1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
|
%% forest-doc.tex
%% `forest-doc.tex` is a main documentation source of package `forest`.
%%
%% Copyright (c) 2012-2017 Saso Zivanovic
%% (Sa\v{s}o \v{Z}ivanovi\'{c})
%% saso.zivanovic@guest.arnes.si
%%
%% This work may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%% The latest versionx of this license is in
%%
%% http://www.latex-project.org/lppl.txt
%%
%% and version 1.3 or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%%
%% This work has the LPPL maintenance status `author-maintained'.
%%
%% This file is a part of package `forest'. For the list of files
%% constituting the package see main source file of the package,
%% `forest.dtx', or the derived `forest.sty'.
%%
\documentclass{ltxdoc}
\usepackage[a4paper,
top=2cm,bottom=2.5cm,
reversemarginpar,marginparwidth=2cm,
right=1.5cm,
nohead
]{geometry}
\immediate\write18{makeindex -s forest-doc.ist forest-doc}
\def\indexlettertotoc#1\relax{%
\phantomsection\addcontentsline{toc}{subsection}{#1}%
#1%
}
\makeatletter
\c@IndexColumns=2 \makeatother
\IndexPrologue{Color legend: \textcolor{red}{definition}, \textcolor{darkgreen}{example}, \textcolor{blue}{other}. If an entry belongs to a library, the library name is given in parenthesis. All page numbers are hyperlinks, and definitions in text are hyperlinked to this index.}
\makeindex
\makeatletter
\def\bigbadforlist{}
\def\forest@@doc@@hook@bigbadforlist{\aftergroup\forest@@doc@@hook@bigbadforlist@}
\def\forest@@doc@@hook@bigbadforlist@{%
\forestset{define long step/.append code={%
\ifforest@nodewalkstephandler@makefor
\appto\bigbadforlist{[##1]}%
\fi
}%
}%
}
\def\bigbadprocesslist{}
\makeatother
\usepackage[external]{forest}
\useforestlibrary{edges}
\useforestlibrary{linguistics}
% \tikzexternalize
% forest-tikzexternalize either contains \tikzexternalize or not ... make adjusts this
\IfFileExists{forest-doc.tex-externalize.tex}{%
\input forest-doc.tex-externalize\relax
}{}
\tikzset{
external/prefix={forest.for.dir/},
external/system call={
pdflatex \tikzexternalcheckshellescape -halt-on-error -interaction=nonstopmode -jobname "\image" "\texsource"},
external/up to date check=simple,
}
\usepackage{forest-doc}
% \usepackage{patchpgf}
% \newcommand\pgfprofilenewforcommandcs[2]{%
% \expandafter\pgfprofilenewforcommand\expandafter{\csname #1\endcsname}{#2}}
% \newcommand\pgfprofilenewforpgfkey[1]{%
% \edef\marshal{%
% \noexpand\pgfprofilenewforcommandpattern[#1]{\expandonce{\csname pgfk@#1/.@cmd\endcsname}}{####1\noexpand\pgfeov}{####1\noexpand\pgfeov}
% }\marshal
% }
% \usetikzlibrary{profiler}
% \makeatletter
% \pgfprofilenewforcommand{\forestindex@index}{3}
% \pgfprofilenewforcommand{\pgfmathparse}{1}
% \pgfprofilenewforpgfkey{/forest/split}
% \pgfprofilenewforpgfkey{/forest/nodewalk/reverse}
% \pgfprofilenewforcommand{\forest@Nodewalk}{2}
% \pgfprofilenewforcommand{\pgfkeysalso}{1}
% \makeatother
\usepackage{hyperref}
\hypersetup{unicode=true,colorlinks=true,linkcolor=blue,citecolor=blue,hyperindex=false}
\usepackage{url}
\usepackage[numbers]{natbib}
\usepackage[multiple]{footmisc}
\usepackage{tipa}
\usepackage[inline,shortlabels]{enumitem}
\newlist{compactitem}{itemize}{2}
\setlist[compactitem]{nosep,label=\textbullet}
\newlist{arguments}{enumerate}{1}
\setlist[arguments]{nosep,label=\textbf{\#\arabic*}}
\renewcommand\DescribeMacro[1]{\texttt{\detokenize{#1}}\marginpar{\hfill\small\strut\texttt{\detokenize{#1}}}}
\usepackage{printlen}
\usepackage{tabularx}
\DeleteShortVerb\|
\newcommand\OR{\ensuremath{\,|\,}}%
\usepackage{multicol}
%\usepackage[silent]{trace-pgfkeys} % silent, stack, trace, verbose
%\pgfkeystracelevel{trace}
%%% begin listing region: index_macro_style
\forestset{
detokenize/.style={result=\protect\detokenize{##1}},
tt/.style={result=\protect\texttt{##1}},
macro/.style={detokenize, +result={\char\escapechar}, tt, print in color, hyper},
}
%%% end listing region: index_macro_style
\forestset{
pgfkey/.style={tt,print in color,hyper},
path/.style={+result={/},pgfkey},
handler/.style={+result={.},pgfkey},
option value/.style={
format={tt,result+={ value}},
for first={format=pgfkey},
},
environment/.style={
detokenize,
tt,
print in color,
if stage={index}{}{
if index entry type={definition}{
temptoksa/.register=result,
hyper,
result/.process=ROw2{result}{argument}{%
\texttt{\string\begin\char`\{##1\char`\}}%
##2%
\texttt{\string\end\char`\{##1\char`\}}%
}
}{
hyper
}
}
},
empty/.style={result={{}}},
meta/.style={result=\protect\meta{##1},print in color,hyper},
index library/.style={
if index entry type={definition}{
for first leaf'={
index format+={
result+'={\space
{\protect\scriptsize
(\protect\texttt{\protect\hyperrefnocolor[sec:library-#1]{#1}})%
}%
}
}
},
}{}
},
margin/.style={print format={result=\marginpar{\strut##1}}},
also margin/.style={print format={result=##1\marginpar{\strut##1}}},
}
\let\origmeta\meta
\renewcommand\meta[1]{\origmeta{\rm\ignorespaces#1}}
\renewcommand\rstyle{\color{red}}
\newcommand\hyperrefnocolor[2][]{{\hypersetup{linkcolor=black}\hyperref[#1]{#2}}}
\newcommand\librarysection[1]{%
\subsection{\protect\texttt{#1}}%
\label{sec:library-#1}%
\forestset{every index end/.style={set={index library={#1}}}}%
}
\newcommand\reflibrary[1]{\hyperref[sec:library-#1]{\texttt{#1}}}
\index[not print,not index,set={
index key=unknown,
form={\textbf{unknown!!}},
for first={format={
result/.expanded=\noexpand\textbf{\forestregister{result}??},
print in color}}}
]>{@unknown}
\indexset
[print form={},for first={format=pgfkey}]
>{node key}
\indexset
[for first={format={+result={/tikz/},pgfkey}}]
>{tikz key}
\indexset
[for first={format=pgfkey}]
>{option,readonly option,bracket key,nodewalk key,register,propagator,style,nodewalk style,stage,dynamic tree,step,loop,conditional,anchor,package option}
%%% begin listing region: index_macro_category
\indexset
[for first={format=macro}]
>{macro}
%%% end listing region: index_macro_category
\indexset
[for first={format=environment}]
>{environment}
\indexset
[format=empty]>{empty}
\indexset
[index form={type (of options and registers)},for first={format=meta}]
>{type}
\indexset
[for first={format=handler}]
>{handler}
\indexset
[format={aggregate function},for first={format=handler}]
>{aggregate}
\indexset
[form={\texttt{pgfmath} function},for first={format={detokenize,pgfkey}}]
>{pgfmath}
\indexset
[for first={format=path}]
>{path}
\indexset[
form={},
index key={},
for first={
for first={
key+/.option=!parent.argument,
index format={
result+/.process={Ow1} {!parent.argument} {\protect\meta{##1 option}},
},
print format={
if argument={}{}{
result+/.option=argument
},
},
format={
pgfkey
},
}
}
]>{prefix}
\indexset[
form={},
index key={},
for first={
for first={
+key/.option=!parent.argument,
index format={
+result/.process={Ow1} {!parent.argument} {\protect\meta{##1 option}},
},
print format={
if argument={}{}{
+result/.option=argument
},
},
format={
pgfkey
},
}
}
]>{suffix}
\indexset[
form={},
index key={},
for first={
for first={
key/.process={OOw2} {key} {!parent,parent.argument} {##1 ##2},
index format={
result+/.process={Ow1} {!parent,parent.argument} {\space\protect\meta{##1}},
},
print format={
if argument={}{}{
result+={\space},
result+/.option=argument
}
},
format={
pgfkey
},
}
}
]>{word prefix}
\indexset[
form={},
index key={},
for first={
for first={
key/.process={OOw2} {key} {!parent,parent.argument} {##2 ##1},
index format={
+result/.process={Ow1} {!parent,parent.argument} {\protect\meta{##1}\space},
},
print format={
if argument={}{}{
+result={\space},
+result/.option=argument
}
},
format={
pgfkey
},
}
}
]>{word suffix}
\indexset[%option values
index key format={result/.expanded=\forestoption{argument} value},
format={result/.expanded=\noexpand\texttt{\forestoption{argument}} value},
for first={format=pgfkey}
]>{value of}
\indexset[
index key format={result/.expanded=\forestoption{argument} option},
format={result/.expanded=\noexpand\texttt{\forestoption{argument}} option},
for first={format=pgfkey}
]>{option of}
\indexset
[form={},for first={
print format={if argument={}{}{
result+={:\ },
result+/.option=argument,
}},
format=meta,
}]>{meta}
\indexset[
for first={+key={{cs }},format={pgfkey}}
]>{forest cs}
\indexset[
for first={+key={{ss }},format={pgfkey}}
]>{short step}
\indexset
[for first={format=pgfkey}]
>{named nodewalk}
\indexset[
format={result/.expanded=\noexpand\texttt{process instruction}},
for first={format=pgfkey}
]>{processor}
{\makeatletter % an dirty patch: \lst@nolig can sneak in the name...
\gdef\myexampleindex#1{{\def\lst@nolig{}\lstaspectindex{#1}{}}}
}
\lstset{indexstyle={[1]\myexampleindex}}
%%% end lst-related stuff
\EnableCrossrefs
\setlength\hfuzz{15pt} % dont make so many
\hbadness=7000 % over and under full box warnings
\usetikzlibrary{intersections}
\tikzset{>=latex}
\forestset{
background tree/.style={
for tree={text opacity=0.2,draw opacity=0.2,edge={draw opacity=0.2}}}
}
\title{\FoRest;: a \PGF;/\TikZ;-based package for drawing linguistic trees\\\normalsize\forestversion}
\author{Sa\v so \v Zivanovi\'c\footnote{e-mail:
\href{mailto:saso.zivanovic@guest.arnes.si}{saso.zivanovic@guest.arnes.si};
web:
\href{http://spj.ff.uni-lj.si/zivanovic/}{http://spj.ff.uni-lj.si/zivanovic/}}}
%\usepackage[verbose]{trace-pgfkeys} % silent, stack, trace, verbose
%\pgfkeystracelevel{trace}
\begin{document}
\typeout{)}% hacking auctex's error finding routing
% short verbatim: | (changes spaces into _)
\DeleteShortVerb\|
\def\indexpipe{|}
{\catcode`\_=12 \def\marshal{%
\lstMakeShortInline[basicstyle=\ttfamily,literate={_}{ }1 {__}{_}1]}%
\expandafter}\marshal |
\IfFileExists{forest-doc-test.tex}{%
\input forest-doc-test\relax
}{}
\newbox\treebox
\newbox\codebox
{\settodayfromforestdate\maketitle}
\begin{abstract}
\FoRest; is a \PGF;/\TikZ;-based package for drawing linguistic (and
other kinds of) trees. Its main features are
\begin{enumerate*}[(i)]
\item a packing algorithm which can produce very compact trees;
\item a user-friendly interface consisting of the familiar bracket encoding of trees plus the
key--value interface to option-setting;
\item many tree-formatting options, with control over option values of individual nodes and
mechanisms for their manipulation;
\item a powerful mechanism for traversing the tree;
\item the possibility to decorate the tree using the full power of \PGF;/\TikZ;;
\item an externalization mechanism sensitive to code-changes.
\end{enumerate*}
\end{abstract}
\vspace{1cm}
\begin{forestexample}[basicstyle=\ttfamily\scriptsize,layout=tree on top,no label,v sep=1cm,index={content,pgfmath,conditional>if,repeat,append,before drawing tree,y,alias,for step,step>children,edge,before typesetting nodes,tree,s sep,dimen+,option>l,ancestors,typeset node,nodewalk,readonly option>level,sort by,step>min}]
\pgfmathsetseed{14285}
\begin{forest}
random tree/.style n args={3}{% #1 = max levels, #2 = max children, #3 = max content
content/.pgfmath={random(0,#3)},
if={#1>0}{repeat={random(0,#2)}{append={[,random tree={#1-1}{#2}{#3}]}}}{}},
before typesetting nodes={for tree={draw,s sep=2pt,rotate={int(30*rand)},l+={5*rand},
if={isodd(level())}{fill=green}{fill=yellow}}},
important/.style={draw=red,line width=1.5pt,edge={red,line width=1.5pt}},
before drawing tree={sort by=y, for nodewalk={min=tree,ancestors}{important,typeset node}}
[,random tree={9}{3}{100}]
\end{forest}
\end{forestexample}%
\begin{center}\mbox{}\box\treebox\\\box\codebox\end{center}
\newpage
{%
\parskip 0pt
\begin{multicols}{2}
\tableofcontents
\end{multicols}
}
\newpage
\section{Introduction}
Over several years, I had been a grateful user of various packages
for typesetting linguistic trees. My main experience was with
|qtree| and |synttree|, but as far as I can tell, all of the tools
on the market had the same problem: sometimes, the trees were just
too wide. They looked something like the tree on the left,
while I wanted something like the tree on the right.
\begin{center}
\begin{forest}
baseline,
for tree={parent anchor=south,child anchor=north,l=7ex,s sep=10pt},
for children={fit=rectangle}
[CP
[DP
[D][NP[N][CP[C][TP[T][vP[v][VP[DP][V'[V][DP]]]]]]]]
[TP
[T][vP[v][VP[DP][V'[V][DP]]]]]
]
\end{forest}
\hfill
\begin{forest}
baseline,
for tree={parent anchor=south,child anchor=north,l=7ex,s sep=10pt},
[CP
[DP
[D][NP[N][CP[C][TP[T][vP[v][VP[DP][V'[V][DP]]]]]]]]
[TP
[T][vP[v][VP[DP][V'[V][DP]]]]]
]
\end{forest}
\end{center}
Luckily, it was possible to tweak some parameters by hand to get a
narrower tree, but as I quite dislike constant manual adjustments, I
eventually started to develop \foRest;. It started out as
|xyforest|, but lost the |xy| prefix as I became increasingly fond
of \PGF;/\TikZ;, which offered not only a drawing package but also a
`programming paradigm.' It is due to the awesome power of the
supplementary facilities of \PGF;/\TikZ; that \foRest; is now, I
believe, the most flexible tree typesetting package for \LaTeX\ you can get.
The latest stable version of \FoRest; is \href{http://www.ctan.org/pkg/forest}{available at CTAN}.
Development version(s) can be found \href{https://github.com/sasozivanovic/forest}{at GitHub}.
Comments, criticism, suggestions and code are all very welcome! If you find the package useful, you
can show your appreciation by making a PayPal donation to \url{saso.zivanovic@guest.arnes.si}.
\section{Tutorial}
\label{sec:tutorial}
This short tutorial progresses from basic through useful to obscure \dots fortunately, it is not the
only newcomer's source of information on \foRest;: check out
\href{http://mirrors.ctan.org/info/forest-quickstart/ForestQuickstart.pdf}{Forest Quickstart Guide
for Linguists}. Another very useful source of information (and help!) about \foRest; and \TeX\ in
general is \href{http://tex.stackexchange.com}{\TeX\ StackExchange}. Check out the questions tagged
\href{http://tex.stackexchange.com/questions/tagged/forest}{\texttt{forest}}!
\subsection{Basic usage}
\label{tut:basic-usage}
A tree is input by enclosing its specification in a \index{forest}
environment. The tree is encoded by \emph{the bracket syntax}:
every node is enclosed in square brackets; the children of a
node are given within its brackets, after its content.
{\lstdefinelanguage[my]{TeX}[LaTeX]{TeX}{keywords=forest,
otherkeywords={[,]},keywordstyle=\pstyle,texcsstyle={}}%
\lstset{language={[my]TeX}}%
\begin{forestexample}
\begin{forest}
[VP
[DP]
[V'
[V]
[DP]
]
]
\end{forest}
\end{forestexample}}
Binary trees are nice, but not the only thing this package can draw.
Note that by default, the children are vertically centered with
respect to their parent, i.e.\ the parent is vertically aligned with the midpoint between the
first and the last child.
\begin{forestexample}
\begin{forest}
[VP
[DP[John]]
[V'
[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]
]
]
\end{forest}
\end{forestexample}
Spaces around brackets are ignored --- format your code as you
desire!
\begin{forestexample}
\begin{forest}
[VP[DP][V'[V][DP]]]
\end{forest}
\quad
\begin{forest}[VP
[DP ] [ V'[V][ DP]]
]\end{forest}
\end{forestexample}
If you need a square bracket as part of a node's content, use
braces. The same is true for the other characters which have a
special meaning in the \foRest; package, like comma
|,| and equality sign |=|.
\begin{forestexample}
\begin{forest}
[V{P,}
[{[DP]}]
[V'
[V]
[{===DP===}]]]
\end{forest}
\end{forestexample}
Macros in a node specification will be expanded when the node is
drawn --- you can freely use formatting commands inside nodes!
\begin{forestexample}
\begin{forest}
[VP
[{~\textbf~{DP}}]
[V'
[V]
[DP]]]
\end{forest}
\end{forestexample}
All the examples given above produced top-down trees with centered children. The other sections
of this manual explain how various properties of a tree can be changed, making it possible to
typeset radically different-looking trees. However, you don't have to learn everything about this
package to profit from its power. Using styles, you can draw predefined types of trees with ease.
For example, a phonologist can use the \index{GP1} style from library \reflibrary{linguistics} to easily
typeset (Government Phonology) phonological representations. The style is applied simply by
writing its name before the first (opening) bracket of the tree.
\begin{forestexample}[label=ex:gp1-frost,code prefix={\def\usepackage[##1]##2{}}]
\usepackage[~linguistics~]{forest}
% ...
\begin{forest} ~GP1~ [
[O[x[f]][x[r]]]
[R[N[x[o]]][x[s]]]
[O[x[t]]]
[R[N[x]]]
]\end{forest}
\end{forestexample}
Of course, someone needs to develop the style --- you, me, your local \TeX nician \dots\@
Fortunately, designing styles is not very difficult once you get the hang of \foRest;, if you
write one, please contribute! Some macros relating to various fields are collected in
\emph{libraries} that are distributed alongside the main package. This is the case for the
\index{GP1} style used above, which is defined in the |linguistics| library. The simplest way to
load a library is as shown in the example, by loading the package with an optional argument. For
more information on loading libraries, see \S\ref{ref:package-options}.
\subsection{Options}
\label{tut:options}
A node can be given various options, which control various
properties of the node and the tree. For example, at the end of
section~\ref{tut:basic-usage}, we have seen that the \index{GP1} style
vertically aligns the parent with the first
child. This is achieved by setting option \index{calign} (for
\emph{c}hild-\emph{align}ment) to \index{value of=calign>first} (child).
Let's try. Options are given inside the brackets, following the
content, but separated from it by a comma. (If multiple options are
given, they are also separated by commas.) A single option
assignment takes the form \meta{option name}|=|\meta{option value}. (There are
also options which do not require a value or have a default value:
these are given simply as \meta{option name}.)
\begin{forestexample}[label=ex:numerals-simple,index={calign,value of=align>first}]
\begin{forest}
[\LaTeX\ numerals, ~calign=first~
[arabic[1][2][3][4]]
[roman[i][ii][iii][iv]]
[alph[a][b][c][d]]
]
\end{forest}
\end{forestexample}
The experiment has succeeded only partially. The root node's
children are aligned as desired (so \index{calign}|=|\index{value of=calign>first} applied to the
root node), but the value of the \index{calign} option didn't get
automatically assigned to the root's children! \emph{An option given
at some node applies only to that node.} In \foRest;, the options
are passed to the node's relatives via special keys, called
\emph{propagators}. What we need above is the \index{for step=\index{tree}}
propagator. Observe:
\begin{forestexample}[label=ex:numerals-manual]
\begin{forest}
[\LaTeX\ numerals,
~for tree~={calign=first}
[arabic[1][2][3][4]]
[roman[i][ii][iii][iv]]
[alph[a][b][c][d]]
]
\end{forest}
\end{forestexample}
The value of propagator \index{for step=\index{tree}} is a list of keys that we
want to process. This keylist is propagated to all the nodes in
the subtree\footnote{It might be more precise to call \index{for step=\index{tree}}
\texttt{for subtree} \dots\@ but this name at least saves some typing.}
rooted in the current node (i.e.\ the node where \index{for step=\index{tree}} was
given), including the node itself. (Propagator \index{for step=\index{descendants}} is
just like \index{for step=\index{tree}}, only that it excludes the node itself. There
are many other \index{for step=\meta{step}} propagators; for the complete list, see
sections~\ref{ref:spatial-propagators} and \ref{ref:nodewalks}.)
Some other useful options are \index{option>parent anchor}, \index{option>child anchor} and
\index{tier}. The \index{option>parent anchor} and \index{option>child anchor} options tell
where the parent's and child's endpoint of the edge between them should be, respectively: usually,
the value is either empty (meaning a smartly determined border point
\citep[see][\S16.11]{tikzpgf2.10}; this is the default) or a compass direction
\citep[see][\S16.5.1]{tikzpgf2.10}. (Note: the \index{option>parent anchor} determines where the edge
from the child will arrive to this node, not where the node's edge to its parent will start!)
Option \index{tier} is what makes the
skeletal points $\times$ in example (\ref{ex:gp1-frost}) align horizontally although they
occur at different levels in the logical structure of the tree.
Using option \index{tier} is very simple: just set |tier=tier_name| at
all the nodes that you want to align horizontally. Any tier name
will do, as long as the tier names of different tiers are
different \dots\@ (Yes, you can have multiple tiers!)
\begin{forestexample}[point={tier},index={option>parent anchor,option>child anchor,tier},label=ex:tier-manual]
\begin{forest}
[VP, for tree={~parent anchor~=south, ~child anchor~=north}
[DP[John,tier=word]]
[V'
[V[sent,tier=word]]
[DP[Mary,tier=word]]
[DP[D[a,tier=word]][NP[letter,tier=word]]]
]
]
\end{forest}
\end{forestexample}
Before discussing the variety of \foRest;'s options, it is worth
mentioning that \foRest;'s node accepts all options \citep[see
\S16]{tikzpgf2.10} that \TikZ;'s node does --- mostly, it just passes
them on to \TikZ;. For example, you can easily encircle a node like
this:\footnote{If option \texttt{draw} was not given, the shape of the node
would still be circular, but the edge would not be drawn. For
details, see \cite[\S16]{tikzpgf2.10}.}
\begin{forestexample}
\begin{forest}
[VP,~circle~,~draw~
[DP][V'[V][DP]]
]
\end{forest}
\end{forestexample}
Let's have another look at example (\ref{ex:gp1-frost}). You will note that the skeletal
positions were input by typing |x|s, while the result looks like
this: $\times$ (input as |\times| in math mode). Obviously, the
content of the node can be changed. Even more, it can be
manipulated: added to, doubled, boldened, emphasized, etc. We will
demonstrate this by making example (\ref{ex:numerals-manual}) a bit
fancier: we'll write the input in the arabic numbers and have
\LaTeX\ convert it to the other formats. We'll start with the
easiest case of roman numerals: to get them, we can use the (plain)
\TeX\ command |\romannumeral|. To change the content of the node,
we use option \index{content}. When specifying its new value, we can use
|#1| to insert the current content.\footnote{This mechanism is called
\emph{wrapping}. By default, \index{content} is the only \index{autowrapped toks} option,
i.e.\ option where wrapping works implicitely (simply
because I assume that wrapping will be almost exclusively used with this option). To wrap values
of other options, use handler \index{wrap value}; see~\S\ref{ref:handlers}.}
\begin{forestexample}[point={content,delay},index={for step,step>children,content,delay},label=ex:romannumeral]
\begin{forest}
[roman, delay={for children={content=\romannumeral#1}}
[1][2][3][4]
]
\end{forest}
\end{forestexample}
This example introduces another option: \index{delay}. Without it, the example wouldn't work: we
would get arabic numerals. This is so because of the order in which the options are processed.
First, the processing proceeds through the tree in a depth-first, parent-first fashion (first the
parent is processed, and then its children, recursively; but see \index{processing order}). Next,
the option string of a node is processed linearly, in the order they were given. Option
\index{content} is specified implicitely and is always the first. If a propagator is encountered,
the options given as its value are propagated \emph{immediately}. The net effect is that if the
above example contained simply |roman,for_children={content=...}|, the \index{content} option
given there would be processed \emph{before} the implicit content options given to the children
(i.e.\ numbers |1|, |2|, |3| and |4|). Thus, there would be nothing for the |\romannumeral| to
change --- it would actually crash; more generally, the content assigned in such a way would get
overridden by the implicit content. Key \index{delay} is true to its name. It delays the
processing of the keylist given as its argument until the whole tree was processed. In other words, it
introduces cyclical option processing. Whatever is delayed in one cycle, gets processed in the next
one. The number of cycles is not limited --- you can nest \index{delay}s as deep as you need.
Unlike \index{for step=\meta{step}} keys we have met before, \index{delay} is not a
spatial, but a temporal propagator. Several other temporal propagators options exist, see
\S\ref{ref:stages}.
We are now ready to learn about simple conditionals.\footnote{See \S\ref{ref:conditionals} for
further information on conditionals, including the generic \index{if} and \index{where}.} Every
node option has the corresponding \index{if option=\meta{option}} and \index{where
option=\meta{option}} keys. \index{if option=\meta{option}}|=|\meta{value}\meta{true
options}\meta{false options} checks whether the value of \meta{option} equals \meta{value}. If
so, \meta{true options} are processed, otherwise \meta{false options}. The \index{where
option=\meta{option}} keys are the same, but do this for the every node in the subtree; informally
speaking, |where| = |for_tree| + |if|. To see this in action, consider the rewrite of the
\index{tier} example (\ref{ex:tier-manual}) from above. We don't set the tiers manually, but rather
put the terminal nodes (option \index{n children} is a read-only option containing the number of
children) on tier \keyname{word}.\footnote{We could omit the braces around \texttt{0} because it is
a single character. If we were hunting for nodes with 42 children, we'd have to write
\texttt{where n children=\{42\}...}.}
\begin{forestexample}[index={tier,where option,n children}]
\begin{forest}
~where n children~=0{tier=word}{}
[VP
[DP[John]]
[V'
[V[sent]]
[DP[Mary]]
[DP[D[a]][NP[letter]]]
]
]
\end{forest}
\end{forestexample}
\begin{advise}
\item Note that you usually don't want to embed a \index{where option=...} conditional in a \index{for
step=\index{tree}}, as this will lead to a multiple traversal of many nodes, resulting in a
slower execution. If you're inside a \index{for step=\index{tree}}, you probably want to use
\index{if}.
\end{advise}
Finally, let's talk about styles.
(They are not actually defined in the \foRest; package, but rather
inherited from |pgfkeys|.)
At the first approximation, styles are abbreviations: if you
often want to have non-default parent/child anchors, say south/north as in example
(\ref{ex:tier-manual}), you could save some typing by defining a style. Styles are defined using
\PGF;'s handler |.style|, like shown below.\footnote{Style \index{sn edges} is actually already
defined by library \reflibrary{linguistics}. The definition there is a bit more generic.}
\begin{forestexample}[index={tier,option>parent anchor,option>child anchor}]
\begin{forest}
~sn edges~/~.style~={for tree={
parent anchor=south, child anchor=north}},
~sn edges~
[VP,
[DP[John,tier=word]]
[V'
[V[sent,tier=word]]
[DP[Mary,tier=word]]
[DP[D[a,tier=word]][NP[letter,tier=word]]]]]
\end{forest}
\end{forestexample}
If you want to use a style in more than one tree, you have to define it outside the \index{forest}
environment. Use macro \index{forestset} to do this.
\begin{lstlisting}
~\forestset~{
sn edges/.style={for tree={parent anchor=south, child anchor=north}},
background tree/.style={for tree={
text opacity=0.2,draw opacity=0.2,edge={draw opacity=0.2}}}
}
\end{lstlisting}
You might have noticed that in the last two examples, some keys occurred even before the
first opening bracket, contradicting was said at the beginning of this section. This is mainly
just syntactic sugar (it can separate the design and the content): such \emph{preamble}
keys behave as if they were given in the root node, the only difference (which often does not
matter) being that they get processed before all other root node options, even the implicit
\index{content}.
If you find yourself writing the same preamble for every tree in your document,
consider modifying \index{default preamble}, which is implicitely included at the beginning
of every preamble.
\begin{forestexample}[index={default preamble}]
\forestset{
~default preamble~={
font=\Huge,
for tree={circle,draw}
}
}
\begin{forest} [A[B][C]] \end{forest}
\begin{forest} red [D[E][F]] \end{forest}
\begin{forest} for tree={dotted} [G[H][I]] \end{forest}
\end{forestexample}
\subsection{Decorating the tree}
\label{tut:decorating}
The tree can be decorated (think movement arrows) with arbitrary
\TikZ; code.
\begin{forestexample}
\begin{forest}
[XP
[specifier]
[X$'$
[X$^0$]
[complement]
]
]
~\node at (current bounding box.south)
[below=1ex,draw,cloud,aspect=6,cloud puffs=30]
{\emph{Figure 1: The X' template}};~
\end{forest}
\end{forestexample}
However, decorating the tree would make little sense if one could
not refer to the nodes. The simplest way to do so is to give them a
\TikZ; name using the \index{option>name} option, and then use this name in \TikZ;
code as any other (\TikZ;) node name.
\begin{forestexample}[point=name,index={option>phantom,option>name}]
\begin{forest}
[CP
[DP,name=spec CP]
[\dots
[,phantom]
[VP
[DP]
[V'
[V]
[DP,name=object]]]]]
\draw[->,dotted] ~(object)~ to[out=south west,in=south] ~(spec CP)~;
\end{forest}
\end{forestexample}
It gets better than this, however! In the previous examples, we put
the \TikZ; code after the tree specification, i.e.\ after the closing
bracket of the root node. In fact, you can put \TikZ; code after
\emph{any} closing bracket, and \foRest; will know what the current
node is. (Putting the code after a node's bracket is actually just a
special way to provide a value for option \index{tikz} of that node.) To
refer to the current node, simply use an empty node name. This works both with and without
anchors \citep[see][\S16.11]{tikzpgf2.10}: below, |(.south east)| and |()|.
\begin{forestexample}[index={option>phantom,option>name}]
\begin{forest}
[CP
[DP,name=spec CP]
[\dots
[,phantom]
[VP
[DP]
[V'
[V]
[DP,draw] ~{~
\draw[->,dotted] ~()~ to[out=south west,in=south] (spec CP);
\draw[<-,red] ~(.south east)~--++(0em,-4ex)--++(-2em,0pt)
node[anchor=east,align=center]{This guy\\has moved!};
~}~
]]]]
\end{forest}
\end{forestexample}
Important: \emph{the \TikZ; code should usually be enclosed in braces} to hide
it from the bracket parser. You don't want all the bracketed code
(e.g.\ |[->,dotted]|) to become tree nodes, right? (Well, they
probably wouldn't anyway, because \TeX\ would spit out a thousand
errors.)
\bigskip
Finally, the most powerful tool in the node reference toolbox:
\emph{relative nodes}. It is possible to refer to other nodes which stand
in some (most often geometrical) relation to the current node. To
do this, follow the node's name with a \index>{!} and a \emph{nodewalk}
specification.
A nodewalk is a concise\footnote{Actually, \foRest; distinguishes two kinds of steps in node walks:
long-form and short-form steps. This section introduces only short-form steps. See
\S\ref{ref:nodewalks}.} way of expressing node relations. It is simply a string of steps, which
are represented by single characters, where: \index{ss u} stands for the parent node (up); \index{ss
p} for the previous sibling; \index{ss n} for the next sibling; \index{ss s} for \emph{the}
sibling (useful only in binary trees); \index{ss 1}, \index{ss 2}, \index[not print]{ss 3,ss 4,ss
5,ss 6,ss 7,ss 8}\dots\ \index{ss 9} for first, second, \dots\ ninth child; \index{ss l}, for the
last child, etc. For the complete specification, see section~\ref{ref:short-form-steps}.
To see the nodewalk in action, consider the following examples.
In the first example, the agree arrow connects the V node, specified
simply as |()|, since the \TikZ; code follows |[V]|, and the DP node,
which is described as ``a sister of V's parent'': |!us| = up +
sibling.
\begin{forestexample}[index>={!}]
\begin{forest}
[VP
[DP]
[V'
[V] {\draw[<->] ~()~
.. controls +(left:1cm) and +(south west:0.4cm) ..
node[very near start,below,sloped]{\tiny agree}
~(!us)~;}
[DP]
]
]
\end{forest}
\end{forestexample}
\begingroup
\footnotesize
\begin{forestexample}[index={option>phantom,tikz,fit to,tree},layout=export,basicstyle=\footnotesize\ttfamily]
\begin{forest}
[CP
[DP$_1$]
[\dots
[,phantom]
[VP,tikz={\node [draw,red,inner sep=0,~fit to~=tree]{};}
[DP$_2$]
[V'
[V]
[DP$_3$]
]]]]
\end{forest}
\end{forestexample}%
\endgroup
The second example uses \TikZ;'s fitting library (automatically loaded by \foRest;) to compute the
smallest rectangle containing node VP, its first child (DP$_2$) and its last grandchild (DP$_3$).
The example also illustrates that the \TikZ; code
can be specified via the ``normal'' option syntax, i.e.\ as a value
to option \index{tikz}.\footnote{\label{fn:fit-to-tree}Actually, there's a simpler way to do this: use \index{fit to}\keyname{=}\index{tree}!\forestexampleimport}
\begin{forestexample}[point=tikz,index={option>phantom,tikz},index>={!}]
\begin{forest}
[CP
[DP$_1$]
[\dots
[,phantom]
[VP,tikz={\node [draw,red,fit=~()(!1)(!ll)~] {};}
[DP$_2$]
[V'
[V]
[DP$_3$]
]]]]
\end{forest}
\end{forestexample}
\subsection{Node positioning}
\label{tut:node-positioning}
\FoRest; positions the nodes by a recursive bottom-up algorithm which, for every non-terminal node,
computes the positions of the node's children relative to their parent. By default, all the
children will be aligned horizontally some distance down from their parent: the ``normal'' tree
grows down. More generally, however, the direction of growth can change from node to node; this is
controlled by option \index{grow}=\meta{direction}.\footnote{The direction can be specified either in
degrees (following the standard mathematical convention that $0$ degrees is to the right, and that
degrees increase counter-clockwise) or by the compass directions: \texttt{east}, \texttt{north east},
\texttt{north}, etc.} The system computes and stores the positions of children using a
coordinate system dependent on the parent, called an \emph{ls-coordinate system}: the origin is the
parent's anchor; l-axis is in the direction of growth in the parent; s-axis is orthogonal to the
l-axis (positive side in the counter-clockwise direction from $l$-axis); l stands for \emph{l}evel,
s for \emph{s}ibling. The example shows the ls-coordinate system for a node with
|grow=45|.\footnote{The axes are drawn using coordinates given in \texttt{forest cs} coordinate
system; the ``manually'' given polar coordinate equivalent is shown in the comment.}
\begin{forestexample}[point=grow,index={grow}]
\begin{forest} background tree
[parent, grow=45
[child 1][child 2][child 3][child 4][child 5]
]
%\draw[,->](-135:1cm)--(45:3cm) node[below]{$l$};
\draw[,->](forest cs:l=-1cm,s=0)--(forest cs:l=3cm,s=0) node[below]{$l$};
%\draw[,->](-45:1cm)--(135:3cm) node[right]{$s$};
\draw[,->](forest cs:s=-1cm,l=0)--(forest cs:s=3cm,l=0) node[right]{$s$};
\end{forest}
\end{forestexample}
\begin{forestexample}[basicstyle=\scriptsize\ttfamily,layout=export]
\newcommand\measurexdistance[5][####1]{\measurexorydistance{#2}{#3}{#4}{#5}{\x}{-|}{(5pt,0)}{#1}}
\newcommand\measureydistance[5][####1]{\measurexorydistance{#2}{#3}{#4}{#5}{\y}{|-}{(0,5pt)}{#1}}
\tikzset{dimension/.style={<->,>=latex,thin,every rectangle node/.style={midway,font=\scriptsize}},
guideline/.style=dotted}
\newdimen\absmd
\def\measurexorydistance#1#2#3#4#5#6#7#8{%
\path #1 #3 #6 coordinate(md1) #1; \draw[guideline] #1 -- (md1);
\path (md1) #6 coordinate(md2) #2; \draw[guideline] #2 -- (md2);
\path let \p1=($(md1)-(md2)$), \n1={abs(#51)} in \pgfextra{\xdef\md{#51}\global\absmd=\n1\relax};
\def\distancelabelwrapper##1{#8}%
\ifdim\absmd>5mm
\draw[dimension] (md1)--(md2) node[#4]{\distancelabelwrapper{\uselengthunit{mm}\rndprintlength\absmd}};
\else
\ifdim\md>0pt
\draw[dimension,<-] (md1)--+#7; \draw[dimension,<-] let \p1=($(0,0)-#7$) in (md2)--+(\p1);
\else
\draw[dimension,<-] let \p1=($(0,0)-#7$) in (md1)--+(\p1); \draw[dimension,<-] (md2)--+#7;
\fi
\draw[dimension,-] (md1)--(md2) node[#4]{\distancelabelwrapper{\uselengthunit{mm}\rndprintlength\absmd}};
\fi}
\end{forestexample}
\input{\jobname.tmp}
The l-coordinate of children is (almost) completely under your control, i.e.\ you set what is often
called the level distance by yourself. Simply set option \index{option>l} to change the distance of
a node from its parent.\footnote{If setting \index{option>l} seems to have no effect, read about
\index{l sep} further down this section.} More precisely, \index{option>l}, and the related option
\index{option>s}, control the distance between the (node) anchors of a node and its parent. The
anchor of a node can be changed using option \index{option>anchor}: by default, nodes are anchored
at their base; see \cite[\S16.5.1]{tikzpgf2.10}.) In the example below, positions of the anchors
are shown by dots: observe that anchors of nodes with the same \index{option>l} are aligned and that
the distances between the anchors of the children and the parent are as specified in the
code.\footnote{Here are the definitons of the macros for measuring distances. Args: the x or y
distance between points \#2 and \#3 is measured; \#4 is where the distance line starts (given as
an absolute coordinate or an offset to \#2); \#5 are node options; the optional arg \#1 is the
format of label. (Lengths are printed using package \texttt{printlen}.)
