
% \begin{syntax}
% \cs{__seq_item:n} \Arg{item}
% \end{syntax}
% The internal token used to begin each sequence entry. If expanded
% outside of a mapping or manipulation function, an error will be
% raised. The definition should always be set globally.
% \end{function}
%
% \begin{function}{\__seq_push_item_def:n, \__seq_push_item_def:x}
% \begin{syntax}
% \cs{__seq_push_item_def:n} \Arg{code}
% \end{syntax}
% Saves the definition of \cs{__seq_item:n} and redefines it to
% accept one parameter and expand to \meta{code}. This function
% should always be balanced by use of \cs{__seq_pop_item_def:}.
% \end{function}
%
% \begin{function}{\__seq_pop_item_def:}
% \begin{syntax}
% \cs{__seq_pop_item_def:}
% \end{syntax}
% Restores the definition of \cs{__seq_item:n} most recently saved by
% \cs{__seq_push_item_def:n}. This function should always be used in
% a balanced pair with \cs{__seq_push_item_def:n}.
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3seq} implementation}
%
% \TestFiles{m3seq002,m3seq003}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=seq>
% \end{macrocode}
%
% A sequence is a control sequence whose top-level expansion is of the
% form \enquote{\cs{s_@@} \cs{@@_item:n} \marg{item_1} \ldots
% \cs{@@_item:n} \marg{item_n}}, with a leading scan
% mark followed by $n$~items of the same form. An
% earlier implementation used the structure \enquote{\cs{seq_elt:w}
% \meta{item_1} \cs{seq_elt_end:} \ldots \cs{seq_elt:w} \meta{item_n}
% \cs{seq_elt_end:}}. This allowed rapid searching using a delimited
% function, but was not suitable for items containing |{|, |}| and |#|
% tokens, and also lead to the loss of surrounding braces around items.
%
% \begin{variable}{\s_@@}
% The variable is defined in the \pkg{l3quark} module, loaded later.
% \end{variable}
%
% \begin{macro}[int]{\@@_item:n}
% The delimiter is always defined, but when used incorrectly simply
% removes its argument and hits an undefined control sequence to
% raise an error.
% \begin{macrocode}
\cs_new:Npn \@@_item:n
{
\__msg_kernel_expandable_error:nn { kernel } { misused-sequence }
\use_none:n
}
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\l_@@_internal_a_tl, \l_@@_internal_b_tl}
% Scratch space for various internal uses.
% \begin{macrocode}
\tl_new:N \l_@@_internal_a_tl
\tl_new:N \l_@@_internal_b_tl
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[aux]{\@@_tmp:w}
% Scratch function for internal use.
% \begin{macrocode}
\cs_new_eq:NN \@@_tmp:w ?
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\c_empty_seq}
% A sequence with no item, following the structure mentioned above.
% \begin{macrocode}
\tl_const:Nn \c_empty_seq { \s_@@ }
% \end{macrocode}
% \end{variable}
%
% \subsection{Allocation and initialisation}
%
% \begin{macro}{\seq_new:N,\seq_new:c}
% \UnitTested
% Sequences are initialized to \cs{c_empty_seq}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_new:N #1
{
\__chk_if_free_cs:N #1
\cs_gset_eq:NN #1 \c_empty_seq
}
\cs_generate_variant:Nn \seq_new:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_clear:N, \seq_clear:c}
% \UnitTested
% \begin{macro}{\seq_gclear:N, \seq_gclear:c}
% \UnitTested
% Clearing a sequence is similar to setting it equal to the empty one.
% \begin{macrocode}
\cs_new_protected:Npn \seq_clear:N #1
{ \seq_set_eq:NN #1 \c_empty_seq }
\cs_generate_variant:Nn \seq_clear:N { c }
\cs_new_protected:Npn \seq_gclear:N #1
{ \seq_gset_eq:NN #1 \c_empty_seq }
\cs_generate_variant:Nn \seq_gclear:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_clear_new:N, \seq_clear_new:c}
% \UnitTested
% \begin{macro}{\seq_gclear_new:N, \seq_gclear_new:c}
% \UnitTested
% Once again we copy code from the token list functions.
% \begin{macrocode}
\cs_new_protected:Npn \seq_clear_new:N #1
{ \seq_if_exist:NTF #1 { \seq_clear:N #1 } { \seq_new:N #1 } }
\cs_generate_variant:Nn \seq_clear_new:N { c }
\cs_new_protected:Npn \seq_gclear_new:N #1
{ \seq_if_exist:NTF #1 { \seq_gclear:N #1 } { \seq_new:N #1 } }
\cs_generate_variant:Nn \seq_gclear_new:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_eq:NN, \seq_set_eq:cN, \seq_set_eq:Nc, \seq_set_eq:cc}
% \UnitTested
% \begin{macro}
% {\seq_gset_eq:NN, \seq_gset_eq:cN, \seq_gset_eq:Nc, \seq_gset_eq:cc}
% \UnitTested
% Copying a sequence is the same as copying the underlying token list.
% \begin{macrocode}
\cs_new_eq:NN \seq_set_eq:NN \tl_set_eq:NN
\cs_new_eq:NN \seq_set_eq:Nc \tl_set_eq:Nc
\cs_new_eq:NN \seq_set_eq:cN \tl_set_eq:cN
\cs_new_eq:NN \seq_set_eq:cc \tl_set_eq:cc
\cs_new_eq:NN \seq_gset_eq:NN \tl_gset_eq:NN
\cs_new_eq:NN \seq_gset_eq:Nc \tl_gset_eq:Nc
\cs_new_eq:NN \seq_gset_eq:cN \tl_gset_eq:cN
\cs_new_eq:NN \seq_gset_eq:cc \tl_gset_eq:cc
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
% \seq_set_from_clist:Nn, \seq_set_from_clist:cn
% }
% \begin{macro}
% {
% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
% }
% Setting a sequence from a comma-separated list is done using a simple
% mapping.
