1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
% example.tex
%
% Copyright (C) 2010,2011 Laura Dietz
% Copyright (C) 2012 Jaakko Luttinen
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU General Public License.
%
% See the files LICENSE_LPPL and LICENSE_GPL for more details.
\documentclass[a4paper]{article}
\usepackage{tikz}
\usetikzlibrary{bayesnet}
%\pgfrealjobname{example} % name of this file
\title{Graphical Models in Tikz}
\author{Laura Dietz, Jaakko Luttinen}
\begin{document}
\maketitle
TikZ examples for graphical models (Bayesian networks) and directed
factor graphs \cite{Dietz:2010}.
% A table of node types
\begin{table}[ht]
\caption{Node types}
\begin{center}
\begin{tabular}{llc}
Type & Syntax & Output
\\
\hline
Latent variable &
\texttt{\textbackslash node[latent]} &
\tikz{ %
\node[latent] {$x$}; %
}
\\
Observed variable &
\texttt{\textbackslash node[obs]} &
\tikz{ %
\node[obs] {$y$}; %
}
\\
Deterministic &
\texttt{\textbackslash node[det]} &
\tikz{ %
\node[det] {dot} ; %
}
\\
Constant &
\texttt{\textbackslash node[const]} &
\tikz{ %
\node[const] {$a$}; %
}
\\
Factor &
\texttt{\textbackslash node[factor]} &
\tikz{ %
\node[factor] [label=$\mathcal{N}$] {}; %
}
\\
Factor with nodes &
&
\tikz{ %
\node[obs] (y) {$y$} ; %
\node[latent, left=of y, yshift=0.5cm] (mu) {$\mu$} ; %
\node[latent, left=of y, yshift=-0.5cm] (tau) {$\tau$} ; %
\factor[left=of y] {y-factor} {$\mathcal{N}$} {} {};
\factoredge {mu,tau} {y-factor} {y} ; %
}
\\
Plate &
\texttt{\textbackslash plate} &
\tikz{ %
\node[latent] (x) {$x_m$}; %
\plate {} {(x)} {$m \in \mathcal{M}$}; %
}
\\
Gate &
&
\tikz{
% Nodes
\node[obs] (k) {$k$}; %
\node[latent, above=2 of k] (l) {$\lambda$}; %
\factor[above=0.8 of k] {k-f} {Multi} {} {}; %
\node[latent, right=of k-f] (paa) {$\phi$}; %
%\node[latent, right=of k-f] (p) {$\phi$}; %
% Connections
\factoredge {paa} {k-f} {k} ; %
% Gate
\gate {} {(k-f)(k-f-caption)} {l} ; %
}
\end{tabular}
\end{center}
\end{table}
% Simple Bayesian network
\begin{figure}[ht]
\begin{center}
\begin{tabular}{cc}
\input{model_pca} &
\input{model_pca2}
\end{tabular}
\end{center}
\caption{PCA model as a Bayesian network and a directed factor
graph.}
\end{figure}
% Latent Dirichlet allocation
\begin{figure}[ht]
\begin{center}
\input{model_lda}
\end{center}
\caption{Latent Dirichlet allocation as directed factor graph.}
\end{figure}
% Citation influence model
\begin{figure}[ht]
\begin{center}
\input{model_citation_influence}
\end{center}
\caption{Citation influence model with own topics \cite{Dietz:2007}
as directed factor graph.}
\end{figure}
\clearpage
\begin{thebibliography}{9}
\bibitem{Dietz:2010}
Laura Dietz,
\emph{Directed Factor Graph Notation for Generative Models}.
Technical Report. 2010
% Laura Dietz, Steffen Bickel, Tobias Scheffer.
% Unsupervised Prediction of Citation Influences.
% In: Proceedings of International Conference on Machine Learning. 2007
\bibitem{Dietz:2007}
Laura Dietz, Steffen Bickel, Tobias Scheffer,
\emph{Unsupervised Prediction of Citation Influences}.
In: Proceedings of International Conference on Machine
Learning. 2007
\end{thebibliography}
\end{document}
%%% Local Variables:
%%% mode: tex-pdf
%%% TeX-master: t
%%% End:
|