\box\codebox}
\begin{forestexample}[layout=tree on top,index={for step,tree,tikz,option>l,option>anchor},index>={!}]
\begin{forest} background tree,
for tree={draw,tikz={\fill[](.anchor)circle[radius=1pt];}}
[parent
[child 1, ~l~=10mm, ~anchor~=north west]
[child 2, ~l~=10mm, ~anchor~=south west]
[child 3, ~l~=12mm, ~anchor~=south]
[child 4, ~l~=12mm, ~anchor~=base east]
]
\measureydistance[\texttt{l(child)}=#1]{(!2.anchor)}{(.anchor)}{(!1.anchor)+(-5mm,0)}{left}
\measureydistance[\texttt{l(child)}=#1]{(!3.anchor)}{(.anchor)}{(!4.anchor)+(5mm,0)}{right}
\measurexdistance[\texttt{s sep(parent)}=#1]{(!1.south east)}{(!2.south west)}{+(0,-5mm)}{below}
\measurexdistance[\texttt{s sep(parent)}=#1]{(!2.south east)}{(!3.south west)}{+(0,-5mm)}{below}
\measurexdistance[\texttt{s sep(parent)}=#1]{(!3.south east)}{(!4.south west)}{+(0,-8mm)}{below}
\end{forest}
\end{forestexample}
Positioning the chilren in the s-dimension is the job and \emph{raison d'etre} of the package. As a
first approximation: the children are positioned so that the distance between them is at least the
value of option \index{s sep} (s-separation), which defaults to double \PGF;'s |inner_xsep| (and this
is 0.3333em by default). As you can see from the example above, s-separation is the distance
between the borders of the nodes, not their anchors!
A fuller story is that \index{s sep} does not control the s-distance between two siblings, but rather
the distance between the subtrees rooted in the siblings. When the green and the yellow child of
the white node are s-positioned in the example below, the horizontal
distance between the green and the yellow subtree is computed. It can be seen with the naked eye
that the closest nodes of the subtrees are the TP and the DP with a red border. Thus, the children
of the root CP (top green DP and top yellow TP) are positioned so that the horizontal distance
between the red-bordered TP and DP equals \index{s sep}.
\begin{forestexample}[index={for step,tree,s sep}]
\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, ~s sep~=3mm, for tree=draw
[DP, for tree={fill=green}
[D][NP[N][CP[C][TP,important=left
[T][vP[v][VP[DP][V'[V][DP]]]]]]]]
[TP,for tree={fill=yellow}
[T][vP[v][VP[DP,important=right][V'[V][DP]]]]]
]
\measurexdistance[\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}
\end{forestexample}
Note that \foRest; computes the same distances between nodes
regardless of whether the nodes are filled or not, or whether their
border is drawn or not. Filling the node or drawing its border does
not change its size. You can change the size by adjusting \TikZ;'s
|inner_sep| and |outer_sep| \citep[\S16.2.2]{tikzpgf2.10}, as shown
below:
\begin{forestexample}[index={for step,tree,s sep}]
\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, s sep=3mm, for tree=draw
[DP, for tree={fill=green,~inner sep~=0}
[D][NP,important=left[N][CP[C][TP[T][vP[v]
[VP[DP][V'[V][DP]]]]]]]]
[TP,for tree={fill=yellow,~outer sep~=2pt}
[T,important=right][vP[v][VP[DP][V'[V][DP]]]]]
]
\measurexdistance[\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}
\end{forestexample}
(This looks ugly!) Observe that having increased |outer sep| makes the edges stop touching
borders of the nodes. By (\PGF;'s) default, the |outer sep| is exactly half of the border
line width, so that the edges start and finish precisely at the border.
Let's play a bit and change the \index{option>l} of the root of the yellow subtree. Below, we set the
vertical
distance of the yellow TP to its parent to 3\,cm: and the yellow submarine sinks diagonally \dots\@
Now, the closest nodes are the higher yellow DP and the green VP.
\begin{forestexample}[index={option>l,s sep,for step,tree}]
\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, s sep=3mm, for tree=draw
[DP, for tree={fill=green}
[D][NP[N][CP[C][TP
[T][vP[v][VP,important=left[DP][V'[V][DP]]]]]]]]
[TP,for tree={fill=yellow}, l=3cm
[T][vP[v][VP[DP,important=right][V'[V][DP]]]]]
]
\measurexdistance[\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}
\end{forestexample}
Note that the yellow and green nodes are not vertically aligned anymore. The positioning algorithm
has no problem with that. But you, as a user, might have, so here's a neat trick. (This only works
in the ``normal'' circumstances, which are easier to see than describe.)
\begin{forestexample}[label=ex:l*,index={dimen*=l,option>phantom,for step,tree}]
\begin{forest}
[CP, for tree=draw
[DP, for tree={fill=green},~l*~=3
[D][NP]]
[TP,for tree={fill=yellow}
[T][VP[DP][V'[V][DP]]]]
]
\end{forest}
\end{forestexample}
We have changed DP's \index{option>l}'s value via ``augmented assignment'' known from
many programming languages: above, we have used |l*=3| to triple
\index{option>l}'s value; we could have also said |l+=5mm| or |l-=5mm| to
increase or decrease its value by 5\,mm, respectively. This
mechanism works for every numeric and dimensional option in \foRest;.
Let's now play with option \index{s sep}.
\begin{forestexample}[index={s sep,option>l,dimen*=l,for step,tree}]
\begin{forest}
[CP, for tree=draw, ~s sep~=0
[DP, for tree={fill=green},l*=3
[D][NP]]
[TP,for tree={fill=yellow}
[T][VP[DP][V'[V][DP]]]]
]
\end{forest}
\end{forestexample}
Surprised? You shouldn't be. The value of \index{s sep} at a given node controls the s-distance
\emph{between the subtrees rooted in the children of that node}! It has no influence over the
internal geometry of these subtrees. In the above example, we have set |s_sep=0| only for the root
node, so the green and the yellow subtree are touching, although internally, their nodes are not.
Let's play a bit more. In the following example, we set the \index{s sep} to: $0$ at the last
branching level (level 3; the root is level 0), to 2\,mm at level 2, to 4\,mm at level 1 and to
6\,mm at level 0.
\begin{forestexample}[label=ex:spread-s,point={level},index={readonly option>level,for step,tree,s sep},index>={!}]
\begin{forest}
for tree={~s sep~=(3-level)*2mm}
[CP, for tree=draw
[DP, for tree={fill=green},l*=3
[D][NP]]
[TP,for tree={fill=yellow}
[T][VP[DP][V'[V][DP]]]]
]
\measurexdistance{(!11.south east)}{(!12.south west)}{+(0,-5mm)}{below}
\path(md2)-|coordinate(md)(!221.south east);
\measurexdistance{(!221.south east)}{(!222.south west)}{(md)}{below}
\measurexdistance{(!21.north east)}{(!22.north west)}{+(0,2cm)}{above}
\measurexdistance{(!1.north east)}{(!221.north west)}{+(0,-2.4cm)}{below}
\end{forest}
\end{forestexample}
As we go up the tree, the nodes ``spread.'' At the lowest level, V and DP are touching. In the
third level, the \index{s sep} of level 2 applies, so DP and V' are 2\,mm apart. At the second
level we
have two pairs of nodes, D and NP, and T and TP: they are 4\,mm apart. Finally, at level 1, the
\index{s sep} of level 0 applies, so the green and yellow DP are 6\,mm apart. (Note that D and NP are
at level 2, not 4! Level is a matter of structure, not geometry.)
As you have probably noticed, this example also demostrated that we can compute the value of an
option using an (arbitrarily complex) formula. This is thanks to \PGF;'s module |pgfmath|.
\FoRest; provides an interface to |pgfmath| by defining |pgfmath| functions for every node option,
and some other information, like the \index{readonly option>level} we have used above, the number of children
\index{n children}, the sequential number of the child \index{readonly option>n}, etc. For details, see
\S\ref{ref:pgfmath}.
The final separation parameter is \index{l sep}. It determines the minimal
separation of a
node from its descendants. It the value of \index{option>l} is too small, then \emph{all} the
children (and thus their subtrees)
are pushed
away from the parent (by increasing their \index{option>l}s), so that the distance between the node's
and each child's subtree
boundary is at least \index{l sep}. The initial \index{option>l} can be too small for
two reasons: either
some child is too high, or the parent is too deep. The first problem is easier to see: we force the
situation using a bottom-aligned multiline node. (Multiline nodes can be easily created using |\\|
as a line-separator. However, you must first specify the horizontal alignment using option
\index{align} (see \S\ref{ref:node-appearance}).
Bottom vertical alignment is achieved by setting \index{base}|=|\index{value of=base>bottom};
the default, unlike in \TikZ;, is \index{base}|=|\index{value of=base>top}).
\begin{forestexample}[point={align,base},index={align,base}]
\begin{forest}
[parent
[child]
[child]
[a very\\tall\\child, align=center, base=bottom]
]
\end{forest}
\end{forestexample}
The defaults for \index{option>l} and \index{l sep} are set so that they ``cooperate.''
What this
means and why it is necessary is a complex issue explained in \S\ref{tut:defaults}, which you will
hopefully never have to read \dots\@ You might be out of luck, however. What if you
needed to decrease the level distance? And nothing happened, like below on the left? Or, what if
you used lots of parenthesis in your nodes? And got a strange vertical misalignment, like below
on the right? Then rest assured that these (at least) are features not bugs and read
\S\ref{tut:defaults}.
\begin{forestexample}[layout=tree on top,v sep=-55ex,code left skip=-3cm,label=ex:misalignments,index={option>phantom,for step,step>children,fit,baseline,edge,descendants,content,pgfmath,ss 1}]
\begin{forest}
[,phantom,for children={l sep=1ex,fit=band,
for 1={edge'=,l=0},baseline}
[{l+=5mm},for descendants/.pgfmath=content
[AdjP[AdvP][Adj'[Adj][PP]]]]
[default
[AdjP[AdvP][Adj'[Adj][PP]]]]
[{l-=5mm},for descendants/.pgfmath=content
[AdjP[AdvP][Adj'[Adj][PP]]]]
]
\path (current bounding box.west)|-coordinate(l1)(!212.base);
\path (current bounding box.west)|-coordinate(l2)(!2121.base);
\path (current bounding box.east)|-coordinate(r1)(!212.base);
\path (current bounding box.east)|-coordinate(r2)(!2121.base);
\draw[dotted] (l1)--(r1) (l2)--(r2);
\end{forest}
\hspace{5cm}
\begin{forest}
[x forest, baseline
[x[x[x[x[x[x[x[x[x[x[x[x[x]]]]]]]]]]]]]
[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)[(x)]]]]]]]]]]]]]
]
\end{forest}
\end{forestexample}
\subsubsection{The defaults, or the hairy details of vertical alignment}
\label{tut:defaults}
In this section we discuss the default values of options controlling the l-alignment of the nodes.
The defaults are set with top-down trees in mind, so l-alignment is actually vertical alignment.
There are two desired effects of the defaults. First, the spacing between the nodes of a tree
should adjust to the current font size. Second, the nodes of a given level should be vertically
aligned (at the base), if possible.
Let us start with the base alignment: \TikZ;'s default is to anchor the nodes at their center,
while \foRest;, given the usual content of nodes in linguistic representations, rather anchors them
at the base \cite[\S16.5.1]{tikzpgf2.10}. The difference is particularly clear for a ``phonological''
representation:
\begin{forestexample}[index={for step,tree,option>anchor}]
\begin{forest} for tree={anchor=center}
[maybe[m][a][y][b][e]]
\end{forest}\quad
\begin{forest}
[maybe[m][a][y][b][e]]
\end{forest}
\end{forestexample}
The following example shows that the vertical distance between nodes depends on the current font size.
\begin{forestexample}
\hbox{\small A small tree
\begin{forest} baseline
[VP[DP][V'[V][DP]]]
\end{forest}
\normalsize and
\large
a large tree
\begin{forest} baseline
[VP[DP][V'[V][DP]]]
\end{forest}}
\end{forestexample}
Furthermore, the distance between nodes also depends on the value of \PGF;'s |inner_sep| (which
also depends on the font size by default: it equals 0.3333\,em).
\[\index{l sep}=\mbox{height}(\mbox{strut})+\mbox{\texttt{inner ysep}}\]
The default value of \index{s sep} depends on |inner_xsep|: more precisely, it equals double
|inner_xsep|).
\begin{forestexample}[index={baseline,for step,tree}]
\begin{forest} baseline,for tree=draw
[VP[DP][V'[V][DP]]]
\end{forest}
\pgfkeys{/pgf/inner sep=0.6666em}
\begin{forest} baseline,for tree=draw
[VP[DP][V'[V][DP]]]
\end{forest}
\end{forestexample}
Now a hairy detail: the formula for the default \index{option>l}.
\[\index{option>l}=\index{l sep}+2\cdot\mbox{\texttt{outer ysep}}+\mbox{total
height}(\mbox{`dj'})\]
To understand what this is all about we must first explain why it is necessary to set the default
\index{option>l} at all? Wouldn't it be enough to simply set \index{l sep} (leaving
\index{option>l} at 0)?
The problem is that not all letters have the same height and depth. A tree where the vertical
position of the nodes would be controlled solely by (a constant) \index{l sep} could
result in a ragged tree (although the height of the child--parent edges would be constant).
\begin{forestexample}[index={baseline,for step,step>children,no edge,option>name,descendants,option>l}]
\begin{forest}
[default,baseline,for children={no edge}
[DP
[AdjP[Adj]]
[D'[D][NP,name=np]]]]
\path (current bounding box.west)|-coordinate(l)(np.base);
\path (current bounding box.east)|-coordinate(r)(np.base);
\draw[dotted] (l)--(r);
\end{forest}
\begin{forest}
[{l=0},baseline,for children={no edge}
[DP,for descendants={l=0}
[AdjP[Adj]]
[D'[D][NP,name=np]]]]
\path (current bounding box.west)|-coordinate(l)(np.base);
\path (current bounding box.east)|-coordinate(r)(np.base);
\draw[dotted] (l)--(r);
\end{forest}
\end{forestexample}
The vertical misalignment of Adj in the right tree is a consequence of the fact that letter j is the
only letter with non-zero depth in the tree. Since only \index{l sep} (which is constant
throughout the tree) controls the vertical positioning, Adj, child of Ad\emph{j}P, is pushed lower
than the other nodes on level 2. If the content of the nodes is variable enough (various heights
and depths), the cumulative effect can be quite strong, see the right tree of example
(\ref{ex:misalignments}).
Setting only a default \index{l sep} thus does not work well enough in general. The same
is true for the reverse possibility, setting a default \index{option>l} (and leaving \index{l sep} at 0). In the example below, the depth of the multiline node (anchored at the top
line) is such that the child--parent edges are just too short if the level distance is kept constant.
Sometimes, misalignment is much preferred \dots
\begin{forestexample}[index={align,{value of=align>center},for step,tree,l sep}]
\mbox{}\begin{forest}
[default,baseline
[first child[a][b][c]]
[{second child\\[-1ex]\scriptsize(a copy)},
align=center[a][b][c]]
]
\end{forest}\quad
\begin{forest} for tree={l sep=0}
[{\texttt{l sep}=0},baseline
[first child[a][b][c]]
[{second child\\[-1ex]\scriptsize(a copy)},
align=center[a][b][c]]
]
\end{forest}
\end{forestexample}
Thus, the idea is to make \index{option>l} and \index{l sep} work as a team:
\index{option>l} prevents
misalignments, if possible, while \index{l sep} determines the minimal vertical distance
between levels. Each of the two options deals with a certain kind of a ``deviant'' node, i.e.\ a
node which is too high or too deep, or a node which is not high or deep enough, so we need to
postulate what a \emph{standard} node is, and synchronize them so that their effect on standard
nodes is the same.
By default, \foRest; sets the standard node to be a node containing letters d and j. Linguistic
representations consist mainly of letters, and in the \TeX's default Computer Modern font, d is the
highest letter (not character!), and j the deepest, so this decision guarantees that trees
containing only letters will look nice. If the tree contains many parentheses, like the right
tree of example (\ref{ex:misalignments}), the default will of course fail
and the standard node needs to be modified. But for many applications, including nodes with
indices, the default works.
The standard node can be changed using macro \index{forestStandardNode};
see \ref{ref:standard-node}.
% TODO: primer? ali raje po spremembi interfaceja
\subsection{Advanced option setting}
\label{tut:advanced-option-setting}
We have already seen that the value of options can be manipulated: in (\ref{ex:romannumeral}), we
have converted numeric content from arabic into roman numerals using the \emph{wrapping} mechanism
|content=\romannumeral#1|; in (\ref{ex:l*}), we have tripled the value of |l| by saying |l*=3|. In
this section, we will learn more about the mechanisms for setting options and referring to their
values.
One other way to access an option value is using macro \index{forestoption}. The macro takes a
single argument: an option name. In the
following example, the node's child sequence number is appended to the existing content. (This is
therefore also an example of wrapping.)
\begin{forestexample}[label=ex:forestoption,index={option>phantom,delay,for step,descendants,content,readonly option>n,forestoption}]
\begin{forest}
[,phantom,delay={for descendants={
content=#1$_{~\forestoption~{n}}$}}
[c][o][u][n][t]]
\end{forest}
\end{forestexample}
However, only options of the current node can be accessed using \index{forestoption}. Possibly the simplest way to
access option values of other nodes is to use \foRest;'s extensions to the \PGF;'s mathematical library
|pgfmath|, documented in \citep[part VI]{tikzpgf2.10}. To see |pgfmath| in action,
first take a look at the crazy tree on the title page, and observe how the nodes are
rotated: the value given to option \index{rotate} is a full-fledged |pgfmath| expression
yielding an integer
in the range from $-30$ to $30$. Similiarly, \index{dimen+=l} adds a random float
in the $[-5,5]$ range to the current value of \index{option>l}.
Example (\ref{ex:spread-s}) demonstrated that information about
the node, like the node's level, can be accessed within |pgfmath| expressions. All
options are accessible in this way, i.e.\ every option has a corresponding |pgfmath| function.
For example, we could rotate the node based on its content:
\begin{forestexample}[index={delay,for step,tree,content}]
\begin{forest}
delay={for tree={~rotate=content~}}
[30[-10[5][0]][-90[180]][90[-60][90]]]
\end{forest}
\end{forestexample}
All numeric, dimensional and boolean options of \foRest; automatically pass the given value
through |pgfmath|. If you need pass the value through |pgfmath|
for a string option, use the \index{pgfmath} handler. The following example sets the node's
content to its child sequence number (the root has child sequence number 0).
\begin{forestexample}[index={delay,for step,tree,content,readonly option>n,pgfmath}]
\begin{forest}
delay={for tree={content/~.pgfmath~=int(n)}}
[[[][][]][[][]]]
\end{forest}
\end{forestexample}
As mentioned above, using |pgfmath| it is possible to access options of non-current nodes. This
is achieved by providing the option function with a \index{relative node name}
(see~\S\ref{ref:relative-node-names}) argument.\footnote{The form without
parentheses \texttt{option\string_name} that we have been using until now to refer to an option of
the
current node is just a short-hand notation for \texttt{option\string_name()} --- note that in some
contexts, like preceding \texttt{+} or \texttt{-}, the short form does not work! (The same
seems to be true for all pgfmath functions with ``optional'' arguments.)} In the next example, we
rotate the node based on the content of its parent (\index{short step>u} means `up').
\begin{forestexample}[index={delay,for step,descendants,content,ss u},index>={!}]
\begin{forest}
delay={for descendants={rotate=content~("!u")~}}
[30[-10[5][0]][-90[180]][90[-60][90]]]
\end{forest}
\end{forestexample}
Note that the argument of the option function is surrounded by double quotation marks: this is
to prevent evaluation of the relative node name as a |pgfmath| function --- which it is not.
For further ways to access option values, see \S\ref{tut:wrapping}. Here, we continue by introducing
\emph{relative node setting}: write \index{relative node name}|.|\meta{option}|=|\meta{value} to set
the value of \meta{option} of the specified relative node. Important: computation of the value is
done in the context of the original node. The following example defines style \keyname{move} which
not only draws an arrow from the source (the current node) to the target, but also moves the content
of the source to the target (leaving a trace). Note the difference between |#1| and |##1|: |#1| is
the argument of the style \keyname{move} (a node walk determining the target), while |##1| is the
original option (in this case, \indexex{option>content}) value.
\begin{forestexample}[index={for step,tree,calign,tikz,delay,content},index>={!}]
\begin{forest}
for tree={calign=fixed edge angles},
move/.style={
tikz={\draw[->] () to[out=south west,in=south] (#1);},
delay={~#1.content~={##1},content=$t$}},
[CP[][C'[C][\dots[,phantom][VP[DP][V'[V][DP,move=!r1]]]]]]
\end{forest}
\end{forestexample}
\begin{forestexample}[index={if option,n children,content,for step,step>children,delay,pgfmath},index>={!},basicstyle=\scriptsize\ttfamily,layout=export]
\begin{forest}
calc/.style={if n children={0}{}{content=0,for children={calc,~!u.content~/.pgfmath=int(content("!u")+content())}}},
delay=calc,
[[[3][4][5]][[3][9]][8][[[1][2][3]]]]
\end{forest}
\end{forestexample}
In the following example, the content of the branching nodes is computed by \foRest;: a branching
node is a sum of its children. The algorithm visits each node (but the root node) and adds its
content to the content of the parent. Note that as the computation must proceed bottom-up,
\index{for step=\index{descendants children-first}} propagator is used to walk through the
tree.\footnote{It would be possible to emulate \index{for step=\index{descendants children-first}}
by defining a recursive style, as was done in this manual for versions of the package prior to
introduction of the bottom-up propagator. The following code produces identical result as the code
in the main text.
\box\codebox}
\begin{forestexample}[index={if option,n children,content,for step,step>children,delay,pgfmath},index>={!}]
\begin{forest}
delay={
where n children={0}{}{content=0},
for descendants children-first={
~!u.content~/.pgfmath=int(content("!u")+content())}
}
[[[3][4][5]][[3][9]][8][[[1][2][3]]]]
\end{forest}
\end{forestexample}
Actually, for common computations such as summing things up, \foRest; provides an easier way to do it: aggregate functions (\S\ref{ref:aggregate-functions}). Below, aggregate function \index{sum}, defined as |pgfkeys| handler, walks through the \index{step>children} (second argument) of the current node, summing up their \index{content} (first argument) and stores the result as the \index{content} of the current node (because \index{content} is the handled key).
\begin{forestexample}[index={sum,aggregate postparse,for step,tree children-first,delay,n children,if option,content,step>children}]
\begin{forest}
delay={
aggregate postparse=int,
for tree children-first={
if n children={0}{}{
content/~.sum~={content}{children}
}
}
}
[[[3][4][5]][[3][9]][8][[[1][2][3]]]]
\end{forest}
\end{forestexample}
\subsection{Wrapping}
\label{tut:wrapping}
We have already seen examples of inserting option values into other expressions. In example
(\ref{ex:romannumeral}), we have wrapped the value of the option being assigned to (|#1| stood for
the current value of option \index{content}); example (\ref{ex:forestoption}) additionally wrapped
the value of option \index{readonly option>n} (of the current node) using macro \index{forestoption}. In general,
\foRest; offers two ways to perform computations (from simple option value lookups to
complicated formulas) and insert their results into another expression (of any kind: \TeX\ code,
|pgfkeys| keylist, |pgfmath| expression, etc.).
Historically, the first \foRest;'s mechanism that offered wrapping of computed values were handlers
\index{wrap pgfmath arg} and \index{wrap $n$ pgfmath args} (for $n=2,\dots,8$), which combine the
wrapping mechanism with the |pgfmath| evaluation. The idea is to compute (most often, just access
option values) arguments using |pgfmath| and then wrap them into the given macro body (marked below)
using \TeX's parameters (|#1| etc.). Below, this is used to subscript the contents of a node with
its sequential number and the number of parent's children.
\begin{forestexample}[index={option>phantom,delay,for step,descendants,content,readonly option>n,n children,wrap $n$ pgfmath args},index>={!},label=ex:pgfmathwrap]
\begin{forest} [,phantom,delay={for descendants={
content/.wrap 3 pgfmath args=
~{#1$_{#2/#3}$}~
{content}{n}{n_children("!u")}}}
[c][o][u][n][t]]
\end{forest}
\end{forestexample}
Note the underscore |__| character in |n__children|: in |pgfmath| function names, spaces,
apostrophes and other non-alphanumeric characters from option names are all replaced by
underscores.
As another example, let's make the numerals example (\ref{ex:numerals-simple}) a bit fancier.
The numeral type is read off the parent's content and used to construct the appropriate control
sequence (|\@arabic|, |\@roman| and |\@alph|). (The numbers are not specified in content
anymore: we simply read the sequence number \index{readonly option>n}.)
\begin{forestexample}[index={delay,where option,readonly option>level,content,readonly option>n,for step,step>children,option>l,wrap $n$ pgfmath args},index>={!}]
\begin{forest}
delay={where level={2}{content/.wrap 2 pgfmath args=
{\csname @#1\endcsname{#2}}
{content("!u")}{n}}{}},
for children={l*=n},
[\LaTeX\ numerals,
[arabic[][][][]]
[roman[][][][]]
[alph[][][][]]
]
\end{forest}
\end{forestexample}
Invoking |pgfmath| is fairly time consuming and using it to do nothing but retrieve an option value
seems a bit of an overkill. To remedy the situation, argument processor
(\S\ref{ref:argument-processor}) was introduced in \FoRest; v2.0 and considerably expanded in v2.1.
One way to invoke it is using handler \index{handler>process}.
The argument processor takes a sequence of instructions and an arbitrary number of arguments,
transforms the given arguments according to the instructions, and feeds the resulting list of
arguments into the handled key.
An instruction is given by a single-character code. The simplest instructions are:
\index{processor>O}, which expects its argument to be an option name (possibly preceded by a
\index{relative node name}|.| to access the option value of a non-current node) and returns the
value of the option; \index{processor>R}, which does the same for registers; and \index{processor>noop}, which
leaves the argument unchanged.
In the following example, we define style |test| taking four arguments and call it by providing
the arguments via \index{handler>process}. The instruction string |ROO__| tells the argument processor that
the first argument is the value of (scratch) register \indexex{temptoksa}, the second the value of
option \indexex{n children} at the current node, the third the value of option \indexex{content} of
the second child of the current node, and the fourth just a plain string. Macro |test| is thus
actually invoked with argument list |{Hello}{3}{Jane}{Goodbye}|.
\begin{forestexample}[index={handler>process,processor>noop,processor>R,processor>O,delay,content,n
children,temptoksa}]
\begin{forest}
test/.style n args={4}{align=center,
content={#1!\\I have #2 children.\\One of them is #3.\\#4!}}
[,delay={temptoksa=Hello,
test/.process={~ROO_~}{temptoksa}{n children}{!2.content}{Goodbye}}
[John][Jane][Joe]]
\end{forest}
\end{forestexample}
To wrap using the argument processor, use instruction \index{processor>w}. Unless wrapping a single
argument, this instruction should be followed by a number indicating the number of arguments
consumed. \index{processor>w} will take the required number of arguments from the list of already
processed arguments and wrap them in the macro body given as the next (yet unprocessed) argument.
The following example has the same result as example (\ref{ex:pgfmathwrap}). Note that the
order of the wrapper-macro body and the arguments is different for \index{handler>process} and \index{wrap
$n$ pgfmath args}. (Experience shows that \index{handler>process}'s order is easier on the eyes.) The
example also illustrates that (i) the instructions need not be enclosed in braces and (ii) that
repetition of an argument processor instruction can be indicated by appending a number to the
instruction: thus |O3| below means the same as |OOO|.
\begin{forestexample}[index={option>phantom,delay,for step,descendants,content,readonly option>n,n children},index>={!}]
\begin{forest} [,phantom,delay={for descendants={
content/.process=~O3 w3~
{content}{n}{!u.n children}
{#1$_{#2/#3}$}
}}
[c][o][u][n][t]]
\end{forest}
\end{forestexample}
Note that the order of the wrapper-macro body and the arguments is different for
\index{handler>process} and \index{wrap $n$ pgfmath args}. Experience shows that
\index{handler>process}'s order is easier on the eyes. The example also illustrates that the
instructions need not be enclosed in braces and that repetition of an argument processor instruction
can be indicated by appending a number to the instruction: |O3| above is equivalent to |OOO|.
% \begin{forestexample}[index={process,processor>w}]
% \begin{forest}
% [root,delay={align=center,
% content/.process={OO ~w2~}
% {n children}{content}
% {This node has #1 children.\\It's original content is ``#2''.}
% }]
% \end{forest}
% \end{forestexample}
\index{wrap $n$ pgfmath args} always returns a single braced expression and is thus a bit cumbersome
to use when the handled key expects multiple arguments: the trick is to enclose the expected
argument list in extra braces (marked in the code below). As \index{handler>process} can return multiple
arguments, there is no need for such a workaround. See the following example for comparison of the
two methods.
\begin{forestexample}[index={for step,step>name,handler>process,processor>O,processor>w,wrap $n$ pgfmath args}]
\begin{forest}
[,phantom
[pgfmath[2,delay={for n/.wrap 2 pgfmath args=
~{~{#1}{content=#2,draw}~}~
{content}{content("!u")}
} [x][x][x][x]]]
[process[3, delay={for n/.process=
{O Ow1}{content}
{!u.content}{content=#1,draw}
} [x][x][x][x]]]
]
\end{forest}
\end{forestexample}
A single \index{handler>process} invocation can perform multiple wrappings. The numbering of arguments of
each wrapping starts at |#1|. In the example below, \index{for step=\index{nodewalk}} takes two
arguments, a nodewalk and a list of nodekeys. Each is produced by an independent wrapping (wrap bodies
are marked in the code).
\begin{forestexample}[index={handler>process,processor>R,processor>w,for step,nodewalk,+toks,content}]
\begin{forest}
declare toks register=prefix,
declare count register=level to prefix,
prefix=X-,
level to prefix=1,
delay={
for nodewalk/.process=Rw Rw
{level to prefix}{~level=#1~}
{prefix}{~+content=#1~}
}
[0[1[2]][3[4][5]][6[7][8][9]]]
\end{forest}
\end{forestexample}
\subsection{Externalization}
\label{tut:externalization}
\FoRest; can be quite slow, due to the slowness of both \PGF;/\TikZ; and its own computations.
However, using \emph{externalization}, the amount of time spent in \foRest; in everyday life can
be reduced dramatically. The idea is to typeset the trees only once, saving them in separate
PDFs, and then, on the subsequent compilations of the document, simply include these PDFs instead
of doing the lenghty tree-typesetting all over again.
\FoRest;'s externalization mechanism is built on top of \TikZ;'s |external| library. It
enhances it by automatically detecting the code and context changes: the tree is recompiled if and
only if either the code in the \index{forest} environment or the context (arbitrary parameters; by
default, the parameters of the standard node) changes.
To use \foRest;'s externalization facilities, say:\footnote{When you switch on
the externalization for a document containing many \keyname{forest} environments, the first
compilation can take quite a while, much more than the compilation without externalization. (For
example, more than ten minutes for the document you are reading!) Subsequent compilations,
however, will be very fast.}\index[not print]{external}
\begin{lstlisting}[point=external]
\usepackage[external]{forest}
~\tikzexternalize~
\end{lstlisting}
If your \index{forest} environment contains some macro, you will probably want the externalized
tree to be recompiled when the definition of the macro changes. To achieve this, use
\index{forestset}|{|\index{external/depends on macro}|=|\cmdname{macro}|}|. The effect is
local to the \TeX\ group.
\TikZ;'s externalization library promises a |\label| inside the externalized graphics to work
out-of-box, while |\ref| inside the externalized graphics should work only if the externalization
is run manually or by |make| \citep[\S32.4.1]{tikzpgf2.10}. A bit surprisingly perhaps, the
situation is roughly reversed in \foRest;. |\ref| inside the externalized graphics will work
out-of-box. |\label| inside the externalized graphics will not work at all. Sorry. (The reason
is that \foRest; prepares the node content in advance, before merging it in the whole tree, which
is when \TikZ;'s externalization is used.)
\subsection{Expansion control in the bracket parser}
\label{tut:bracket}
By default, macros in the bracket encoding of a tree are not
expanded until nodes are being drawn --- this way, node
specification can contain formatting instructions, as illustrated in
section~\ref{tut:basic-usage}. However, sometimes it is useful to
expand macros while parsing the bracket representation, for example to
define tree templates such as the X-bar template, familiar
to generative grammarians:\footnote{Honestly, dynamic node creation might be a better way to do
this; see~\S\ref{ref:dynamic}.}
\begin{forestexample}[index={bracketset,action character}]
~\bracketset{action character=@}~
\def\XP#1#2#3{#1P[#2][#1'[#1][#3]]}
\begin{forest}
[~@~\XP T{DP}{~@~\XP V{DP}{DP}}]
\end{forest}
\end{forestexample}
In the above example, the |\XP| macro is preceded by the \emph{action character} |@|: as
the result, the token following the action character was expanded before the parsing proceeded.
The action character is not hard coded into \foRest;. Actually, there is no action character by
default. (There's enough special characters in \foRest; already, anyway, and the situations where
controlling the expansion is preferable to using the |pgfkeys| interface are not numerous.) It is
defined at the top of the example by processing key \index{action character} in the
|/bracket| path; the definition is local to the \TeX\ group.
Let us continue with the description of the expansion control facilities of the bracket parser.
The expandable token following the
action character is expanded only once. Thus, if one defined macro
|\VP| in terms of the general |\XP| and tried to use it in the same
fashion as |\XP| above, he would fail. The correct way is to follow
the action character by a braced expression: the braced expression
is fully expanded before bracket-parsing is resumed.
\begin{forestexample}[index={bracketset,action character}]
\bracketset{action character=@}
\def\XP#1#2#3{#1P[#2][#1'[#1][#3]]}
\def\VP#1#2{\XP V{#1}{#2}}
\begin{forest}
[@\XP T{DP}{~@{~\VP{DP}{DP}~}~}]
\end{forest}
\end{forestexample}
In some applications, the need for macro expansion might be much
more common than the need to embed formatting instructions.
Therefore, the bracket parser provides commands |@+| and |@-|: |@+|
switches to full expansion mode --- all tokens are fully expanded
before parsing them; |@-| switches back to the default mode, where
nothing is automatically expanded.
\begin{forestexample}[index={bracketset,action character}]
\bracketset{action character=@}
\def\XP#1#2#3{#1P[#2][#1'[#1][#3]]}
\def\VP#1#2{\XP V{#1}{#2}}
\begin{forest} ~@+~
[\XP T{DP}{\VP{DP}{DP}}]
\end{forest}
\end{forestexample}
All the action commands discussed above were dealing only with
\TeX's macro expansion. There is one final action command, |@@|,
which yields control to the user code and expects it to call
|\bracketResume| to resume parsing. This is useful to e.g.\
implement automatic node enumeration:
\begin{forestexample}[index={bracketset,action character,option>phantom,delay,where option,readonly option>level,content}]
\bracketset{action character=@}
\newcount\xcount
\def\x#1{~@@~\advance\xcount1
\edef\xtemp{[$\noexpand\times_{\the\xcount}$[#1]]}%
\expandafter\bracketResume\xtemp
}
\begin{forest}
phantom,
delay={where level=1{content={\strut #1}}{}}
~@+~
[\x{f}\x{o}\x{r}\x{e}\x{s}\x{t}]
\end{forest}
\end{forestexample}
This example is fairly complex, so let's discuss how it works. |@+| switches to the full
expansion mode, so that macro |\x| can be easily run. The real magic hides in this macro. In
order to be able to advance the node counter |\xcount|, the macro takes control from \foRest; by
the |@@| command. Since we're already in control, we can use |\edef| to define the node content.
Finally, the |\xtemp| macro containing the node specification is expanded with the resume command
sticked in front of the expansion.
\section{Reference}
\label{sec:reference}
This section documents all publicly exposed keys and macros defined by the core package. All other
commands defined by the package (see the implementation typeset in |forest.pdf|) are considered
internal and might change without prior notice or compatibility support.