% \begin{macrocode}
\cs_new_protected:Npn \seq_set_from_clist:NN #1#2
{
\tl_set:Nx #1
{ \s_@@ \clist_map_function:NN #2 \@@_wrap_item:n }
}
\cs_new_protected:Npn \seq_set_from_clist:Nn #1#2
{
\tl_set:Nx #1
{ \s_@@ \clist_map_function:nN {#2} \@@_wrap_item:n }
}
\cs_new_protected:Npn \seq_gset_from_clist:NN #1#2
{
\tl_gset:Nx #1
{ \s_@@ \clist_map_function:NN #2 \@@_wrap_item:n }
}
\cs_new_protected:Npn \seq_gset_from_clist:Nn #1#2
{
\tl_gset:Nx #1
{ \s_@@ \clist_map_function:nN {#2} \@@_wrap_item:n }
}
\cs_generate_variant:Nn \seq_set_from_clist:NN { Nc }
\cs_generate_variant:Nn \seq_set_from_clist:NN { c , cc }
\cs_generate_variant:Nn \seq_set_from_clist:Nn { c }
\cs_generate_variant:Nn \seq_gset_from_clist:NN { Nc }
\cs_generate_variant:Nn \seq_gset_from_clist:NN { c , cc }
\cs_generate_variant:Nn \seq_gset_from_clist:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \seq_set_split:Nnn , \seq_set_split:NnV ,
% \seq_gset_split:Nnn, \seq_gset_split:NnV
% }
% \begin{macro}[aux]{\@@_set_split:NNnn}
% \begin{macro}[aux]
% {
% \@@_set_split_auxi:w, \@@_set_split_auxii:w,
% \@@_set_split_end:
% }
% When the separator is empty, everything is very simple, just map
% \cs{@@_wrap_item:n} through the items of the last argument.
% For non-trivial separators, the goal is to split a given token list
% at the marker, strip spaces from each item, and remove one set of
% outer braces if after removing leading and trailing
% spaces the item is enclosed within braces. After
% \cs{tl_replace_all:Nnn}, the token list \cs{l_@@_internal_a_tl}
% is a repetition of the pattern
% \cs{@@_set_split_auxi:w} \cs{prg_do_nothing:}
% \meta{item with spaces} \cs{@@_set_split_end:}.
% Then, \texttt{x}-expansion causes \cs{@@_set_split_auxi:w}
% to trim spaces, and leaves its result as
% \cs{@@_set_split_auxii:w} \meta{trimmed item}
% \cs{@@_set_split_end:}. This is then converted
% to the \pkg{l3seq} internal structure by another
% \texttt{x}-expansion. In the first step, we insert
% \cs{prg_do_nothing:} to avoid losing braces too early:
% that would cause space trimming to act within those
% lost braces. The second step is solely there to strip
% braces which are outermost after space trimming.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_set_split:Nnn
{ \@@_set_split:NNnn \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gset_split:Nnn
{ \@@_set_split:NNnn \tl_gset:Nx }
\cs_new_protected:Npn \@@_set_split:NNnn #1#2#3#4
{
\tl_if_empty:nTF {#3}
{
\tl_set:Nn \l_@@_internal_a_tl
{ \tl_map_function:nN {#4} \@@_wrap_item:n }
}
{
\tl_set:Nn \l_@@_internal_a_tl
{
\@@_set_split_auxi:w \prg_do_nothing:
#4
\@@_set_split_end:
}
\tl_replace_all:Nnn \l_@@_internal_a_tl { #3 }
{
\@@_set_split_end:
\@@_set_split_auxi:w \prg_do_nothing:
}
\tl_set:Nx \l_@@_internal_a_tl { \l_@@_internal_a_tl }
}
#1 #2 { \s_@@ \l_@@_internal_a_tl }
}
\cs_new:Npn \@@_set_split_auxi:w #1 \@@_set_split_end:
{
\exp_not:N \@@_set_split_auxii:w
\exp_args:No \tl_trim_spaces:n {#1}
\exp_not:N \@@_set_split_end:
}
\cs_new:Npn \@@_set_split_auxii:w #1 \@@_set_split_end:
{ \@@_wrap_item:n {#1} }
\cs_generate_variant:Nn \seq_set_split:Nnn { NnV }
\cs_generate_variant:Nn \seq_gset_split:Nnn { NnV }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_concat:NNN, \seq_concat:ccc}
% \UnitTested
% \begin{macro}{\seq_gconcat:NNN, \seq_gconcat:ccc}
% \UnitTested
% When concatenating sequences, one must remove the leading \cs{s_@@}
% of the second sequence. The result starts with \cs{s_@@} (of the
% first sequence), which stops \texttt{f}-expansion.
% \begin{macrocode}
\cs_new_protected:Npn \seq_concat:NNN #1#2#3
{ \tl_set:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }
\cs_new_protected:Npn \seq_gconcat:NNN #1#2#3
{ \tl_gset:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }
\cs_generate_variant:Nn \seq_concat:NNN { ccc }
\cs_generate_variant:Nn \seq_gconcat:NNN { ccc }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[pTF]{\seq_if_exist:N, \seq_if_exist:c}
% Copies of the \texttt{cs} functions defined in \pkg{l3basics}.
% \begin{macrocode}
\prg_new_eq_conditional:NNn \seq_if_exist:N \cs_if_exist:N
{ TF , T , F , p }
\prg_new_eq_conditional:NNn \seq_if_exist:c \cs_if_exist:c
{ TF , T , F , p }
% \end{macrocode}
% \end{macro}
%
% \subsection{Appending data to either end}
%
% \begin{macro}{
% \seq_put_left:Nn, \seq_put_left:NV, \seq_put_left:Nv,
% \seq_put_left:No, \seq_put_left:Nx,
% \seq_put_left:cn, \seq_put_left:cV, \seq_put_left:cv,
% \seq_put_left:co, \seq_put_left:cx
% }
% \UnitTested
% \begin{macro}{
% \seq_gput_left:Nn, \seq_gput_left:NV, \seq_gput_left:Nv,
% \seq_gput_left:No, \seq_gput_left:Nx,
% \seq_gput_left:cn, \seq_gput_left:cV, \seq_gput_left:cv,
% \seq_gput_left:co, \seq_gput_left:cx
% }
% \begin{macro}[aux,EXP]{\@@_put_left_aux:w}
% When adding to the left of a sequence, remove \cs{s_@@}. This is
% done by \cs{@@_put_left_aux:w}, which also stops
% \texttt{f}-expansion.
% \begin{macrocode}
\cs_new_protected:Npn \seq_put_left:Nn #1#2
{
\tl_set:Nx #1
{
\exp_not:n { \s_@@ \@@_item:n {#2} }
\exp_not:f { \exp_after:wN \@@_put_left_aux:w #1 }
}
}
\cs_new_protected:Npn \seq_gput_left:Nn #1#2
{
\tl_gset:Nx #1
{
\exp_not:n { \s_@@ \@@_item:n {#2} }
\exp_not:f { \exp_after:wN \@@_put_left_aux:w #1 }
}
}
\cs_new:Npn \@@_put_left_aux:w \s_@@ { \exp_stop_f: }
\cs_generate_variant:Nn \seq_put_left:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_put_left:Nn { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_gput_left:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_gput_left:Nn { c , cV , cv , co , cx }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \seq_put_right:Nn, \seq_put_right:NV, \seq_put_right:Nv,
% \seq_put_right:No, \seq_put_right:Nx,
% \seq_put_right:cn, \seq_put_right:cV, \seq_put_right:cv,
% \seq_put_right:co, \seq_put_right:cx
% }
% \UnitTested
% \begin{macro}
% {
% \seq_gput_right:Nn, \seq_gput_right:NV, \seq_gput_right:Nv,
% \seq_gput_right:No, \seq_gput_right:Nx,
% \seq_gput_right:cn, \seq_gput_right:cV, \seq_gput_right:cv,
% \seq_gput_right:co, \seq_gput_right:cx
% }
% Since there is no trailing marker, adding an item to the right of a
% sequence simply means wrapping it in \cs{@@_item:n}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_put_right:Nn #1#2
{ \tl_put_right:Nn #1 { \@@_item:n {#2} } }
\cs_new_protected:Npn \seq_gput_right:Nn #1#2
{ \tl_gput_right:Nn #1 { \@@_item:n {#2} } }
\cs_generate_variant:Nn \seq_gput_right:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_gput_right:Nn { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_put_right:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_put_right:Nn { c , cV , cv , co , cx }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Modifying sequences}
%
% \begin{macro}[aux]{\@@_wrap_item:n}
% This function converts its argument to a proper sequence item
% in an \texttt{x}-expansion context.
% \begin{macrocode}
\cs_new:Npn \@@_wrap_item:n #1 { \exp_not:n { \@@_item:n {#1} } }
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\l_@@_remove_seq}
% An internal sequence for the removal routines.
% \begin{macrocode}
\seq_new:N \l_@@_remove_seq
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\seq_remove_duplicates:N, \seq_remove_duplicates:c}
% \UnitTested
% \begin{macro}{\seq_gremove_duplicates:N, \seq_gremove_duplicates:c}
% \UnitTested
% \begin{macro}[aux]{\@@_remove_duplicates:NN}
% Removing duplicates means making a new list then copying it.
% \begin{macrocode}
\cs_new_protected:Npn \seq_remove_duplicates:N
{ \@@_remove_duplicates:NN \seq_set_eq:NN }
\cs_new_protected:Npn \seq_gremove_duplicates:N
{ \@@_remove_duplicates:NN \seq_gset_eq:NN }
\cs_new_protected:Npn \@@_remove_duplicates:NN #1#2
{
\seq_clear:N \l_@@_remove_seq
\seq_map_inline:Nn #2
{
\seq_if_in:NnF \l_@@_remove_seq {##1}
{ \seq_put_right:Nn \l_@@_remove_seq {##1} }
}
#1 #2 \l_@@_remove_seq
}
\cs_generate_variant:Nn \seq_remove_duplicates:N { c }
\cs_generate_variant:Nn \seq_gremove_duplicates:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_remove_all:Nn, \seq_remove_all:cn}
% \UnitTested
% \begin{macro}{\seq_gremove_all:Nn, \seq_gremove_all:cn}
% \UnitTested
% \begin{macro}[aux]{\@@_remove_all_aux:NNn}
% The idea of the code here is to avoid a relatively expensive addition of
% items one at a time to an intermediate sequence.
% The approach taken is therefore similar to
% that in \cs{@@_pop_right:NNN}, using a \enquote{flexible}
% \texttt{x}-type expansion to do most of the work. As \cs{tl_if_eq:nnT}
% is not expandable, a two-part strategy is needed. First, the
% \texttt{x}-type expansion uses \cs{str_if_eq:nnT} to find potential
% matches. If one is found, the expansion is halted and the necessary
% set up takes place to use the \cs{tl_if_eq:NNT} test. The \texttt{x}-type
% is started again, including all of the items copied already. This will
% happen repeatedly until the entire sequence has been scanned. The code
% is set up to avoid needing and intermediate scratch list: the lead-off
% \texttt{x}-type expansion (|#1 #2 {#2}|) will ensure that nothing is
% lost.