\subsection{Package loading and options}
\label{ref:package-options}
Load the package by writing |\usepackage{forest}| in the document preamble.
Field-specific definitions and defaults are stored in separate libraries. Use
|\usepackage[|\meta{library name}|]{forest}| to load library \meta{library name} and its defaults
alongside the main package. Loading several libraries in this way is allowed: however, if you need
more control over loading the defaults, use the following macros.
\begin{syntax}
\indexitem{macro>useforestlibrary}[|*|][|[|\meta{options}|]|]|{|\meta{library}|,...}|
Loads the given libraries.
The starred version applies their defaults as well, while the starless does not. Multiple library
names can be given, separated by commas. Libraries can receive \meta{options}. This macro can only
be used in the preamble.
\indexitem{macro>forestapplylibrarydefaults}|{|\meta{library name},...|}|
Loads the default settings of \meta{library}.
Multiple library names can be given, separated by commas. This macro can be used either in the
preamble or in the document body. Its effect is local to the current \TeX\ scope.
\end{syntax}
For example, the |linguistics| library defines c-command related nodewalks, changes the default
parent--child edges to south--north (the main package default is border--border) and sets the
baseline to the root\footnote{For details, see \S\ref{sec:library-linguistics}.} node. Thus, if you write |\usepackage[linguistics]{forest}| in your preamble,
or use macro \cmdname{forestapplylibrarydefaults} like below, you get the following:
\begin{forestexample}[tree bin=minipage,index={for step,c-commanded}]
package defaults:
\begin{forest}
[VP % cannot use "for c-commanded" below!
[DP, for sibling={for tree=red}]
[V'[V][DP]]
]
\end{forest}\\[1ex]
|linguistics| library defaults:
~\forestapplylibrarydefaults{linguistics}~
\begin{forest}
[VP
[DP, ~for c-commanded~={red}]
[V'[V][DP]]
]
\end{forest}
\end{forestexample}
\begin{syntax}
\indexitem(false){package option>external}|=|\alternative{true,false}
Enable/disable externalization, see \S\ref{ref:externalization}.
\indexitem(most){package option>compat}|=|\meta{keylist}
Enter compatibility mode with previous versions of the package.
If at all possible, each backwards incompatible change is given a key in the |compat| path, e.g.\
|compat=|\index{1.0-forstep} reverts to the old behaviour of spatial propagators \index{for
step=\meta{step}}, where a propagator could not fail.
While each compatibility feature can be enabled individually, they are grouped for ease of use. To
load compatibility features since the last version of form
|x|[|.y|[|.z|]], write |compat=x|[|.y|[|.z|]]|-all| or
|compat=x|[|.y|[|.z|]]|-most|. The former enables all compatibility features since that release, the
latter only those that are guaranteed to not disrupt any new functionality of the package.
To load all compatibility features since the last major release (|x| in |x.y.z|), write
|compat=|\indexdef{value of=compat>all}; to load most of them, write |compat=|\indexdef{value of=compat>most} or simply |compat|.
To enable multiple compatibility features, either use this option multiple times, or provide it with
a comma-separated list of compatibility features. (Surround the list by braces.)
Specifying this option also defines macro \indexdef{macro>forestcompat} (taking the same arguments
as the package option) which can be used to enable compatibility features locally, within the
document body. To enable compatibility mode but not enable any specific compatibility feature for
the entire document, write |compat=|\indexdef{value of=compat>none} as a package option.
For a list of compatibility features, see \S\ref{sec:changelog}.
By default, the package warns when a compatibility feature is used. Disable this behaviour by
|compat=|\indexdef{value of=compat>silent}.
\indexitem(true){package option>tikzcshack}|=|\alternative{true,false}
Enable/disable the hack into \TikZ;'s implicit coordinate syntax, see
\S\ref{ref:relative-node-names}.
\indexitem(true){package option>tikzinstallkeys}|=|\alternative{true,false}
Install certain keys into the \keyname{/tikz} path. Currently: \index{fit to}.
\indexitem{package option>debug}|=|\meta{debug category}[, \meta{debug category}]*
Prints out some debugging info to the log file. When given no argument, prints out all the
available information, otherwise only the information on the listed (comma-separated) debug categories. The available categories are listed below.
\begin{syntax}
\indexitem{value of=debug>nodewalks}
\indexitem{value of=debug>dynamics}
\indexitem{value of=debug>process}
\end{syntax}
\end{syntax}
\subsection{Invocation}
\label{sec:invocation}
\begin{syntax}
%%% begin listing region: forest_environment_doc
\indexitem{environment>forest={[\texttt{(}\meta{config}\texttt{)}]\meta{tree}}}
%%% end listing region: forest_environment_doc
\indexitem{macro>Forest}[*][|(|\meta{config}|)|]\marg{tree}
The environment and the starless version of the macro introduce a group; the starred macro does
not, so the created nodes can be used afterwards, like in the example below. (Note that this will
leave a lot of temporary macros lying around. This shouldn't be a problem, however, since all of
them reside in the |\forest| ``namespace''.)
{\tikzexternaldisable
\begin{forestexample}
We create a
~\Forest*~{
[DP,name=DP,baseline
[D]
[NP]
]
}
and merge it into a
~\Forest*~{
[VP,baseline
[V]
[,replace by=DP
]
]
}
\end{forestexample}}
\meta{config} is a keylist that configures the behaviour of the environment/macro. The
configuration is the first operation that the environment/macro does; it precedes even the reading
of the tree specification. Currently, \meta{config} accepts only one key:
\begin{syntax}
\indexitem{option of=forest>stages}|=|\meta{keylist}
By default, after reading the tree specification, \foRest; executes style \index{style>stages}.
If key |stages| is used in \meta{config}, \meta{keylist} is executed instead.
\end{syntax}
\indexitem{macro>forestset}\marg{keylist}
Execute \meta{keylist} (of node keys) with the default path set to \keyname{/forest}.
\begin{advise}
\item This macro is usually used to define \foRest; styles.
\item Usually, no current node is set when this macro is called. Thus, executing most node keys
in this place will fail. However, if you have some nodes lying around, you can use
propagator \index{for step=\index{option>name}}|=|\meta{node name} to set the node with the given name as
current.
\end{advise}
\end{syntax}
\subsection{The bracket representation}
\label{ref:bracket}
A bracket representation of a tree is a token list with the following syntax:
\begin{eqnarray*}
\meta{tree}&=&\left[\meta{preamble}\right]\meta{node}\\
\meta{node}&=&\texttt{[}\left[\meta{content}\right]\left[\texttt{,}\meta{keylist}\right]
\left[\meta{children}\right]\texttt{]}\meta{afterthought}\\
\meta{preamble}&=&\meta{keylist}\\
\meta{keylist}&=&\meta{key--value}\left[,\meta{keylist}\right]\\
\meta{key--value}&=&\meta{key}\OR\meta{key}\texttt{=}\meta{value}\\
\meta{children}&=&\meta{node}\left[\meta{children}\right]
\end{eqnarray*}
The \meta{preamble} keylist is stored into keylist register \index{preamble}. The \meta{keylist} of
a \meta{node} is stored into keylist option \index{given options}. \meta{content} and
\meta{afterthought} are normally stored by prepending and appending
\index{content}|'=|\meta{content} and \index{afterthought}|=|\meta{afterthought} to \index{given
options}, respectively; this is customizable via \index{content to} and redefining style
\index{afterthought}.
Normally, the tokens in the bracket representation are not expanded while the input is parsed.
However, it is possible to control expansion. Expansion control sequences of \foRest;'s bracket
parser are shown below. Note that by default, there is no \index{action character}.
\begin{center}
\begin{tabular}{ll}
\rstyle\meta{action character}\texttt{-}&no-expansion mode (default): nothing is expanded\\
\rstyle\meta{action character}\texttt{+}&expansion mode: everything is fully expanded\\
\rstyle\meta{action character}\texttt{}\meta{token}&expand \meta{token}\\
\rstyle\meta{action character}\texttt{}\meta{\TeX-group}&fully expand \meta{\TeX-group}\\
\rstyle\meta{action character}\meta{action character}&yield control;\\&upon finishing its job,
user's code should call \indexdef{macro>bracketResume}
\end{tabular}
\end{center}
To customize the bracket parser, call
\indexdef{macro>bracketset}\meta{keylist}, where the keys can be the following.
\begin{syntax}
\indexitem({{[%]
}}){bracket key>opening bracket}|=|\meta{character}
\indexitem({{{{%[
]}}}}){bracket key>closing bracket}|=|\meta{character}
\indexitem(none){bracket key>action character}|=|\meta{character}
\end{syntax}
\begin{advise}
\item Careful when setting the \index{opening bracket} to |(|, %)
as an initial |(| %)
is understood as the delimiter of the optional \meta{config} argument of the
\index{environment>forest} environment or \index{macro>Forest} macro. The workaround is to either
provide an empty \meta{config} argument |()|, or put some whitespace (e.g.\ a newline) before the
tree specification.
\end{advise}
By redefining the following two keys, the bracket parser can be used outside \foRest;.
\begin{syntax}
\indexitem{bracket key>new node}|=|\meta{preamble}\meta{node specification}\meta{csname}.
Required semantics: create a new node given the preamble (in the case of a new
root node) and the node specification and store the new node's id into \meta{csname}.
\indexitem{bracket key>set afterthought}|=|\meta{afterthought}\meta{node id}.
Required semantics: store the afterthought in the node with given id.
\end{syntax}
\subsection{The workflow}
\label{sec:workflow}
\subsubsection{Stages}
\label{ref:stages}
\FoRest; does its job in several stages. The default course of events is the following:
\begin{enumerate}
\item\label{step:parsing-bracket} The bracket representation of the tree (\S\ref{ref:bracket}) is
parsed and stored in a data structure.
\item\label{step:given-options} The keys given in the bracket representation are processed. In
detail, \index{default preamble} is processed first, then the given \index{preamble} (both in the
context of the (formal) root node) and finally the keylists given to individual nodes. The latter
are processed recursively, in a depth-first, parent-first fashion.
\item\label{step:typeset-nodes} Each node is typeset in its own |tikzpicture| environment, saved
in a box and its measures are taken.
\item\label{step:pack} The nodes of the tree are \emph{packed}, i.e.\ the relative positions of the nodes are
computed so that the nodes don't overlap. That's difficult. The result: option \index{option>s} is
set for all nodes. (Sometimes, the value of \index{option>l} is adjusted as well.)
\item\label{step:compute-xy} Absolute positions, or rather, positions of the nodes relative to the
root node are computed. That's easy. The result: options \index{option>x} and \index{y} are
set.
\item\label{step:draw-tree} The \TikZ; code that will draw the tree is produced and executed. (The nodes are
drawn by using the boxes typeset in step~\ref{step:typeset-nodes}.)
\end{enumerate}
Stage~\ref{step:parsing-bracket} collects user input and is thus ``fixed''. However, the other
stages, which do the actual work, are under user's control.
First, hooks exist between the individual stages which make it possible (and easy) to change the
properties of the tree between the processing stages. For a simple example, see
example~(\ref{ex:adjustxy}): the manual adjustment of \index{y} can only be done after the absolute
positions have been computed, so the processing of this option is deferred by \index{before drawing
tree}. For a more realistic example, see the definition of style \index{GP1}: before packing,
\texttt{outer xsep} is set to a high (user determined) value to keep the $\times$s uniformly spaced;
before drawing the tree, the \texttt{outer xsep} is set to \texttt{0pt} to make the arrows look
better.
Second, the execution of the processing stages \ref{step:given-options}--\ref{step:draw-tree} is
\emph{completely} under user's control. To facilitate adjusting the processing flow, the approach
is twofold. The outer level: \foRest; initiates the processing by executing style \index{style>stages},
which by default executes the processing stages \ref{step:given-options}--\ref{step:draw-tree},
preceding the execution of each but the first stage by processing the keys embedded in temporal
propagators \keyname{before ...} (see \S\ref{ref:temporal-propagators}). The inner level: each
processing step is the sole resident of a stage-style, which makes it easy to adjust the workings of
a single step. What follows is the default content of style \keyname{stages}, including the default
content of the individual stage-styles. Both nicely readable and ready to copy-paste versions are given.
\begin{syntax}
\indexitem{style>stages}
\begin{syntax}
\item \index{for step=\index{root'}}|={|
\item | |\index{process keylist register}|=|\index{default preamble}|,|
\item | |\index{process keylist register}|=|\index{preamble}
\item |}|
\item \index{process keylist}|=|\index{given options}
\item \index{process keylist}|=|\index{before typesetting nodes}
\indexitem{style>typeset nodes stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{typeset nodes}|}|
\item \index{process keylist}|=|\index{before packing}
\indexitem{style>pack stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{pack}|}|
\item \index{process keylist}|=|\index{before computing xy}
\indexitem{style>compute xy stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{compute xy}|}|
\item \index{process keylist}|=|\index{before drawing tree}
\indexitem{style>draw tree stage}\hfill
|{|\index{for step=\index{root'}}|=|\index{draw tree}|}|
\end{syntax}
\end{syntax}
\lstinputregion{forest.dtx}{stages}
Both style \keyname{stages} and the individual stage-styles may be freely modified by the user.
Obviously, as a style must be redefined before it is processed, |stages| should be redefined (using
macro \index{forestset}) outside the \index{forest} environment; alternatively, stages can be given
as the (parenthesized) optional argument of the environment (see~\S\ref{sec:invocation}). A stage
style can also be redefined in the preamble or in any of the keylists processed prior to entering
that stage.
Here's the list of keys used either in the default processing or useful in an alternative
processing flow.
\begin{syntax}
\indexitem{stage>typeset nodes}
\itemnosep
\indexitem{stage>typeset nodes'}
Typesets each node of the current node's subtree in its own |tikzpicture| environment. The result
is saved in a box (which is used later, in the \index{draw tree stage}) and its measures are
taken.
In the |typeset_nodes'| variant, the node box's content is not overwritten if the box already
exists.
The order in which the nodes are typeset is controlled by nodewalk style \indexdef{nodewalk
style>typeset nodes processing order} or, if this style is not defined, by \index{processing
order}.
\indexitem{node key>typeset node} Typesets the \emph{current} node, saving the result in the node box.
This key can be useful also in the default \index{style>stages}. If, for example, the node's content
is changed and the node retypeset just before drawing the tree, the node will be positioned as if
it contained the ``old'' content, but have the new content: this is how the constant distance
between $\times$s is implemented in the \index{GP1} style.
\indexitem{stage>pack} The nodes of the tree are \emph{packed}, i.e.\ the relative positions of
the nodes are computed so that the nodes don't overlap. The result: option \index{option>s} is set
for all nodes; sometimes (in tier alignment and for some values of \index{calign}), the value
of some nodes' \index{option>l} is adjusted as well.
\indexitem{node key>pack'} ``Non-recursive'' packing: packs the children of the current node only.
(Experimental, use with care, especially when combining with tier alignment.)
\indexitem{stage>compute xy} Computes the positions of the nodes in the subtree relative to the
current node. The results are stored into options \index{option>x} and \index{y}. The current node's
\index{option>x} and \index{y} remain unchanged.
\indexitem{stage>draw tree}
\itemnosep
\indexitem{stage>draw tree'}
Produces and executes the \TikZ; code that draws the (sub)tree rooted in the current node.
The procedure uses the node boxes typeset by \index{typeset nodes} or friends. The |'| variant
includes the node boxes in the picture using \cmdname{copy}, not \cmdname{box}, thereby preserving
them.
For details and customization, see \S\ref{sec:draw-tree}.
\indexitem{node key>draw tree box}|=|[\meta{\TeX\ box}] The picture drawn by the subsequent
invocations of \index{draw tree} and \index{draw tree'} is put into \meta{\TeX\ box}. If
the argument is omitted, the subsequent pictures are typeset normally (the default).
\indexitem{node key>process keylist}|=|\meta{keylist option}
For each node in the entire tree, the keylist saved in \meta{keylist option} of the node is
processed (in the context of that node).
Note that this key is not sensitive to the current node: it processes the keylists for the whole
tree. Actually, it is possible to control which nodes are visited: \index{keylist option
processing order=\meta{keylist option}} is walked if it is defined, otherwise \index{processing
order}. In both cases, the processing nodewalk starts at the formal root of the tree (see
\index{root'} and \index{set root}), which is reevaluated at the beginning of each internal cycle
(see below). By default, \index{keylist option processing order=\meta{keylist option}} is indeed
undefined, while the \index{processing order} defauls to \index{tree}, which means that \emph{all
the nodes in the entire tree} are processed.
Keylist-processing proceeds in cycles. In a given cycle, the value of option \meta{keylist option
name} is processed for every node visited by the processing nodewalk. During a cycle, keys may
be \emph{delayed} using key \index{delay}. Keys delayed in a cycle are processed in the next
cycle. The number of cycles in unlimited.
Dynamic creation of nodes happens between the cycles. The options given to the dynamically
created nodes are implicitely delayed and thus processed at the end of the next cycle.
This key is primarily intended for use within \index{style>stages}.
The calls of this key should \emph{not} be nested, and it should not be embedded under
\index{process keylist'} or \index{process keylist register}.
When changing the processing nodewalk, note that delayed keys will be executed only for nodes
visited by the processing nodewalk. Delayed spatially propagated keys will be remembered,
though, and executed when the given keylist is processed for the target node. Using spatial
propagators without delaying cannot result in a non-processed key.
\indexitem{node key>process keylist'}|=|\meta{keylist option}\meta{nodewalk}
This key is a variant of \index{process keylist}. The differences are as follows.
The processing nodewalk is given explicitely (by \meta{nodewalk}) and starts at the current node
(in each internal cycle).
There is no dynamic creation of nodes between the delay cycles. Any dynamic node
instructions will be remembered and executed after the next cycle of \index{process keylist}, or
an explicit call to \index{do dynamics}.
It is safe to embed this key within \index{process keylist} and (all) friends.
\indexitem{node key>process keylist''}|=|\meta{keylist option}\meta{nodewalk}
This key is a variant of \index{process keylist} which executes neither dynamic node operations nor
delayed keys (there are thus no internal cycles). Any delayed keys will not be processed
during the execution of this key. They will be remembered and executed at the end of the next cycle
of \index{process keylist} or \index{process keylist'}.
As for \index{process keylist'}, the processing nodewalk is given explicitely (by \meta{nodewalk})
and starts at the current node.
It is safe to embed this key within \index{process keylist} and (all) friends.
\indexitem{node key>process keylist register}|=|\meta{register}
Process the keylist saved in \meta{register} in the context of the current node.
Any delayed keys will not be processed during the execution of this key. They will be
remembered and executed at the end of the next cycle of \index{process keylist} or
\index{process keylist'}.
It is safe to embed this key within \index{process keylist} or \index{process keylist'}.
\indexitem{node key>process delayed}|=|\meta{nodewalk} Process delayed keys.
Keylist \index{delay} cannot be processed using \index{process keylist} or \index{process
keylist'}. Thus this key.
Like \index{process keylist} or \index{process keylist'}, this key uses internal cycles. Thus,
any embedded \index{delay}s will be processed.
There is no dynamic creation of nodes between the delay cycles. Any dynamic node instructions will
be remembered and executed after the next cycle of \index{process keylist} or \index{process
keylist'}, or an explicit call to \index{do dynamics}.
This key is safe to use within \index{process keylist}, \index{process keylist'} and
\index{process keylist register}.
\indexitem(tree){nodewalk style>processing order}|/.nodewalk style=|\meta{nodewalk}
Redefine this style to change the default order in which \index{process keylist} processes a keylist
option. For example, to process the nodes in a child-first fashion, write
\begin{lstlisting}
processing order/.nodewalk style=tree children first
\end{lstlisting}
Note that this is a \emph{nodewalk} style, so it must be defined either using |.style| handler
during a nodewalk or using \index{nodewalk style}.
\indexitem(processing order)[form={processing order}]{word suffix=keylist option>nodewalk style>processing order=\meta{keylist option}}|/.nodewalk style=|\meta{nodewalk}
Redefine this style to change the \index{process keylist} processing order for a specific
\meta{keylist option}. For example, to process \index{before drawing tree} options in the
child-first fashion, leaving the processing of other |before ...| keylists untouched, write
\begin{lstlisting}
before drawing tree processing order/.nodewalk style=tree children first
\end{lstlisting}
\indexitem{node key>do dynamics} Experimental. Perform pending dynamic tree operations.
Do not use this key within \index{process keylist} or \index{process keylist'}.
\end{syntax}
\subsubsection{Temporal propagators}
\label{ref:temporal-propagators}
Temporal propagators delay processing of given keys until some other point in the processing of the
tree. There are three kinds of temporal propagators. Most of the propagators have the form
|before_...| and defer the processing of the given keys to a hook just before some stage in the
workflow (\S\ref{ref:stages}). \index{before packing node} and \index{after packing node} are
special as they fire \emph{during} the packing stage. The \index{delay} propagator is
``internal'' to the current hook: the keys in the hook are processed cyclically, and \keyname{delay}
delays the processing of the given keys until the next cycle.
Formally, temporal propagators are keylist options (except \index{delay n}, which is a style), so
augmented assignments are possible (\S\ref{sec:option-setting}).
All temporal propagators can be nested without limit.
\begin{advise}
\item A note on typos.
By default, all keys unknown to \foRest; are appended to keylist option \index{node options} The
value of \index{node options} is fed to \TikZ; when typesetting a node, so any typos are caught by
\TikZ;. However, as nodes are normally typeset in stage \index{typeset nodes stage}, any typos in
keys temporally propagated past that stage will not be noticed, simply because noone will use the
value of \index{node options} where they end up (the exception being nodes which are explicitely
retypeset by the user using \index{typeset node}).
To sum up, typos in any keys temporally propagated by \index{before packing}, \index{before
packing node}, \index{after packing node}, \index{before computing xy} and \index{before drawing
tree} will be silently ignored. This is probably not what you want, so double-check everything
you write there.
Using \index{unknown to}|=|\index{unknown key error}, it is possible to change the default
behaviour. You will catch all typos if you append the command to \index{pack stage}, as shown
below. This can be done either in the tree or by \index{forestset}.
\begin{lstlisting}
typeset nodes stage/.append style={unknown to=unknown key error}
\end{lstlisting}
Of course, this makes it impossible to write simply
|before_drawing_tree={inner_sep=5pt,_typeset_node}|. Any |tikz|'s options must be given
explicitely via \index{node options}:
|before_drawing_tree={node_options={inner_sep=5pt},_typeset_node}|.
\end{advise}
\begin{syntax}
\indexitem{propagator>delay}|=|\meta{keylist} Defers the processing of the \meta{keylist} until the next
cycle.
Internally, |delay| is a keylist option, so augmented operators of the \index{keylist} type can be
used.
To check whether any keys were delayed, use conditional \index{if have delayed}.
\indexitem{propagator>delay n}|=|\meta{integer}\meta{keylist} Defers the processing of the
\meta{keylist} for $n$ cycles. $n$ may be $0$, and it may be given as a |pgfmath| expression.
\indexitem{propagator>given options}
When \index{style>stages} processing starts, this list holds the keys given by the user in the
bracket representation.
\indexitem{propagator>before typesetting nodes}|=|\meta{keylist} Defers the processing of the
\meta{keylist} to until just before the nodes are typeset.
\indexitem{propagator>before packing}|=|\meta{keylist}
\indexitem{propagator>before packing node}|=|\meta{keylist}
Defers the processing of the \meta{keylist} given to the node to until just before/after the
subtree of \emph{this specific node} is packed. Even before packing node, the (subtrees of the)
children of the node have already been packed.\footnote{\FoRest; employs two variants of the
packing algorithm: the faster one is used for (parts of) trees with uniform growth, i.e.\
subtrees where \index{grow} does not change; the slower, generic variant is used in where this
is not the case. Now, the fast method works by dealing with l and s dimension separately, and
it is able to do this for the entire (sub)tree, without needing to invoke the packing method for
its constituents. The consequence is that there is no place where \index{before packing node}
could be called meaningfully, as the node's constituents are not packed individually, ``just
before packing the current node'' is the same as ``just before packing the tree'', and for many
nodes packing is not called anyway in the fast method. As the rationale behind \index{before
packing node} is to be able to adjust the options of the subtree based on the information
gained by packing its constituents, specifying \index{before packing node} automatically
switches to the generic method.} \indexitem{propagator>after packing node}|=|\meta{keylist} Defers
the processing of the \meta{keylist} given to the node to until just after \emph{this specific
node} is packed.
\begin{forestexample}[index={after packing node,no edge,calign,value of=calign>first,option>l,l sep,content format,content,if option,n children,pgfmath,option>s,max x,min x,for step,step>children,wrap pgfmath arg,typeset node,dimen+=s}]
\forestset{box/.style={
draw, no edge, l=0, l sep=1.5ex,
calign=first, anchor=base west,
content format={\strut\forestoption{content}},
if n children=0{}{
~after packing node~={
minimum width/.pgfmath=
{s("!l")+max_x("!l")-s("!1")-min_x("!1")},
for children/.wrap pgfmath arg={s+={##1}}{0},
typeset node}}}}
\begin{forest} for tree={box} [/
[home[saso[Download][TeX]][alja][joe]]
[usr[bin][share]]]
\end{forest}
\end{forestexample}
\begin{advise}
\item Remember to typeset or pack the node using \index{pack'} if you have changed options
influencing the typesetting or packing process.
\end{advise}
\indexitem{propagator>before computing xy}|=|\meta{keylist} Defers the processing of the
\meta{keylist} to until just before the absolute positions of the nodes are computed.
\indexitem{propagator>before drawing tree}|=|\meta{keylist} Defers the processing of the
\meta{keylist} to until just before the tree is drawn.
\end{syntax}
\subsubsection{Drawing the tree}
\label{sec:draw-tree}
This section provides a detailed description of how \index{draw tree} and friends draw the tree.
First, here's the default course of events. \index{draw tree} is called from style \index{draw tree
stage} in the context of the formal root node. It does not draw the tree directly, but rather
produces \TikZ; code that actually does the drawing. The tree-drawing instructions are enclosed in
a |tikzpicture| environment and come in three parts: the (non-phantom) nodes are drawn first,
followed by edges between the drawn nodes and finally the custom \TikZ; code (of all, including
phantom nodes). Each of those is drawn for the entire (sub)tree of the current node, in recursive,
depth-first parent-first first-child-first order.
Most parts of the tree drawing procedure are customizable. Zooming in from the invocation of
\index{draw tree} to the keys that produce the drawing code, the customization options are as
follows.
There are two ways the invocation of \index{draw tree} can differ from the default. First,
\index{draw tree} can be called within the context of any node. As a first approximation, that node
will become the root of the tree that is being drawn; for the whole truth, see \index{draw tree
method}. Second, \index{draw tree} can be called not only at \index{draw tree stage}, but any
time after the nodes to be drawn have been typeset (see \index{typeset nodes stage}) and their
absolute coordinates (\index{option>x} and \index{option>y}) computed (see \index{compute xy stage}).
\begin{syntax}
\indexitem(\begin{tikzpicture}){node key>begin draw}|/.code=|\meta{toks: \TeX\ code} \vspace{-\parskip}
\indexitem(\end{tikzpicture}){node key>end draw}|/.code=|\meta{toks: \TeX\ code}
The code produced by \index{draw tree} is put in the environment specified by \keyname{begin
draw} and \keyname{end draw}. Thus, it is this environment, normally a |tikzpicture|, that does
the actual drawing.
A common use of these keys might be to enclose the |tikzpicture| environment in a |center|
environment, thereby automatically centering all trees; or, to provide the \TikZ; code to execute
at the beginning and/or end of the picture.
Note that \keyname{begin draw} and \keyname{end draw} are \emph{not} node options: they are
|\pgfkeys|' code-storing keys \citep[\S55.4.3--4]{tikzpgf2.10}.
\end{syntax}
Repeating from (\S\ref{ref:stages}), there are two variants of \index{draw tree}, which differ in
how they use the node boxes created by \index{typeset nodes}: \index{draw tree} includes them using
\cmdname{box}, so they are gone; \index{draw tree'} uses \cmdname{copy}, so they are preserved.
Next, setting \index{draw tree box} will cause the tree to be drawn in the given \TeX\ box.
\begin{syntax}
\indexitem{style>draw tree method}
This is the heart of the tree-drawing procedure: it determines which parts of the tree are drawn
and in what order. What this style does by default was already described above, but is actually
best seen from the definition itself:
\lstinputregion{forest.dtx}{draw_tree_method}
This style may be modified by the user, but it is and should be invoked only within \index{draw
tree}, by the package: \emph{do not execute this style directly!}
The nodewalks occurring in the default definition of this style are, with the exception of
\index{processing order}, not used anywhere else in the package.
\indexitem{nodewalk style>draw tree nodes processing order}
\itemnosep
\indexitem{nodewalk style>draw tree edges processing order}
\itemnosep
\indexitem{nodewalk style>draw tree tikz processing order}
For each of these nodewalk styles the following holds. If it is defined, it determines which nodes
/ edges / pieces of \index{tikz} code are drawn and in which order. If any of these styles is not
defined, its function is taken over by \index{draw tree processing order}. By default, none of
them are defined.
\indexitem{nodewalk style>draw tree processing order}
If this nodewalk is defined, it functions as a fallback for node-, edge- and tikz-code-specific
nodewalks. If it is not defined (the default situation), it has its own fallback:
\index{processing order} (which defaults to \index{tree}).
\indexitem{node key>draw tree node}
\itemnosep
\indexitem{node key>draw tree node'}
Draws the current node at location specified by \index{option>x} and \index{option>y}. The |'|
variant draws the node even if it's \index{phantom}.
These keys should only be used only within the definition of \index{draw tree method}.
\indexitem{conditional>if node drawn}|=|\meta{nodewalk}\meta{true keylist}\meta{false keylist}
Execute \meta{true keylist} if the node at the end of \meta{nodewalk} was already drawn in the
current invocation of \index{draw tree}; otherwise, execute \meta{false keylist}.
\indexitem{node key>draw tree edge}
\itemnosep
\indexitem{node key>draw tree edge'}
Draws the edge from the current node to its parent, using the information in \index{edge path} and
\index{edge}.
The variant without |'| variant tries to be smart: it draws the edge only if both the current node
and its parent have been drawn in the current invocation of \index{draw tree}. (This prevents
drawing the edge from the root node and edges from or to phantom nodes.) The |'| variant is dumb.
These keys should only be used only within the definition of \index{draw tree method}.
\indexitem(draw tree tikz'){style>draw tree tikz}
\itemnosep
\indexitem{node key>draw tree tikz'}
Executes the custom code stored in option \index{tikz} of the current node.
By default, both keys execute the code without performing any checks. Specifically, \index{tikz}
code of phantom nodes is executed. To change this behaviour easily, the user can redefine
\index{draw tree tikz}, which is a style; probably, the definition will employ \index{draw tree
tikz'}. For example, to execute \index{tikz} code only if the node is not \index{phantom}, write
\begin{lstlisting}
draw tree tikz/.style={if phantom={draw tree tikz'}{}}
\end{lstlisting}
These keys should only be used only within the definition of \index{draw tree method}.
\end{syntax}
\subsection{Node keys}
\label{ref:node-keys}
\FoRest; is mostly controlled using \PGF;'s key management utility |pgfkeys|
\citep[\S55]{tikzpgf2.10}. Most of the keys can be given next to the content in the bracket
representation of a tree (\S\ref{ref:bracket}): we call these \emph{node keys}. Some keys,
notably \emph{nodewalk steps} (\S\ref{ref:nodewalks}), must be used as arguments of specific
commands.
Most node keys perform some operation on the \emph{current node}. When the keylist given after the
content of a node is processed, the current node is set to that node. However, the current node can
be temporarily changed, for example by spatial propagators (\S\ref{ref:spatial-propagators}) or,
more genarally, nodewalks (\S\ref{ref:nodewalks}).
The most common function that node keys perform is to set or modify an \emph{option} of the current
node (\S\ref{sec:options-and-registers}), usually to determine the appearance or position of the
node and its edge (\S\ref{sec:formatting-tree}), but there are also several kinds of more exotic
keys like spatial (\S\ref{ref:spatial-propagators}) propagators, which temporarily change the
current node, temporal (\S\ref{ref:temporal-propagators}) propagators, which delay the processing of
the keylist until some other stage in the workflow, keys that dynamically create and move nodes
(\S\ref{ref:dynamic}), keys that control the way \foRest; processes the tree (\S\ref{ref:stages})
etc. Finally, users can also define their own keys, either by defining |pgfkeys| styles\footnote{%
Styles are a feature of the \keyname{pgfkeys} package. They are named keylists, whose usage
ranges from mere abbreviations through templates to devices implementing recursion. To define a
style, use \PGF;'s handler \keyname{.style} \citep[\S55.4.4]{tikzpgf2.10}: \meta{style
name}\keyname{/.style=}\meta{keylist}.} \citep[\S55.4.4]{tikzpgf2.10} or using \foRest;'s option
declaration mechanism (\S\ref{sec:option-declaring}).
\begin{advise}
\item The style definitions and option declarations given among the other keys in the bracket
specification are local to the current tree (but note that \foRest;'s keylist processing,
including temporal and spatial propagation, introduces no groups). To define globally accessible
styles and options (well, they are always local to the current \TeX\ group), use
macro \cmdname{forestset} outside the \index{forest} environment, e.g.\ in the preamble of the
document. (Although \index{forestset}\meta{keylist} is currently equivalent to
\cmdname{pgfkeys}\texttt{\{/forest,}\meta{keylist}\texttt{\}}, don't rely on this as it will
change in some (near) future version of the package, as there is a plan to introduce namespaces
\dots)
\end{advise}
By default, unknown keys are assumed to be \TikZ; keys and are forwarded to \index{node options}.
This behaviour can be changed using \index{unknown to}.
The following subsections list the node keys which are not described elsewhere (see above): spatial
propagators (\S\ref{ref:spatial-propagators}) and general-purpose node keys, i.e.\ those which don't
deal with tree formatting (\S\ref{sec:node-keys-various}).
\subsubsection{Spatial propagators}
\label{ref:spatial-propagators}
Spatial propagators pass the given \meta{keylist} to other node(s) in the tree.
Spatial propagation does not change the current node: after visiting the nodes the keys are
propagated to, a spatial propagator (silently, using a so-called fake step) returns to the origin of
the embedded nodewalk.
\FoRest; provides many spatial propagators. Almost all of them are built from long-form nodewalk
steps using prefix \index{for step}. This is why the list below is so short: it only documents this
prefix and the exceptions. For the list of nodewalk steps, see \S\ref{ref:nodewalks}, in particular
\S\ref{ref:single-step-keys} for single-step keys and \S\ref{ref:multi-step-keys} for multi-step
keys.
\begin{syntax}
\indexitem{word prefix=step>propagator>for=\meta{step}}|=|\meta{arg$_1$}|...|\meta{arg$_n$}\meta{keylist: every-step}
\itemnosep
\indexitem[not short]{word prefix=step>propagator>for=\index{nodewalk}}|=|\meta{nodewalk}\meta{keylist: every-step}
\itemnosep
\indexitem[not short]{word prefix=step>propagator>for=\index{nodewalk key>Nodewalk}}|=|\meta{keylist: config}\meta{nodewalk}\meta{keylist: every-step}
Walks the (single- or multi-step) \meta{step} from the current node and executes the given
\meta{keylist} at every visited node. The current node remains unchanged.
\meta{step} must be a long-form nodewalk step. If it has any arguments, they
(\meta{arg$_1$}|...|\meta{arg$_n$}) should be given before every-step \meta{keylist}, with two
exceptions: embedded nodewalk steps (\index{step>Nodewalk} and \index{nodewalk}) already require
the \meta{keylist: every-step} argument, so it should be omitted, as it makes no sense to provide
the every-step keylist twice.
Examples:
\begin{itemize}
\item |for_parent={l_sep+=3mm}|
\item |for_n=2{circle,draw}|
\item |for_nodewalk={uu2}{blue}|
\item |for_tree={s_sep+=1em}|
\end{itemize}
\long\def\printbigbadforlist#1{%
{%
\tikzexternaldisable
\bracketset{action character=!}%
\begin{forest}(stages={
process keylist=given options,
for root'={
sort by={>O+t+c{content}},
%sort=children,
temptoksa={},
for sort={children}{
TeX and memoize/.process=ROw2{temptoksa}{content}{####1\texttt{for\space}\index{step>####2}},
temptoksa={,\space},
},
}
})
[!\bigbadforlist[nodewalk][nodewalk'][Nodewalk]]
\end{forest}%
}%
}%
\makeatletter
\forest@memoize\printbigbadforlist
\makeatother
{\tolerance=10000
Here's the big list of all spatial propagators built with prefix |for|:
% to update,
% - uncomment \appto\bigbadforlist{[#1]} in define long step in forest.dtx
% - delete line \forest@memo@load {forest@memo@\printbigbadforlist ... in forest-doc.memo
\printbigbadforlist{}.
For details on nodewalk steps, see \S\ref{ref:nodewalks}.
}
\indexitem{propagator>for tree'}|=|\meta{keylist 1}\meta{keylist 2} A ``combination'' of
\index{for step=\index{tree children-first}} and \index{for step=\index{tree}}.
Passes the keylists to the current node and its the descendants. At each node, the \meta{keylist
1} is processed first; then, children are processed recursively; finally, \meta{keylist 2}
is processed.
For an example, see the definition of \index{draw brackets} from \reflibrary{linguistics}.