% \begin{macrocode}
\cs_new_protected:Npn \seq_remove_all:Nn
{ \@@_remove_all_aux:NNn \tl_set:Nx }
\cs_new_protected:Npn \seq_gremove_all:Nn
{ \@@_remove_all_aux:NNn \tl_gset:Nx }
\cs_new_protected:Npn \@@_remove_all_aux:NNn #1#2#3
{
\@@_push_item_def:n
{
\str_if_eq:nnT {##1} {#3}
{
\if_false: { \fi: }
\tl_set:Nn \l_@@_internal_b_tl {##1}
#1 #2
{ \if_false: } \fi:
\exp_not:o {#2}
\tl_if_eq:NNT \l_@@_internal_a_tl \l_@@_internal_b_tl
{ \use_none:nn }
}
\@@_wrap_item:n {##1}
}
\tl_set:Nn \l_@@_internal_a_tl {#3}
#1 #2 {#2}
\@@_pop_item_def:
}
\cs_generate_variant:Nn \seq_remove_all:Nn { c }
\cs_generate_variant:Nn \seq_gremove_all:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {\seq_reverse:N, \seq_reverse:c, \seq_greverse:N, \seq_greverse:c}
% \begin{macro}[aux]{\@@_reverse:NN}
% \begin{macro}[aux, EXP]{\@@_reverse_item:nwn}
% Previously, \cs{seq_reverse:N} was coded by collecting the items
% in reverse order after an \cs{exp_stop_f:} marker.
% \begin{verbatim}
% \cs_new_protected:Npn \seq_reverse:N #1
% {
% \cs_set_eq:NN \@@_item:n \@@_reverse_item:nw
% \tl_set:Nf #2 { #2 \exp_stop_f: }
% }
% \cs_new:Npn \@@_reverse_item:nw #1 #2 \exp_stop_f:
% {
% #2 \exp_stop_f:
% \@@_item:n {#1}
% }
% \end{verbatim}
% At first, this seems optimal, since we can forget about each item
% as soon as it is placed after \cs{exp_stop_f:}. Unfortunately,
% \TeX{}'s usual tail recursion does not take place in this case:
% since the following \cs{@@_reverse_item:nw} only reads
% tokens until \cs{exp_stop_f:}, and never reads the
% |\@@_item:n {#1}| left by the previous call, \TeX{} cannot
% remove that previous call from the stack, and in particular
% must retain the various macro parameters in memory, until the
% end of the replacement text is reached. The stack is thus
% only flushed after all the \cs{@@_reverse_item:nw} are
% expanded. Keeping track of the arguments of all those calls
% uses up a memory quadratic in the length of the sequence.
% \TeX{} can then not cope with more than a few thousand items.
%
% Instead, we collect the items in the argument
% of \cs{exp_not:n}. The previous calls are cleanly removed
% from the stack, and the memory consumption becomes linear.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_reverse:N
{ \@@_reverse:NN \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_greverse:N
{ \@@_reverse:NN \tl_gset:Nx }
\cs_new_protected:Npn \@@_reverse:NN #1 #2
{
\cs_set_eq:NN \@@_tmp:w \@@_item:n
\cs_set_eq:NN \@@_item:n \@@_reverse_item:nwn
#1 #2 { #2 \exp_not:n { } }
\cs_set_eq:NN \@@_item:n \@@_tmp:w
}
\cs_new:Npn \@@_reverse_item:nwn #1 #2 \exp_not:n #3
{
#2
\exp_not:n { \@@_item:n {#1} #3 }
}
\cs_generate_variant:Nn \seq_reverse:N { c }
\cs_generate_variant:Nn \seq_greverse:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Sequence conditionals}
%
% \begin{macro}[pTF]{\seq_if_empty:N, \seq_if_empty:c}
% \UnitTested
% Similar to token lists, we compare with the empty sequence.
% \begin{macrocode}
\prg_new_conditional:Npnn \seq_if_empty:N #1 { p , T , F , TF }
{
\if_meaning:w #1 \c_empty_seq
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
\cs_generate_variant:Nn \seq_if_empty_p:N { c }
\cs_generate_variant:Nn \seq_if_empty:NT { c }
\cs_generate_variant:Nn \seq_if_empty:NF { c }
\cs_generate_variant:Nn \seq_if_empty:NTF { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[TF]
% {
% \seq_if_in:Nn, \seq_if_in:NV, \seq_if_in:Nv, \seq_if_in:No, \seq_if_in:Nx,
% \seq_if_in:cn, \seq_if_in:cV, \seq_if_in:cv, \seq_if_in:co, \seq_if_in:cx
% }
% \UnitTested
% \begin{macro}[aux]{\@@_if_in:}
% The approach here is to define \cs{@@_item:n} to compare its
% argument with the test sequence. If the two items are equal, the
% mapping is terminated and \cs{group_end:} \cs{prg_return_true:}
% is inserted after skipping over the rest of the recursion. On the
% other hand, if there is no match then the loop will break returning
% \cs{prg_return_false:}.
% Everything is inside a group so that \cs{@@_item:n} is preserved
% in nested situations.
% \begin{macrocode}
\prg_new_protected_conditional:Npnn \seq_if_in:Nn #1#2
{ T , F , TF }
{
\group_begin:
\tl_set:Nn \l_@@_internal_a_tl {#2}
\cs_set_protected:Npn \@@_item:n ##1
{
\tl_set:Nn \l_@@_internal_b_tl {##1}
\if_meaning:w \l_@@_internal_a_tl \l_@@_internal_b_tl
\exp_after:wN \@@_if_in:
\fi:
}
#1
\group_end:
\prg_return_false:
\__prg_break_point:
}
\cs_new_nopar:Npn \@@_if_in:
{ \__prg_break:n { \group_end: \prg_return_true: } }
\cs_generate_variant:Nn \seq_if_in:NnT { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_if_in:NnT { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_if_in:NnF { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_if_in:NnF { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_if_in:NnTF { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_if_in:NnTF { c , cV , cv , co , cx }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Recovering data from sequences}
%
% \begin{macro}[int]{\@@_pop:NNNN, \@@_pop_TF:NNNN}
% The two \texttt{pop} functions share their emptiness tests. We also
% use a common emptiness test for all branching \texttt{get} and
% \texttt{pop} functions.
% \begin{macrocode}
\cs_new_protected:Npn \@@_pop:NNNN #1#2#3#4
{
\if_meaning:w #3 \c_empty_seq
\tl_set:Nn #4 { \q_no_value }
\else:
#1#2#3#4
\fi:
}
\cs_new_protected:Npn \@@_pop_TF:NNNN #1#2#3#4
{
\if_meaning:w #3 \c_empty_seq
% \tl_set:Nn #4 { \q_no_value }
\prg_return_false:
\else:
#1#2#3#4
\prg_return_true:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_get_left:NN, \seq_get_left:cN}
% \UnitTested
% \begin{macro}[aux]{\@@_get_left:wnw}
% Getting an item from the left of a sequence is pretty easy: just
% trim off the first item after \cs{@@_item:n} at the start. We
% append a \cs{q_no_value} item to cover the case of an empty sequence
% \begin{macrocode}
\cs_new_protected:Npn \seq_get_left:NN #1#2
{
\tl_set:Nx #2
{
\exp_after:wN \@@_get_left:wnw
#1 \@@_item:n { \q_no_value } \q_stop
}
}
\cs_new:Npn \@@_get_left:wnw #1 \@@_item:n #2#3 \q_stop
{ \exp_not:n {#2} }
\cs_generate_variant:Nn \seq_get_left:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_pop_left:NN, \seq_pop_left:cN}
% \UnitTested
% \begin{macro}{\seq_gpop_left:NN, \seq_gpop_left:cN}
% \UnitTested
% \begin{macro}[aux]{\@@_pop_left:NNN, \@@_pop_left:wnwNNN}
% The approach to popping an item is pretty similar to that to get
% an item, with the only difference being that the sequence itself has
% to be redefined. This makes it more sensible to use an auxiliary
% function for the local and global cases.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_pop_left:NN
{ \@@_pop:NNNN \@@_pop_left:NNN \tl_set:Nn }
\cs_new_protected_nopar:Npn \seq_gpop_left:NN
{ \@@_pop:NNNN \@@_pop_left:NNN \tl_gset:Nn }
\cs_new_protected:Npn \@@_pop_left:NNN #1#2#3
{ \exp_after:wN \@@_pop_left:wnwNNN #2 \q_stop #1#2#3 }
\cs_new_protected:Npn \@@_pop_left:wnwNNN
#1 \@@_item:n #2#3 \q_stop #4#5#6
{
#4 #5 { #1 #3 }
\tl_set:Nn #6 {#2}
}
\cs_generate_variant:Nn \seq_pop_left:NN { c }
\cs_generate_variant:Nn \seq_gpop_left:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_get_right:NN, \seq_get_right:cN}
% \UnitTested
% \begin{macro}[aux]{\@@_get_right_loop:nn}
% First remove \cs{s_@@} and prepend \cs{q_no_value}, then take two
% arguments at a time. Before the right-hand end of the sequence,
% this is a brace group followed by \cs{@@_item:n}, both removed by
% \cs{use_none:nn}. At the end of the sequence, the two question
% marks are taken by \cs{use_none:nn}, and the assignment is placed
% before the right-most item. In the next iteration,
% \cs{@@_get_right_loop:nn} receives two empty arguments, and
% \cs{use_none:nn} stops the loop.
% \begin{macrocode}
\cs_new_protected:Npn \seq_get_right:NN #1#2
{
\exp_after:wN \use_i_ii:nnn
\exp_after:wN \@@_get_right_loop:nn
\exp_after:wN \q_no_value
#1
{ ?? \tl_set:Nn #2 }
{ } { }
}
\cs_new_protected:Npn \@@_get_right_loop:nn #1#2
{
\use_none:nn #2 {#1}
\@@_get_right_loop:nn
}
\cs_generate_variant:Nn \seq_get_right:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_pop_right:NN, \seq_pop_right:cN}
% \UnitTested
% \begin{macro}{\seq_gpop_right:NN, \seq_gpop_right:cN}
% \UnitTested
% \begin{macro}[aux]{\@@_pop_right:NNN, \@@_pop_right_loop:nn}
% The approach to popping from the right is a bit more involved, but does
% use some of the same ideas as getting from the right. What is needed is a
% \enquote{flexible length} way to set a token list variable. This is
% supplied by the |{ \if_false: } \fi:| \ldots
% |\if_false: { \fi: }| construct. Using an \texttt{x}-type
% expansion and a \enquote{non-expanding} definition for \cs{@@_item:n},
% the left-most $n - 1$ entries in a sequence of $n$ items will be stored
% back in the sequence. That needs a loop of unknown length, hence using the
% strange \cs{if_false:} way of including braces. When the last item
% of the sequence is reached, the closing brace for the assignment is
% inserted, and |\tl_set:Nn #3| is inserted in front of the final
% entry. This therefore does the pop assignment. One more iteration
% is performed, with an empty argument and \cs{use_none:nn}, which
% finally stops the loop.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_pop_right:NN
{ \@@_pop:NNNN \@@_pop_right:NNN \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gpop_right:NN
{ \@@_pop:NNNN \@@_pop_right:NNN \tl_gset:Nx }
\cs_new_protected:Npn \@@_pop_right:NNN #1#2#3
{
\cs_set_eq:NN \@@_tmp:w \@@_item:n
\cs_set_eq:NN \@@_item:n \scan_stop:
#1 #2
{ \if_false: } \fi: \s_@@
\exp_after:wN \use_i:nnn
\exp_after:wN \@@_pop_right_loop:nn
#2
{
\if_false: { \fi: }
\tl_set:Nx #3
}
{ } \use_none:nn
\cs_set_eq:NN \@@_item:n \@@_tmp:w
}
\cs_new:Npn \@@_pop_right_loop:nn #1#2
{
#2 { \exp_not:n {#1} }
\@@_pop_right_loop:nn
}
\cs_generate_variant:Nn \seq_pop_right:NN { c }
\cs_generate_variant:Nn \seq_gpop_right:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[TF]{\seq_get_left:NN, \seq_get_left:cN}
% \begin{macro}[TF]{\seq_get_right:NN, \seq_get_right:cN}
% Getting from the left or right with a check on the results. The
% first argument to \cs{@@_pop_TF:NNNN} is left unused.