\indexitem{propagator>for 1}, \dots\indexdef[not print]{propagator>for 2}\indexdef[not print]{propagator>for 3}\indexdef[not print]{propagator>for 4}\indexdef[not print]{propagator>for 5}\indexdef[not print]{propagator>for 6}\indexdef[not print]{propagator>for 7}\indexdef[not print]{propagator>for 8}, \indexdef{propagator>for 9}|=|\meta{keylist}
\itemnosep
\indexitem{propagator>for -1}, \dots\indexdef[not print]{propagator>for -2}\indexdef[not print]{propagator>for -3}\indexdef[not print]{propagator>for -4}\indexdef[not print]{propagator>for -5}\indexdef[not print]{propagator>for -6}\indexdef[not print]{propagator>for -7}\indexdef[not print]{propagator>for -8}, \indexdef{propagator>for -9}|=|\meta{keylist}
Although \index{for step} normally cannot precede short forms of steps, an exception is made
for \index{ss 1}\index[not print]{ss 2,ss 3,ss 4,ss 5,ss 6,ss 7,ss 8}, \dots, \index{ss 9}. (These keys will work even if the short steps are redefined.)
|for |$n$ passes the \meta{keylist} to the $n$th child of the current node. |for -|$n$ starts counting at the last child.
\indexitem{node key>Nodewalk}|=|\meta{keylist: config}\meta{nodewalk}\meta{keylist: every-step}
Configures and executes the \meta{nodewalk}. This key is a nodekey-space copy of nodewalk step
\index{step>Nodewalk}.
\begin{advise}
\item Use this key carefully as it can change the current node!
\item The envisioned purpose of this key is to change the current node within the every-step
keylist of (an outer) nodewalk, where only node keys are accepted. The config defaults
(independent every-step, shared history) are set to facilitate that purpose. But it can also be
used as a simple node key, of course.
\end{advise}
\indexitem{node key>node walk}|=|\meta{node walk} \textbf{Deprecated!!!} Requires
\index{compat}|=1.0-nodewalk|. Please use \index{for step=\index{nodewalk}} in new code. From the
old documentation:
\begin{quote}
This is the most general way to use a \meta{node walk}.
Before starting the \meta{node walk}, key \indexdef{node key>node walk/before walk} is processed.
Then, the \meta{step}s composing the \meta{node walk} are processed: making a step (normally)
changes the current node. After every step, key \indexdef{node key>node walk/every step} is
processed. After the walk, key \indexdef{node key>node walk/after walk} is processed.
\keyname{node walk/before walk}, \keyname{node walk/every step} and \keyname{node walk/after
walk} are processed with \keyname{/forest} as the default path: thus, \foRest;'s node keys can
be used normally inside their definitions.
\begin{advise}
\item Node walks can be tail-recursive, i.e.\ you can call another node walk from \keyname{node
walk/after walk} --- embedding another node walk in \keyname{node walk/before walk} or
\keyname{node walk/every step} will probably fail, because the three node walk styles are not
saved and restored (a node walk doesn't create a \TeX\ group).
\item \keyname{every step} and \keyname{after walk} can be redefined even during the walk.
Obviously, redefining \keyname{before walk} during the walk has no effect (in the current
walk).
\end{advise}
\end{quote}
\end{syntax}
\subsubsection{Various}
\label{sec:node-keys-various}
\begin{syntax}
\indexitem{style>afterthought}|=|\meta{toks} Provides the afterthought explicitely.
This key is normally not used by the end-user, but rather called by the bracket parser. By
default, this key is a style defined by |afterthought/.style={tikz+={#1}}|: afterthoughts are
interpreted as (cumulative) \TikZ; code. If you'd like to use afterthoughts for some other
purpose, redefine this style --- this will take effect even if you do it in the tree preamble.
\indexitem{node key>also}|=|\meta{keylist} Execute the keys in the given \meta{keylist}.
If we are currently processing node keys, \meta{keylist} should contain node keys. If we are
in a nodewalk, \meta{keylist} should (or rather, may also) contain nodewalk keys.
For example, to execute, during a nodewalk, a nodewalk keylist stored in register |tempkeylista|,
write |also/.register=|\indexex{tempkeylista}. Note that no embedded nodewalk will be introduced.
\indexitem{node key>autoforward}|=|\meta{option}\meta{keylist}, \indexdef{node key>autoforward register}|=|\meta{register}\meta{keylist}
\itemnosep
\indexitem{node key>autoforward'}|=|\meta{option}\meta{keylist}, \indexdef{node key>autoforward register'}|=|\meta{register}\meta{keylist}
Whenever the value of an autoforwarded option or register is given or changed (via an augmented
assignment), \meta{option}|=|\meta{new value} or \meta{register}|=|\meta{new value} is appended to
\meta{keylist}. This can be used to ``intercept and remember'' \TikZ; options, like \index{option>anchor}
and \index{rotate}.
The |autoforward'| variant keeps only a single instance of \meta{option} in \meta{keylist}.
If you ever need to use the non-forwarded version of the key, prefix it with word |autoforwarded|,
e.g.\ |autoforwarded_rotate|. Autoforwarding is limited to the current \TeX\ group.
\indexitem{node key>Autoforward}|=|\meta{option}\meta{style definition}, \indexdef{node key>Autoforward register}|=|\meta{register}\meta{style definition}
This is a more generic variant of autoforwarding. After the value of an option or register
autoforwarded with this key is changed, the style defined by \meta{style definition} is called with
the new option/register value as its argument.
\begin{forestexample}[index={Autoforward,content,node options}]
\forestset{~Autoforward~={content}{node options={#1}}}
\begin{forest}
[red[blue][green]]
\end{forest}
\end{forestexample}
\indexitem{node key>unautoforward}|=|\meta{option or register} Undoes the autoforwarding of the
option or register made by any of the autoforwarding keys.
\indexitem{node key>content to}|=|\meta{key} When parsing the bracket representation of the tree,
store the given content using \meta{key}|=|\meta{content}.
\indexitem{node key>copy command key}|=|\meta{pgfkey: source}\meta{pgfkey: destination}
Copies the |pgf| key in a way that |.add code| and |.add style| handlers still work.
\indexitem({{{{{}}}}}){register>default preamble}|=|\meta{keylist}
\itemnosep
\indexitem{register>preamble}|=|\meta{keylist}
These registers hold the content of the default preamble and the preamble of the current tree.
|preamble| is set by the bracket parser. Set |default preamble| outside the \index{forest}
environment using \index{forestset}.
As |default preamble| and |preamble| are not styles but keylist registers, the |#| characters do
not need to be doubled: you can freely copy and paste your keylists between the node options of
the root node, the preamble and the default preamble. The only difference will be the order of
execution: first default preamble, then preamble, and finally the root node's options.
\indexitem{node key>save and restore register}|=|\meta{register}\meta{keylist}
Restores the current value of \meta{register} after executing the \meta{keylist}.
\indexitem{node key>split}|=|\meta{toks}\meta{separator}\meta{keylist}
\itemnosep
\indexitem{node key>split option}|=|\meta{option}\meta{separator}\meta{keylist}
\itemnosep
\indexitem{node key>split register}|=|\meta{register}\meta{separator}\meta{keylist}
Split \meta{toks} or the value of \meta{option} or \meta{register} at occurrences of
\meta{separator} (which must be a single token), and process the keys in \meta{keylist} with the
pieces of the split token list as arguments, in the order given.
\meta{option} can be either a simple \meta{option name} or a \meta{relative node name}\texttt{.}\meta{option name}.
The difference in the number of split values and given keys is handled gracefully. If there is
not enough values, the superfluous keys are not processed; if there are too many values, the last
key is called repeatedly.
The keys in \meta{keylist} can be any valid keys, including augmented assignments, non-current
option assignments, even \index{TeX} or user-defined styles. Actually, as |split| works by simply
appending |={|\meta{current value}|}| to the relevant given key, it is possible for the key to be
a (sub)keylist ending in a simple, non-valued key, like shown below.
\begin{advise}
\item Pay attention to |%| characters around the subkeylist. In order for it to actually function
as a sublist, its braces should be stripped, but this can only happen if no spaces surround it.
\end{advise}
\begin{forestexample}[point=split option,index={delay,content,split option,process args},label=ex:split option]
\begin{forest}
[
{1,2,3,4}
[,delay={
~split option~=
{!parent.content}
{,}
{
content',%
{content+={+},content+}%
},
tempcounta'/.process={O+n}{content},
content+={=},
content+/.register=tempcounta,
}
]
]
\end{forest}
\end{forestexample}
\indexitem{node key>TeX}|=|\meta{toks: \TeX\ code} The given code is executed immediately.
This can be used for e.g.\ enumerating nodes:
\begin{forestexample}[point=TeX,index={TeX,delay,where option,tier,content,GP1},label=ex:enumerate]
\newcount\xcount
\begin{forest} GP1,
delay={TeX={\xcount=0},
where tier={x}{TeX={\advance\xcount1},
content/.expanded={##1$_{\the\xcount}$}}{}}
[
[O[x[f]]]
[R[N[x[o]]]]
[O[x[r]]]
[R[N[x[e]]][x[s]]]
[O[x[t]]]
[R[N[x]]]
]
\end{forest}
\end{forestexample}
\indexitem{node key>TeX'}|=|\meta{toks: \TeX\ code} This key is a combination of keys \index{TeX}
and \index{TeX''}: the given code is both executed and externalized.
\indexitem{node key>TeX''}|=|\meta{toks: \TeX\ code} The given code is externalized, i.e.\ it will be
executed when the externalized images are loaded.
The image-loading and \keyname{TeX'(')} produced code are intertwined.
\indexitem{node key>typeout}|=|\meta{toks} A \foRest; version of \LaTeX\ macro |\typeout|. Useful
for debugging, trust me on this one.
\indexitem(node options){node key>unknown to}|=|\meta{key} Forward unknown keys to \meta{key}.
\begin{advise}
\item Do \emph{not} use handler |.unknown| to deal with unknown keys, as it is used internally by
\foRest;, and is set up to make it possible to set options of non-current nodes (see
\S\ref{sec:option-setting}).
\end{advise}
\indexitem{node key>unknown key error}|=|\meta{keyval} Produces an error.
Write \index{unknown to}|=unknown key error| to produce an error when a key unknown to \foRest; is
used.
\end{syntax}
\subsection{Options and registers}
\label{sec:options-and-registers}
\FoRest; introduces two types of data storage: \emph{node options} (or just \emph{options} for
short) and \emph{registers}.
Options store data related to particular nodes. Each node has its own set of option values, i.e.\
the value of an option at some node is independent of its value at other nodes: in particular,
setting an option of a node does \emph{not} set this option for the node's descendants. Register
values are not associated to nodes.
Note that option and register keys share the same ``namespace'' (|pgfkeys| path and |pgfmath|
function names) so it is not possible to have an option and a register of the same name!
\subsubsection{Setting}
\label{sec:option-setting}
The simplest way to set the value of an option or a register is to use the key of the same name.
\begin{syntax}
\indexitem[index key={@@@opt},form={}]{prefix>assignment>current node=\meta{option}}|=|\meta{value}
Sets the value of \meta{option} of the current node to \meta{value}.
Note that option types \index{keylist} and \index{autowrapped toks} redefine this basic key.
\indexitem[index key={@@@reg},form={}]{prefix>assignment>current node=\meta{register}}|=|\meta{value}
Sets the value of \meta{register} to \meta{value}.
Note that register types \index{keylist} and \index{autowrapped toks} redefine this basic key.
\end{syntax}
Options can also be set for the non-current node:
\begin{syntax}
% \indexitem[index key={@@@.},form={.},+print format={+result={\index(not print){relative node name}\index(not index)[+print format=definition]{relative node name}}},+index format={+result={\meta{relative node name}}}]{prefix>assignment>relative node=\meta{option}}|=|\meta{value}
\indexitem[index key={@@@.},form={.},+print format={+result={\index{relative node name}}},+index format={+result={\meta{relative node name}}}]{prefix>assignment>relative node=\meta{option}}|=|\meta{value}
Sets the value of \meta{option} of the node specified by \meta{relative node name} to \meta{value}.
Notes: \begin{enumerate*}[(i)]
\item\emph{\meta{value} is evaluated in the context of the current node.}
\item In general, the resolution of \meta{relative node name} depends on the
current node; see \S\ref{ref:relative-node-names}.
\item \meta{option} can also be an ``augmented assignment operator'' (see below) or, indeed, any
node key.
\end{enumerate*}
\end{syntax}
Additional keys for setting and modifying the value of an option or a register exist, depending on
its data type. Informally, you can think of these keys as \emph{augmented operators} known from
various programming languages.
\begin{syntax}
\indexitem{type>toks} contains \TeX's \meta{balanced text} \citep[275]{texbook}.
A toks \meta{option} additionally defines the following keys:
\begin{syntax}
\indexitem{suffix>augmented assignment=toks>+=\meta{option}}|=|\meta{toks} appends the given \meta{toks} to the
current value of the option.
\indexitem{prefix>augmented assignment=toks>+=\meta{option}}|=|\meta{toks} prepends the given \meta{toks} to the
current value of the option.
% \item \index{if in toks option=\meta{toks option}}| =|\meta{toks}\meta{true
% keylist}\meta{false keylist} checks if \meta{toks} occurs in the option value; if it does,
% \meta{true keylist} are executed, otherwise \meta{false keylist}.
% \item \index{where in toks option=\meta{toks option}}| =|\meta{toks}\meta{true
% keylist}\meta{false keylist} is a style equivalent to \index{for step=\index{tree}}|={|\keyname{if in }\meta{option}=\meta{toks}\meta{true keylist}\meta{false keylist}|}|: for every node in
% the subtree rooted in the current node, \keyname{if in }\meta{option} is executed in
% the context of that node.
\end{syntax}
\indexitem{type>autowrapped toks} is a subtype of \index{toks} and contains \TeX's \meta{balanced
text} \citep[275]{texbook}.
{\rstyle\meta{option}}|=|\meta{toks} of an autowrapped \meta{option} is redefined to
\meta{option}|/|\index{wrap value}|=|\meta{toks} of a normal \meta{toks} option.
Keyvals \indexdef{suffix>augmented assignment=autowrapped toks>+=\meta{option}}|=|\meta{toks} and
\indexdef{prefix>augmented assignment=autowrapped toks>+=\meta{option}}|=|\meta{toks} are redefined to
\index{toks+=\meta{option}}|/|\index{wrap value}|=|\meta{toks} and
\index{+toks=\meta{option}}|/|\index{wrap value}|=|\meta{toks}, respectively. The normal toks
behaviour can be accessed via keys \indexdef{suffix>augmented assignment=autowrapped toks>'=\meta{option}},
\indexdef{suffix>augmented assignment=autowrapped toks>+'=\meta{option}}, and
\indexdef[set={print format={result/.expanded=+\forestoption{argument}',pgfkey},index form=+\meta{autowrapped toks option}',index format=pgfkey,index key=+'}]{augmented assignment>+autowrapped toks'=\meta{option}}.
\indexitem{type>keylist} is a subtype of \index{toks} and contains a comma-separated list of
\meta{key}[|=|\meta{value}] pairs.
Augmented assignment operators \indexdef{suffix>augmented assignment=keylist>+=\meta{option}} and
\indexdef{prefix>augmented assignment=keylist>+=\meta{option}} automatically insert a comma
before/after the appended/prepended material.
Augmented assignment operator \indexdef{suffix>augmented assignment=keylist>-=\meta{option}}|=|\meta{keylist} deletes the keys
from keylist \meta{option}. \meta{keylist} specifies which keys to delete. If a key is given no
value, all occurrences of that key will be deleted. If a key is given a value, only occurrences
with that value will be deleted. To delete occurrences without value, use special value
\indexdef{macro>forestnovalue}. (Note: if you include a key in \meta{keylist} more than once,
only the last occurrence counts.)
{\rstyle\meta{option}}|=|\meta{keylist} of a keylist option is redefined to
\meta{option}\keyname{+}|=|\meta{keylist}. In other words, keylists behave additively by
default. The rationale is that one usually wants to add keys to a keylist. The usual,
non-additive behaviour can be accessed by \indexdef{suffix>augmented assignment=keylist>'=\meta{option}}|=|\meta{keylist}.
Manipulating the keylist option using augmented assignments might have the side-effect of adding
an empty key to the list.
\indexitem{type>dimen} contains a dimension.
The value given to a dimension option is automatically evaluated by |pgfmath|. In other words,
{\rstyle\meta{option}}|=|\meta{value} is implicitly understood as
\meta{option}|/|\index{pgfmath}|=|\meta{value}.
For a \meta{dimen} option \meta{option}, the following additional keys (``augmented
assignments'') are defined:
\begin{syntax}
\indexitem{suffix>augmented assignment=dimen>+=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()+|\meta{value}
\indexitem{suffix>augmented assignment=dimen>-=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()-|\meta{value}
\indexitem{suffix>augmented assignment=dimen>*=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()*|\meta{value}
\indexitem{suffix>augmented assignment=dimen>:=\meta{option}}|=|\meta{value} is equivalent to \meta{option}|=|\meta{option}|()/|\meta{value}
\end{syntax}
The evaluation of \meta{pgfmath} can be quite slow. There are two tricks to speed things up
\emph{if} the \meta{pgfmath} expression is simple, i.e.\ just a \TeX\ \meta{dimen}:
\begin{enumerate}
\item |pgfmath| evaluation of simple values can be sped up by prepending |+| to the value
\citep[\S62.1]{tikzpgf2.10};
\item use the key \indexdef{suffix>augmented assignment=dimen>'=\meta{option}}|=|\meta{value} to invoke a normal \TeX\ assignment.
\end{enumerate}
The two above-mentioned speed-up tricks work for the augmented assignments as well. The keys for
the second, \TeX-only trick are: \indexdef{suffix>augmented assignment=dimen>'+}, \indexdef{suffix>augmented assignment=dimen>'-}, \indexdef{suffix>augmented assignment=dimen>'*}, \indexdef{suffix>augmented assignment=dimen>':} --- note that for the latter two,
the value should be an integer.
\indexitem{type>count} contains an integer.
The additional keys and their behaviour are the same as for the \meta{dimen} options.%
\indexdef[not print]{suffix>augmented assignment=count>+}%
\indexdef[not print]{suffix>augmented assignment=count>-}%
\indexdef[not print]{suffix>augmented assignment=count>*}%
\indexdef[not print]{suffix>augmented assignment=count>:}%
\indexdef[not print]{suffix>augmented assignment=count>'}%
\indexdef[not print]{suffix>augmented assignment=count>'+}%
\indexdef[not print]{suffix>augmented assignment=count>'-}%
\indexdef[not print]{suffix>augmented assignment=count>'*}%
\indexdef[not print]{suffix>augmented assignment=count>':}%
\indexitem{type>boolean} contains $0$ (false) or $1$ (true).
In the general case, the value given to a \meta{boolean} option is automatically
parsed by |pgfmath| (just as for \meta{count} and \meta{dimen}): if the computed value is
non-zero, $1$ is stored; otherwise, $0$ is stored. Note that |pgfmath| recognizes constants
|true| and |false|, so it is possible to write \meta{option}|=true| and
\meta{option}|=false|.
If key \meta{option} is given no argument, pgfmath evaluation does not apply and a true value is
set. To quickly set a false value, use key \indexdef{word prefix=boolean option>>not=\meta{option}} (with no arguments).
\end{syntax}
\subsubsection{Reading}
\label{sec:option-reading}
Option and register values can be accessed using the four macros listed below, handlers
\index{handler>option} and \index{handler>register} (\S\ref{ref:handlers}) and |pgfmath| functions
(\ref{ref:pgfmath}).
\begin{syntax}
\indexitem{macro>forestoption}|{|\meta{option}|}|
\itemnosep
\indexitem{macro>foresteoption}|{|\meta{option}|}|
\itemnosep
\indexitem{macro>forestregister}|{|\meta{register}|}|
\itemnosep
\indexitem{macro>foresteregister}|{|\meta{register}|}|
These macros expand to the value of the given option or register. Note that
\index{macro>forestoption} and \index{macro>foresteoption} expand to the value of the given option
of the \emph{current node}; to access option values of a non-current node, use |pgfmath|
functions.
In the context of |\edef|, \cmdname{forestoption} and \cmdname{forestregister} expand precisely to
the token list of the option value, while \cmdname{foresteoption} and \cmdname{foresteregister}
fully expand the value.
\begin{advise}
\item These macros can be useful in \TeX\ code introduced by \index{TeX} or \PGF;'s handler
|.expanded| \citep[\S55.4.6]{tikzpgf2.10}.
\end{advise}
\end{syntax}
\subsubsection{Declaring}
\label{sec:option-declaring}
Using the following keys, users can also declare their own options and registers. The new options
and registers will behave exactly like the predefined ones.
Note that the declaration of an option must provide a default value, while the declaration of a
register must not do that (registers are initialized to the empty string, |0pt| or |0|, as
appropriate for the type). The default value of an option will be assigned to any newly created
nodes; the existing nodes are not affected.
\begin{syntax}
\indexitem{node key>declare toks}|=|\meta{option name}\meta{default value}
Declares a \meta{toks} option.
\indexitem{node key>declare autowrapped toks}|=|\meta{option name}\meta{default value}
Declares an \meta{autowrapped toks} option.
\indexitem{node key>declare keylist}|=|\meta{option name}\meta{default value}
Declares a \meta{keylist} option.
\indexitem{node key>declare dimen}|=|\meta{option name}\meta{default value}
Declares a \meta{dimen} option. The default value is processed by \index{forestmath}.
\indexitem{node key>declare count}|=|\meta{option name}\meta{default value}
Declares a \meta{count} option. The default value is processed by \index{forestmath}.
\indexitem{node key>declare boolean}|=|\meta{option name}\meta{default value}
Declares a \meta{boolean} option. The default value is processed by \index{forestmath}.
\indexitem{node key>declare toks register}|=|\meta{register name}
Declares a \meta{toks} register.
\indexitem{node key>declare autowrapped toks register}|=|\meta{register name}
Declares an \meta{autowrapped toks} register.
\indexitem{node key>declare keylist register}|=|\meta{register name}
Declares a \meta{keylist} register.
\indexitem{node key>declare dimen register}|=|\meta{register name}
Declares a \meta{dimen} register.
\indexitem{node key>declare count register}|=|\meta{register name}
Declares a \meta{count} register.
\indexitem{node key>declare boolean register}|=|\meta{register name}
Declares a \meta{boolean} register.
\end{syntax}
Several scratch registers are predefined:
\begin{syntax}
\indexitem{register>temptoksa}, \indexdef{register>temptoksb}, \indexdef{register>temptoksc}, \indexdef{register>temptoksd} Predefined \meta{toks} registers.
\indexitem{register>tempkeylista}, \indexdef{register>tempkeylistb}, \indexdef{register>tempkeylistc}, \indexdef{register>tempkeylistd} Predefined \meta{keylist} registers.
\indexitem{register>tempdima}, \indexdef{register>tempdimb}, \indexdef{register>tempdimc}, \indexdef{register>tempdimd}, \indexdef{register>tempdimx}, \indexdef{register>tempdimy}, \indexdef{register>tempdiml}, \indexdef{register>tempdims}, \indexdef{register>tempdimxa}, \indexdef{register>tempdimya}, \indexdef{register>tempdimla}, \indexdef{register>tempdimsa}, \indexdef{register>tempdimxb}, \indexdef{register>tempdimyb}, \indexdef{register>tempdimlb}, \indexdef{register>tempdimsb} Predefined \meta{dimen} registers.
\indexitem{register>tempcounta}, \indexdef{register>tempcountb}, \indexdef{register>tempcountc}, \indexdef{register>tempcountd} Predefined \meta{count} registers.
\indexitem{register>tempboola}, \indexdef{register>tempboolb}, \indexdef{register>tempboolc}, \indexdef{register>tempboold} Predefined \meta{boolean} registers.
\end{syntax}
\subsection{Formatting the tree}
\label{sec:formatting-tree}
\subsubsection{Node appearance}
\label{ref:node-appearance}
The following options apply at stage \index{typeset nodes}. Changing them
afterwards has no effect in the normal course of events.
\begin{syntax}
\indexitem({{{{{}}}}}){option>align}|=|\index{value of=align>left}\OR\index{value of=align>center}\OR\index{value of=align>right}\OR\meta{toks: tabular header}
Creates a left/center/right-aligned multiline node, or a tabular node. In the
\index{content} option, the lines of the node should separated by |\\| and the columns (if
any) by |&|, as usual.
The vertical alignment of the multiline/tabular node can be specified by option \index{base}.
\begin{forestexample}[index={l sep,align,base}]
\begin{forest} l sep+=2ex
[special value&actual value\\\hline
\indexdef{value of=align>left}&||\texttt{@\{\}l@\{\}}\\
\indexdef{value of=align>center}&||\texttt{@\{\}c@\{\}}\\
\indexdef{value of=align>right}&||\texttt{@\{\}r@\{\}}\\
,~align~=ll,draw
[top base\\right aligned, ~align~=right,~base~=top]
[left aligned\\bottom base, ~align~=left,~base~=bottom]
]
\end{forest}
\end{forestexample}
Internally, setting this option has two effects:
\begin{enumerate}
\item The option value (a |tabular| environment header specification) is set. The special
values \keyname{left}, \keyname{center} and \keyname{right} invoke styles setting the actual
header to the value shown in the above example.
\begin{advise}
\item If you know that the \keyname{align} was set with a special value, you can easily check
the value using \index{if in toks option=\index{align}}.
\end{advise}
\item Option \index{content format} is set to the following value:
\begin{lstlisting}
\noexpand\begin{tabular}[\forestoption{base}]{\forestoption{align}}%
\forestoption{content}%
\noexpand\end{tabular}%
\end{lstlisting}
As you can see, it is this value that determines that options \keyname{base}, \keyname{align} and
\keyname{content} specify the vertical alignment, header and content of the table.
\end{enumerate}
\indexitem(t){option>base}|=|\meta{toks: vertical alignment}
This option controls the vertical alignment of multiline (and in general, \texttt{tabular}) nodes
created with \index{align}. Its value becomes the optional argument to the \texttt{tabular}
environment. Thus, sensible values are \indexdef{value of=base>t} (the top line of the table will
be the baseline) and \indexdef{value of=base>b} (the bottom line of the table will be the baseline).
Note that this will only have effect if the node is anchored on a baseline, like in the default
case of \index{option>anchor}|=base|.
For readability, you can use \indexdef{value of=base>top} and \indexdef{value of=base>bottom} instead
of \keyname{t} and \keyname{b}. (\keyname{top} and \keyname{bottom} are still stored as
\keyname{t} and \keyname{b}.)
\indexitem({{{{{}}}}}){option>content}|=|\meta{autowrapped toks} The content of the node.
Normally, the value of option \keyname{content} is given implicitely by virtue of the special
(initial) position of content in the bracket representation (see~\S\ref{ref:bracket}). However,
the option also be set explicitely, as any other option.
\begin{forestexample}[index={for step,tree,if option,readonly option>n,readonly option>n'},point={content,delay},index={content,delay}]
\begin{forest}
delay={for tree={
if n=1{content=L}
{if n'=1{content=R}
{content=C}}}}
[[[][][]][[][][]]]
\end{forest}
\end{forestexample}
Note that the execution of the \keyname{content} option should usually be delayed: otherwise, the
implicitely given content (in the example below, the empty string) will override the explicitely
given content.
\begin{forestexample}[index={for step,tree,if option,readonly option>n,readonly option>n',content},point={content}]
\begin{forest}
for tree={
if n=1{content=L}
{if n'=1{content=R}
{content=C}}}
[[[][][]][[][][]]]
\end{forest}
\end{forestexample}
\indexitem(\forestoption{content}){option>content format}|=|\meta{toks}
When typesetting the node under the default conditions (see option \index{node format}), the
value of this option is passed to the \TikZ; \texttt{node} operation as its \meta{text} argument
\citep[\S16.2]{tikzpgf2.10}. The default value of the option simply puts the content in the
node.
This is a fairly low level option, but sometimes you might still want to change its value. If
you do so, take care of what is expanded when. Most importantly, if you use a formatting
command such as |\textbf| in the default setting of \index{node format}, be sure to precede
it with |\noexpand|. For details, read the documentation of option \index{node format} and
macros \index{forestoption} and \index{foresteoption}; for an example, see option
\index{align}.
\indexitem{node key>math content} Changes \index{content format} so that the content of the node
will be typeset in a math environment.
\indexitem{node key>plain content} Resets \index{content format} to the default value.
\indexitem{option>node format}|=|\meta{toks}
\hfill|\noexpand\node(\forestoption{name})|\\
\mbox{}\hfill|[\forestoption{node options}]{\foresteoption{content format}};|
The node is typeset by executing the expansion of this option's value in a |tikzpicture|
environment.
Important: the value of this option is first expanded using |\edef| and only then executed. Note
that in its default value, \index{content format} is fully expanded using
\index{foresteoption}: this is necessary for complex content formats, such as |tabular|
environments.
This is a low level option. Ideally, there should be no need to change its value. If you do,
note that the \TikZ; node you create should be named using the value of option \index{option>name};
otherwise, parent--child edges can't be drawn, see option \index{edge path}.
\indexitem{node key>node format'}|=|\meta{toks}
Sets \index{node format}, automatically wrapping the given \meta{toks} by
|\noexpand\node(\forestoption{name})| and |;|. Only the node options and content must therefore be
given.
\indexitem(anchor=base){option>node options}|=|\meta{keylist}
When the node is being typeset under the default conditions (see option \index{node format}),
the content of this option is passed to \TikZ; as options to the
\TikZ; |node| operation \citep[\S16]{tikzpgf2.10}.
This option is rarely manipulated manually: almost all options unknown to \foRest; are
automatically appended to \keyname{node options}. Exceptions are (i) \index{label} and
\index{pin}, which require special attention in order to work; and (ii) \index{option>anchor},
which is saved in order to retain the information about the selected anchor.
\begin{forestexample}[index={for step,descendants,option>anchor,option>child anchor,option>parent anchor,grow,l sep,tree,propagator>where,delay,content,node options,pgfmath}]
\begin{forest}
for descendants={anchor=east,child anchor=east},
grow=west,anchor=north,parent anchor=north,
l sep=1cm,
for tree={~fill=yellow~},where={n()<=3}{~draw=red~}{},
delay={for tree={content/.pgfmath=~node_options~}}
[root,rotate=90,
[,~fill=white~]
[,~node options'~]
[]
[]
[,~node options~={~ellipse~}]
]
\end{forest}
\end{forestexample}
\indexitem(false){option>phantom}|=|\meta{boolean}
A phantom node and its surrounding edges are taken into account when packing, but not
drawn. (This option applies in stage \index{draw tree}.)
\begin{forestexample}[point=phantom,index={option>phantom}]
\begin{forest}
[VP[DP][V',phantom[V][DP]]]
\end{forest}
\end{forestexample}
\end{syntax}
\subsubsection{Node position}
\label{ref:ref-node-position}
Most of the following options apply at stage \index{pack}. Changing them afterwards has no effect
in the normal course of events. (Options \index{option>l}, \index{option>s}, \index{option>x}, \index{y} and
\index{option>anchor} are exceptions; see their documentation for details).
\begin{syntax}
\indexitem(base){option>anchor}|=|\meta{toks: \foRest; anchor}
While this option is saved by \foRest;, it is essentially an option of \TikZ;'s |\node| command
\citep[see][\S16.5.1]{tikzpgf2.10}. \FoRest; \index{autoforward}s it to keylist option
\index{node options}, which is passed on to \TikZ;'s |\node| command when the node is typeset.
(Option |anchor| thus normally applies in stage \index{typeset nodes}.)
In the \TikZ; code, you can refer to the node's anchor using \FoRest;'s anchor
\index{anchor>anchor}; this anchor is sometimes also called the node anchor in this
documentation, to distinguish it clearly from parent and child anchors.
\meta{toks: \foRest; anchor} can be any \TikZ; anchor. Additionally, \FoRest; defines several
tree hierarchy related anchors; for details, see \S\ref{sec:anchors}.
The effect of setting the node anchor is twofold:
\begin{itemize}
\item during packing, the anchors of all siblings are \index{option>l}-aligned;
\item some \index{calign} methods use node anchors (of the parent and/or certain children) to
\index{option>s}-align the block of children to the parent.
\end{itemize}
\indexitem(center){option>calign}|=|\alternative{child,child edge,midpoint,edge midpoint,fixed
angles,fixed edge angles}\\\alternative{first,last,center}.
The packing algorithm positions the children so that they don't overlap, effectively computing
the minimal distances between the node anchors of the children. This option (\keyname{calign}
stands for child alignment) specifies how the children are positioned
with respect to the parent (while respecting the above-mentioned minimal distances).
The child alignment methods refer to the primary and the secondary child, and to the primary and
the secondary angle. These are set using the keys described just after \keyname{calign}.
\let\outerleftmargin\leftmargin
\begin{syntax}
\item\keyname{calign}|=|\indexdef{value of=calign>child} s-aligns the node anchors of the parent and
the primary child.
\item\keyname{calign}|=|\indexdef{value of=calign>child edge} s-aligns the parent anchor of the parent
and the child anchor of the primary child.
\item \keyname{calign}|=|\indexdef{value of=calign>first} is an abbreviation for
|calign=child,calign_child=1|.
\item \keyname{calign}|=|\indexdef{value of=calign>last} is an abbreviation for
|calign=child,calign_child=-1|.
\item\keyname{calign}|=|\indexdef{value of=calign>midpoint} s-aligns the parent's node anchor and the
midpoint between the primary and the secondary child's node anchor.
\item\keyname{calign}|=|\indexdef{value of=calign>edge midpoint} s-aligns the parent's parent anchor
and the midpoint between the primary and the secondary child's child anchor.
\item \keyname{calign}|=|\indexdef{value of=calign>center} is an abbreviation for\\
|calign=midpoint,| |calign_primary_child=1,| |calign_secondary_child=-1|.
\begin{forestexample}
\begin{forest}
[center,calign=center[1]
[first,calign=first[A][B][C]][3][4][5][6]
[last,calign=last[A][B][C]][8]]
\end{forest}
\end{forestexample}
\item\keyname{calign}|=|\indexdef{value of=calign>fixed angles}: The angle between the direction of
growth at the current node (specified by option \index{grow}) and the line through the node
anchors of the parent and the primary/secondary child will equal the primary/secondary angle.
To achieve this, the block of children might be spread or further distanced from the parent.
\item\keyname{calign}|=|\indexdef{value of=calign>fixed edge angles}: The angle between the direction of
growth at the current node (specified by option \index{grow}) and the line through the
parent's parent anchor and the primary/secondary child's child anchor will equal the
primary/secondary angle.
To achieve this, the block of children might be spread or further distanced from the parent.
\begin{forestexample}[point=calign,index={calign,fixed edge angles,calign primary angle,calign secondary angle,for step,tree,option>l},index>={!}]
\begin{forest}
calign=fixed edge angles,
calign primary angle=-30,calign secondary angle=60,
for tree={l=2cm}
[CP[C][TP]]
\draw[dotted] (!1) -| coordinate(p) () (!2) -| ();
\path ()--(p) node[pos=0.4,left,inner sep=1pt]{-30};
\path ()--(p) node[pos=0.1,right,inner sep=1pt]{60};
\end{forest}
\end{forestexample}
\end{syntax}
\indexitem{node key>calign child}|=|\meta{count} is an abbreviation for \index{calign primary
child}|=|\meta{count}.
\indexitem(1){option>calign primary child}|=|\meta{count} Sets the primary child.
(See \index{calign}.)
\meta{count} is the child's sequence number. Negative numbers start counting at the last child.
\indexitem(-1){option>calign secondary child}|=|\meta{count} Sets the secondary child.
(See \index{calign}.)
\meta{count} is the child's sequence number. Negative numbers start counting at the last child.
\indexitem{node key>calign angle}|=|\meta{count} is an abbreviation for: \index{calign primary
angle}|=-|\meta{count}, \index{calign secondary angle}|=|\meta{count}.
\indexitem(-35){option>calign primary angle}|=|\meta{count} Sets the primary angle.
(See \index{calign}.)
\indexitem(35){option>calign secondary angle}|=|\meta{count} Sets the secondary angle.
(See \index{calign}.)
\indexitem{node key>calign with current} s-aligns the node anchors of the current node and its
parent. This key is an abbreviation for:\indexex[not print]{wrap pgfmath arg,calign,child,calign primary child}
\begin{lstlisting}
for parent/.wrap pgfmath arg={calign=child,calign primary child=##1}{n}.
\end{lstlisting}
\indexitem{node key>calign with current edge} s-aligns the child anchor of the current node and the
parent anchor of its parent. This key is an abbreviation for:\indexex[not print]{wrap pgfmath arg,calign,child edge,calign primary child}
\begin{lstlisting}
for parent/.wrap pgfmath arg={calign=child edge,calign primary child=##1}{n}
\end{lstlisting}
\indexitem(tight){option>fit}|=|\alternative{tight,rectangle,band}
\begin{forestexample}[layout=export,basicstyle=\footnotesize\ttfamily]
\makeatletter\tikzset{use path/.code={\tikz@addmode{\pgfsyssoftpath@setcurrentpath#1}
\appto\tikz@preactions{\let\tikz@actions@path#1}}}\makeatother
\forestset{show boundary/.style={
before drawing tree={get min s tree boundary=\minboundary, get max s tree boundary=\maxboundary},
tikz+={\draw[red,use path=\minboundary]; \draw[red,use path=\maxboundary];}}}
\end{forestexample}
\input{\jobname.tmp}
This option sets the type of the (s-)boundary that will be computed for the subtree rooted in the
node, thereby determining how it will be packed into the subtree rooted in the node's parent.
There are three choices:\footnote{Below is the definition of style \keyname{show boundary}. The
\keyname{use path} trick is adjusted from \TeX\ Stackexchange question
\href{http://tex.stackexchange.com/questions/26382/calling-a-previously-named-path-in-tikz}{Calling
a previously named path in tikz}.