% \begin{macrocode}
\prg_new_protected_conditional:Npnn \seq_get_left:NN #1#2 { T , F , TF }
{ \@@_pop_TF:NNNN \prg_do_nothing: \seq_get_left:NN #1#2 }
\prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
{ \@@_pop_TF:NNNN \prg_do_nothing: \seq_get_right:NN #1#2 }
\cs_generate_variant:Nn \seq_get_left:NNT { c }
\cs_generate_variant:Nn \seq_get_left:NNF { c }
\cs_generate_variant:Nn \seq_get_left:NNTF { c }
\cs_generate_variant:Nn \seq_get_right:NNT { c }
\cs_generate_variant:Nn \seq_get_right:NNF { c }
\cs_generate_variant:Nn \seq_get_right:NNTF { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[TF]{\seq_pop_left:NN, \seq_pop_left:cN}
% \begin{macro}[TF]{\seq_gpop_left:NN, \seq_gpop_left:cN}
% \begin{macro}[TF]{\seq_pop_right:NN, \seq_pop_right:cN}
% \begin{macro}[TF]{\seq_gpop_right:NN, \seq_gpop_right:cN}
% More or less the same for popping.
% \begin{macrocode}
\prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2 { T , F , TF }
{ \@@_pop_TF:NNNN \@@_pop_left:NNN \tl_set:Nn #1 #2 }
\prg_new_protected_conditional:Npnn \seq_gpop_left:NN #1#2 { T , F , TF }
{ \@@_pop_TF:NNNN \@@_pop_left:NNN \tl_gset:Nn #1 #2 }
\prg_new_protected_conditional:Npnn \seq_pop_right:NN #1#2 { T , F , TF }
{ \@@_pop_TF:NNNN \@@_pop_right:NNN \tl_set:Nx #1 #2 }
\prg_new_protected_conditional:Npnn \seq_gpop_right:NN #1#2 { T , F , TF }
{ \@@_pop_TF:NNNN \@@_pop_right:NNN \tl_gset:Nx #1 #2 }
\cs_generate_variant:Nn \seq_pop_left:NNT { c }
\cs_generate_variant:Nn \seq_pop_left:NNF { c }
\cs_generate_variant:Nn \seq_pop_left:NNTF { c }
\cs_generate_variant:Nn \seq_gpop_left:NNT { c }
\cs_generate_variant:Nn \seq_gpop_left:NNF { c }
\cs_generate_variant:Nn \seq_gpop_left:NNTF { c }
\cs_generate_variant:Nn \seq_pop_right:NNT { c }
\cs_generate_variant:Nn \seq_pop_right:NNF { c }
\cs_generate_variant:Nn \seq_pop_right:NNTF { c }
\cs_generate_variant:Nn \seq_gpop_right:NNT { c }
\cs_generate_variant:Nn \seq_gpop_right:NNF { c }
\cs_generate_variant:Nn \seq_gpop_right:NNTF { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_item:Nn, \seq_item:cn}
% \begin{macro}[aux]{\@@_item:wNn, \@@_item:nnn}
% The idea here is to find the offset of the item from the left, then use
% a loop to grab the correct item. If the resulting offset is too large,
% then the stop code |{ ? \__prg_break: } { }| will be used by the auxiliary,
% terminating the loop and returning nothing at all.
% \begin{macrocode}
\cs_new:Npn \seq_item:Nn #1
{ \exp_after:wN \@@_item:wNn #1 \q_stop #1 }
\cs_new:Npn \@@_item:wNn \s_@@ #1 \q_stop #2#3
{
\exp_args:Nf \@@_item:nnn
{
\int_eval:n
{
\int_compare:nNnT {#3} < \c_zero
{ \seq_count:N #2 + \c_one + }
#3
}
}
#1
{ ? \__prg_break: } { }
\__prg_break_point:
}
\cs_new:Npn \@@_item:nnn #1#2#3
{
\use_none:n #2
\int_compare:nNnTF {#1} = \c_one
{ \__prg_break:n { \exp_not:n {#3} } }
{ \exp_args:Nf \@@_item:nnn { \int_eval:n { #1 - 1 } } }
}
\cs_generate_variant:Nn \seq_item:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Mapping to sequences}
%
% \begin{macro}{\seq_map_break:}
% \UnitTested
% \begin{macro}{\seq_map_break:n}
% \UnitTested
% To break a function, the special token \cs{__prg_break_point:Nn} is
% used to find the end of the code. Any ending code is then inserted
% before the return value of \cs{seq_map_break:n} is inserted.
% \begin{macrocode}
\cs_new_nopar:Npn \seq_map_break:
{ \__prg_map_break:Nn \seq_map_break: { } }
\cs_new_nopar:Npn \seq_map_break:n
{ \__prg_map_break:Nn \seq_map_break: }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_map_function:NN, \seq_map_function:cN}
% \UnitTested
% \begin{macro}[aux,rEXP]{\@@_map_function:NNn}
% The idea here is to apply the code of |#2| to each item in the
% sequence without altering the definition of \cs{@@_item:n}. This
% is done as by noting that every odd token in the sequence must be
% \cs{@@_item:n}, which can be gobbled by \cs{use_none:n}. At the end of
% the loop, |#2| is instead |? \seq_map_break:|, which therefore breaks the
% loop without needing to do a (relatively-expensive) quark test.
% \begin{macrocode}
\cs_new:Npn \seq_map_function:NN #1#2
{
\exp_after:wN \use_i_ii:nnn
\exp_after:wN \@@_map_function:NNn
\exp_after:wN #2
#1
{ ? \seq_map_break: } { }
\__prg_break_point:Nn \seq_map_break: { }
}
\cs_new:Npn \@@_map_function:NNn #1#2#3
{
\use_none:n #2
#1 {#3}
\@@_map_function:NNn #1
}
\cs_generate_variant:Nn \seq_map_function:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int]{\@@_push_item_def:n, \@@_push_item_def:x}
% \begin{macro}[aux]{\@@_push_item_def:}
% \begin{macro}[int]{\@@_pop_item_def:}
% The definition of \cs{@@_item:n} needs to be saved and restored at
% various points within the mapping and manipulation code. That is handled
% here: as always, this approach uses global assignments.
% \begin{macrocode}
\cs_new_protected:Npn \@@_push_item_def:n
{
\@@_push_item_def:
\cs_gset:Npn \@@_item:n ##1
}
\cs_new_protected:Npn \@@_push_item_def:x
{
\@@_push_item_def:
\cs_gset:Npx \@@_item:n ##1
}
\cs_new_protected:Npn \@@_push_item_def:
{
\int_gincr:N \g__prg_map_int
\cs_gset_eq:cN { __prg_map_ \int_use:N \g__prg_map_int :w }
\@@_item:n
}
\cs_new_protected_nopar:Npn \@@_pop_item_def:
{
\cs_gset_eq:Nc \@@_item:n
{ __prg_map_ \int_use:N \g__prg_map_int :w }
\int_gdecr:N \g__prg_map_int
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_map_inline:Nn, \seq_map_inline:cn}
% \UnitTested
% The idea here is that \cs{@@_item:n} is already \enquote{applied} to
% each item in a sequence, and so an in-line mapping is just a case of
% redefining \cs{@@_item:n}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_map_inline:Nn #1#2
{
\@@_push_item_def:n {#2}
#1
\__prg_break_point:Nn \seq_map_break: { \@@_pop_item_def: }
}
\cs_generate_variant:Nn \seq_map_inline:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \seq_map_variable:NNn,\seq_map_variable:Ncn,
% \seq_map_variable:cNn,\seq_map_variable:ccn
% }
% \UnitTested
% This is just a specialised version of the in-line mapping function,
% using an \texttt{x}-type expansion for the code set up so that the
% number of |#| tokens required is as expected.
% \begin{macrocode}
\cs_new_protected:Npn \seq_map_variable:NNn #1#2#3
{
\@@_push_item_def:x
{
\tl_set:Nn \exp_not:N #2 {##1}
\exp_not:n {#3}
}
#1
\__prg_break_point:Nn \seq_map_break: { \@@_pop_item_def: }
}
\cs_generate_variant:Nn \seq_map_variable:NNn { Nc }
\cs_generate_variant:Nn \seq_map_variable:NNn { c , cc }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_count:N, \seq_count:c}
% \begin{macro}[aux]{\@@_count:n}
% Counting the items in a sequence is done using the same approach as for
% other count functions: turn each entry into a \texttt{+1} then use
% integer evaluation to actually do the mathematics.
% \begin{macrocode}
\cs_new:Npn \seq_count:N #1
{
\int_eval:n
{
0
\seq_map_function:NN #1 \@@_count:n
}
}
\cs_new:Npn \@@_count:n #1 { + \c_one }
\cs_generate_variant:Nn \seq_count:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Using sequences}
%
% \begin{macro}[EXP]{\seq_use:Nnnn, \seq_use:cnnn}
% \begin{macro}[EXP, aux]
% {\@@_use:NNnNnn, \@@_use_setup:w, \@@_use:nwwwwnwn, \@@_use:nwwn}
% \begin{macro}[EXP]{\seq_use:Nn, \seq_use:cn}
% See \cs{clist_use:Nnnn} for a general explanation. The main
% difference is that we use \cs{@@_item:n} as a delimiter rather than
% commas. We also need to add \cs{@@_item:n} at various places, and
% \cs{s_@@}.
% \begin{macrocode}
\cs_new:Npn \seq_use:Nnnn #1#2#3#4
{
\seq_if_exist:NTF #1
{
\int_case:nnF { \seq_count:N #1 }
{
{ 0 } { }
{ 1 } { \exp_after:wN \@@_use:NNnNnn #1 ? { } { } }
{ 2 } { \exp_after:wN \@@_use:NNnNnn #1 {#2} }
}
{
\exp_after:wN \@@_use_setup:w #1 \@@_item:n
\q_mark { \@@_use:nwwwwnwn {#3} }
\q_mark { \@@_use:nwwn {#4} }
\q_stop { }
}
}
{
\__msg_kernel_expandable_error:nnn
{ kernel } { bad-variable } {#1}
}
}
\cs_generate_variant:Nn \seq_use:Nnnn { c }
\cs_new:Npn \@@_use:NNnNnn #1#2#3#4#5#6 { \exp_not:n { #3 #6 #5 } }
\cs_new:Npn \@@_use_setup:w \s_@@ { \@@_use:nwwwwnwn { } }
\cs_new:Npn \@@_use:nwwwwnwn
#1 \@@_item:n #2 \@@_item:n #3 \@@_item:n #4#5
\q_mark #6#7 \q_stop #8
{
#6 \@@_item:n {#3} \@@_item:n {#4} #5
\q_mark {#6} #7 \q_stop { #8 #1 #2 }
}
\cs_new:Npn \@@_use:nwwn #1 \@@_item:n #2 #3 \q_stop #4
{ \exp_not:n { #4 #1 #2 } }
\cs_new:Npn \seq_use:Nn #1#2
{ \seq_use:Nnnn #1 {#2} {#2} {#2} }
\cs_generate_variant:Nn \seq_use:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Sequence stacks}
%
% The same functions as for sequences, but with the correct naming.