\box\codebox}
\begin{itemize}
\item\keyname{fit}|=|\indexdef{value of=fit>tight}: an exact boundary of the node's subtree is computed,
resulting in a compactly packed tree. Below, the boundary of subtree L is drawn.
\begin{forestexample}[point={fit,tight},index={fit,{value of=fit>tight},delay,for step,tree,option>name,content,pgfmath}]
\begin{forest}
delay={for tree={name/.pgfmath=content}}
[root
[L,fit=tight, % default
show boundary
[L1][L2][L3]]
[R]
]
\end{forest}
\end{forestexample}
\makeatletter\tikzset{use path/.code={%
\tikz@addmode{\pgfsyssoftpath@setcurrentpath#1}%
\appto\tikz@preactions{\let\tikz@actions@path#1}%
}}\makeatother
\item\keyname{fit}|=|\indexdef{value of=fit>rectangle}: puts the node's subtree in a rectangle and effectively
packs this rectangle; the resulting tree will usually be wider.
\begin{forestexample}[point={fit,rectangle},index={fit,{value of=fit>rectangle},delay,for step,tree,option>name,content,pgfmath}]
\begin{forest}
delay={for tree={name/.pgfmath=content}}
[root
[L,fit=rectangle,
show boundary
[L1][L2][L3]]
[R]
]
\end{forest}
\end{forestexample}
\item\keyname{fit}|=|\indexdef{value of=fit>band}: puts the node's subtree in a rectangle of ``infinite
depth'': the space under the node and its descendants will be kept clear.
\begin{forestexample}[point={fit,band},index={fit,{value of=fit>band},delay,for step,tree,option>name,content,pgfmath}]
\begin{forest}
delay={for tree={name/.pgfmath=content}}
[root
[L[L1][L2][L3]]
[C,fit=band]
[R[R1][R2][R3]]
]
\draw[thin,red]
(C.south west)--(C.north west)
(C.north east)--(C.south east);
\draw[thin,red,dotted]
(C.south west)--+(0,-1)
(C.south east)--+(0,-1);
\end{forest}
\end{forestexample}
\end{itemize}
\indexitem(270){option>grow}|=|\meta{count}, \indexdef{node key>grow'}|=|\meta{count},
\indexdef{node key>grow''}|=|\meta{count}
The direction of the tree's growth at the node.
The growth direction is understood as in \TikZ;'s tree library \citep[\S18.5.2]{tikzpgf2.10}
when using the default growth method: the (node anchor's of the) children of the node are placed
on a line orthogonal to the current direction of growth. (The final result might be different,
however, if \index{option>l} is changed after packing or if some child undergoes tier alignment.)
This option is essentially numeric (|pgfmath| function \keyname{grow} will always return an
integer), but there are some twists. The growth direction can be specified either numerically
or as a compass direction (|east|, |north east|, \dots). Furthermore, like in \TikZ;, setting
the growth direction using key \keyname{grow} additionally sets the value of option
\index{reversed} to |false|, while setting it with \keyname{grow'} sets it to |true|; to
change the growth direction without influencing \index{reversed}, use key \index{grow''}.
Between stages \index{pack} and \index{compute xy}, the value of \keyname{grow} should not
be changed.
\begin{forestexample}[index={delay,where in toks option,content,for step,current,grow,grow',grow'',pgfmath}]
\begin{forest}
delay={where in content={~grow~}{
for current/.pgfmath=content,
content=\texttt{#1}
}{}
}
[{~grow~=south}
[{~grow'~=west}[1][2][3]
[{~grow''~=90}[1][2][3]]]
[2][3][4]
[{~grow~=east}[1][2][3]
[{~grow''~=90}[1][2][3]]]]
\end{forest}
\end{forestexample}
\indexitem(false){option>ignore}|=|\meta{boolean}
If this option is set, the packing mechanism ignores the node, i.e.\ it pretends that the node has
no boundary. Note: this only applies to the node, not to the tree.
Maybe someone will even find this option useful for some reason \dots
\indexitem(false){option>ignore edge}|=|\meta{boolean}
If this option is set, the packing mechanism ignores the edge from the node to the parent, i.e.\
nodes and other edges can overlap it. (See \S\ref{sec:bugs} for some problematic situations.)
\begin{forestexample}[index={ignore edge,option>l,dimen*=l}]
\begin{forest}
[A[B[B][B][B][B]][C
[\texttt{not ignore edge},l*=2]]]
\end{forest}
\begin{forest}
[A[B[B][B][B][B]][C
[\texttt{ignore edge},l*=2,~ignore edge~]]]
\end{forest}
\end{forestexample}
\indexitem{option>l}|=|\meta{dimen} The l-position of the node, in the parent's ls-coordinate system. (The
origin of a node's ls-coordinate system is at its (node) anchor. The l-axis points in the
direction of the tree growth at the node, which is given by option \index{grow}. The s-axis is
orthogonal to the l-axis; the positive side is in the counter-clockwise direction from |l| axis.)
The initial value of \keyname{l} is set from the standard node. By default, it equals:
\[\index{l sep}+2\cdot\mbox{\texttt{outer ysep}}+\mbox{total
height(standard node)}\]
The value of \keyname{l} can be changed at any point, with different effects.
\begin{itemize}
\item The value of \keyname{l} at the beginning of stage \index{pack} determines the minimal
l-distance between the anchors of the node and its parent. Thus, changing \keyname{l} before
packing will influence this process. (During packing, \keyname{l} can be increased due to
parent's \index{l sep}, tier alignment, or \index{calign} methods
\index{fixed angles} and \index{fixed edge angles}.
\item Changing \keyname{l} after packing but before stage \index{compute xy} will result in a
manual adjustment of the computed position. (The augmented assignment operators can be useful here.)
\item Changing \keyname{l} after the absolute positions have been computed has no effect in the
normal course of events.
\end{itemize}
\indexitem{option>l sep}|=|\meta{dimen} The minimal l-distance between the node and its
descendants.
This option determines the l-distance between the \emph{boundaries} of the node and its descendants,
not node anchors. The final effect is that there will be a \keyname{l sep} wide band,
in the l-dimension, between the node and all its descendants.
The initial value of \keyname{l sep} is set from the standard node and equals
\[\mbox{height}(\mbox{strut})+\mbox{\texttt{inner ysep}}\]
Note that despite the similar name, the semantics of \keyname{l sep} and \keyname{s sep} are
quite different.
\indexitem(false){option>reversed}|=|\meta{boolean}
If |false|, the children are positioned around the node in the counter-clockwise direction; if
|true|, in the clockwise direction. See also \index{grow}.
\indexitem(0){option>rotate}|=|\meta{count}
This option is saved and \index{autoforward}ed to \TikZ;'s |\node| command via \index{node options}.
\indexitem{option>s}|=|\meta{dimen} The s-position of the node, in the parent's ls-coordinate system.
(The origin of a node's ls-coordinate system is at its (node) anchor. The l-axis points in the
direction of the tree growth at the node, which is given by option \index{grow}. The s-axis is
orthogonal to the l-axis; the positive side is in the counter-clockwise direction from |l| axis.)
The value of \keyname{s} is computed in stage \index{pack stage} and used in stage \index{compute xy
stage}, so it only makes sense to (inspect and) change it in \index{before computing xy} and
during packing (\index{before packing node} and \index{after packing node}). \emph{Any value given
before packing is overridden, and changing the value after computing xy has no effect.}
For example, consider the manual correction below. By default, B is closer to A than C because
packing proceeds from the first to the last child --- the position of B would be the same if there
was no C. Adjusting \keyname{s} at the right moment, it is easy to center B between A and C.
\begin{forestexample}[tree bin=minipage,point=s,index={before computing xy,option>s}]
\begin{forest}
[no manual correction of B
[A[1][2][3][4]]
[B]
[C[1][2][3][4]]
]
\end{forest}
\begin{forest}
[manual correction of B
[A[1][2][3][4]]
[B,before computing xy={s/.average={s}{siblings}}]
[C[1][2][3][4]]
]
\end{forest}
\end{forestexample}
\indexitem{option>s sep}|=|\meta{dimen}
The subtrees rooted in the node's children will be kept at least \keyname{s sep} apart in the
s-dimension. Note that \keyname{s sep} is about the minimal distance between node
\emph{boundaries}, not node anchors.
The initial value of \keyname{s sep} is set from the standard node and equals
$2\cdot\mbox{\texttt{inner xsep}}$.
Note that despite the similar name, the semantics of \keyname{s sep} and \keyname{l sep} are
quite different.
\indexitem({{{{{}}}}}){option>tier}|=|\meta{toks}
Setting this option to something non-empty ``puts a node on a tier.'' All the nodes on the same
tier are aligned in the l-dimension.
Tier alignment across changes in growth direction is impossible. In the case of incompatible
options, \foRest; will yield an error.
Tier alignment also does not work well with \index{calign}|=|\index{fixed angles} and \index{calign}|=|\index{fixed edge angles}, because these child alignment methods may change the
l-position of the children. When this might happen, \foRest; will yield a warning.
\indexitem{option>x}=\meta{dimen}
\vspace{-\parskip}
\indexitem{option>y}=\meta{dimen}
\keyname{x} and \keyname{y} are the coordinates of the node in the ``normal'' (paper) coordinate
system, relative to the root of the tree that is being drawn. So, essentially, they are absolute
coordinates.
The values of \keyname{x} and \keyname{y} are computed in stage \index{compute xy}. It only
makes sense to inspect and change them (for manual adjustments) afterwards (normally, in the
\index{before drawing tree} hook, see \S\ref{ref:stages}.) \keyname{x} and \keyname{y} of the
(formal) root node are exceptions, as they are not changed in stage \index{compute xy}.
\begin{forestexample}[label=ex:adjustxy,index={y,dimen-,grow',option>l,for step,tree,before drawing tree}]
\begin{forest}
for tree={grow'=45,l=1.5cm}
[A[B][C][D,before drawing tree={~y-~=4mm}[1][2][3][4][5]][E][F]]
\end{forest}
\end{forestexample}
\end{syntax}
\subsubsection{Edges}
\label{ref:ref-edge}
These options determine the shape and position of the edge from a node to its parent. They apply
at stage \index{draw tree}.
\begin{syntax}
\indexitem({{{{{}}}}}){option>child anchor}|=|\meta{toks: \foRest; anchor} See \index{option>parent anchor}.
\indexitem(draw){option>edge}|=|\meta{keylist}
When \index{edge path} has its default value, the value of this option is passed as options to
the \TikZ; |\path| expression used to draw the edge between the node and its parent.
Also see key \index{no edge}.
\begin{forestexample}[point=edge,index={edge,no edge,for step,tree,grow',option>l,option>anchor,option>child anchor}]
\begin{forest} for tree={grow'=0,l=2cm,anchor=west,child anchor=west},
[root
[normal]
[none,~no~ edge]
[dotted,edge=dotted]
[dashed,edge=dashed]
[dashed,edge={dashed,red}]
]
\end{forest}
\end{forestexample}
\indexitem({{{{{}}}}}){option>edge label}|=|\meta{toks: \TikZ; code}
When \index{edge path} has its default value, the value of this option is used at the end of
the edge path specification to typeset a node (or nodes) along the edge.
The packing mechanism is not sensitive to edge labels.
\begin{forestexample}[index={edge label}]
\begin{forest}
[VP
[V,~edge label~={node[midway,left,font=\scriptsize]{head}}]
[DP,~edge label~={node[midway,right,font=\scriptsize]{complement}}]
]
\end{forest}
\end{forestexample}
\indexitem{option>edge path}|=|\meta{toks: \TikZ; code}
\hfill |\noexpand\path[|\index{forestoption}|{|\index{edge}|}]|\\
\mbox{}\hfill |(|\index>{!}|u.|\index{anchor>parent anchor}|)--(.|\index{anchor>child anchor}|)|\index{forestoption}|{|\index{edge label}|};|
This option contains the code that draws the edge from the node to its parent. By default, it
creates a path consisting of a single line segment between the node's \index{option>child anchor} and
its parent's \index{option>parent anchor}. Options given by \index{edge} are passed to the path; by
default, the path is simply drawn. Contents of \index{edge label} are used to potentially place
a node (or nodes) along the edge.
When specifying the edge path, the values of options \index{edge} and \index{edge label} can be
used. Furthermore, two anchors, \index{anchor>parent anchor} and \index{anchor>child anchor}, are defined,
to facilitate access to options \index{option>parent anchor} and \index{option>child anchor} from the \TikZ; code.
The node positioning algorithm is sensitive to edges, i.e.\ it will avoid a node overlapping an
edge or two edges overlapping. However, the positioning algorithm always behaves as if the
\keyname{edge path} had the default value --- \emph{changing the \keyname{edge path} does not
influence the packing!} Sorry. (Parent--child edges can be ignored, however: see option
\index{ignore edge}.)
\indexitem{node key>edge path'}|=|\meta{toks: \TikZ; code}
Sets \index{edge path}, automatically wrapping the given path by
|\noexpand\path[\forestoption{edge}]| and |\forestoption{edge label};|.
\indexitem({{{{{}}}}}){option>parent anchor}|=|\meta{toks: \foRest; anchor} (Information also applies to
option \index{option>child anchor}.)
\FoRest; defines anchors \index{anchor>parent anchor} and
\index{anchor>child anchor} (which work only for \foRest; and not also \TikZ;
nodes, of course) to facilitate reference to the desired endpoints of child--parent edges.
Whenever one of these anchors is invoked, it looks up the value of the \keyname{parent anchor} or
\keyname{child anchor} of the node named in the coordinate specification, and forwards the request
to the (\TikZ;) anchor given as the value.
The intended use of the two anchors is chiefly in \index{edge path} specification, but they can
used in any \TikZ; code.
\begin{forestexample}[index={anchor>parent anchor,anchor>child anchor,for step,tree},index>={!}]
\begin{forest}
for tree={~parent anchor~=south,~child anchor~=north}
[VP[V][DP]]
\path[fill=red] (.parent anchor) circle[radius=2pt];
\path[fill=blue] (!1.child anchor) circle[radius=2pt]
(!2.child anchor) circle[radius=2pt];
\end{forest}
\end{forestexample}
The empty value (which is the default) is interpreted as in \TikZ;: as an edge to the appropriate
border point. See also \S\ref{sec:anchors} for a list of additional anchors defined by \foRest;.
\indexitem{node key>no edge} Clears the edge options (\index{edge}|'={}|) and sets \index{ignore
edge}.
\end{syntax}
\subsubsection{Information about node}
\label{ref:node-info}
\label{ref:readonly-options}
The values of these options provide various information about the tree and its nodes.
\begin{syntax}
\indexitem{node key>alias}|=|\meta{toks}
\itemnosep
\indexitem{node key>alias'}|=|\meta{toks} Sets the alias for the node's name.
Unlike \index{option>name}, \keyname{alias} is \emph{not} an option: you cannot e.g.\ query it's
value via a |pgfmath| expression.
If the given alias clashes with an existing node name, |alias| will yield an error, while |alias'|
will silently rename the node with this name to its default value (|node@|\meta{id}).
Aliases can be used as the \meta{forest node name} part of a relative node name and as the
argument to the \index{step>name} step of a node walk. The latter includes the usage
as the argument of the \index{for step=\index{step>name}} propagator.
Technically speaking, \foRest; alias is \emph{not} a \TikZ; alias! However, you can still use
it as a ``node name'' in \TikZ; coordinates, since \foRest; hacks \TikZ;'s implicit node
coordinate system to accept relative node names; see \S\ref{ref:forest-cs}.
\indexitem{readonly option>id}|=|\meta{count} The internal id of the node.
\indexitem{readonly option>level}|=|\meta{count} The hierarchical level of the node. The root is on level $0$.
\indexitem{readonly option>max x}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{readonly option>max y}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{readonly option>min x}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{readonly option>min y}|=|\meta{dimen}
Measures of the node, in the shape's coordinate system
\citep[see][\S16.2,\S48,\S75]{tikzpgf2.10} shifted so that the node anchor is at the origin.
In |pgfmath| expressions, these options are accessible as |max__x|, |max__y|, |min__x| and |min__y|.
\indexitem{readonly option>n}|=|\meta{count} The child's sequence number in the list of its parent's
children.
The enumeration starts with 1. For a geometric root, \keyname{n} equals $0$.
\indexitem{readonly option>n'}|=|\meta{count} Like \index{readonly option>n}, but starts counting at the last child.
In |pgfmath| expressions, this option is accessible as |n__|.
\indexitem{option>name}|=|\meta{toks} \hfill \texttt{node@}\meta{id}
\itemnosep
\indexitem{node key>name'}|=|\meta{toks} Sets the name of the node.
The expansion of \meta{toks} becomes the \meta{forest node name} of the node. The \TikZ; node
created from the \foRest; node will get the name specified by this option.
Node names must be unique. If a node with the given name already exists, |name| will yield an
error, while |name'| will silently rename the node with this name to its default (|node@|\meta{id})
value. Use an empty argument to reset the node's name to its default value.
\indexitem{readonly option>n children}|=|\meta{count} The number of children of the node.
In |pgfmath| expressions, this option is accessible as |n__children|.
\end{syntax}
\subsubsection{Various}
\begin{syntax}
\indexitem{node key>baseline} The node's anchor becomes the baseline of the whole tree
\citep[cf.][\S69.3.1]{tikzpgf2.10}.
In plain language, when the tree is inserted in your (normal \TeX) text, it will be vertically
aligned to the anchor of the current node.
Behind the scenes, this style sets the alias of the current node to \keyname{forest@baseline@node}.
{\tikzexternaldisable
\begin{forestexample}[index={baseline,use as bounding box'}]
Baseline at the
\begin{forest}
[parent,~baseline~,use as bounding box'
[child]]
\end{forest}
and baseline at the
\begin{forest}
[parent
[child,~baseline~,use as bounding box']]
\end{forest}.
\end{forestexample}}
\indexitem>{tikz key>fit to}|=|\meta{nodewalk} Fits the \TikZ; node to the nodes in the given
\meta{nodewalk}.
This key should be used like \keyname{/tikz/fit} of the \TikZ;'s fitting library
\citep[see][\S34]{tikzpgf2.10}: as an option to \emph{\TikZ;'s} |node| operation, the obvious
restriction being that \keyname{fit to} must be used in the context of some \foRest; node.
For an example, see footnote~\ref{fn:fit-to-tree}.
This key works by calling \keyname{/tikz/fit} and providing it with the the coordinates of the
subtree's boundary.
The \meta{nodewalk} inherits its history from the outer nodewalk (if there is one). Its every-step
keylist is empty.
\indexitem{node key>get min s tree boundary}|=|\meta{cs} \vspace{-\parskip}
\indexitem{node key>get max s tree boundary}|=|\meta{cs}
Puts the boundary computed during the packing process into the given \meta{cs}. The boundary is
in the form of \PGF; path. The |min| and |max| versions give the two sides of the node. For an
example, see how the boundaries in the discussion of \index{fit} were drawn.
\indexitem{option>label}|=|\meta{toks: \TikZ; node} The current node is labelled by a \TikZ; node.
The label is specified as a \TikZ; option \texttt{label} \citep[\S16.10]{tikzpgf2.10}.
Technically, the value of this option is passed to \TikZ;'s as a late option
\citep[\S16.14]{tikzpgf2.10}. (This is so because \foRest; must first typeset the nodes
separately to measure them (stage \index{typeset nodes}); the preconstructed nodes are inserted
in the big picture later, at stage \index{draw tree}.) Another option with the same
technicality is \index{pin}.
\indexitem{option>pin}|=|\meta{toks: \TikZ; node} The current node gets a pin, see
\citep[\S16.10]{tikzpgf2.10}.
¸
The technical details are the same as for \index{label}.
\indexitem{node key>use as bounding box} The current node's box is used as a bounding box for the
whole tree.
\indexitem{node key>use as bounding box'} Like \index{use as bounding box}, but subtracts the
(current) inner and outer sep from the node's box. For an example, see \index{baseline}.
\indexitem({{{{{}}}}}){option>tikz}|=|\meta{toks: \TikZ; code} ``Decorations.''
The code given as the value of this option will be included in the |tikzpicture| environment used
to draw the tree. By default, the code is included after all nodes of the tree have been drawn,
so it can refer to any node of the tree (furthermore, relative node names can be used to refer to
nodes of the tree, see \S\ref{ref:relative-node-names}) and the code given to various nodes is
appended in a depth-first, parent-first fashion. See \S\ref{sec:draw-tree} for details and
customization.
By default, bracket parser's afterthoughts feed the value of this option. See
\index{afterthought}.
\end{syntax}
\subsection{Nodewalks}
\label{ref:nodewalks}
A \emph{nodewalk} is a sequence of \emph{steps} describing a path through the tree. Most steps
are defined relative to the current node, for example \index{step>parent} steps to the parent of the
current node, and \index{step>n}|=2| steps to the second child of the current node, where ``to make a
step'' means to change the current node. Thus, nodewalk |parent,_parent,_n=2| describes the path
which first steps to the parent of the \emph{origin} node, then to its grandparent and finally to
the second child of the origin's grandparent.
The origin of the nodewalk depends on how the nodewalk is invoked. When used after the \index>{!}
in a relative node name (\S\ref{ref:relative-node-names}), the origin is the node with the name
given before \index>{!}; when invoked by a spatial propagator such as \index{for
step=\index{nodewalk}} (\S\ref{ref:spatial-propagators}), the origin is the current node; when
invoked within another (outer) nodewalk, the origin is the current node of the outer nodewalk.
Formally, a \meta{nodewalk} is a list of |pgfkeys| key--value pairs. Steps in a nodewalk are thus
separated by commas. However, \foRest; also recognizes \emph{short-form} steps, whose names consist
of a single character and which do not need to be separated by a comma. For example, nodewalk
|parent,_parent,_n=2| can be concisely written as |uu2|. Long and short forms can be mixed freely,
like this: |next,_uu2,_previous|.
Besides nodewalk keys, a \meta{nodewalk} can also contain node keys (or
even \TikZ; keys).\footnote{The precise algorithm for keyname resulotion in nodewalks is as follows.
\begin{itemize}
\item First, \foRest; searches for the given \meta{keyname} in the \index{path>forest/nodewalk}
path. If found (a long-form step or a nodewalk style), it is executed.
\item Next, it is checked whether \meta{keyname} is a sequence of short-form steps; is so, they are
executed.
\item Otherwise, \meta{key} is executed in the \keyname{/forest} path. This includes both
\foRest;'s and \TikZ;'s keys. The latter are usually forwarded to \TikZ; via \index{node
options}.
\end{itemize}
There are some clashes between node key and nodewalk step names. For example, \keyname{l} is both a
\meta{dimen} option and a short form of the step to the last child. According to the rules above,
the nodewalk step will take precedence in case of a clash. Use nodewalk key \index{options} to
execute a clashing node key.} These keys do their usual function, but within the context of the
current node of the nodewalk: |parent, s=2em,| |parent, text=red| sets the parent's |s| to 2em and
the grandparent's text color to red. It is worth noting that node keys include \index{TeX}, which
makes it possible to execute any \TeX\ code while nodewalking.
Some steps target a single node, like above-mentioned \index{step>parent} and \index{step>n}.
Others, called multi-steps, describe mini-walks themselves: for example \index{step>children} visits
each child of the node in turn, and \index{tree} visits each of the node's descendants (including
the node itself). The path of many steps is determined by the geometric relations of the tree, or
the value of some option. However, there are also keys for embedding nodewalks (\index{nodewalk
key>nodewalk}, \index{branch}, etc.), saving and loading nodewalks, sorting them, or even
re-walking the history of steps made (like in a web browser).\footnote{Note that nesting operation
(\S\ref{ref:nodewalk-operations}) and history (\S\ref{ref:nodewalk-history}) steps, or embedding
nodewalks under these steps doesn't work, for most combinations, as many of them internally
manipulate nodewalk history.} Finally, if all this is not enough, you can define your own steps,
see \S\ref{ref:defining-steps}.
Each nodewalk has an associated \emph{every-step keylist}: a keylist of node keys\footnote{When
executing the \index{register>every step} keylist, \foRest; switches into the
\index{path>forest} path, which makes it impossible to directly include a nodewalk into the
every-step keylist. The reason is performance. Every time a \index{path>forest/nodewalk} key
is not found, the short-form nodewalk recognition algorithm is executed, and this algorithm is
slow. As \index{register>every step} is used a lot (it is for example used every invocation of
every spatial propagator) and the keys in \index{register>every step} are usually node options
from \index{path>forest} path, \foRest; would spend way too much time checking if a given node
option is actually a short-form nodewalk.
If you need to execute nodewalk keys within the every-step keylist, use node key \index{node
key>Nodewalk}.} which get executed after each step of the nodewalk. The every-step keylist of
the current nodewalk is contained in register \index{register>every step} and can be changed at any
point during the nodewalk. Its value at the start of the nodewalk depends on how the nodewalk was
invoked. In most cases (e.g.\ \index{step>nodewalk} or prefix \index{for step}-based spatial
propagators), it is given explicitely as an argument to the key that executes the nodewalk.
However, see \index{step>Nodewalk} option \index{option of=Nodewalk>every step} for information on
how the every-step keylist of an embedded nodewalk can interact with the every-step keylist of its
parent nodewalk.
Each nodewalk step can be either \emph{real} or \emph{fake}. Fake steps only change the current
node. Real steps also trigger execution of the every-step keylist and update of history. Fake
steps are sometimes useful as a ``computational tool''. They can be introduced explicitely using
\index{nodewalk key>fake}; some other keys (like several history nodewalk keys,
\S\ref{ref:nodewalk-history}) introduce fake steps implicitely.
In some cases, the nodewalk might step ``out of the tree''. (Imagine using \index{step>parent} at the
root of the tree, or \index{readonly option>n}|=42| at a node with less that 42 children.) Our official term will
be that the nodewalk stepped on an \emph{invalid node}; what happens formally is that the current
node is changed to the node with \index{readonly option>id}|=0|. Normally, such an event raises an
error. However, the full story is told by \index{nodewalk key>on invalid}.
Nodewalks can be hard to follow, especially when designing styles. \FoRest; does its best to
help. First, it logs the nodewalk stack in case of error. Second, if package option
\index{debug}|=|\index{option of=debug>nodewalks} is given, it logs every step made.
\subsubsection{Invoking (embedded) nodewalks}
\label{ref:embedded-walks}
There are many ways to invoke a nodewalk. For example, several keys, like \index{fit to}, and
aggregate functions (\S\ref{ref:aggregate-functions}) expect a \meta{nodewalk} argument. This
section lists keys which can be used to explicitely invoke a nodewalk.
The keys in this section can be used not only as node keys (in fact, not all of them can be used
so), but also as nodewalk keys. The latter fact means that they can be used to introduce embedded
nodewalks, which (can) have its own every-step keylist, history and on-invalid mode; for details on
how these properties of outer and embedded nodewalk can interact, see \index{step>Nodewalk}. There
is no limit to the depth of nodewalks embedding (nodewalk within nodewalk within nodewalk \dots).
An embedded nodewalk functions as a single, fake step of the outer nodewalk. Specifically, this
means that, while stepping through the embedded nodewalk, the every-step keylist of the outer
nodewalk is not executed. Furthermore, by default, modifying the every-step keylist of the inner
walk (by manipulating register \index{register>every step}) does not influence the outer nodewalk
(but see option \index{option of=Nodewalk>every step}).
An embedded nodewalk does not count as a (real, every-step keyslist invoking) step of the outer
nodewalk. After it is finished, there are two options with respect to the new current node of the
outer nodewalk,\footnote{Even the outermost explicitly invoked nodewalks actually have the outer
nodewalk. It is ``static'' in the sense that no real step is ever made in it, but it has all the
nodewalk properties --- the current node, \index{register>every step} keylist register, \index{option
of=Nodewalk>history} and \index{option of=Nodewalk>on invalid} mode (error) --- which can
interact with the embedded nodewalk.} depending on whether the embedded nodewalk was invoked using
a variant of the key with or without the \index{for step} prefix (all keys in this section have the
\index{for step} variant).
\begin{itemize}
\item For keys \emph{without} the \index{for step} prefix, the current node of the outer nodewalk
changes, \emph{via a fake step}, to the final node visited by the embedded nodewalk. This holds
even if the final node was reached as a fake step and even if it is invalid
(\index{option>id}|=0|). The fake step in the outer nodewalk cannot be made real, not even by
\index{nodewalk key>real}: if you want to execute the every-step keylist of the outer nodewalk at
the finishing node of the embedded nodewalk, follow the latter by step \index{current}.
\item For keys \emph{with} the \index{for step} prefix, the current node of the outer nodewalk
remains unchanged. For this reason, the \index{for step}-prefixed keys are available as node keys
(we call them spatial propagators, \S\ref{ref:spatial-propagators}), while the steps without this
prefix are generally not, with the sole exception of \index{step>Nodewalk}, which I advise to use
carefully.
\end{itemize}
All steps described in this section can be prefixed by \index{for step}. All of them, with or
without this prefix, are available as nodewalk keys. The list of keys from this section which are
available as node keys: \index{step>Nodewalk}, \index{for step=\index{step>Nodewalk}}, \index{for
step=\index{nodewalk}}; you will most often want to use the latter.
\begin{syntax}
\indexitem{step>Nodewalk}|=|\meta{keylist: config}\meta{nodewalk}\meta{keylist: every-step}
Walks an \meta{nodewalk} starting at the current node.
This is the most generic form of embedding a nodewalk. Unlike other keys described in this
subsection, it can also be used as a node key even without the \index{for step} prefix, but take
care as it will, in general, change the current node.
The \meta{config} argument serves to specify the interaction between the outer and embedded
nodewalk. It can contain the following keys:
\let\outerleftmargin\leftmargin
\begin{syntax}
\indexitem(independent){option of=Nodewalk>every step}|={|\alternative{independent,inherited,shared}|}|
\indexitem(shared){option of=Nodewalk>history}|={|\alternative{independent,inherited,shared}|}|
The following table shows what happens to the every-step keylist and history depending on the
value of \keyname{every step} and \keyname{history}, respectively. State B is \meta{every-step}
for every step and empty for history.
\begin{tabular}{l|ccc}
&\keyname{independent}&\keyname{inherited}&\keyname{shared}\\\hline
state of the outer nodewalk&A&A&A\\
initial state of the inner nodewalk&B&A&A\\
\dots\\
final state of the inner nodewalk&C&C&C\\
state of the outer nodewalk&A&A&C
\end{tabular}
\end{syntax}
As shown in the table above, argument \meta{every-step} is used to initialize the
embedded nodewalk's every-step keylist when it is independent of the outer nodewalk. In other
cases, this argument is ignored (use |{}|).
\begin{syntax}
\indexitem(inherited){option of=Nodewalk>on invalid}|={|\alternative{error,fake,error in real,last valid,inherited}|}|
Like \index{nodewalk key>on invalid}, but local to this nodewalk. The additional alternative
\indexdef{value of=on invalid>inherited} (which is the default) means to retain the current
value, regardless of how it was set (by an outer nodewalk, explicit \index{nodewalk key>on
invalid}, or the package default, \index{value of=on invalid>error}).
\end{syntax}
\begin{advise}
\item Use \index{node key>Nodewalk} if you need to execute nodewalk keys within the every-step
keylist.
\end{advise}
\begin{forestexample}[index={register>every step}]
\begin{forest}
for 2=calign with current, for children={for descendants={circle,draw}}
[every step,
[independent,for nodewalk={
1,Nodewalk={~every step=independent~}{1,every step=fill,1}{},1
}{draw=red},
[[[[]]]]]
[inherited,for nodewalk={
1,Nodewalk={~every step=inherited~}{1,every step=fill,1}{},1
}{draw=red},
[[[[]]]]]
[shared,for nodewalk={
1,Nodewalk={~every step=shared~}{1,every step=fill,1}{},1
}{draw=red},
[[[[]]]]]]
\end{forest}
\end{forestexample}
\begin{forestexample}[index={history,walk back}]
\begin{forest}
mark/.style={tempcounta+=1,content+/.register=tempcounta,content+={,}},
[history:\\effect on the,align=center
[inner nodewalk
% uncommenting this would result in an error:
% [independent, delay={for nodewalk={
% tempcounta=0,111,
% Nodewalk={history=independent}{walk back=2}{mark,fill=yellow}
% }{mark,draw=red}},
% [[[]]]]
[inherited\\or\\shared, align=center,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={~history=inherited~}{walk back=2}{mark,fill=yellow}
}{mark,draw=red}},
[[[]]]]]
[outer nodewalk
[inherited,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={~history=inherited~}{11}{mark,fill=yellow},
walk back=2
}{mark,draw=red}},
[[[[[]]]]]]
[shared,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={~history=shared~}{11}{mark,fill=yellow},
walk back=2
}{mark,draw=red}},
[[[[[]]]]]]]]
\end{forest}
\end{forestexample}
\indexitem{step>nodewalk}|=|\meta{nodewalk}\meta{keylist: every-step}
This key is a shorthand for
\begin{center}
\index{step>Nodewalk}|={|\index{option of=Nodewalk>every step}|=independent,|\index{option
of=Nodewalk>history}|=independent,|\index{option of=Nodewalk>on
invalid}|=inherited}|\meta{nodewalk}\meta{keylist: every-step}
\end{center}
\begin{advise}
\item \index{for step=\index{nodewalk}} is the most common way to explicitely invoke a nodewalk from a
node keylist (the keylist immediately following the content of the node).
\end{advise}
\indexitem{step>nodewalk'}|=|\meta{nodewalk}
This key is a shorthand for
\begin{center}
\index{step>Nodewalk}|={|\index{option of=Nodewalk>every step}|=inherited,|\index{option
of=Nodewalk>history}|=independent,|\index{option of=Nodewalk>on
invalid}|=inherited}|\meta{nodewalk}|{}|
\end{center}
\begin{advise}
\item Using this key, it is easy to ``\emph{temporarily} change'' the \index{register>every step}
keylist of a nodewalk.
\item Using \index{for step=\index{nodewalk'}} is probably the easiest way to make a ``trip''
within a nodewalk, i.e.\ walk some steps but return to their origin afterwards.
\item This key (with or without the \index{for step} prefix) is not available as a node key --- it
would make little sense there, as it has no every-step keylist argument.
\end{advise}
\end{syntax}
\subsubsection{Single-step keys}
\label{ref:single-step-keys}
Single-step nodewalk keys visit a single node. The behaviour in the situation when the target node
does not exist is determined by \index{nodewalk key>on invalid}.
For each single-step key, spatial propagator \index{for step=\meta{step}} is also defined.
\index{for step=\meta{step}}|=|\meta{keylist} is equivalent to
\index{for step=\index{nodewalk}}|={|\meta{step}|}{|\meta{keylist}|}|. If the step takes an argument, then its
\index{for step=\meta{step}} propagator takes two and the argument of the step precedes the
\meta{keylist}. See also \S\ref{ref:spatial-propagators}.
Linear order below means the order of nodes in the bracket representation, i.e.\ depth-first
parent-first first-child-first.
\begin{syntax}
\indexitem{step>current} an ``empty'' step: the current node remains the same\footnote{While it
might at first sight seem stupid to have an empty step, this is not the case. For example,
using propagator \index{for step=\index{current}} derived from this step, one can process a \meta{keylist} constructed using \index[not index,print format+={result+={\index[not print]{wrap pgfmath arg}\index[not print]{wrap $n$ pgfmath args}}}]{handler>wrap ($n$) pgfmath arg(s)} or \index{wrap value}.}
\indexitem{step>first} the first child
\indexitem{step>first leaf}, \indexdef{step>first leaf'} the first leaf (terminal node) of the
current node's descendants (|first leaf|) or subtree (|first leaf'|), in the linear order
\indexitem{step>id}|=|\meta{id} the node with the given id; this step does not depend on the current node
\indexitem{step>last} the last child
\indexitem{step>last dynamic node} the last non-integrated (created/removed/replaced) node; see \S\ref{ref:dynamic}
\indexitem{step>last leaf}, \indexdef{step>last leaf'} the last leaf (terminal node) of the
current node's descendants (|last leaf|) or subtree (|last leaf'|), in the linear order
\indexitem{step>n}|=|$n$ the $n$th child; counting starts at $1$\footnote{Note that \keyname{n}
\emph{without} an argument is a short form of \keyname{next}.}
\indexitem{step>n'}|=|$n$ the $n$th child, starting the count from the last child
\indexitem{step>name}|=|\meta{name} the node with the given name or alias; this step does not depend on the current node
\indexitem{step>next} the next sibling
\indexitem{step>next leaf} the next node (in the linear order) which is a leaf (the current node need not be a leaf)
\indexitem{step>next node} the next node of the entire tree, in the linear order
\indexitem{step>next on tier}|=|\meta{tier} the next node (in the linear order) on the given tier; if no tier is given, assume the tier of the current node
\indexitem{step>origin} the starting node of the nodewalk; note that the starting point does not automatically count as a step: if you want to step on it, use this key (or \index{current}, at the beginning of the nodewalk)
\indexitem{step>parent} the parent
\indexitem{step>previous} the previous sibling
\indexitem{step>previous leaf} the previous node (in the linear order) which is a leaf (the current node need not be a leaf)
\indexitem{step>previous node} the previous node of the entire tree, in the linear order
\indexitem{step>previous on tier}|=|\meta{tier} the previous node (in the linear order) on the given tier; if no tier is given, assume the tier of the current node
\indexitem{step>root} the root node, i.e.\ the ancestor of the current node without the parent; note that this key \emph{does} depend on the current node
\indexitem{step>root'} the formal root node (see \index{set root} in \S\ref{ref:dynamic}); this key does not depend on the current node
\indexitem{step>sibling} the sibling
(don't use if the parent doesn't have exactly two children \dots)
\indexitem{step>to tier}|=|\meta{tier} the first ancestor of the current node (or the node itself) on the given \meta{tier}
\end{syntax}
\subsubsection{Multi-step keys}
\label{ref:multi-step-keys}
Multi-step keys visit several nodes, in general. If a multi-step key visits no nodes, the current
node remains unchanged.