%
% \begin{macro}{
% \seq_push:Nn, \seq_push:NV, \seq_push:Nv, \seq_push:No, \seq_push:Nx,
% \seq_push:cn, \seq_push:cV, \seq_push:cV, \seq_push:co, \seq_push:cx
% }
% \UnitTested
% \begin{macro}{
% \seq_gpush:Nn, \seq_gpush:NV, \seq_gpush:Nv, \seq_gpush:No, \seq_gpush:Nx,
% \seq_gpush:cn, \seq_gpush:cV, \seq_gpush:cv, \seq_gpush:co, \seq_gpush:cx
% }
% \UnitTested
% Pushing to a sequence is the same as adding on the left.
% \begin{macrocode}
\cs_new_eq:NN \seq_push:Nn \seq_put_left:Nn
\cs_new_eq:NN \seq_push:NV \seq_put_left:NV
\cs_new_eq:NN \seq_push:Nv \seq_put_left:Nv
\cs_new_eq:NN \seq_push:No \seq_put_left:No
\cs_new_eq:NN \seq_push:Nx \seq_put_left:Nx
\cs_new_eq:NN \seq_push:cn \seq_put_left:cn
\cs_new_eq:NN \seq_push:cV \seq_put_left:cV
\cs_new_eq:NN \seq_push:cv \seq_put_left:cv
\cs_new_eq:NN \seq_push:co \seq_put_left:co
\cs_new_eq:NN \seq_push:cx \seq_put_left:cx
\cs_new_eq:NN \seq_gpush:Nn \seq_gput_left:Nn
\cs_new_eq:NN \seq_gpush:NV \seq_gput_left:NV
\cs_new_eq:NN \seq_gpush:Nv \seq_gput_left:Nv
\cs_new_eq:NN \seq_gpush:No \seq_gput_left:No
\cs_new_eq:NN \seq_gpush:Nx \seq_gput_left:Nx
\cs_new_eq:NN \seq_gpush:cn \seq_gput_left:cn
\cs_new_eq:NN \seq_gpush:cV \seq_gput_left:cV
\cs_new_eq:NN \seq_gpush:cv \seq_gput_left:cv
\cs_new_eq:NN \seq_gpush:co \seq_gput_left:co
\cs_new_eq:NN \seq_gpush:cx \seq_gput_left:cx
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_get:NN, \seq_get:cN}
% \UnitTested
% \begin{macro}{\seq_pop:NN, \seq_pop:cN}
% \UnitTested
% \begin{macro}{\seq_gpop:NN, \seq_gpop:cN}
% \UnitTested
% In most cases, getting items from the stack does not need to specify
% that this is from the left. So alias are provided.
% \begin{macrocode}
\cs_new_eq:NN \seq_get:NN \seq_get_left:NN
\cs_new_eq:NN \seq_get:cN \seq_get_left:cN
\cs_new_eq:NN \seq_pop:NN \seq_pop_left:NN
\cs_new_eq:NN \seq_pop:cN \seq_pop_left:cN
\cs_new_eq:NN \seq_gpop:NN \seq_gpop_left:NN
\cs_new_eq:NN \seq_gpop:cN \seq_gpop_left:cN
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[TF]{\seq_get:NN, \seq_get:cN}
% \begin{macro}[TF]{\seq_pop:NN, \seq_pop:cN}
% \begin{macro}[TF]{\seq_gpop:NN, \seq_gpop:cN}
% More copies.
% \begin{macrocode}
\prg_new_eq_conditional:NNn \seq_get:NN \seq_get_left:NN { T , F , TF }
\prg_new_eq_conditional:NNn \seq_get:cN \seq_get_left:cN { T , F , TF }
\prg_new_eq_conditional:NNn \seq_pop:NN \seq_pop_left:NN { T , F , TF }
\prg_new_eq_conditional:NNn \seq_pop:cN \seq_pop_left:cN { T , F , TF }
\prg_new_eq_conditional:NNn \seq_gpop:NN \seq_gpop_left:NN { T , F , TF }
\prg_new_eq_conditional:NNn \seq_gpop:cN \seq_gpop_left:cN { T , F , TF }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Viewing sequences}
%
% \begin{macro}{\seq_show:N, \seq_show:c}
% \UnitTested
% Apply the general \cs{__msg_show_variable:Nnn}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_show:N #1
{
\__msg_show_variable:Nnn #1 { seq }
{ \seq_map_function:NN #1 \__msg_show_item:n }
}
\cs_generate_variant:Nn \seq_show:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Scratch sequences}
%
% \begin{variable}{\l_tmpa_seq, \l_tmpb_seq, \g_tmpa_seq, \g_tmpb_seq}
% Temporary comma list variables.
% \begin{macrocode}
\seq_new:N \l_tmpa_seq
\seq_new:N \l_tmpb_seq
\seq_new:N \g_tmpa_seq
\seq_new:N \g_tmpb_seq
% \end{macrocode}
% \end{variable}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|