For each multi-step key, spatial propagator \index{for step=\meta{step}} is also defined, see
\S\ref{ref:spatial-propagators}.
Many of the keys below have a |reversed| variant. Those keys reverse the order of \emph{children}.
Note that in general, this differs from operation key \index{reverse}, which reverses the order of
the entire embedded nodewalk.
Linear order below means the order of nodes in the bracket representation, i.e.\ depth-first
parent-first first-child-first.
\begin{syntax}
\indexitem{step>children}, \indexdef{step>children reversed}
Visit all the children of the current
node.
\indexitem{step>tree}, \indexdef{step>tree reversed}
\itemnosep
\indexitem{step>tree children-first}, \indexdef{step>tree children-first reversed}
\itemnosep
\indexitem{step>tree breadth-first}, \indexdef{step>tree breadth-first reversed}
Visit the current node and all its descendants.
The above keys differ in the order the nodes are visited. The basic key, \keyname{tree},
traverses the nodes in the depth-first, parent-first first-child-first order, i.e.\ the order in
which they are given in the bracket representation: so it visits the parent before its children and
it visits the children from the first to the last.
|reversed| variants reverse the order of \emph{children}, visiting them from the last to the first
(from the viewpoint of the bracket representation).
|children-first| variants visit the children before the parent.
|breadth-first| variants behave like |level| steps below: they first visit level |0| nodes, then
level |1| nodes etc.
\begin{forestexample}[index={}]
\forestset{
enumerate/.style={
tempcounta=1,
for #1={
content/.pgfmath=tempcounta,
tempcounta+=1
}
}
}
\newcommand\enumtree[1]{%
\begin{forest}
[#1,l sep=0,for n=1{
l=0,no edge,delay={enumerate=#1}}
[[[[][]][[][]]][[[][]]]]
]
\end{forest}
}
\renewcommand\arraystretch{2}
\begin{tabular}{cc}
\enumtree{tree}&
\enumtree{tree reversed}\\
\enumtree{tree children-first}&
\enumtree{tree children-first reversed}\\
\enumtree{tree breadth-first}&
\enumtree{tree breadth-first reversed}
\end{tabular}
\end{forestexample}
\indexitem{step>descendants}, \indexdef{step>descendants reversed}
\itemnosep
\indexitem{step>descendants children-first}, \indexdef{step>descendants children-first reversed}
\itemnosep
\indexitem{step>descendants breadth-first}, \indexdef{step>descendants breadth-first reversed}
Visit all the descendants of the current node.
Like the |tree| keys, but the current node is not visited.
\indexitem[print form+=\spaces{9}]{step>relative level<},
\indexdef[print form+=\spaces{9}]{step>relative level},
\indexdef[set={form=relative level\protect\greaterthan}]{step>relative levelGT}\texttt{\spaces{9}}|=|\meta{count}
\itemnosep
\indexitem{step>relative level reversed<},
\indexdef{step>relative level reversed},
\indexdef[set={form=relative level reversed\protect\greaterthan}]{step>relative level reversedGT}|=|\meta{count}
\itemnosep
\indexitem[print form+=\spaces{9},+print form=\spaces{9}]{step>level<},
\indexdef[print form+=\spaces{9},+print form=\spaces{9}]{step>level},
\indexdef[set={form=level\protect\greaterthan},+print form=\spaces{9}]{step>levelGT}\texttt{\spaces{9}}|=|\meta{count}
\itemnosep
\indexitem[+print form=\spaces{9}]{step>level reversed<},
\indexdef[+print form=\spaces{9}]{step>level reversed},
\indexdef[set={form=level reversed\protect\greaterthan},+print form=\spaces{9}]{step>level reversedGT}|=|\meta{count}
Visits the nodes in the subtree of the current node whose level (depth) is less than \emph{or
equal to}, equal to, or greater than \emph{or equal to} the given level.
The |relative| variants consider the level as relative to the current node: relative level of the
current node is $0$; relative level of its children is $1$, of its grandchildren $2$, etc. The
absolute variants consider the depth with respect to the (geometric) root, i.e.\ as returned by
node option \index{readonly option>level}.
The nodes are traversed in the breadth-first order. The |reversed| variants reverse the order of
the children within each level, but the levels are still traversed from the highest to the
deepest.
\indexitem{step>leaves}
Visits all the leaves in the current node's subtree.
\indexitem[index key={level-}]{step>-level}|=|\meta{count}
\itemnosep
\indexitem[index key={level-'}]{step>-level'}|=|\meta{count}
Visits all the nodes \meta{count} levels above the leaves in the current node's subtree.
\indexitem[+print form=\spaces{12},print form+=\spaces{9}]{step>preceding siblings}\quad\quad
\indexdef[+print form=\spaces{12}]{step>following siblings}%
\itemnosep
\indexitem[print form+=\spaces{9}]{step>current and preceding siblings}\quad\quad
\indexdef{step>current and following siblings}%
\itemnosep
\indexitem[+print form=\spaces{12}]{step>preceding siblings reversed}\quad\quad
\indexdef[+print form=\spaces{12}]{step>following siblings reversed}%
\itemnosep
\indexitem{step>current and preceding siblings reversed}\quad\quad
\indexdef{step>current and following siblings reversed}%
\itemnosep
\indexitem[+print form=\spaces{22},print form+=\spaces{9}]{step>siblings}%
\itemnosep
\indexitem[print form={current and \spaces{9} siblings\spaces{9}}]{step>current and siblings}%
\itemnosep
\indexitem[+print form=\spaces{22},print form+=\spaces{9}]{step>siblings reversed}%
\itemnosep
\indexitem[print form={current and \spaces{9} siblings reversed}]{step>current and siblings reversed}%
Visit preceding, following or all siblings; visit the current node as well or not; visit in normal
or reversed order.
\indexitem{step>ancestors}
\itemnosep
\indexitem{step>current and ancestors}
Visit the ancestors of the current node, starting from the parent/current node, ending at the root node.
\indexitem[+print form=\spaces{12}]{step>preceding nodes}\quad\quad
\indexdef[+print form=\spaces{12}]{step>following nodes}%
\itemnosep
\indexitem{step>current and preceding nodes}\quad\quad
\indexdef{step>current and following nodes}%
Visit all preceding or following nodes of the entire tree, in the linear order; visit the current node as well or not.
\end{syntax}
\subsubsection{Operations}
\label{ref:nodewalk-operations}
Generally speaking, nodewalk operations take an \emph{input nodewalk} and transform it into
an \emph{output nodewalk}, while possibly also having side effects.
The most important categorization of operations is in terms of the input nodewalk:
\begin{itemize}
\item ``Normal'' keys execute the input nodewalk ``invisibly'', i.e.\ with a every-step keylist that
is initially empty. However, even such an ``invisible'' nodewalk might not always be completely
without effect. For example, the effects of any node keys contained in the input nodewalk or
modifications of its (initially empty) every-step keylist will be felt.
\item Most of the operation keys have the |walk_and_...| variant, where input given nodewalk is meant to
be ``visible'': it is walked directly in the context of the invoking nodewalk (specifically, with
its every-step keylist in effect).
\item Some operation keys have the |..._in_nodewalk| variant, which operates on the portion of the
current nodewalk that was already walked.
\item \index{load} has no input nodewalk.
\end{itemize}
All operation keys except |..._in_nodewalk| variants can be prefixed by \index{for step} to create a
spatial propagator (\S\ref{ref:spatial-propagators}).
The output nodewalk is always walked in the context of the invoking nodewalk. However, note that,
as mentioned above, in the case of |walk_and_...| variants, that context can be changed during the
execution of the input nodewalk.
Trivia: \index{save} is the only operation with no output nodewalk and also the only operation with
a ``side effect'' (of saving the nodewalk, obviously).
For some operations (\index{filter} and \index{branch}), the every-step keylist contains instructions
on how collect the relevant information. While you can safely append and prepend to
\index{register>every step} keylist of their input nodewalk, you should not completely rewrite
it. If you want the operations to actually work, of course.
\begin{syntax}
\indexitem{step>group}|=|\meta{nodewalk}
Treat \meta{nodewalk} as a single step of the (outer) nodewalk, i.e.\ the outer every-step keylist
is executed only at the end of the embedded nodewalk. The embedded \meta{nodewalk} inherits
history from the outer nodewalk. Using this key is equivalent to writing
\begin{center}
\index{step>Nodewalk}|={|\index{option of=Nodewalk>every step}|=independent,|\index{option
of=Nodewalk>history}|=inherited}|\meta{nodewalk}|{}, current|
\end{center}
\indexitem{step>reverse}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and reverse}|=|\meta{nodewalk}
Visits the nodes of the given \meta{nodewalk} in the reversed order.
\indexitem{step>unique}|=|\meta{nodewalk}
Walks the \meta{nodewalk}, but visits each node at most once.
\indexitem{step>filter}|=|\meta{nodewalk}\index{forestmath=condition}
Visit the nodes of the given \meta{nodewalk} for which the given \meta{condition} is true.
\begin{advise}
\item You can safely append and prepend to \index{register>every step} keylist during the input
\meta{nodewalk}, but you should not completely rewrite it.
\end{advise}
\indexitem{step>branch}|={|\meta{nodewalk$_1$}|,...,|\meta{nodewalk$_n$}|}|
\itemnosep
\indexitem{step>branch'}|={|\meta{nodewalk$_1$}|,...,|\meta{nodewalk$_n$}|}|
Visit the nodes in a ``cartesian product'' of any number of nodewalks, where a cartesian product is
defined as a nodewalk where at every step of \meta{nodewalk$_i$} ($1\leq i<n$),
\meta{nodewalk$_{i+1}$} is executed.
The |branch| variant visits only the nodes visited by the innermost nodewalk, \meta{nodewalk$_n$}.
The |branch'| variant visits the nodes visited by all the nodewalks of the product,
\meta{nodewalk$_1$} \dots\ \meta{nodewalk$_n$}.
For an example of each, see \index{c-commanded} and \index{c-commanders} from the
\reflibrary{linguistics} library.
\begin{advise}
\item You can safely append and prepend to \index{register>every step} keylists during the input
\meta{nodewalk}s, but you should not completely rewrite them.
\end{advise}
\indexitem{step>save}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>walk and save}|=|\meta{toks: name}\meta{nodewalk}
Saves the given \meta{nodewalk} under the given name.
\indexitem{step>save append}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>save prepend}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>walk and save append}|=|\meta{toks: name}\meta{nodewalk}
\itemnosep
\indexitem{step>walk and save prepend}|=|\meta{toks: name}\meta{nodewalk}
Appends/prepends the given \meta{nodewalk} to nodewalk \meta{name}.
\indexitem{step>load}|=|\meta{toks: name} Walks the nodewalk saved under the given name.
Note that it is node \index{readonly option>id}s that are saved: loading a named nodewalk with in a context of
a different current node, or even with a tree whose geometry has changed (see \S\ref{ref:dynamic})
will still visit exactly the nodes that were visited when the nodewalk was saved.
\indexitem{step>sort}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>sort'}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and sort}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and sort'}|=|\meta{nodewalk}
Walks the nodes of the nodewalk in the order specified by the last invokation of \index{sort
by}. The \keyname{sort} variants sort in the ascending order, the \keyname{sort'} variants in
the descending order. The \keyname{walk and sort} variants first visit the nodes in the order
specified by the given \meta{nodewalk}.
\indexitem{node key>sort by}|={|\index{forestmath}|,|\dots|,|\index{forestmath}|}|
Sets the sorting order used by all keys comparing nodes: \index{step>sort}, \index{step>min}
and \index{step>max} key families in the nodewalk namespace, and the \index{dynamic
tree>sort} key family in the option namespace (dynamic tree).
For each node being ordered, an ``$n$-dimensional coordinate'' is computed by evaluating the given
list of |pgfmath| expressions in the context of that node.\footnote{Don't worry, lazy evaluation
is used.} Nodes are then ordered by the usual sort order for multi-dimensional arrays: the
first item is the most important, the second item is the second most important, etc.
Simply put, if you want to sort first by the number of children and then by content, say
|sort_by={|\index[+print format=pgfmath]{n children}|,_|\index{content}|}|.
In the simplest case, the given \index{forestmath} expressions are simply node options. However, as
any |pgfmath| expression is allowed in the sort key, you can easily sort by the product of the
content of the current node and the content of its first child:
|sort_by={|\index{content}|()*|\index{content}|("|\index>{!}|1")|.
To sort alphabetically, one must use the argument processor (\S\ref{ref:argument-processor}) to
specify the sort order. In particular, the key must be marked as text using \index{processor>t}.
The first example below shows a simple alphabetical sort by content; the second sorts the
filenames by suffix first (in the ascending order) and then by the basename (in the descending
order, see \index{processor>-}).
\begin{forestexample}
\begin{forest}
[,phantom,grow'=0,for children={anchor=west,child anchor=west},s sep=0,
delay={~sort by=>O+t{content},sort~}
[example.tex][example.pdf][example.log][example.aux]
[thesis.tex][thesis.pdf][thesis.log][thesis.aux][thesis.toc]
]
\end{forest}
\end{forestexample}
\begin{forestexample}
\begin{forest}
declare toks={basename}{},
declare toks={extension}{},
[,phantom,grow'=0,for children={anchor=east},s sep=0,
delay={
for children={split option={content}{.}{basename,extension}},
~sort by={>O+t{extension},>O+t-{basename}}~,
~sort~,
}
[example.tex][example.pdf][example.log][example.aux]
[thesis.tex][thesis.pdf][thesis.log][thesis.aux][thesis.toc]
]
\end{forest}
\end{forestexample}
\indexitem{step>min}|=|\meta{nodewalk}, \indexdef{step>max}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and min}|=|\meta{nodewalk}, \indexdef{step>walk and max}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>mins}|=|\meta{nodewalk}, \indexdef{step>maxs}|=|\meta{nodewalk}
\itemnosep
\indexitem{step>walk and mins}|=|\meta{nodewalk}, \indexdef{step>walk and maxs}|=|\meta{nodewalk}
Visit the node(s) in the given \meta{nodewalk} with a minimum/maximum value with
respect to the sort order previously specified by \index{sort by}.
Variants \keyname{mins}/\keyname{maxs} visit all the nodes that with the minimum/maximum value of
the sorting key; variants \keyname{min}/\keyname{max} visit only the first such node (first in the order specified by the given nodewalk).
\indexitem{step>min in nodewalk}, \indexdef{step>max in nodewalk}
\itemnosep
\indexitem{step>mins in nodewalk}, \indexdef{step>maxs in nodewalk}
\itemnosep
\indexitem{step>min in nodewalk'}, \indexdef{step>max in nodewalk'}
These keys search for the minimum/maximum among the nodes that were already visited in the current
nodewalk.
Keys \keyname{mins in nodewalk} and \keyname{maxs in nodewalk} visits all nodes that reach the minimum/maximum, while keys \keyname{min in nodewalk} and \keyname{max in nodewalk} variants visit only the first such node.
Keys \keyname{min in nodewalk'} and \keyname{max in nodewalk'} visit the first minimal/maximal
node by moving back in the history, see \index{back}.
\end{syntax}
\subsubsection{History}
\label{ref:nodewalk-history}
\FoRest; keeps track of nodes visited in a nodewalk and makes it possible to revisit them, in a
fashion similar to clicking the back and forward button in a web browser.
These keys cannot be prefixed by \index{for step}.
\begin{syntax}
\indexitem{step>back}|=|\meta{count: n}
\itemnosep
\indexitem{step>jump back}|=|\meta{count: n}
\itemnosep
\indexitem{step>walk back}|=|\meta{count: n}
Move $n$ steps back in the history. In the \keyname{back} variant, all steps are fake; in
the \keyname{jump back} variant, the final step is real; and in the \keyname{walk back} variant,
all steps are real.
Note that as the origin is not a part of the history, these keys will \emph{not} step there
(unless \index{current} was the first step of your nodewalk). (Use \index{origin} to move
to the origin of the nodewalk.)
\indexitem{step>forward}|=|\meta{count: n}
\itemnosep
\indexitem{step>jump forward}|=|\meta{count: n}
\itemnosep
\indexitem{step>walk forward}|=|\meta{count: n}
Move $n$ steps forward in the history. In the \keyname{forward} variant, all steps are fake; in
the \keyname{jump forward} variant, the final step is real; and in the \keyname{walk forward} variant,
all steps are real.
\indexitem{node key>save history}|=|\meta{toks: back name}\meta{toks: forward name}
Saves the backwards and forwards history under the given names. (Load them using \index{load}.) The
backwards history is saved in the reverse order of how it was walked, i.e.\ outward from the
perspective of the current position in the nodewalk.
\end{syntax}
\subsubsection{Miscellaneous}
\label{ref:nodewalk-miscellaneous}
The following nodewalk keys are not steps. Rather, they influence the behaviour of nodewalk steps in
various ways. The keys in this section having \meta{nodewalk} arguments do not start a new nodewalk
in the sense of \S\ref{ref:embedded-walks}; the given nodewalk steps rather become a part of the
current nodewalk.
\begin{syntax}
\indexitem{register>every step}|=|\meta{keylist} Contains the every-step keylist of the current
nodewalk.
\indexitem{nodewalk key>fake}|=|\meta{nodewalk}
\itemnosep
\indexitem{nodewalk key>real}|=|\meta{nodewalk}
The \meta{nodewalk} embedded under |fake| consists of ``fake'' steps: while
the current node is changed, every-step keylist is not executed and the history is not updated.
Note that these keys do not introduce an embedded nodewalk. The given \meta{nodewalk} will not
have its own history and every-step keylist.
|real| undoes the effect of |fake|, but cannot make real the implicitely fake steps, such as the
return to the origin in spatial propagators like \index{for step=\index{nodewalk}}.
|fake| and |real| can be nested without limit.
\indexitem{step>last valid}
\itemnosep
\indexitem{step>last valid'}
If the current node is valid, these keys do nothing. If the current node of the nodewalk is
invalid (i.e.\ its \index{readonly option>id} is $0$), they step to the last valid visited node. If
there was no such node, they step to the origin of the nodewalk.
The variant \emph{without} |'| makes a fake step. More precisely, it behaves as if both
\index{nodewalk key>fake} and \index{nodewalk key>on invalid}|=fake| are in effect.
\indexitem{nodewalk key>on invalid}|={|\alternative{error,fake,step}|}|\meta{nodewalk}
This key determines what should happen if a nodewalk step landed on the invalid node, i.e.\ the node
with \index{readonly option>id}|=0|.
There is a moment within the step when the current node is changed but the step itself is not yet
really done, is ``still fake'', i.e.\ the history is not yet updated and the every-step keylist is
not yet executed. If the new current node is invalid, this key determines what should happen next.
\let\outerleftmargin\leftmargin
\begin{syntax}
\item |on invalid={|\indexdef{value of=on invalid>error}|}|\meta{nodewalk} produces an error;
\item |on invalid={|\indexdef{value of=on invalid>fake}|}|\meta{nodewalk} does nothing: history is
not updated and the every-step keylist is not executed, thus making the step essentialy fake;
\item |on invalid={|\indexdef{value of=on invalid>error if real}|}|\meta{nodewalk} produces an
error unless \index{nodewalk key>fake} is in effect.
\item |on invalid={|\indexdef{value of=on invalid>last valid}|}|\meta{nodewalk} returns to the
last valid node, by making a fake step, like \index{step>last valid}.
\end{syntax}
Loops with the implicit |id=0| condition (\S\ref{ref:loops}) automatically switch to
|on_invalid=fake| mode.
See also \index{step>Nodewalk} option \index{option of=Nodewalk>on invalid}.
\indexitem{nodewalk key>options}=\meta{keylist: node keys}
Execute the given node options in the context of the current node.
There is not much need to use this key, as any keys that are not (long) steps or sequences of
short steps are automatically used as \foRest; node options any way, but there are still usage
cases, for example whenever the names of node options and (long) steps are the same, or in a style
that wants to ensure there is no overlap.
\indexitem{nodewalk key>strip fake steps}|=|\meta{nodewalk}
If \meta{nodewalk} ends with fake steps, return to the last node current before those steps were made. For details, see \index{define long step}.
\end{syntax}
\subsubsection{Short-form steps}
\label{ref:short-form-steps}
All short forms of steps are one token long. When using them, there is no need to separate them by
commas. Here's the list of predefined short steps and their corresponding long-form steps.
\begin{syntax}
\indexitem{short step>1}, \indexdef{short step>2}, \indexdef{short step>3}, \indexdef{short step>4}, \indexdef{short step>5}, \indexdef{short step>6}, \indexdef{short step>7}, \indexdef{short step>8}, \indexdef{short step>9} the first, \dots, ninth child --- \index{readonly option>n}|=1|,\dots,|,9|
\indexitem{short step>l} the last child --- \index{step>last}
\indexitem{short step>u} the parent (up) --- \index{step>parent}
\indexitem{short step>p} the previous sibling --- \index{previous}
\indexitem{short step>n} the next sibling --- \index{next}
\indexitem{short step>s} the sibling --- \index{sibling}
\indexitem{short step>P} the previous leaf --- \index{previous leaf}
\indexitem{short step>N} the next leaf --- \index{next leaf}
\indexitem{short step>F} the first leaf --- \index{first leaf}
\indexitem{short step>L} the last leaf --- \index{last leaf}
\indexitem[set={index key={<GT},form=\protect\greaterthan}]{short step>GT}
the next node on the current tier --- \index{next on tier}
\indexitem{short step><} the previous node on the current tier --- \index{previous on tier}
\indexitem{short step>c} the current node --- \index{current}
\indexitem{short step>o} the origin --- \index{origin}
\indexitem{short step>r} the root node --- \index{root}
\indexitem{short step>R} the formal root node --- \index{root'}
\indexitem{short step>b} back one fake step in history --- \index{back}|=1|
\indexitem{short step>f} forward one fake step in history --- \index{forward}|=1|
\indexitem{short step>v} last valid node in the current nodewalk, fake version --- \index{step>last valid}
\indexitem{short step>*}\meta{count: n}\meta{keylist} repeat keylist $n$ times --- \index{repeat}|=|\meta{count: n}\meta{keylist}
\item {\rstyle $\{$}\meta{keylist}{\rstyle $\}$} put keylist in a group --- \index{group}|=|\meta{keylist}
\end{syntax}
\subsubsection{Defining steps}
\label{ref:defining-steps}
You can define your own steps, both long and short, or even redefine predefined steps. Note,
though, that it is not advisable to redefine long steps, as their definitions are interdependent;
redefining short steps is always ok, however, as they are never used in the code of the package.
\begin{syntax}
\indexitem{node key>define long step}|=|\meta{name}\meta{options}\meta{nodewalk}
Define a long-form step named \meta{name} as equivalent to \meta{nodewalk}. \meta{options} control the exact behaviour or the defined step.
\let\outerleftmargin\leftmargin
\begin{syntax}
\item\indexdef{option of=define long step>n args}|=|\meta{number}\hfill |0|
\item\indexdef{option of=define long step>make for}|=|\meta{boolean}\hfill |true|
Should we make a \index{for step} prefix for the step?
\item\indexdef{option of=define long step>strip fake steps}|=|\meta{boolean}\hfill |true|
Imagine that \meta{nodewalk} ends with fake steps. Now, fake steps are usually just a computational tool, so we normally wouldn't want the current node after the walk to be one of them. As far as the outer world is concerned, we want the node to end at the last real step. However, simply appending \index{step>last valid} to our style will not work. Imagine that the nodewalk results in no steps. In this case, we'd want to remain at the origin of our empty nodewalk. However, imagine further that the (outer) step just before the empty nodewalk was fake. Then \index{step>last valid} will not step to the correct node: instead of staying at the origin, it will go to the node that the last real step prior to our nodewalk stepped to. In case there was no such real step, we'd even step to the invalid node (normally getting an error).
Defining the step using |strip fake steps| ensures the correct behaviour described
above. Set |strip fake steps=false| only when the fake steps at the end of the nodewalk are
important to you.
\begin{advise}
\item See also nodewalk key \index{nodewalk key>strip fake steps}.
\end{advise}
\end{syntax}
\begin{forestexample}[index={define long step,option of=define long step>n args,conditional>if,step>n,while,readonly option>n,next}]
\forestset{
~define long step~={children from to}{n args=2}{
if={#1>#2}{}{n=#1,while={n()<#2}{next}}
}
}
\begin{forest}
for children from to={2}{5}{draw}
[root[1][2][3][4][5][6]]
\end{forest}
\end{forestexample}
\indexitem{node key>define short step}|=|\meta{token: short step}\meta{n args}\meta{nodewalk}
Define short step taking $n$ arguments as the given \meta{nodewalk}. Refer to the arguments in the usual way, via |#1|, \dots.
To (re)define braces, |{}|, write |define short step={group}{1}{...}|.
\indexitem{handler>nodewalk style}|=|\meta{nodewalk}
\meta{nodewalk key}|/.nodewalk style=|\meta{nodewalk} is a shorthand for\\
|for_nodewalk={|\meta{nodewalk key}|/.style=|\meta{nodewalk}|}{}|.
\end{syntax}
\subsection{Conditionals}
\label{ref:conditionals}
All conditionals take arguments \meta{true keylist} and \meta{false keylist}. The interpretation of
the keys in these keylists depends on the environment the conditional appears in. If it is a part
of a nodewalk specification, the keys are taken to be nodewalk keys (\S\ref{ref:nodewalks}),
otherwise node keys (\S\ref{ref:node-keys}).
All the conditionals can be nested safely.
\begin{syntax}
\indexitem{conditional>if}|=|\index{forestmath=condition}\meta{true keylist}\meta{false keylist}
If \index{forestmath=condition} evaluates to |true| (non-zero), \meta{true keylist} is processed (in
the context of the current node); otherwise, \meta{false keylist} is processed.
For a detailed description of |pgfmath| expressions, see \cite[part VI]{tikzpgf2.10}. (In short:
write the usual mathematical expressions.)
In the following example, \index{conditional>if} is used to orient the arrows from the smaller
number to the greater, and to color the odd and even numbers differently. (Style |random_tree| is
defined in the front page example.)
\forestset{random tree/.style n args={3}{% #1=max levels, #2=max children, #3=max content
content/.pgfmath={random(0,#3)},
if={#1>0}{repeat={random(0,#2)}{append={[,random tree={#1-1}{#2}{#3}]}}}{}}}
\begin{forestexample}[index={before typesetting nodes,for step,descendants,conditional>if,content,edge,edge label,tree},index>={!},point=if]
\pgfmathsetseed{314159}
\begin{forest}
before typesetting nodes={
for descendants={
if={content()>content("!u")}{edge=->}{
if={content()<content("!u")}{edge=<-}{}},
edge label/.wrap pgfmath arg=
{node[midway,above,sloped,font=\scriptsize]{+#1}}
{int(abs(content()-content("!u")))}
},
for tree={circle,if={mod(content(),2)==0}
{fill=yellow}{fill=green}}
}
[,random tree={3}{3}{100}]
\end{forest}
\end{forestexample}
\indexitem{word prefix=option>conditional>if=\meta{option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
This simple conditional is defined for every \meta{option} (except boolean options, see below): if
\meta{value} equals the value of the option at the current node, \meta{true keylist} is executed;
otherwise, \meta{false keylist}.
\indexitem{word prefix=boolean option>conditional>if=\meta{boolean option}}|=|\meta{true keylist}\meta{false keylist}
Execute \meta{true keylist} if \meta{boolean option} is true; otherwise, execute \meta{false
keylist}.
\indexitem{word prefix=toks option>conditional>if in=\meta{toks option}}|=|\meta{toks}\meta{true keylist}\meta{false
keylist}
Checks if \meta{toks} occurs in the option value; if it does, \meta{true keylist} are executed,
otherwise \meta{false keylist}.
This conditional is defined only for \meta{toks} options, see \S\ref{sec:option-setting}.
\indexitem[set={
index format={result=if \protect\meta{dimen option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if dimen GT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{dimen option}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if dimen LT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if count GT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count option}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if count LT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{dimen register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if dimen register GT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{dimen register}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if dimen register LT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={if\ },result+={>}, pgfkey},
}]{conditional>if count register GT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=if \protect\meta{count register}<,pgfkey},
print format={result/.option=argument,+result={if\ },result+={<}, pgfkey},
}]{conditional>if count register LT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
If the current value of the dimen/count option/register is greater/less than or equal to
\meta{value}, execute \meta{true keylist}; else, execute \meta{false keylist}.
\indexitem{conditional>if nodewalk valid}|=|\meta{keylist: test nodewalk}\meta{true keylist}\meta{false keylist}
If the test nodewalk finished on a valid node, \meta{true keylist} is processed (in the context of
the current node); otherwise, \meta{false keylist} is processed.
\indexitem{conditional>if nodewalk empty}|=|\meta{keylist: test nodewalk}\meta{true keylist}\meta{false keylist}
If the test nodewalk contains no (real) steps, \meta{true keylist} is processed (in the context of
the current node); otherwise, \meta{false keylist} is processed.
\indexitem{conditional>if current nodewalk empty}|=|\meta{true keylist}\meta{false keylist}
If the current nodewalk contains no (real) steps, \meta{true keylist} is processed (in the context of
the current node); otherwise, \meta{false keylist} is processed.
\indexitem{conditional>if in saved nodewalk}|=|\meta{nodewalk}\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
If the node at the end of \meta{nodewalk} occurs in the saved nodewalk, \meta{true keylist} is
processed (in the context of the current node); otherwise, \meta{false keylist} is processed.
\indexitem{propagator>if have delayed}|=|\meta{true keylist}\meta{false keylist} If any options were
delayed in the current cycle (more precisely, up to the point of the execution of this key),
process \meta{true keylist}, otherwise process \meta{false keylist}. (\index{delay n} will
trigger ``true'' for the intermediate cycles.)
This key assumes that the processing order of the innermost invocation of \index{process
keylist} or \index{process keylist'} is given by \index{processing order}. If this is not
the case, explicitely supply the processing order using \index{if have delayed'}.
\indexitem{propagator>if have delayed'}|=|\meta{nodewalk}\meta{true keylist}\meta{false keylist}
Like \index{if have delayed}, but assume the processing order given by \meta{nodewalk}.
\end{syntax}
The following keys are shortcuts: they execute their corresponding |if ...| conditional for every
node in the subtree of the current node (including the node itself). In other words:
\begin{center}
|where ...|\meta{arg$_1$}\dots\meta{arg$_n$}|/.style={for tree={if ...=|\meta{arg$_1$}\dots\meta{arg$_n$}|}}|
\end{center}
\begin{advise}
\item Except in special circumstances, you probably don't want to embed keys from the \index{where
option} family within a \index{for step=\index{tree}}, as this results in two nested loops. It
is more usual to use an \index{conditional>if} family key there. For an example where using
\index{where option} actually does the wrong thing, see question
\href{http://tex.stackexchange.com/questions/167978/smaller-roofs-for-forest}{Smaller roofs for
forest} on \TeX\ Stackexchange.
\end{advise}
\begin{syntax}
\indexitem{conditional>where}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{word prefix=option>conditional>where=\meta{option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{word prefix=boolean option>conditional>where=\meta{boolean option}}|=|\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{word prefix=toks option>conditional>where in=\meta{toks option}}|=|\meta{toks}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where dimen GT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen option}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where dimen LT=\protect\meta{dimen option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count option}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where count GT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count option}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where count LT=\protect\meta{count option}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where dimen register GT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{dimen register}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where dimen register LT=\protect\meta{dimen register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count register}\protect\greaterthan,pgfkey},
print format={result/.option=argument,+result={where\ },result+={>}, pgfkey},
}]{conditional>where count register GT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem[set={
index format={result=where \protect\meta{count register}<,pgfkey},
print format={result/.option=argument,+result={where\ },result+={<}, pgfkey},
}]{conditional>where count register LT=\protect\meta{count register}}|=|\meta{value}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{conditional>where nodewalk valid}|=|\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{conditional>where nodewalk empty}|=|\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
\itemnosep
\indexitem{conditional>where in saved nodewalk}|=|\meta{nodewalk}\meta{toks: nodewalk name}\meta{true keylist}\meta{false keylist}
\end{syntax}
\subsection{Loops}
\label{ref:loops}
All loops take a \meta{keylist} argument. The interpretation of the keys in these keylists depends
on the environment the loop appears in. If it is a part of a nodewalk specification,
the keys are taken to be nodewalk keys (\S\ref{ref:nodewalks}), otherwise node keys
(\S\ref{ref:node-keys}).
All loops can be nested safely.
\begin{syntax}
\indexitem{loop>repeat}|=|\meta{number}\meta{keylist}
The \meta{keylist} is processed \meta{number} times.
The \meta{number} expression is evaluated using |pgfmath|.
\indexitem{loop>while}|=|\index{forestmath=condition}\meta{keylist}
\itemnosep
\indexitem{loop>do while}|=|\index{forestmath=condition}\meta{keylist}
\itemnosep
\indexitem{loop>until}|=|\index{forestmath=condition}\meta{keylist}
\itemnosep
\indexitem{loop>do until}|=|\index{forestmath=condition}\meta{keylist}
\keyname{while} loops cycle while the condition is true, \keyname{until} loops terminate when the
condition becomes true.
The \keyname{do} variants check the condition after processing the \meta{keylist}; thus, the
keylist is executed at least once. The variants without the \keyname{do} prefix check the
condition before processing the \meta{keylist}, which might therefore not be processed at all.
When \index{forestmath=condition} is an empty string, condition \index{valid} is implicitely used,
and \meta{keylist} is implicitely embedded in \index{nodewalk key>on invalid}|=fake|. Thus, the |while|
loops will cycle until they ``walk out of the tree'', and |until| loops will cycle until they
``walk into the tree.''
\begin{advise}
\item If a loop ``walks out of the tree'', you can get it back in using \index{step>last valid} or
\index{nodewalk key>strip fake steps}.
\end{advise}
\begin{forestexample}[index={root',content,step>n,delay,for step,nodewalk,do until}]
\pgfmathsetseed{1234}
\begin{forest}
try/.style={root',content+={#1,\ },n=#1},
delay={
for nodewalk={~do until~={}{try/.pgfmath={random(1,20)}},draw}{},
},
[tried:\ [1][2][3][4][5]]
\end{forest}
\end{forestexample}
\indexitem{loop>while nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do while nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>until nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do until nodewalk valid}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>while nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do while nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>until nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\itemnosep
\indexitem{loop>do until nodewalk empty}|=|\meta{nodewalk}\meta{keylist}
\meta{nodewalk} is embedded within \index{nodewalk key>on invalid}|=fake|.
\indexitem(0){node key>break}|=|$n$ Break out of the loop.
The loop is only exited after all the keys in the current cycle have been processed.
The optional argument $n$ ($n\geq0$) specifies which level of embedding to break from; the default
is to break out of the innermost loop.
\indexitem(0){pgfmath>forestloopcount}([$n$])
How many times has the loop repeated until now?
The optional argument $n$ ($n\geq0$) specifies the level of embedding to provide information for;
the default is to count the repetitions of the current, most deeply embedded loop.
\end{syntax}
\subsection{Dynamic tree}
\label{ref:dynamic}
The following keys can be used to change the geometry of the tree by creating new nodes and
integrating them into the tree, moving and copying nodes around the tree, and removing nodes from
the tree.
The \meta{node} that will be (re)integrated into the tree can be specified in the following ways:
\begin{syntax}
\item \meta{empty}: uses the last non-integrated (i.e.\ created/removed/replaced) node.
\begin{advise}
\item This node can also be referred to using nodewalk step \index{last dynamic node}.
\item The list of all such nodes is automatically saved in named nodewalk \indexdef{named
nodewalk>dynamic nodes}, to be \index{load}ed when needed.
\end{advise}
\item \meta{node}: a new node is created using the given bracket representation (the node may
contain children, i.e.\ a tree may be specified), and used as the argument to the key.
The bracket representation must be enclosed in brackets, which will usually be enclosed in
braces to prevent them being parsed while parsing the ``host tree.''
\begin{advise}
\item Unlike the bracket representation in a \index{environment>forest} environment, the bracket
representation of a dynamically created node \emph{must} start with |[|. Specifically, it cannot
begin with a preamble or the action character.
\end{advise}
\item \index{relative node name}: the node \meta{relative node name} resolves to will be used.
\end{syntax}
A dynamic tree operation is made in two steps:
\begin{itemize}
\item If the argument is given by a \meta{node} argument, the new node is created immediately,
i.e.\ while the dynamic tree key is being processed. Any options of the new node are
implicitely \index{delay}ed.
\item The requested changes in the tree structure are actually made between the cycles of keylist
processing.
\end{itemize}
\begin{advise}
\item Such a two-stage approach is employed because changing the tree structure during the dynamic
tree key processing would lead to an unmanageable order of keylist processing.
\item A consequence of this approach is that nested dynamic tree keys take several cycles to
complete. Therefore, be careful when using \index{delay} and dynamic tree keys simultaneously: in
such a case, it is often safer to use \index{before typesetting nodes} instead of \index{delay},
see example (\ref{ex:append}), and it is also possible to define additional stages, see
\S\ref{sec:workflow}.
\item Examples: title page (in style |random tree|) and (\ref{ex:niceemptynodes}) (in style
|xlist|).
\end{advise}
Here is the list of dynamic tree keys:
\begin{syntax}
\indexitem{dynamic tree>append}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new final child of the current node. If the specified node had a
parent, it is first removed from its old position.
\begin{forestexample}[label=ex:append,point=append,index={append,delay,for step,tree,readonly option>n,content,readonly option>n',repeat}]
\begin{forest}
before typesetting nodes={for tree={
if n=1{content=L}
{if n'=1{content=R}
{content=C}}}}
[,repeat=2{append={[
,repeat=3{append={[]}}
]}}]
\end{forest}
\end{forestexample}
\indexitem{dynamic tree>create}|=[|\meta{node}|]|
Create a new node. The new node becomes the last node.
\indexitem{dynamic tree>create'}|=[|\meta{node}|]|
Create a new node and process its given options immediately. The new node becomes the last node.
\indexitem{dynamic tree>insert after}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new following sibling of the current node. If the specified node had a
parent, it is first removed from its old position.
\indexitem{dynamic tree>insert before}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new previous sibling of the current node. If the specified node had a
parent, it is first removed from its old position.
\indexitem{dynamic tree>prepend}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new first child of the current node. If the specified node had a
parent, it is first removed from its old position.
\indexitem{dynamic tree>remove}
The current node is removed from the tree and becomes the last node.
The node itself is not deleted: it is just not integrated in the tree anymore. Removing the root
node has no effect.
\indexitem{dynamic tree>replace by}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The current node is replaced by the specified node. The current node becomes the last node.
If the specified node is a new node containing a dynamic tree key, it can refer to the replaced
node by the \meta{empty} specification. This works even if multiple replacements are made.
If \keyname{replace by} is used on the root node, the ``replacement'' becomes the root node
(\index{set root} is used).
\end{syntax}
If given an existing node, most of the above keys \emph{move} this node
(and its subtree, of course). Below are the versions of these operations which rather \emph{copy}
the node: either the whole subtree (|'|) or just the node itself (|''|).
\begin{syntax}
\indexitem{dynamic tree>append'}, \indexdef{dynamic tree>insert after'}, \indexdef{dynamic tree>insert before'}, \indexdef{dynamic tree>prepend'},
\indexdef{dynamic tree>replace by'}
Same as versions without |'| (also the same arguments), but it is the copy of the specified node
and its subtree that is integrated in the new place.
\indexitem{dynamic tree>append''}, \indexdef{dynamic tree>insert after''}, \indexdef{dynamic tree>insert before''}, \indexdef{dynamic tree>prepend''},
\indexdef{dynamic tree>replace by''}
Same as versions without |''| (also the same arguments), but it is the copy of the specified node
(without its subtree) that is integrated in the new place.
\begin{advise}
\item You might want to \index{delay} the processing of the copying operations, giving the
original nodes the chance to process their keys first!
\end{advise}
\indexitem{dynamic tree>copy name template}|=|\meta{empty}\OR\meta{macro definition} \hfill\meta{empty}
Defines a template for constructing the \index{option>name} of the copy from the name of the
original. \meta{macro definition} should be either empty (then, the \index{option>name} is
constructed from the \index{readonly option>id}, as usual), or an expandable macro taking one argument (the
name of the original).
\begin{forestexample}
\begin{forest}
copy name template={copy of #1}
[CP,delay={prepend'=subject}
[VP[DP,name=subject[D][NP]][V'[V][DP]]]]
\draw[->,dotted] (subject)--(copy of subject);
\end{forest}
\end{forestexample}
\indexitem{dynamic tree>set root}|=|\meta{empty}\OR|[|\meta{node}|]|\OR\meta{relative node name}
The specified node becomes the new \emph{formal} root of the tree.
Note: If the specified node has a parent, it is \emph{not} removed from it. The node becomes the
root only in the sense that the default implementation of stage-processing will consider it a
root, and thus typeset/pack/draw the (sub)tree rooted in this root. The processing of keys such
as \index{for step=\index{step>parent}} and \index{for step=\index{root}} is not affected: \index{for step=\index{root}} finds the
real, geometric root of the current node. To access the formal root, use nodewalk step
\index{root'}, or the corresponding propagator \index{for step=\index{root'}}.
\indexitem{dynamic tree>sort}, \indexdef{dynamic tree>sort'} Sort the children of the current node,
using the currently active sort key specified in \index{sort by} (see
\S\ref{ref:nodewalk-operations}). |sort| sorts in ascending and |sort'| in descending order.
\end{syntax}
\subsection{Handlers}
\label{ref:handlers}
Handlers are a powerful mechanism of |pgfkeys|, documented in \citep[\S82.3.5]{tikzpgf3.0.0}.
Handlers defined by \foRest; perform a computation and invoke the handled key with its result. The
simple handlers are documented in this section: for \index{handler>process}, see
\S\ref{ref:argument-processor}; for aggregate function handlers, see
\S\ref{ref:aggregate-functions}.
\begin{syntax}
\indexitem{handler>option}|=|\meta{option}
The result is the value of \meta{option} at the current node.
\indexitem{handler>register}|=|\meta{register}
The result is the value of \meta{register}.
\indexitem{handler>pgfmath}|=|\meta{pgfmath expression}
The result is the evaluation of \meta{pgfmath expression} in the context of the current node.
\begin{advise}
\item
If you only need to access an option or register value, using \index{handler>option} or
\index{handler>register} is much faster than using \keyname{.pgfmath}.
\end{advise}
\indexitem{handler>wrap value}|=|\meta{macro definition}
The result is the (single) expansion of the given
\meta{macro definition}. The defined macro takes one parameter. The current value of the
handled option will be passed as that parameter.
\indexitem{handler>wrap $n$ pgfmath args}|=|\meta{macro definition}\meta{arg $1$}\dots\meta{arg $n$}
The result is the (single) expansion of the given \meta{macro definition}. The defined macro
takes $n$ parameters, where $n\in\{2,\dots,8\}$. Expressions \meta{arg $1$} to \meta{arg $n$}
are evaluated using |pgfmath| and passed as arguments to the defined macro.
\indexitem{handler>wrap pgfmath arg}|=|\meta{macro definition}\meta{arg}
Like \index{wrap $n$ pgfmath args} would work for $n=1$.
\end{syntax}
\subsection{Argument processor}
\label{ref:argument-processor}
For a gentle(r) introduction to the argument processor, see \S\ref{tut:wrapping}.
The argument processor takes a sequence of instructions and an arbitrary number of arguments and
transforms the given arguments according to the instructions. This is the generic form of a process
expression:
\begin{syntax}
\item \indexdef{meta>process} = \meta{instructions}\meta{arg $1$}\dots\meta{arg $n$}
\end{syntax}
There are three ways to invoke the argument processor: via handler \index{handler>process}, as one
of the two alternatives of a \index{forestmath} expression and recursively, by its instruction
\index{processor>P}.
\begin{syntax}
\indexitem{handler>process}|=|\index{meta>process}
The result of the computation is passed on to the handled key as a sequence of arguments. When the
argument processor is invoked this way, any number of items can be returned.\footnote{For backward
compatibility, \index{handler>process} is also available as \indexdef{handler>process args}.}
\item \indexdef{meta>forestmath} = \meta{pgfmath}\OR|>|\index{meta>process}
In words, a \index{forestmath} expression is either a \meta{pgfmath} expression or an argument
processor expression (\index{meta>process}) prefixed by |>|.
In other words, \FoRest; accepts an argument processor expression anywhere it accepts a
\meta{pgfmath} expression.\footnote{The only exceptions to the above rule are handler
\index{pgfmath} and argument processor instruction \index{processor>P}.} To indicate that we're
providing an argument processor expression, we prefix it with |>|.
When the argument processor is invoked this way, it should return a single item.
\end{syntax}
\begin{table}
\centering
\tikzexternaldisable
\bracketset{action character=!}%
\begin{forest}
phantom,
for tree={
grow'=0, no edge, inner sep=0, outer sep=0,
},
delay={
sort by={>O+t+c{content}},
sort,
},
before typesetting nodes={
for children={
content={\index{processor>#1}},
for children={
content+={\phantom{(%)
}}}}},
define long step={from to}{n args=2}{
tempcounta=#2,
n=#1,
while/.process=Rw{tempcounta}{n()<##1}{next}
},
draw tree stage/.style={
for root'={
if n children=0{% so that we don't get an error on the first run
}{
draw tree processing order/.nodewalk style={branch={{from to={1}{round(n_children()/3)}},tree}}, draw tree, TeX={~~},
draw tree processing order/.nodewalk style={branch={{from to={1+round(n_children()/3)}{2*round(n_children()/3)}},tree}}, draw tree, TeX={~~},
draw tree processing order/.nodewalk style={branch={{from to={1+2*round(n_children()/3)}{n_children()}},tree}}, draw tree,
}
}
}
[!\bigbadprocesslist]
\end{forest}%
\caption{Argument processor instructions}
\label{tab:allargprocins}
\end{table}
The syntax of argument processor is a cross between |expl3|'s function argument specification and a
Turing machine, spiced with a bit of reversed Polish notation. ;-)
Think of \meta{instructions} as a program and \meta{arg $1$}\dots\meta{arg $n$} as the data that
this program operates on.
If you're familiar with Turing machines: like a Turing machine, the argument processor has a notion
of a head; unlike a Turing machine, the argument processor head is positioned not over some
argument, but between two arguments. If you're not familiar with Turing machines: imagine the
arguments as items on a tape and the argument processor as a head that is always located between
some two items. As the head is between two arguments, we can talk about the arguments on the left
and the arguments on the right.
In general, an instruction will take some items from the left and some from the right (deleting them
from the tape), perform some computation and insert the result on the tape, some result items to the
left and some to the right. However, most instructions simply take an item from the right, do
something with it, and put the (single-item) result to the left; in effect, the head is moved one
item to the right. At the beggining, all the arguments are always on the right, so the general idea
is that the program will walk through the given arguments, processing them in order.
Descriptions of individual instructions, given below, contain (at the right edge of the page) the
argument specification, which tells us about the number of input and output items and the movement
of the head. The input and output are separated by an arrow ($\longrightarrow$), and the green eye
(\textcolor{darkgreen}{\eye}) signifies the position of the head with respect to the (input or
output) items.
For example, instruction \index{processor>O}, which converts an option name into the option value,
exemplifies the most common scenario: it takes one argument from the right and puts the result to
the left (in other words, the head moves one item to the right). Wrapping instrucion
\index{processor>w} is more complicated. Given instruction \index{processor>w}$n$, the argument
processor takes one argument from the right (the wrapping macro body) and $n$ items from the left
(which become the arguments of the wrapping macro), and puts the resulting item to the left.
Comparisons and boolean operations are the instructions resembling the reverse Polish notation: they
take the arguments from the left and put the result to the left, as well. Finally, it is worth
mentioning instructions \index{processor>noop} and \index{processor>+}, which simply move the head
to the right and left, respectively; given that the usual movement of the head is to the right,
\index{processor>+} can be thought of as a process-the-argument-again instruction.
Before we finally list the available instructions, some notes:
\begin{itemize}
\item \meta{Instructions} may be given in braces or not. If not, everything until the first opening
brace is considered to be an instruction.
\item An argument item (\meta{arg$_k$}) is a standard \TeX\ macro argument: either a token or a
braced token list. (The obvious exception: \meta{arg$_1$} needs to be braced if it follows
braceless instructions.)
\item Spaces in \meta{instructions} and between arguments are ignored. Format your \index{handler>process}
as you wish!
\item Instructions followed by [$n$] below take an optional numeric modifier.
\begin{itemize}
\item The modifier should be given within the instruction string itself, immediately following the
instruction. In particular, no spaces are allowed there. (Sorry for the little white lie
above.) The number should not be enclosed in braces, even if it is more than one digit long.
\item This modifier is always optional: its default value varies from instruction to instruction.
(Providing $0$ means to use the default.)
\item Unless noted otherwise, the optional numerical argument $n$ instruct the argument processor
to repeat the previous instruction $n$ times (by default, 1). For example,
\index{processor>O}|3| is equivalent to
\index{processor>O}\index{processor>O}\index{processor>O}.
\end{itemize}
\end{itemize}
\makeatletter
\NewDocumentEnvironment{indexitemprocessinstruction}{
D(){} % default
O{} % \index []
m % instruction char
o % form of instruction char, if different from #3
D(){} % instruction modifiers
m % first line
>{\ReverseBoolean} s % typeset processor signature?
>{\SplitArgument {3} {&} } m % processor signature
}{%
\write\@auxout{\unexpanded{\gappto\bigbadprocesslist{[{#3}[{#6}]]}}}%
\IfValueTF{#4}{%
\indexitem(#1)[set={form={#4},index form={#4{\protect\ \protect\rm\protect\scriptsize (#6)}},#2}]{processor>#3}#5 #6%
}{%
\indexitem(#1)[set={index form={#3{\protect\ \protect\rm\protect\scriptsize (#6)}},#2}]{processor>#3}#5 #6%
}%
\IfBooleanT{#7}{\hfill\processorsignature#8}%
}{}
\makeatother
\newcommand\processorsignature[4]{%
#1 \textcolor{darkgreen}{\eye} #2
$\longrightarrow$
#3 \textcolor{darkgreen}{\eye} #4%
}
\begin{syntax}
\begin{indexitemprocessinstruction}[index key=_]{noop}[\_]([$n$]){no-op}
{&\meta{arg}&\meta{arg}&}
The argument is not processed, but simply skipped over. In other words, this instruction only
moves the head one item to the right. (This is like |expl3|'s argument specifier |n|.)
$n$ means repetition.
When the end of the instructions is reached, any remaining arguments on the right are processed
using this no-op instruction.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{o}([$n$]){expand \protect\emph{o}nce}
{&\meta{arg}&\meta{result}&}
\meta{arg} is expanded once. (This is like |expl3|'s argument specifier |o|).
The operation is repeated $n$ times (default, one) without moving the head between the
repetition. For example, |o3| expands the argument three times (and then moves the head right).
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{x}{fully e\protect\emph{x}pand}
{&\meta{arg}&\meta{result}&}
\meta{arg} is fully expanded using |\edef|. (This is like |expl3|'s argument specifier |x|.)
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{O}([$n$]){\protect\emph{o}ption}
{&\meta{option}&\meta{result}&}
\meta{option}=\alternative{\meta{option name},\meta{relative node name}\texttt{.}\meta{option name}}
In the former case, \meta{result} is the value of option at the current node, in the latter, the
value of option at the node referred to by \meta{relative node name}.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{R}([$n$]){\protect\emph{r}egister}
{&\meta{register}&\meta{result}&}
\meta{result} is the value of register \meta{register}.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{p}([$n$]){\protect\emph{p}rocess}
{&\index{meta>process}&\meta{result}&}
Execute an embedded call of the argument processor.
The embedded argument processor may return any number of items.
$n$ means repetition.
\begin{forestexample}[index={processor>p,processor>O,processor>w,processor>noop,grow',forked edges,content,handler>process}]
\begin{forest}
grow'=0, phantom,
delay={for children={
content/.process={_O= ? ~p~}
{}{content}
{_{No content was given, so there's nothing to do.}}
{Ow1{content}{We have content (##1), so we compute:
$##1+42=\the\numexpr ##1+42$}}
}}
[[][3][][5]]
\end{forest}
\end{forestexample}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{P}([$n$]){\protect\emph{p}gfmath}
{&\meta{pgfmath}&\meta{result}&}
\meta{result} is the result of evaluating \meta{pgfmath expr} using |\pgfmathparse|.
$n$ means repetition.
Combining \index{processor>P} and \index{processor>w}, \index{handler>process} is capable of anything
\index{wrap $n$ pgfmath args} can do. Even better, as we can combine pgfmath and non-pgfmath
methods, computations that use \index{handler>process} can be (much!) faster. Study the following
examples to see how less and less pgfmath is used to achieve the same result --- but note that
such extreme antipgfmathism probably only makes sense for style/package developers in computations
that get performed many times.
\begin{forestexample}[index={handler>process,processor>w,processor>O,processor>W,processor>P,processor>+}]
\begin{forest}
[,grow'=east, where level=1{}{phantom,ignore,ignore edge}
[(a),delay={content/.wrap 4 pgfmath args={#1 $#2*#3=#4$}
{content}{content("!1")}{content("!2")}{int(content("!1")*content("!2"))}}
[6][7]]
[(b),delay={content/.process={O OO~P~ w4}
{content}
{!1.content}{!2.content}{int(content("!1")*content("!2"))}
{#1 $#2*#3=#4$}}
[6][7]]
[(c),delay={content/.process={O OO ~W2+P~ w4}
{content}
{!1.content}{!2.content}{int(#1*#2)}
{#1 $#2*#3=#4$}}
[6][7]]
[(d),delay={content/.process={O OO ~W2+n~ w4}
{content}
{!1.content}{!2.content}{#1*#2}
{#1 $#2*#3=#4$}}
[6][7]]
]
\end{forest}
\end{forestexample}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{n}([$n$]){\protect\emph{n}umexpr}
{&\meta{numexpr}&\meta{result}&}
\meta{result} is the result of evaluating \meta{dimexpr} using e\TeX's |\number\numexpr|.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{d}([$n$]){\protect\emph{d}imexpr}
{&\meta{dimexpr}&\meta{result}&}
\meta{result} is the result of evaluating \meta{dimexpr} using e\TeX's |\the\dimexpr|.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{+}([$n$]){chain instructions}
{\meta{arg}&&&\meta{arg}}
This action allows one to ``process the same argument more than once''. It does not process the
current argument (in fact, there need not be any current argument), but rather moves the last
result back in the argument queue. In other words, our machine's head moves one step left. You
can also imagine it as an inverse of \index{processor>noop}.
$n$ means repetition.
\end{indexitemprocessinstruction}
\begin{forestexample}[index={handler>process,processor>O,processor>noop}]
\begin{forest}
test/.style n args={3}{align=center,
content={The value of my option \texttt{#1} is \texttt{#2}.\\#3}}
[~fit~,delay={test/.process={O ~O+O~}{content}~{content}~{Yes it is!}}]
\end{forest}
\end{forestexample}
\begin{indexitemprocessinstruction}{w}([$n$]){(consuming) \protect\emph{w}rap}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&\meta{macro body}&\meta{result}&}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}{W}([$n$]){(non-consuming) \protect\emph{w}rap}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&\meta{macro body}&
\meta{arg$_{1}$}\dots\meta{arg$_{n}$}\meta{result}&}
Defines a temporary macro with $n$ undelimited arguments using the \meta{macro body} given on the
right and expands it (once). The arguments given to the temporary macro are taken from the left:
\meta{arg$_{1}$}\dots\meta{arg$_{n}$}. The result of the expansion is stored as \meta{result} to
the right.
With |w|, \meta{arg$_{1}$}\dots\meta{arg$_{n}$} are ``consumed'', i.e.\ they are removed from the
result list on the left. |W| keeps \meta{arg$_{1}$}\dots\meta{arg$_{n}$} in the result list.
Default $n$ is 1. (Specifying $n>9$ raises an error.)
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}[index key=\&]{and}[\&]([$n$]){boolean ``and''}*{}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}[index key=\&or]{or}[\protect\indexpipe]([$n$]){boolean ``or''}
{\protect\meta{arg$_{1}$}\protect\meta{arg$_{2}$}&&\meta{result}&}
\meta{result} is a boolean conjunction/disjunction of $n$ arguments. The arguments are taken from
the left. They should be numbers (positive integers): |0| means false, any other number means
true. The \meta{result} is always |0| or |1|.
Default $n$ is 2.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}[index key=!]{not}[!]{boolean ``not''}
{\meta{arg}&&\meta{result}&}
\meta{result} is a boolean negation of the argument. The argument is taken from the left. It
should be a number (positive integer): |0| means false, any other number means true. The
\meta{result} is always |0| or |1|.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{?}{conditional (if \protect\dots\ then \protect\dots\ else)}
{\meta{condition}&\meta{true arg}\meta{false arg}&&\meta{result}}
\meta{result} is \meta{true arg} is \meta{condition} is true (non-zero), otherwise \meta{false
arg}.
The condition is taken from the left. The true and false arguments are expected on the right,
where the winner is left as well.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}[index key={=}]{equal}[=]{comparison: $\protect\meta{arg$_{1}$}=\protect\meta{arg$_{2}$}$?}*{}
\end{indexitemprocessinstruction}
\itemnosep[1pt]
\begin{indexitemprocessinstruction}[index key={<}]{lt}[<]{comparison: $\protect\meta{arg$_{1}$}<\protect\meta{arg$_{2}$}$?}*{}
\end{indexitemprocessinstruction}
\itemnosep[1pt]
\begin{indexitemprocessinstruction}[index key={<<}]{gt}[\protect\greaterthan]{comparison: $\protect\meta{arg$_{1}$}\protect\greaterthan\protect\meta{arg$_{2}$}$?}
{\meta{arg$_{1}$}\meta{arg$_{2}$}&&\meta{result}&}
Compare \meta{arg$_{1}$} and \meta{arg$_{2}$}, returning |1| (true) if \meta{arg$_{1}$} is equal
to / less than / greater than \meta{arg$_{2}$}, |0| (false) otherwise.
The arguments are taken from the left. They can be either numbers, dimensions, text or token
lists. Both arguments are expected to be of the same type. The type of comparison is determined
by the type of the result returned by the last instruction.
\index{processor>O}/\index{processor>R} look up the type of option/register to determine the type
(booleans are numbers and keylists are toks). Text type must be marked explicitely using
\index{processor>t}.
Comparison is carried out using |\ifnum| for numbers, |\ifdim| for dimensions (this includes
unitless decimals returned by pgfmath) and |\pdfstrcmp|\footnote{\texttt{\string\pdfstrcmp}
expands its arguments.} for text --- for these three types, all three comparison operators are
supported. For generic token lists, only |=| makes sense and is carried out using |\ifx|.
In the following example, (a) performs lexicographical comparison because we have marked |21| as
text; (b) and (c) perform numeric comparison: in (b), the type is automatically determined from
the type of register \indexex{tempcounta}, in (c) |21| is marked manually using \index{processor>n}.
\begin{forestexample}[index={if,processor>gt,processor>lt}]
\forestset{
tempcounta=100,
TeX/.process={Rw1}{tempcounta}{$#1>21$?\ },
TeX={(a)\ }, if={>{Rt>}{tempcounta}{21}}{TeX=yes}{TeX=no},TeX={,\ },
TeX={(b)\ }, if={>{_R<}{21}{tempcounta}}{TeX=yes}{TeX=no},TeX={,\ },
TeX={(c)\ }, if={>{Rn>}{tempcounta}{21}}{TeX=yes}{TeX=no},
}
\end{forestexample}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{t}{mark as \protect\emph{t}ext}
{&\meta{arg}&\meta{arg}&}
The result is not changed, only its type is changed to text. This is relevant only for
comparisons --- both argument processor's comparisons \index{processor>equal}, \index{processor>gt}
and \index{processor>lt} and sort keys (see \index{sort by}).
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{c}{to lowercase}
{&\meta{arg}&\meta{result}&}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{C}{to uppercase}
{&\meta{arg}&\meta{result}&}
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{-}{toggle ascending/descending order (negate)}
{\meta{arg}&&\meta{result}&}
If the argument is of the text type, its sorting order is changed from ascending to descending or
vice versa.
For any numerical argument type (number, dimension, unitless dimension), the argument is actually
negated, which obviously has the same effect on sorting.
For generic type arguments, this operation is a no-op.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{u}{\protect\emph{u}ngroup}
{&\meta{arg}&&\meta{item$_1$}\dots\meta{item$_n$}}
As every \TeX\ undelimited macro argument, \meta{arg} is a list of tokens or braced token lists.
This instruction puts those items back to the right as ``separate arguments''.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{s}([$n$]){(consuming) \protect\emph{s}ave}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&&&}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}{S}([$n$]){(non-consuming) \protect\emph{s}ave}
{\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&&\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&}
Saves the last $n$ arguments from the left into a ``special place''.
With |s|, \meta{arg$_{1}$}\dots\meta{arg$_{n}$} are ``consumed'', i.e.\ they are removed from the
result list on the left. |S| keeps \meta{arg$_{1}$}\dots\meta{arg$_{n}$} in the result list.
Default $n$ is 1.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{l}([$n$]){(consuming) \protect\emph{l}oad}
{&&\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&}
\end{indexitemprocessinstruction}
\itemnosep[2pt]
\begin{indexitemprocessinstruction}{L}([$n$]){(non-consuming) \protect\emph{l}oad}
{&&\meta{arg$_{1}$}\dots\meta{arg$_{n}$}&}
Loads last $n$ arguments from the ``special place'' to the left.
With |l|, \meta{arg$_{1}$}\dots\meta{arg$_{n}$} are ``consumed'', i.e.\ they are removed from the
special place. |S| keeps \meta{arg$_{1}$}\dots\meta{arg$_{n}$} in the special place.
The default $n$ is 0 and indicates that the entire special place should be loaded.
\end{indexitemprocessinstruction}
\begin{indexitemprocessinstruction}{r}{\protect\emph{r}everse (key)list}
{&\meta{list}&\meta{result}&}
\meta{list} should be a comma-separated list (\emph{not} a name of a keylist option or register).
\meta{result} contains the same elements in the reverse order.
\end{indexitemprocessinstruction}
\end{syntax}
\subsection{Aggregate functions}
\label{ref:aggregate-functions}
Aggregate functions walk a nodewalk and use the information found in the visited nodes to calculate
something.
All aggregate functions are available both as key handlers and |pgfmath| functions.
\begin{syntax}
\indexitem{aggregate>count}|=|\meta{nodewalk},
\indexdef[form={aggregate_count}]{pgfmath>aggregate count}|("|\meta{nodewalk}|")|
Store the number of nodes visited in the nodewalk into the handled option.
\indexitem{aggregate>sum}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_sum}]{pgfmath>aggregate sum}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>average}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_average}]{pgfmath>aggregate average}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>product}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_product}]{pgfmath>aggregate product}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>min}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_min}]{pgfmath>aggregate min}|("|\index{forestmath}|","|\meta{nodewalk}|")|
\itemnosep
\indexitem{aggregate>max}|=|\index{forestmath}\meta{nodewalk},
\indexdef[form={aggregate_max}]{pgfmath>aggregate max}|("|\index{forestmath}|","|\meta{nodewalk}|")|
Calculate the value of the given \index{forestmath} expression at each visited node. Store the sum /
average / product / minimum / maximum of these values into the handled option (handlers) or return
it (pgfmath functions).
\indexitem{aggregate>aggregate}|=|\index{forestmath=start value}\index{forestmath=every
step}\index{forestmath=after walk}\meta{nodewalk}
\itemnosep
\indexitem{pgfmath>aggregate}|("|\index{forestmath=start value}|","|\index{forestmath=every step}|","|\index{forestmath=after walk}|","|\meta{nodewalk}|")|
The generic aggregate function. First, register \index{aggregate result} is set to
\index{forestmath=start value}. Then, the given nodewalk is walked. After each step of the
\meta{nodewalk}, \index{forestmath=every step} expression is evaluated in the context of the new
current node and stored into \index{aggregate result}. After the walk, the current node is reset to
the origin. \index{forestmath=after walk} expression is then evaluated in its context and stored
into \index{aggregate result} as the final result.
Use \index{aggregate result} and \index{aggregate n} in the \index{forestmath} expressions to refer to
the current result value and step number.
\indexitem{register>aggregate n}|=|\meta{count} the current step number
In the every-step expression of an aggregate function, refers to the (real) step number in the
aggregate's \meta{nodewalk}. In the after-walk expression, refers to the total number of (real)
steps made.
\indexitem{register>aggregate result}|=|\meta{toks} the current value of the result
This register is where the intermediate results are stored.
\indexitem{register>aggregate value}|=|\meta{toks} the value of the expression at the current node
This only applies to special aggregates like \index{aggregate>sum}, not to the generic
\index{aggregate>aggregate}.
\indexitem{node key>aggregate postparse}|=|\alternative{none,int,print,macro}
Roughly speaking, how should the result be formatted? For details, see \citep[\S89]{tikzpgf3.0.0}.
Applies only to |pgfmath| versions of aggregate functions, i.e.\ not to the |'| variants.
\begin{syntax}
\item\indexdef{value of=aggregate postparse>none}
No formatting.
\item\indexdef{value of=aggregate postparse>int}
The result is an integer.
\item\indexdef{value of=aggregate postparse>print}
Use |pgf|'s number printing extension, see \citep[\S93]{tikzpgf3.0.0}.
\item\indexdef{value of=aggregate postparse>macro}
Use a custom macro. Specify the macro using \indexdef{node key>aggregate postparse macro}|=|\meta{cs}.
\end{syntax}
\end{syntax}
Example 1. Randomly generate the content of leaves. The content of a parent is the sum of its
children's content. Note how we use \indexex{tree children-first} to proceed in a bottom-up
fashion.
\begin{forestexample}[index={delay,aggregate postparse,for step,tree children-first,if option,n children,content,pgfmath,sum,step>children}]
\begin{forest}
delay={
aggregate postparse=int,
for tree children-first={
if n children=0
{content/.pgfmath={random(0,100)}}
{content/~.sum~={content}{children}}
}
}
[[[[][]][]][[][][[][][]]][[][[][]]]]
\end{forest}
\end{forestexample}
Example 2: nested aggregate functions. We are given the black numbers. The inner aggregate, the
sum of children, is applied at every blue node. (See how we actually display the blue numbers by
storing \index{aggregate value} to \index{content}.) The outer aggregate stores the maximum blue
number into the red root.
\begin{forestexample}
\begin{forest}
delay={
aggregate postparse=int,
content/~.max~=%
{~aggregate_sum~("content","children")}%
{every step={content/.register=~aggregate value~},children}%
} [ [[1][2][3]] [[3][4][5]] [[2][3][4]] ]
\end{forest}
\end{forestexample}
Example 3: calculate root mean square of children using the generic \index{aggregate>aggregate} handler.
\begin{forestexample}
\begin{forest}
delay={
content/~.aggregate~=
{0}{~aggregate_result~()+content()^2}{sqrt(~aggregate_result~/~aggregate_n~)}
{children}
}
[[0][1][2][3][4]]
\end{forest}
\end{forestexample}
\subsection{Relative node names}
\label{ref:relative-node-names}
\begin{syntax}
\indexitem{meta>relative node name}|=|[\meta{forest node name}][\indexdef[set={code}]>{!}\meta{nodewalk}]
\meta{relative node name} refers to the \foRest; node at the end of the \meta{nodewalk}
starting at node named \meta{forest node name}. If \meta{forest node name} is omitted, the walk
starts at the current node. If \meta{nodewalk} is omitted, the ``walk'' ends at the start
node. (Thus, an empty \meta{relative node name} refers to the current node.)
The \meta{nodewalk} inherits its history from the outer nodewalk (if there is one). Its every-step
keylist is empty.
\end{syntax}
Relative node names can be used in the following contexts:
\begin{itemize}
\item \FoRest;'s |pgfmath| option functions (\S\ref{ref:pgfmath}) take a relative node name as
their argument, e.g.\ |content("!u")| and |content("!parent")| refer to the content of the
parent node.
\item An option of a non-current node can be set by \meta{relative node name}|.|\meta{option
name}|=|\meta{value}, see \S\ref{sec:option-setting}.
\item The |forest| coordinate system, both explicit and implicit; see \S\ref{ref:forest-cs}.
\end{itemize}
\subsection{The \texttt{forest} coordinate system}
\label{ref:forest-cs}
Unless package options \index{tikzcshack} is set to |false|, \TikZ;'s implicit node coordinate
system \citep[\S13.2.3]{tikzpgf2.10} is hacked to accept relative node names.\footnote{Actually,
the hack can be switched on and off on the fly, using \cmdname{i}\keyname{foresttikzcshack}.}.
The explicit \texttt{forest} coordinate system is called simply |forest| and used like this:
|(forest_cs:|\meta{forest cs spec}|)|; see \citep[\S13.2.5]{tikzpgf2.10}. \meta{forest cs spec}
is a keylist; the following keys are accepted.
\begin{syntax}
\indexitem{forest cs>name}|=|\meta{node name} The node with the given name becomes the current node. The
resulting point is its (node) anchor.
\indexitem{forest cs>id}|=|\meta{node id} The node with the given name becomes the current node. The
resulting point is its (node) anchor.
\indexitem{forest cs>go}|=|\meta{nodewalk} Walk the given nodewalk, starting at the current node. The
node at the end of the walk becomes the current node. The resulting point is its (node) anchor.
The embedded \meta{nodewalk} inherits history from the outer nodewalk.
\indexitem{forest cs>anchor}|=|\meta{anchor} The resulting point is the given anchor of the current node.
\indexitem{forest cs>l}|=|\meta{dimen} \vspace{-\parskip}
\indexitem{forest cs>s}|=|\meta{dimen} Specify the \index{option>l} and \index{option>s}
coordinate of the resulting point.
The coordinate system is the node's ls-coordinate system: its origin is at its (node) anchor; the
l-axis points in the direction of the tree growth at the node, which is given by option
\index{grow}; the s-axis is orthogonal to the l-axis; the positive side is in the
counter-clockwise direction from |l| axis.
The resulting point is computed only after both \index{option>l} and \index{option>s} were given.
\item Any other key is interpreted as a \index{relative node name}[.\meta{anchor}].
\end{syntax}
\subsection{Anchors}
\label{sec:anchors}
\FoRest; defines several anchors which can be used with any \TikZ; node belonging to a \FoRest;
tree (manually added \TikZ; nodes are thus excluded).
\newcommand\indexdefneganchor[1]{\indexdef[index key=#1]{anchor>-#1}}
\begin{syntax}
\indexitem{anchor>parent anchor}\itemnosep
\indexitem{anchor>child anchor}\itemnosep
\indexitem{anchor>anchor}
These anchors point to coordinates determined by node options \index{option>parent anchor},
\index{option>child anchor} and \index{option>anchor}.
\indexitem{anchor>parent}, \indexdef{anchor>parent'}, \indexdefneganchor{parent}, \indexdefneganchor{parent'}\itemnosep
\indexitem{anchor>parent first}, \indexdef{anchor>parent first'}, \indexdefneganchor{parent first}, \indexdefneganchor{parent first'}\itemnosep
\indexitem{anchor>first}, \indexdef{anchor>first'}\itemnosep
\indexitem{anchor>children first}, \indexdef{anchor>children first'}, \indexdefneganchor{children first}, \indexdefneganchor{children first'}\itemnosep
\indexitem{anchor>children}, \indexdef{anchor>children'}, \indexdefneganchor{children}, \indexdefneganchor{children'}\itemnosep
\indexitem{anchor>children last}, \indexdef{anchor>children last'}, \indexdefneganchor{children last}, \indexdefneganchor{children last'}\itemnosep
\indexitem{anchor>last}, \indexdef{anchor>last'}\itemnosep
\indexitem{anchor>parent last}, \indexdef{anchor>parent}, \indexdefneganchor{parent last},\indexdefneganchor{parent last'}
Growth direction based anchors.
\TikZ;'s ``compass anchors'' |east|, |north| etc.\ resolve to coordinates on the border of the
node facing east, north etc.\ (for the shapes that define these anchors). The above \FoRest;'s
anchors are similar in that they also resolve to coordinates on the border of the node. However,
the ``cardinal directions'' are determined by the \index{grow}th direction of the tree in the node
and its parent:
\begin{itemize}
\item anchor |parent| faces the parent node (or, in case of the root, where the parent would be);
\item anchor |children| faces the children (or, in case of a node without children, where the children would be);
\item anchor |first| faces the first child (or \dots\ you get it, right?);
\item anchor |last| faces the last child (or \dots\ you know!).
\end{itemize}
Combinations like |children_first| work like combinations of compass directions, e.g.\
|north_west|, but note that
\begin{itemize}
\item when |first| and |last| are combined with |parent| into |parent_first| and |parent_last|,
they refer to the first and last child of the parent node, i.e.\ siblings of the current node.
\end{itemize}
While |first| and |last| always point in opposite directions, |parent| and |children| do not do so
if the \index{grow}th direction of the tree changes in the node, i.e.\ if the node's \index{grow}
differs from it's parent's \index{grow}. Thus in general, it is useful to have anchors |-parent|
and |-children|, which point in the opposite directions as |parent| and |children|, respectively,
and their combinations with |first| and |last|.
The |'| variants refer precisely to
the point where the cardinal growth direction intersects the border. Variants without |'| snap to
the closest compass anchor of the node.
These anchors work as expected even if the node is \index{rotate}d, or if the
children are \index{reversed}.
For simple examples, see definitions of \index{sn edges} and \index{roof}; for more involved
examples, see the \reflibrary{edges} library.
\end{syntax}
\begin{forestexample}[layout=tree on top]
\def\redorblue#1{\expandafter\redorbluei#1\END}%
\def\redorbluei#1#2\END{\expandafter\ifx#1-red\else blue\fi}%
\forestset{
draw anchors/.style n args=3{% #1=above, #2=below, #3='-variant of anchor?
tikz={
\foreach \a in {first,last,parent first,parent last,children,children last,#1}
{\fill[](.\a#3)circle[radius=1pt] node[above,font=\tiny,color=\redorblue\a]{\a#3};}
\foreach \a in {-parent first,-parent,-parent last,-children,-children first,#2}
{\fill[](.\a#3)circle[radius=1pt] node[below,font=\tiny,color=\redorblue\a]{\a#3};}
}
},
draw anchors/.default={parent,children first}{-children last}{},
}
\begin{forest}
for tree={
minimum width=10em, minimum height=13ex, s sep+=5em,
draw, draw anchors,
font=\tt, delay={content/.process=OOw2{grow}{reversed}{grow\ifnum#2=1'\fi=#1}}
}
[
[,rotate=20,draw anchors={parent,children first}{-children last}{'}]
[,for tree={grow'=0}, l sep+=5em, draw anchors={-children last}{parent,children first}{}
[,rotate=-60]
[]
]
]
\end{forest}
\end{forestexample}
\subsection{Additional \texttt{pgfmath} functions}
\label{ref:pgfmath}
For every option and register, \foRest; defines a |pgfmath| function with the same name, with the
proviso that the name might be mangled in order to conform to |pgfmath|'s naming rules. Specifically,
all non-alphanumeric characters in the option/register name and the initial number, if
the name starts with one, are replaced by an underscore |__| in the |pgfmath| function name.
Pgfmath functions corresponding to options take one argument, a \index{relative node name}
(see~\S\ref{ref:relative-node-names}) expression, making it possible to refer to option values of
non-current nodes. The \meta{relative node name} expression must be enclosed in double quotes in
order to
prevent pgfmath evaluation: for example, to refer to the content of the parent, write
\index{content}|("|\index>{!}|u")|. To refer to the option of the current node, use empty parentheses:
\index{content}|()|.\footnote{In most cases, the parentheses are optional, so \texttt{content}
is ok. A known case where this doesn't work is preceding an operator: \texttt{l+1cm} will fail.}
If the \index{relative node name} resolves to the invalid node, these functions will an return empty
token list (for \meta{toks} options), 0pt (for \meta{dimen} options) or 0 (for \meta{count}
options).
Note that the nodewalk in the relative node name inherits its history from the outer nodewalk (if
there is one), so strange but useful constructions like the following are possible.
\begin{forestexample}[index={tikz,wrap pgfmath arg,nodewalk,back,b,ancestors,register>every step}]
\begin{forest}
for tree={no edge},
before typesetting nodes={
for nodewalk={
c,
every step={
tikz/.wrap pgfmath arg=
{\draw[<-] ()--(#1);}
{name("~!b~")}
},
21{up1},ancestors
}{}
},
[1[2[3]][4[5]]]
\end{forest}
\end{forestexample}
Boolean function \indexdef{pgfmath>valid} returns true if the node's \index{readonly option>id}$\neq0$, i.e.\ if the node is a real, valid node; see \S\ref{ref:spatial-propagators} and \S\ref{ref:nodewalks}. Boolean function \indexdef{pgfmath>invalid} is a negation of |valid|.
\begin{syntax}
\indexitem{pgfmath>min_l}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)| \itemnosep
\indexitem{pgfmath>min_s}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)| \itemnosep
\indexitem{pgfmath>max_l}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)| \itemnosep
\indexitem{pgfmath>max_s}|=(|\meta{nodewalk: node}|,|\meta{nodewalk: context node}|)|
These functions return the minimum/maximum value of \index{option>l}/\index{option>s} of node at the end of \meta{nodewalk:
node} in the context (i.e.\ growth direction) of node at the end of \meta{nodewalk: context
node}.
\end{syntax}
Three string functions are also added to |pgfmath|: \indexdef{pgfmath>strequal} tests the equality of
its two arguments; \indexdef{pgfmath>instr} tests if the first string is a substring of the second one;
\indexdef{pgfmath>strcat} joins an arbitrary number of strings.
\bigskip
Some random notes on |pgfmath|: \begin{enumerate*}[(i)]
\item |&&|, \verb!||! and |!| are boolean ``and'', ``or'' and ``not'', respectively.
\item The equality operator (for numbers and dimensions) is |==|, \emph{not} |=|.
\end{enumerate*} And some examples:
\begin{forestexample}[layout=tree on top,index={for step,tree,grow',calign,option>l,l sep,option>child
anchor,option>anchor,fit,tier,readonly option>level,delay,before typesetting nodes,content,wrap $n$ pgfmath args,pgfmath},index>={!}]
\begin{forest}
for tree={grow'=0,calign=first,l=0,l sep=2em,child anchor=west,anchor=base
west,fit=band,tier/.pgfmath=~level~()},
fullpath/.style={if n=0{}{content/.wrap 2
pgfmath args={##1/##2}{~content~("!u")}{~content~()}}},
delay={for tree=fullpath,content=/},
before typesetting nodes={for tree={content=\strut#1}}
[
[home
[joe
[\TeX]]
[saso
[\TeX]]
[a user with a long name
[\TeX]]]
[usr]]
\end{forest}
\end{forestexample}
\begin{forestexample}[point=instr,index={delay,for step,tree,conditional>if,content,n children}]
% mark non-phrasal terminal nodes
\begin{forest}
delay={for tree={if=
{!instr("P",~content~) && ~n_children~==0}
{fill=yellow}
{}
}}
[CP[DP][C'[C][TP[DP][T'[T][VP[DP][V'[V][DP]]]]]]]
\end{forest}
\end{forestexample}
{\def\useforestlibrary#1{}%
\begin{forestexample}[point=instr,index={where option,n children,tier,content,no edge,tikz},index>={!}]
% roof terminal phrases
\useforestlibrary{linguistics}
% ...
\begin{forest}
delay={where n children=0{tier=word,
if={~instr~("P",~content~("!u"))}{roof}{}
}{}},
[VP[DP[Mary]][V'[V[loves]][DP[her cat]]]]
\end{forest}
\end{forestexample}}
\subsection{Standard node}
\label{ref:standard-node}
\begin{syntax}
\indexitem{macro>forestStandardNode}\meta{node}\meta{environment fingerprint}\meta{calibration
procedure}\meta{exported options}
This macro defines the current \emph{standard node}. The standard node declares some options as
\emph{exported}. When a new node is created, the values of the exported options are initialized
from the standard node. At the beginning of every \index{forest} environment, it is checked whether
the \emph{environment fingerprint} of the standard node has changed. If it did, the standard
node is \emph{calibrated}, adjusting the values of exported options. The \emph{raison d'etre} for
such a system is given in \S\ref{tut:defaults}.
In \meta{node}, the standard node's content and possibly other options are specified, using the
usual bracket representation. The \meta{node}, however, \emph{must not contain children}. The
default: \texttt{[dj]}.
The \meta{environment fingerprint} must be an expandable macro definition. It's expansion
should change whenever the calibration is necessary.
\meta{calibration procedure} is a keylist (processed in the |/forest| path) which calculates the
values of exported options.
\meta{exported options} is a comma-separated list of exported options.
This is how the default standard node is created:
\begin{lstlisting}
\forestStandardNode[dj]
{%
\forestOve{\csname forest@id@of@standard node\endcsname}{content},%
\the\ht\strutbox,\the\pgflinewidth,%
\pgfkeysvalueof{/pgf/inner ysep},\pgfkeysvalueof{/pgf/outer ysep},%
\pgfkeysvalueof{/pgf/inner xsep},\pgfkeysvalueof{/pgf/outer xsep}%
}
{
l sep={\the\ht\strutbox+\pgfkeysvalueof{/pgf/inner ysep}},
l={l_sep()+abs(max_y()-min_y())+2*\pgfkeysvalueof{/pgf/outer ysep}},
s sep={2*\pgfkeysvalueof{/pgf/inner xsep}}
}
{l sep,l,s sep}
\end{lstlisting}
\end{syntax}
\subsection{Externalization}
\label{ref:externalization}
Externalized tree pictures are compiled only once. The result of the compilation is saved into a
separate |.pdf| file and reused on subsequent compilations of the document. If the code of the
tree (or the context, see below) is changed, the tree is automatically recompiled.
Externalization is enabled by:
\begin{lstlisting}
\usepackage[~external~]{forest}
~\tikzexternalize~
\end{lstlisting}
Both lines are necessary. \TikZ;'s externalization library is automatically loaded if necessary.
\begin{syntax}
\indexitem{node key>external/optimize} Parallels \keyname{/tikz/external/optimize}: if |true| (the
default), the processing of non-current trees is skipped during the embedded compilation.
\indexitem{node key>external/context} If the expansion of the macro stored in
this option changes, the tree is recompiled.
\indexitem{node key>external/depends on macro}|=|\meta{cs} Adds the definition of macro \meta{cs} to
\keyname{external/context}. Thus, if the definition of \meta{cs} is changed, the tree will be
recompiled.
\end{syntax}
\foRest; respects or is compatible with several (not all) keys and commands of \TikZ;'s
externalization library. In particular, the following keys and commands might be useful; see
\cite[\S32]{tikzpgf2.10}.
\begin{itemize}
\item\keyname{/tikz/external/remake next}
\item\keyname{/tikz/external/prefix}
\item\keyname{/tikz/external/system call}
\item\cmdname{tikzexternalize}
\item\cmdname{tikzexternalenable}
\item\cmdname{tikzexternaldisable}
\end{itemize}
\FoRest; does not disturbe the externalization of non-\foRest; pictures. (At least it
shouldn't \dots)
The main auxiliary file for externalization has suffix |.for|. The externalized pictures have
suffices |-forest-|$n$ (their prefix can be set by \keyname{/tikz/external/prefix}, e.g.\ to a
subdirectory). Information on all trees that were ever externalized in the document (even if
they were changed or deleted) is kept. If you need a ``clean'' |.for| file, delete it and
recompile. Deleting |-forest-|$n$|.pdf| will result in recompilation of a specific tree.
Using \keyname{draw tree} and \keyname{draw tree'} multiple times \emph{is} compatible with
externalization, as is drawing the tree in the box (see \index{draw tree box}). If you are
trying to externalize a \index{forest} environment which utilizes \index{TeX} to produce a
visible effect, you will probably need to use \index{TeX'} and/or \index{TeX''}.
\setcounter{CodelineNo}{0}
\DocInput{forest-libs.dtx}
\section{Gallery}
\label{sec:gallery}
\subsection{Decision tree}
\label{sec:example-decision-tree}
The following example was inspired by a question on \TeX\ Stackexchange:
\href{http://tex.stackexchange.com/questions/39103/how-to-change-the-level-distance-in-tikz-qtree-for-one-level-only}{How to change the level distance in tikz-qtree for one level only?}. The question is about |tikz-qtree|: how to adjust the level distance for the first level only, in order to avoid first-level labels crossing the parent--child edge. While this example solves the problem (by manually shifting the offending labels; see \texttt{elo} below), it does more: the preamble is setup so that inputing the tree is very easy.
\begin{forestexample}[layout=tree on top,index={if option,readonly option>n,no edge,tikz,strequal,strcat,option>child anchor,option>parent
anchor,option>anchor,anchor>anchor,calign,for step,tree,s sep,option>l,n children,declare toks,delay,content,before typesetting nodes,descendants,keylist+=tikz,wrap pgfmath arg,wrap $n$ pgfmath args,split option},index>={!}]
\forestset{
declare toks={elo}{}, % Edge Label Options
anchors/.style={anchor=#1,child anchor=#1,parent anchor=#1},
dot/.style={tikz+={\fill (.child anchor) circle[radius=#1];}},
dot/.default=2pt,
decision edge label/.style n args=3{
edge label/.expanded={node[midway,auto=#1,anchor=#2,\forestoption{elo}]{\strut$\unexpanded{#3}$}}
},
decision/.style={if n=1
{decision edge label={left}{east}{#1}}
{decision edge label={right}{west}{#1}}
},
decision tree/.style={
for tree={
s sep=0.5em,l=8ex,
if n children=0{anchors=north}{
if n=1{anchors=south east}{anchors=south west}},
math content,
},
anchors=south, outer sep=2pt,
dot=3pt,for descendants=dot,
delay={for descendants={~split option~={content}{;}{content,decision}}},
}
}
\begin{forest} decision tree
[N,plain content
[I;{p_1=0.5},plain content,elo={yshift=4pt}
[{5,1};a]
[II;b,plain content
[{1,2};m]
[{2,3};n]
]
]
[II;{p_2=0.5},plain content,elo={yshift=4pt}
[;c
[{1,0};z]
[{2,2};t]
]
[;d
[{3,1};z]
[{0,0};t]
]
] {\draw[dashed](!1.anchor)--(!2.anchor) node[pos=0.5,above]{I};}
]
\end{forest}
\end{forestexample}
\setcounter{CodelineNo}{0}
\DocInput{forest-index.dtx}
\section{Past, present and future}
\label{sec:changes}
\paragraph{Roadmap} What's planned for future releases?
\begin{itemize}
\item filling up the libraries
\item faster externalization
\item custom-edge aware packing algorithm and a more flexible (successor of) \index{calign}
\item support for specialized |forest| environments, including:
\begin{itemize}
\item selectable input parser,
\item namespaces (different function, different options),
\item better support for different output types.
\end{itemize}
In short, everything you need to make \foRest; your favourite spreadsheet! ;-)
\item code cleanup and extraction of sub-packages possibly useful to other package writers
\end{itemize}
\subsection{Changelog}
\label{sec:changelog}
First of all, the list of all \index{compat} key values for backward compatibility, and their
groupings. Remember, compat values that reside in styles with suffix |-most| are harmless: they will
not disrupt the new functionality of the package. But take care when using stuff which only resides
in |-all| styles.
\lstinputregion{forest-compat.sty}{compat_keys}
\newcommand\compatitem[2]{\item[,,in \texttt{-#1}]\texttt{compat=}\indexdef{value of=compat>#2}}
\subsubsection{v2.1}
\begin{description}
\item[v2.1.5 (2017/07/14)] \mbox{}
Minor improvements:
\begin{itemize}
\item Smarter \index{baseline} defaults for the \reflibrary{linguistics} library.
\item Yield warning when the \index{baseline} is set to a node that is not drawn (e.g.\ a
\index{phantom} node).
\end{itemize}
\item[v2.1.4 (2017/02/02)] \mbox{}
Performance:
\begin{itemize}
\item Reimplement some internals of the packing algorithm to avoid consuming the string pool in
documents with many trees. (We're about 10\% slower now, but (depending on the document) the
memory usage can drop up to five times!)
\end{itemize}
Bugfixes:
\begin{itemize}
\item Fix aggregate function \index{aggregate>count}.
\item Provide a workaround for a PGF bug: for coordinate-shaped nodes, |\positionnodelater|
provides dimensions with |pt| in a wrong catcode, so \index{max y} and friends did not work for
such nodes.
\end{itemize}
\item[v2.1.3 (2017/01/27)] \mbox{}
Bugfixes:
\begin{itemize}
\item Update \index{nice empty nodes} to use \index{for step=\index{current and siblings}}.
\end{itemize}
\item[v2.1.2 (2016/12/31)] \mbox{}
Bugfixes:
\begin{syntax}
\compatitem{all}{2.1.1-loops}
A level of hash doubling was unnecessarily introduced for the \meta{keylist} argument of all
loops (\S\ref{ref:loops}), and the \meta{nodewalk} argument of \index{process keylist'} and
\index{process delayed}. Use this key to revert to the old behaviour.
\end{syntax}
Minor improvements:
\begin{itemize}
\item Implemented key \index{also}.
\end{itemize}
\item[v2.1.1 (2016/12/18)] \mbox{}
Minor improvements:
\begin{itemize}
\item Implemented argument processor instruction \index{processor>p}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Argument processor instruction \index{processor>u} introduced an extra layer of braces
around each result item.
\item Argument processor instructions \index{processor>l} and \index{processor>L} did not always
load the desided number of arguments.
\item Argument processor instructions \index{processor>and} and \index{processor>or} were taking
the arguments from the start of the left side instead of its end.
\end{itemize}
\item[v2.1 (2016/12/05)] \mbox{}
Backward incompatible changes (with a \index{compat} key):
\begin{syntax}
\compatitem{all}{2.0-edges}
This compat key groups the three changes listed below: the final two depend on the first, so you
will probably want to revert them all or none.
\begin{syntax}
\compatitem{all}{2.0-anchors}
This is really a bugfix. Growth direction based anchors \index{anchor>parent},
\index{anchor>parent first} and \index{anchor>parent last} were not facing to the direction of the
parent if the growth direction of the tree changed at the node.
\compatitem{all}{2.0-forkededge}
\compatitem{all}{2.0-folder}
Update the code of keys \index{forked edge} (and friends) and \index{folder} from the
\reflibrary{edges} library to reflect the above bugfix.
\end{syntax}
\compatitem{all}{2.0-delayn} Fixing yet another bug in \index{delay n}! The number of cycles was
reevaluated at each cycle. Now it is computed immediately, and fixed. Use this key to revert to
the old behaviour.
\end{syntax}
Performance:
\begin{itemize}
\item Substantially enhance the argument processor (\S\ref{ref:argument-processor}), including the
ability to use it as a drop-in replacement for |pgfmath|.
\item Internally, avoid using |\pgfmathparse| and friends whereever possible.
\item Implement a fast set of macros to determine if a |pgfmath| expression is just a \meta{count}
or \meta{dimen} expression.
\item Optimize \index{split option} and \index{split register}.
\end{itemize}
Minor improvements:
\begin{itemize}
\item Allow \index{relative node name}s in \index{handler>option}.
\item Make aggregate functions (\S\ref{ref:aggregate-functions}) nestable and implement their
|pgfmath| versions.
\item Implement
\index{if dimen GT=\meta{dimen option}}, \index{if dimen LT=\meta{dimen option}},
\index{if count GT=\meta{count option}}, \index{if count LT=\meta{count option}},
\index{where dimen GT=\meta{dimen option}}, \index{where dimen LT=\meta{dimen option}},
\index{where count GT=\meta{count option}} and \index{where count LT=\meta{count option}},
\item Implement \index{if current nodewalk empty}.
\item Implement nodewalk steps \index{leaves}, \index{-level} and \index{-level'}.
\item Implement nodewalk operation \index{unique}.
\item Implement \index{nodewalk key>on invalid} values \index{value of=on invalid>error if real} and \index{value of=on invalid>last valid}, remove value |step| (no \index{compat} key, as it was broken and useless).
\item Implement `-` anchors (\index{anchor>-parent} etc.).
\item Implement \index{save and restore register}.
\item Implement \index{handler>nodewalk style}.
\item Implement \index{forestloopcount}.
\item Allow multiple occurrences of package option \index{compat}.
%\item Implement \index{foresttypeouttrees}.
%\item Implement \index{show register}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Fix a bug in externalization (|\forest@file@copy| set |\endlinechar| to |-1|, which caused
problems for several packages, e.g. |biblatex|).
\item Fix a bug in \index{delay n}: the number of cycles was reevaluated at each cycle.
\item Fix a bug in \index{fixed edge angles}.
\item Fix \index{compat} key values \index{value of=compat>silent}, \index{value of=compat>1.0-forstep} and \index{value of=compat>1.0-stages}.
\item Fix invocations of spatial propagators \index{for step=\index{step>nodewalk}} and \index{for step=\index{step>Nodewalk}} and \index{node key>Nodewalk}.
\item Fix invocations of \index{for step=group}, \index{for step=next on tier} and \index{for step=previous on tier}.
\item Fix behaviour of \index{for step=next on tier}, \index{for step=previous on tier} and \index{for step=to tier} on arrival to the invalid node.
\item Fix problems with interaction between \index{folder} and \index{forked edges}.
\end{itemize}
\end{description}
\subsubsection{v2.0}
\begin{description}
\item[v2.0.3 (2016/04/03)] \mbox{}
Backward incompatible changes (with a \index{compat} key):
\begin{syntax}
\compatitem{all}{2.0.2-delayn}
\compatitem{all}{2.0.2-wrapnpgfmathargs}
This is really a bugfix: keys \index{delay n} and \index{wrap $n$ pgfmath args} (for $n\geq 2$)
were introducing two layers of hash doubling. Now this confusing behaviour is gone, but as
finding the correct number of hashes is always a tough job, \index{compat} keys are provided.
\end{syntax}
Improvements:
\begin{itemize}
\item Rework \index{draw tree edge} so that by default, an edge is drawn only it both its node and
its node's parent are drawn. And yes, implement \index{if node drawn}.
\item Implement circularity detection in dynamic node operations.
\item Implement debug categories and debugging of dynamic node operations.
\item Declare some further |tempdim...| registers.
\item Make option \index{readonly option>id} accessible via \index{forestoption}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Execute \index{tikz} code for all (including phantom) nodes. (The feature of ignoring
phantom nodes was introduced in v2.0.2, but turns out it was a bad idea: for example, having a
phantom root with some tikz code is not uncommon.)
\item Keys \index{label} and \index{pin} now \emph{append} to option \index{tikz}, as makes sense.
\item Fix nodewalk steps \index{filter} and \index{branch} so that they can be embedded under
nodewalk operations. (Uh, and recategorize them as operations themselves.)
\item Execute \index{before packing node} even when the node has no children.
\item \index{step>level}|<={0}{...}| now works as expected.
\item Re-setting the node name to the same value doesn't yield an error anymore.
\item Don't add the separator when adding the first element to a keylist option or register.
\item Copy externalization files in TeX (don't rely on |\write18|).
\item Consistently store dimen options and registers with |pt|s of catcode other.
\item Properly initialize readonly count options (\index{readonly option>n}, \index{readonly option>n'}, \index{n children} and
\index{readonly option>level}).
\item Fix some typos.
\end{itemize}
\item[v2.0.2 (2016/03/04)] \mbox{}
Backward incompatible changes:
\begin{itemize}
\item The semantics of the parenthesized optional argument to \index{forest} environment and
\index{Forest} macro has changed. The argument was introduced in v2.0.0: if present, it
redefined \index{style>stages} style for the current environment/macro. This argument is now
generalized to allow further (pre-\index{style>stages}) customization in future versions of the
package. To temporarily redefine \index{style>stages}, write |(|\index{option of=forest>stages}|={...})|.
\end{itemize}
New functionality:
\begin{itemize}
\item Key \index{last dynamic node} and named nodewalk \index{dynamic nodes}.
\item An optional argument to \index{useforestlibrary} to pass package options to libraries.
\item Handler \index{nodewalk style}.
\item Keys \index{draw tree node'}, \index{draw tree edge'} and \index{draw tree tikz'}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Fixed \index{replace by} when applied to the root node.
\item Registers are now initialized to an empty string, 0pt, or 0.
\item Packing doesn't destroy the current pgfpath anymore.
\item \index{forestStandardNode} now uses \index{name'}.
\item \index{draw tree edge} now respects \index{phantom}.
\end{itemize}
\item[v2.0.1 (2016/02/20)] \mbox{}
New functionality:
\begin{itemize}
\item \index{current and siblings}, \index{current and siblings reversed}
\item Add |*| argument to \index{useforestlibrary}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item Correctly mangle option/register names to pgfmath names (\S\ref{ref:pgfmath}).
\item Refer to parent (not node) anchor in \index{calign}|=|\index{edge midpoint}.
\item Accept key \index{history} in \index{step>Nodewalk} config.
\end{itemize}
\item[v2.0.0 (2016/01/30)] \mbox{}\footnote{The year of the release date in the package was wrong \dots \ 2015.}
Backwards incompatible changes (\emph{without} a \index{compat} key --- sorry!):
\begin{itemize}
\item The unintended and undocumented way to specify defaults using |\forestset{.style={...}}|
(see question
\href{http://tex.stackexchange.com/questions/167972/making-a-certain-tree-style-the-default-for-forest}{Making
a certain tree style the default for forest} at \TeX\ SE) does not work anymore. (Actually, it
has never truly worked, and that's why it has not \index{compat} key.) Use \index{default
preamble}.
\item Renamed augmented assignment operator \meta{option}|-| for prepending to \meta{toks} and
\meta{keylist} options \index{+toks=\meta{option}}\index[not print]{+keylist}. A new
\index{keylist-=\meta{option}} is defined for keylist options and means ``delete key from keylist.''
\item Short nodewalk steps are not simply styles anymore: use \index{define short step} to
define them.
\end{itemize}
Backwards incompatible changes with a \index{compat} key:
\begin{syntax}
\compatitem{all}{1.0-stages}
Processing of \index{given options}, which is now exposed, and the new keylists \index{default
preamble} and \index{preamble} is now included at the start of the default \index{style>stages}
style. When changing \index{style>stages}, the instruction to process these keylists must now be
given explicitely.
\compatitem{all}{1.0-forstep}
In v1.0, a spatial propagator \index{for step=\meta{step}} could never fail. This turned out to
be difficult to debug. In this version, when a propagator steps ``out of the tree'', an error
is raised by default. Check out \index{option of=Nodewalk>on invalid} to learn how to simulate
the old behaviour without using this compatibility key.
\compatitem{all}{1.0-rotate}
This version of the package introduces
option \index{rotate} and \index{autoforward}s it to \index{node options}. This is needed to
handle the new \foRest; anchors (\S\ref{sec:anchors}). However, in some rare cases (like the
tree on the title page of this manual) it can lead to a discrepancy between the versions, as the
time when the value given to \index{rotate} is processed is different. |1.0-rotate| removes
option \index{rotate}.
\compatitem{all}{1.0-name}
Documentation of v1.0 requested that node names be unique, but this was not enforced by the
package, sometimes leading to errors. v2.0 enforces node name uniqueness. If this causes
problems, use this compatibility key. In most cases using \index{name'} instead of
\index{option>name} should fix the problem without using compatibility mode.
\item These keys have been renamed:
\begin{tabularx}{\linewidth}{lll}
old&new&\index{compat} key {\small (all but the last are in \texttt{-most})}\\\hline
\keyname{node walk}&\index{for step=nodewalk}\footnote{Nodewalks are much improved in v2.0, so some syntax and keys are different than in v1.0!}&\indexdef{value of=compat>1.0-nodewalk}\\
\keyname{for}&\index{for step=\index{group}}&\indexdef{value of=compat>1.0-for}\\
\keyname{for all next}&\index{for step=\index{following siblings}}&\indexdef{value of=compat>1.0-forall}\\
\keyname{for all previous}&\index{for step=\index{preceding siblings}}&\indexdef{value of=compat>1.0-forall}\\
\keyname{for ancestors'}&\index{for step=\index{current and ancestors}}&\indexdef{value of=compat>1.0-ancestors}\\
(\keyname{for}) \keyname{linear next}&(\index{for step}) \index{next node}&\indexdef{value of=compat>1.0-linear}\\
(\keyname{for}) \keyname{linear previous}&(\index{for step}) \index{previous node}&\indexdef{value of=compat>1.0-linear}\\
\keyname{triangle}&\index{roof} (library \reflibrary{linguistics})&\indexdef{value of=compat>1.0-triangle}\\
\keyname{/tikz/fit to tree}&\index{fit to}\keyname{=}\index{tree}\footnote{The v1.0 key \keyname{/tikz/fit to tree} also set \keyname{inner sep=0}; the v2.0 key \index{fit to} does not do that.}&\indexdef{value of=compat>1.0-fittotree}\\
\keyname{begin forest}, \keyname{end forest}&none (use \index{style>stages})&\index{1.0-stages}\\
\keyname{end forest}, \keyname{end forest}&none (use \index{style>stages})&\index{1.0-stages}\\
\end{tabularx}
\end{syntax}
Good news:
\begin{itemize}
\item Added temporal propagators \index{before packing node} and \index{after packing node}.
\item \emph{Much} improved nodewalks, see \S\ref{ref:nodewalks} and \S\ref{ref:spatial-propagators}.
\item Implemented looping mechanisms and more conditionals, see \S\ref{ref:conditionals}.
\item Implemented library support and started filling up the libraries:
\begin{itemize}
\item \reflibrary{linguistics}: \index{sn edges}, \index{nice empty nodes}, \index{draw
brackets}, \index{c-commanded} and \index{c-commanders}
\item \reflibrary{edges}: \index{forked edges} and \index{folder}
\end{itemize}
\item Implemented aggregate functions, see \S\ref{ref:aggregate-functions}.
\item Added key \index{default preamble}.
\item Implemented anchors \index{anchor>parent}, \index{anchor>children}, \index{anchor>first},
\index{anchor>last}, etc.
\item Added key \index{split} and friends.
\item Implemented sorting of children, see \S\ref{ref:dynamic}.
\item Introduced registers, see \S\ref{sec:options-and-registers}.
\item Implemented handlers \index{handler>option}, \index{handler>register} and \index{process args}.
\item Implemented several friends to \index{process keylist}, introduced \index{processing order}s
and \index{draw tree method}.
\item Added the optional argument |(|\meta{stages}|)| to the \index{forest} environment and
\index{Forest} macro.
\item Implemented \index{autoforward}ing.
\item Implemented flexible handling of unknown keys using \index{unknown to}.
\item Implemented |pgfmath| functions \index{pgfmath>min_l}, \index{pgfmath>max_l}, \index{pgfmath>min_s}, \index{pgfmath>max_s}.
\item Implemented augmented assignment operator \index{keylist-=\meta{keylist option}} for removing keys from keylists.
\item Implemented a generalized \index{fit to} key.
\item Implemented a very slow \foRest;-based indexing system (used to index this documentation)
and included it in the gallery (\S\ref{sec:forest-index}).
\item Added some minor keys: \index{edge path'}, \index{node format'}, \index{create'} and \index{plain content}.
\item Added some developer keys: \index{copy command key}, \index{typeout}.
\end{itemize}
Bugfixes:
\begin{itemize}
\item In computation of numeric tree-structure info, when called for a non-root node.
\item \TikZ;'s externalization internals (signature of
|\tikzexternal@externalizefig@systemcall@uptodatecheck|) have changed: keep up to date,
though only formally.
\item \index{delay} was not behaving additively.
\item \index{option>name}, \index{alias} and \index{baseline} didn't work properly when
setting them for a non-current node.
\item Augmented assignments for count options were leaking `.0pt'.
\item \index{create} didn't work properly in some cases.
\item \keyname{triangle} (now \index{roof} in \reflibrary{linguistics}) didn't use |cycle| in the edge path
\end{itemize}
\end{description}
\subsubsection{v1.0}
\begin{description}
\item[v1.0.10 (2015/07/22)] \mbox{}
\begin{compactitem}
\item Bugfix: a left-over debugging |\typeout| command was interfering with a |forest| within |tabular|, see \href{http://tex.stackexchange.com/questions/256509/odd-incompatibility-between-multi-line-forest-nodes-and-tabular}{this question on TeX.SE}.
\item A somewhat changed versioning scheme \dots
\end{compactitem}
\item[v1.09 (2015/07/15)] \mbox{}
\begin{compactitem}
\item Bugfix: child alignment was not done in nodes with a single child, see \href{http://tex.stackexchange.com/questions/255309/elementary-forest-question-meaning-of-calign-parent-anchor-and-child-anchor}{this question on TeX.SE}.
\end{compactitem}
\item[v1.08 (2015/07/10)] \mbox{}
\begin{compactitem}
\item Fix externalization (compatibility with new |tikz| features).
\end{compactitem}
\item[v1.07 (2015/05/29)] \mbox{}
\begin{compactitem}
\item Require package |elocalloc| for local boxes, which were previously defined by package |etex|.
\end{compactitem}
\item[v1.06 (2015/05/04)] \mbox{}
\begin{compactitem}
\item Load |etex| package: since v2.1a, |etoolbox| doesn't do it anymore.
\end{compactitem}
\item[v1.05 (2014/03/07)] \mbox{}
\begin{compactitem}
\item Fix the node boundary code for rounded rectangle. (Patch contributed by Paul Gaborit.)
\end{compactitem}
\item[v1.04 (2013/10/17)] \mbox{}
\begin{compactitem}
\item Fixed an \href{http://tex.stackexchange.com/questions/138986/error-using-tikzexternalize-with-forest/139145}{externalization bug}.
\end{compactitem}
\item[v1.03 (2013/01/28)] \mbox{}
\begin{compactitem}
\item Bugfix: options of dynamically created nodes didn't get processed.
\item Bugfix: the bracket parser was losing spaces before opening braces.
\item Bugfix: a family of utility macros dealing with affixing token lists was not expanding
content correctly.
\item Added style \index{math content}.
\item Replace key \keyname{tikz preamble} with more general \index{begin draw} and
\index{end draw}.
\item Add keys \keyname{begin forest} and \keyname{end forest}.
\end{compactitem}
\item[v1.02 (2013/01/20)] \mbox{}
\begin{compactitem}
\item Reworked style \index{style>stages}: it's easier to modify the processing flow now.
\item Individual stages must now be explicitely called in the context of some (usually root)
node.
\item Added \index{delay n} and \index{if have delayed}.
\item Added (experimental) \index{pack'}.
\item Added reference to the \href{https://github.com/sasozivanovic/forest-styles}{style
repository}.
\end{compactitem}
\item[v1.01 (2012/11/14)] \mbox{}
\begin{compactitem}
\item Compatibility with the |standalone| package: temporarily disable the effect of
|standalone|'s package option |tikz| while typesetting nodes.
\item Require at least the [2010/08/21] (v2.0) release of package |etoolbox|.
\item Require version [2010/10/13] (v2.10, rcs-revision 1.76) of \PGF;/\TikZ;. Future
compatibility: adjust to the change of the ``not yet positioned'' node name (2.10 |@|
$\rightarrow$ 2.10-csv |PGFINTERNAL|).
\item Add this changelog.
\end{compactitem}
\item[v1.0 (2012/10/31)] First public version
\end{description}
\subsection{Known bugs}
\label{sec:bugs}
If you find a bug (there are bound to be some \dots), please contact
me at \href{mailto:saso.zivanovic@guest.arnes.si}{saso.zivanovic@guest.arnes.si}.
\subsubsection*{System requirements}
This package requires \LaTeX\ and e\TeX. If you use something
else: sorry.
The requirement for \LaTeX\ might be dropped in the future, when I get some time and energy for a
code-cleanup (read: to remedy the consequences of my bad programming practices and general
disorganization).
The requirement for e\TeX\ will probably stay. If nothing else, \foRest; is heavy on boxes: every
node requires its own \dots\ and consequently, I have freely used e\TeX\ constructs in the code
\dots
\subsubsection*{\PGF; internals}
\FoRest; relies on some details of \PGF; implementation, like the name
of the ``not yet positioned'' nodes. Thus, a new bug might appear with the development of \PGF;.
If you notice one, please let me know.
\subsubsection*{Edges cutting through sibling nodes}
\label{sec:cutting-edge}
In the following example, the R--B edge crosses the AAA node, although \index{ignore edge} is
set to the default |false|.
\begin{forestexample}[index={calign,{value of=calign>first},align,{value of=align>center},base,{value of=base>bottom}}]
\begin{forest}
calign=first
[R[AAAAAAAAAA\\AAAAAAAAAA\\AAAAAAAAAA,align=center,base=bottom][B]]
\end{forest}
\end{forestexample}
This happens because s-distances between the adjacent children are
computed before child alignment (which is obviously the correct order in the general case), but
child alignment non-linearly influences the edges. Observe that the with a different value of
\index{calign}, the problem does not arise.
\begin{forestexample}[index={calign,{value of=calign>last},align,{value of=align>center},base,{value of=base>bottom}}]
\begin{forest}
calign=last
[R[AAAAAAAAAA\\AAAAAAAAAA\\AAAAAAAAAA,align=center,base=bottom][B]]
\end{forest}
\end{forestexample}
While it would be possible to fix the situation after child alignment (at least for some child
alignment methods), I have decided against that, since the distances between siblings would soon
become too large. If the AAA node in the example above was large enough, B could easily be pushed
off the paper. The bottomline is, please use manual adjustment to fix such situations.
\subsubsection*{Orphans}
\label{sec:orphans}
If the \index{option>l} coordinates of adjacent children are too different (as a result of manual adjustment or
tier alignment), the packing algorithm might have nothing so say about the desired distance
between them: in this sense, node C below is an ``orphan.''
\begin{forestexample}[index={for step,tree,s sep,option>l,dimen*}]
\begin{forest}
for tree={s sep=0,draw},
[R[A][B][C,l*=2][D][E]]
\end{forest}
\end{forestexample}
To prevent orphans from ending up just anywhere, I have decided to vertically align them with
their preceding sibling --- although I'm not certain that's really the best solution. In other
words, you can rely that the sequence of s-coordinates of siblings is non-decreasing.
The decision also influences a similar situation illustrated below. The packing algorithm puts
node E immediately next to B (i.e.\ under C): however, the monotonicity-retaining mechanism then
vertically aligns it with its preceding sibling, D.
\begin{forestexample}[index={for step,tree,s sep,tier}]
\begin{forest}
for tree={s sep=0,draw},
[R[A[B,tier=bottom]][C][D][E,tier=bottom]]
\end{forest}
\end{forestexample}
Obviously, both examples also create the situation of an edge crossing some sibling node(s).
Again, I don't think anything sensible can be done about this, in general.
\subsection{Acknowledgements}
This package has turned out to be much more successful and widespread than I could have ever
imagined and I want to thank all the users for the trust. Many of you have also contributed to the
package in some way: by providing comments and ideas, sending patches, reporting bugs and so on. To
you, I'm doubly grateful! I will not even try to list you all here, as the list is getting too long
for me to maintain, but I do want to mention one person, a member of the friendly community at the
excellent and indispensable \href{http://tex.stackexchange.com}{\TeX\ -- \LaTeX\ Stack Exchange} and
the author of the very first \foRest;-based package,
\href{http://ctan.org/pkg/prooftrees}{Prooftrees}: without |cfr|'s uncountable questions, answers,
bug reports and ideas, \foRest; would be a much poorer package indeed.
\addcontentsline{toc}{section}{References}
\bibliography{tex}
\bibliographystyle{plain}
\newpage
\phantomsection
\addcontentsline{toc}{section}{\indexname}
\addtocontents{toc}{\protect\setbox0=\protect\vbox{\protect\iffalse}\protect\fi}
\PrintIndex
%\addtocontents{toc}{\protect\iffalse{\protect\fi}}
%http://tex.stackexchange.com/questions/10291/addtocontents-at-end-of-document-not-getting-written-to-toc-file
\makeatletter
\immediate\write\@auxout{\noexpand\@writefile{toc}{\noexpand\iffalse{\noexpand\fi}}}
\makeatother
\end{document}
%%% Local Variables:
%%% mode: latex
%%% fill-column: 100
%%% TeX-command-default: "Make PDF"
%%% TeX-master: t
%%% End:
|